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The collision rate of monodisperse solid particles in a turbulent gas is governed by
a wide range of scales of motion in the flow. Recent studies have shown that large-
scale energetic eddies are the dominant factor contributing to the relative velocity
between two colliding particles (the turbulent transport effect), whereas small-scale
dissipative eddies can enhance the collision rate significantly by inducing local non-
uniform particle distribution (the accumulation effect). The turbulent transport effect
is most noticeable when the particle inertial response time τp is of the order of the
flow integral timescale and the accumulation effect is most pronounced when τp is
comparable to the flow Kolmogorov time.

We study these two contributions separately through direct numerical simulations.
The two effects are quantified carefully with a numerical procedure that is independent
of the computation of average collision rate. This facilitates the study of not only the
statistical description of the collision kernel, but also the relative contributions and
modelling of the two physical effects. Simulations at several flow Reynolds numbers
were performed to suggest a model for the accumulation effect. The data show that
the accumulation effect scales linearly with flow Taylor microscale Reynolds number
Rλ, while the theory for fully developed turbulence indicates that the maximum level

of the turbulent transport effect scales with R
1/2
λ . Finally, an integrated model has

been developed to predict the collision rate at arbitrary flow Reynolds numbers and
particle inertia.

1. Introduction
Turbulent coagulation, the process of collision-induced merging of particles in a

suspension of solid particles or liquid droplets, plays an important role in many natural
and industrial processes. Early studies on this subject were motivated by the need to
understand the growth of liquid droplets in turbulent clouds (e.g. Saffman & Turner
1956; Pruppacher & Klett 1978). Subsequent studies, especially addressing the effects
of finite particle inertia, were directed to better model and control particle growth
in industrial processes, such as droplet growth in wet steam generators (Williams
& Crane 1979) and spray atomization process (O’Rourke & Bracco 1980), dust
separation in cyclones (Abrahamson 1975), and TiO2 production (Xiong & Pratsinis
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1991). Coagulation of fuel droplets may lead to reduced evaporation and burning
rates, resulting in incomplete combustion. Turbulent coagulation can also affect
pollutant formation and control (e.g. Flagan & Seinfeld 1988). Smoke ageing (i.e.
the increase of particle size in smoke) is a result of particle coagulation, which alters
the dispersion and transport of turbulent flames, reduces the rate of smoke particle
burn-out, and increases particulate emission (Delichatsios 1980).

The overall coagulation rate of finite-size particles in fluid turbulence is governed
by three consecutive and interrelated processes: (i) geometric collision due to particle–
turbulence interactions and Brownian diffusion (Saffman & Turner 1956; Abrahamson
1975; Williams & Crane 1983; Hu & Mei 1997; Kruis & Kusters 1997; Sundaram
& Collins 1997; Wang, Wexler & Zhou 1998a; Zhou, Wexler & Wang 1998), (ii)
collision efficiency due to local particle–particle aerodynamic interactions (e.g. Jonas
& Goldsmith 1972; Delichatsios 1980; Koziol & Leighton 1996; Brunk, Koch &
Lion 1997, 1998a, b), and (iii) coagulation efficiency as determined by surface sticking
characteristics (such as van der Waals forces, particle wetness, and electrostatic
charges, e.g. Delichatsios 1980; Zinchenko & Davis 1995; Brunk et al. 1997). Here,
we consider only the geometric collision rates of finite-inertia particles. The objective is
to determine the average geometric collision rate of finite-inertia, monodisperse, heavy
particles as a function of turbulence characteristics and particle inertial response time
τp. A description of the average collision rate is required for modelling the particle
size distribution in turbulent suspension using population balance equations.

In their pioneer work on geometric collision rates in a turbulent suspension, Saffman
& Turner (1956) presented the first accurate formulation of the geometric collision
kernel for zero-inertia particles based on the collision sphere concept. Recently, we
revisited this spherical formulation (Wang et al. 1998a, b). Specifically, we clarified all
the assumptions underlying this spherical formulation (Wang et al. 1998a) and showed
that, rigorously speaking, finite corrections may be needed when the formulation is
applied to the modelling of real coagulation processes. Saffman & Turner (1956) also
provided an approximate formulation based on the concept of collision cylinder (the
cylindrical formulation). Whereas both the spherical and cylindrical formulations (de-
tails are given in § 2) have been used for over 40 years, we were able to show, for the first
time, that the spherical formulation is the more accurate model for the turbulent colli-
sion kernel of zero-inertia particles (Wang et al. 1998b). The first objective of this paper
is to compare these two formulations when they are extended to finite-inertia particles.

Since the work of Saffman & Turner (1956), several studies have been undertaken
to extend their results to finite-inertia particles. These include Panchev (1971) for the
case of τp spanning τk , Williams & Crane (1983) for intermediate-inertia particles with
τk < τp < Te, and Abrahamson (1975) for very large particles with τp > Te, where τk is
the flow Kolmogorov time and Te is the flow integral timescale. Yuu (1984) and Kruis
& Kusters (1997) considered the combined effect of local shear and unequal inertial
response times on the collision rate for arbitrary τp. All the above were carried out
within the framework of a stochastic theory of turbulence under the assumption that
the particle concentration field is uniform. The key in these stochastic theories is to
identify the proper range of scales of motion in the fluid turbulence which contribute
most actively to the relative velocity between two colliding particles. In these studies,
closure assumption of one type or another was usually assumed in order to derive an
expression for the average particle relative velocity. The contribution of the relative
velocity to the collision kernel will be termed the turbulent transport effect in this
paper. The turbulent transport effect is most important when τp is of the order of Te
(Sundaram & Collins 1997; Zhou et al. 1998).



Turbulent collision of inertial particles 119

A recent discovery in fully developed, turbulent particle-laden flows is preferential
particle concentration – the fact that intense vortex tube structures, which characterize
the dissipation-range dynamics in fully developed turbulence, can lead to a very non-
uniform particle concentration field. The preferential concentration in turbulence was
first illustrated by Maxey (1987) then demonstrated by Squires & Eaton (1991) and
Wang & Maxey (1993) through direct numerical simulations. It has also been observed
experimentally by Fessler, Kulick & Eaton (1994). The preferential concentration was
found to follow a Kolmogorov scaling, namely, being most effective in producing a
non-uniform concentration when τp/τk ∼ 1 (Wang & Maxey 1993). Since the local
collision rate is proportional to the square of the local concentration in a monodisperse
suspension, the preferential concentration must have a significant effect on the average
collision kernel. We shall term the additional increase in the average collision kernel
solely due to the non-uniform particle concentration the accumulation effect. Several
recent numerical studies have indeed demonstrated that this accumulation effect can
cause a significant increase in the collision kernel at low- to moderate-flow Reynolds
numbers (Sundaram & Collins 1997; Zhou et al. 1998). A first theoretical formulation
of the collision kernel which includes the accumulation effect was given recently by
Sundaram & Collins (1997) in terms of the radial distribution function at contact.
An asymptotic theory for the accumulation effect has been developed for τp < τk in
terms of the moments of local particle concentration by Zhou et al. (1998).

The second objective of this paper is to separate out numerically the relative
contributions of the turbulent transport effect and the accumulation effect. We will
present the numerical procedure which allows separate quantifications of these two
effects. Together with an independent numerical quantification of the net collision
kernel, we can not only compare the spherical and cylindrical formulations, but also
suggest models for the two physical effects and the net collision kernel.

There have been only a few physical experiments designed to measure the collision
rate in a turbulent suspension (Kuboi, Komasawa & Otake 1972; Delichatsios &
Probstein 1974; Higashitani et al. 1983; de Boer, Hoedemakers & Thoenes 1989;
Lichtenfeld et al. 1995). These experiments have provided valuable information to
compare with theoretical models. However, such comparison is very limited and may
be misleading since (i) most theories address only a single collision mechanism and
(ii) it is difficult to perform well-controlled experiments in which one can isolate
one collision mechanism from others (say, shear-induced collision from Brownian
coagulation, geometric collision from hydrodynamic interactions). Such a lack of
well-controlled experiments on the turbulent coagulation process makes numerical
simulation a valuable tool, as has been shown previously (Hu & Mei 1997; Sundaram
& Collins 1997; Zhou et al. 1998). In our numerical experiments, we make use
of turbulent flow fields generated by numerically integrating the full Navier–Stokes
equations directly. This is known as direct numerical simulations (DNS) of turbulence.
By this means, local flow dynamic features are represented without any ad hoc
modelling.

The paper is organized as follows. In the next section we modify the recent theo-
retical formulation of Sundaram & Collins (1997) in view of our recent observation
(Wang et al. 1998b) regarding the comparison of the spherical and cylindrical formu-
lations. We shall also state all major assumptions that need to be examined in our
numerical experiments. A description of the numerical methods is presented in § 3.
In § 4 we discuss the numerical results thoroughly. In the light of numerical results,
we then propose empirical models for the collision statistics in § 5. Finally, the main
conclusions are drawn in § 6.
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2. Theory
2.1. Statistical description of collision kernel

In general the collision statistics in a mono-disperse particle assembly can depend
on τp/τk , carrier flow characteristics especially flow Reynolds number Rλ, particle
size, and particle volumetric loading. We focus here on the effects of τp/τk and Rλ.
The particle diameter is assumed to be comparable or less than the Kolmogorov
microscale of turbulence, namely, dp 6 η. We have shown in Wang et al. (1998a)
that the linear expansion result for relative velocity statistics at dp � η actually
applies to dp 6 η. This is not surprising when we recognize that the average ra-
dius of small-scale vortices is about 4η (Jimenez et al. 1993), which implies that
across the lengthscale of η the local velocity gradients remain uniform. However,
even for R < η, the accumulation effect may depend on the particle size, since
the smallest lengthscale of the particle concentration field scales with R not η.
Without considering local particle–particle hydrodynamic interactions, particles may
accumulate indefinitely around a vortex structure, leading to small-scale features in
the particle concentration fields at scales less than η. This may cause a strong de-
pendence of the accumulation effect on the particle size, as demonstrated recently
by Reade & Collins (1998). It is reasonable to expect that this size dependence
would saturate when the local particle–particle hydrodynamic interactions are con-
sidered.

Another parameter not considered in this work is the particle volumetric loading.
The volumetric loading can affect the collision statistics in at least two ways. First, if
the volumetric loading is not small so that the mass loading is sufficient to modify the
carrier flow, the geometric collision rates will be affected. Secondly, even if the flow
modulation can be neglected, the physical non-overlapping requirement of the particle
assembly can lead to dependence of the collision rate on the volume fraction, as shown
in Wang et al. (1998a). In this work, particle volume fraction and mass loading are
assumed to be sufficiently low so that the gas turbulence is not significantly affected
by the presence of particles. This assumption may be questionable even in dilute
flows owing to preferential concentration. An upper limit for the particle volume
fraction commonly cited for one-way coupling is 10−6 (Elghobashi 1994), which may
be taken as the limiting condition for the analysis to be developed in this paper.
Since we neglect flow modulation and as the non-overlapping correction (Wang et
al. 1998a) is usually small, we do not explicitly consider the volumetric loading as a
parameter here. Under the one-way coupling assumption, the collision rate is linearly
proportional to the number of interacting pairs in the particle assembly. We will take
advantage of this linear dependence by allowing the particle volume fraction to be
of the order of 10−3 in order to have a sufficiently large number of collision events.
This will produce accurate numerical results since the statistical uncertainty of the
numerical collision kernel decreases with the number of particles in the system (e.g.
Wang et al. 1998a).

Another simplification is that the gravitational (or body force) effect is not included.
This assumption is made to allow us to focus on the effect of particle inertia and
interphase drag, as in other related studies (Abrahamson 1975; Williams & Crane
1983; Sundaram & Collins 1997). Although the description of gravitational collision
alone is well established, our understanding of the couplings between the particle
inertia and settling on particle–particle collisions remains incomplete (Reuter, de
Villiers & Yavin 1988; Wang & Maxey 1993; Pinsky & Khain 1994; Khain & Pinsky
1995).
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Figure 1. Geometrical description of the two statistical formulations. (a) Projection of the collision
sphere on the (x, y)-plane. (b) The concept of the collision cylinder.

In a monodisperse system consisting of Np particles in a volume Ω, the collision
rate per unit volume, Ṅc, is given by

Ṅc = Γ
n2

0

2
, (2.1)

provided that Np � 1, where n0 ≡ Np/Ω is the average particle number concentration
in the volume and Γ is the average collision kernel.

We shall first review the statistical mechanical description of Γ for zero-inertia
particles (i.e. τp = 0) as it is now well established (Saffman & Turner 1956; Wang et
al. 1998a, b). There are two commonly used formulations known as the spherical for-
mulation and the cylindrical formulation. In the spherical formulation, Γ is described
as the average volume of fresh fluid entering a collision sphere per unit time,

Γ sph = 2πR2〈|wr|〉. (2.2)

The collision sphere is defined, relative to a reference particle, as a sphere of radius
R = dp, centred on the reference particle (figure 1a). Here, dp is the diameter of the
particles, wr is the radial component of the relative velocity w, namely, wr = w ·R/R,
R is the separation vector, and R ≡ |R|. One important assumption of (2.2) is that the
relative velocity w is incompressible, thus influx and outflux over the sphere surface
are equal. The collision kernel is then half the surface area multiplied by the average
magnitude of the radial relative velocity.

In the cylindrical formulation, Γ is described in terms of the relative velocity
directly and is defined as the cylindrical volume passing through a reference particle
per unit time, with cross-sectional area πR2 and length |w| (figure 1b). The average
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collision kernel is then

Γcyl = πR2〈|w|〉. (2.3)

In both formulations, the angle brackets denote averages over all orientations of
R, space, and the time interval of numerical simulations in stationary, isotropic
turbulence.

Recently, we have shown that the spherical formulation is more appropriate than
the cylindrical formulation for turbulent coagulation (Wang et al. 1998b). For zero-
inertia particles, the spherical formulation gives an accurate prediction for Γ , while the
cylindrical formulation can overpredict Γ by 20% or more in a turbulent flow field.

The first theoretical description of Γ for finite-inertia particles was developed by
Sundaram & Collins (1997). They considered both the turbulent transport effect and
the accumulation effect on Γ and derived an expression for the collision kernel as

Γcyl = πR2〈|w|〉g(R), (2.4)

where the additional part g(R), is known in statistical mechanics as the radial
distribution function at contact. This measures the level of particle pair accumulation
with interparticle distance of R and as such represents directly the accumulation
effect. The term g(R) is defined as the probability density of observing a particle
pair at contact in the actual suspension, normalized by the corresponding value in a
nominally uniform suspension. In the limit of weak inertia (τp → 0), this formulation
is identical to the cylindrical formulation (2.3). This results from an underlying
assumption in Sundaram & Collins (1997) that the probability density function of w
is independent of the orientation of R.

In view of the above discussion on the comparison of the two formulations for
zero-inertia particles, a more accurate formulation based on the spherical formulation
is suggested here

Γ sph = 2πR2〈|wr|〉g(R). (2.5)

There is, however, one major assumption involved in (2.5): the net radial relative
inward flux is the same as the net radial relative outward flux – we shall call this
the flux-balance assumption. This assumption will be examined in our numerical
simulations. Except for the above-mentioned assumption, equation (2.5) is expected
to be accurate for predicting the collision kernel of finite-inertial particles. The
complexity in modelling the collision kernel for arbitrary particle inertia could be
greatly reduced by considering the turbulent transport effect and the accumulation
effect separately using (2.5).

The flux-balance assumption should be valid for a truly stationary suspension.
Suppose in a numerical simulation, particles are randomly distributed in the flow at
t = 0. The interactions of particles with vortical structures will accumulate particles
in local regions while the advection by large-scale flows tends to counteract the accu-
mulation. Once a balance between the two processes is established, the accumulation
level becomes stationary. The question is then how long one has to wait before this
stationarity is reached. Wang & Maxey (1993) computed global accumulation mea-
sures after the particles were introduced into the flow and suggested that stationarity
was almost established after t = 2Te.

If true stationarity is not reached, the transient effect can be taken into account as
follows. Let P be the probability of observing wr < 0, w−r is the average magnitude
of negative radial relative velocity, w+

r is the average magnitude of positive radial
relative velocity. The correct collision kernel Γc, according to the original spirit of
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Saffman & Turner (1956), should be

Γc = 4πR2 P w−r g(R). (2.6)

We note that

〈|wr|〉 = P w−r + (1− P )w+
r , (2.7)

therefore,

Γc = Γ sph × 2Cp
1 + Cp

, with Cp ≡ P w−r
(1− P )w+

r

, (2.8)

where Cp represents the ratio of net inward flux to net outward flux. During the
transient stage, the level of local particle accumulation has not saturated, thus the
net inward flux is larger than the net outward flux, giving Cp > 1. As a result, the
spherical formulation (2.5) can underpredict the collision kernel slightly. This will be
shown in § 4.

Finally, we note that the flux-balance assumption differs from the incompressibility
assumption of the particle velocity field. It is known that the local particle velocity
field is compressible (Maxey 1987) even when the accumulation level is stationary.
Roughly speaking, the ratio of w−r /w+

r can be viewed as a measure of the compress-
ibility in the particle velocity field. This quantity will be discussed in our numerical
experiments in § 4.

2.2. Description of 〈|wr|〉 and the eddy–particle interaction model

In Zhou et al. (1998), we proposed a simple one-dimensional, eddy–particle interaction
model to predict the turbulent transport effect. In that model, the motion of particles
is treated as a succession of interactions with turbulent eddies of constant eddy
lifetime. The eddy velocity is random with standard deviation equal to the r.m.s. fluid
fluctuation velocity u′. A brief description of the model results is repeated here for the
purposes of later comparison with simulation results and for introducing necessary
notation.

Let v(1)
r and v(2)

r be the radial velocities of the two particles at collision. Assuming
the relative velocity wr ≡ v(2)

r − v(1)
r between two colliding particles follows a Gaus-

sian distribution with a standard deviation σw , then 〈|wr|〉 = (2/π)1/2σw . While σw ,
according to the definition, can be expressed as

σw = (〈w2
r 〉)1/2 = [2(v′p)

2 − 2〈v(1)
r v

(2)
r 〉]1/2, (2.9)

where v′p denotes the r.m.s. particle fluctuation velocity. The eddy–particle interaction
model gives (Zhou et al. 1998)

(v′p)2

u′2
= 1− θ[1− exp (−1/θ)], (2.10)

where θ = 0.5τp/Te. The particle velocity correlation coefficient is determined by the
interactions of the two particles with the same eddy. Assuming two colliding particles
enter the eddy at a same time but may collide at any time during the eddy lifetime,
we found that the particle velocity correlation coefficient, ρ12, can be expressed as

ρ12 ≡ 〈v
(1)
r v

(2)
r 〉

u′2
= 1− θ

2

[1− exp (−1/θ)]2

{1− θ[1− exp (−1/θ)]} . (2.11)
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Putting the above together, we have

〈|wr|〉
u′

=

(
2θ

π

)[
1− exp

(
−1

θ

)]
, (2.12)

which has a maximum of 〈|wr|〉 = 0.509u′ at θ = 0.796, or τp/Te = 1.59. This model
will be compared with numerical results in § 4.

3. Numerical experiment
We consider the collision statistics in a dilute suspension of solid particles in a

turbulent gas. The numerical methods for turbulent-flow simulations and particle-
collision detection follow from our previous studies (Wang & Maxey 1993; Wang
et al. 1998a; Zhou et al. 1998). Therefore, only a brief description of the methods
is given, along with statistics of the numerical flow fields. The numerical methods
for quantifying separately the turbulent transport and accumulation effects will be
reported for the first time, and therefore, they will be described in detail, along with
validation procedures.

3.1. Flow field

A homogeneous and isotropic turbulent flow was generated by full numerical simu-
lations using a pseudo-spectral method. The incompressible Navier–Stokes equations

∂u

∂t
= u× ω − ∇

(
P

ρ
+

1

2
u2

)
+ ν∇2u+ f(x, t), (3.1)

were solved along with the continuity equation ∇ · u = 0 in a periodic box of side
2π. Here, ω ≡ ∇× u is the vorticity, P is the pressure. The flow was generated from
rest by the random forcing term f(x, t) which is non-zero only at low wavenumbers,
|k| < 81/2.

In this paper, the flow was frozen after the statistically stationary stage was reached,
and particles were then introduced into the flow. The start of particle release will
be denoted as t = 0. This provides us with an identical flow microstructure for
different runs with various particle parameters, which limits statistical fluctuations
and speeds data collection. Since the particle trajectories are chaotic even in these
complex frozen flows, each particle interacts with many turbulent eddies in the flow.
The fact that these eddies have infinite lifetime leads to overprediction of the level
of the accumulation effect (see, e.g. Zhou et al. 1998), and possibly even the level
of turbulent transport effect is somewhat over estimated. However, the qualitative
features reported here should be the same as in evolving flows, as shown in our recent
work for τp/τk = O(1) (Zhou et al. 1998). Sundaram & Collins (1997) have reported
more results on the evolving flow case. As will be shown later in the paper, our
results agree well with those of Sundaram & Collins (1997). More thorough studies
on the bounds of the unsteady effects are given by Brunk et al. (1998a), using random
Fourier modes representations.

Table 1 lists the flow parameters (from top to bottom): the component r.m.s.
fluctuating velocity u′, average dissipation rate ε, and kinematic viscosity ν are
the primary parameters which control the scales of the flow. The Taylor microscale
Reynolds number is defined as Rλ ≡ u′λ/ν, where λ is the transverse Taylor microscale
λ ≡ u′/〈(∂u1/∂x1)

2〉1/2 = (15νu′2/ε)1/2. Other derived flow scales are Kolmogorov
length η ≡ (ν3/ε)1/4, timescale τk ≡ (ν/ε)1/2, large-eddy turnover time Te ≡ u′2/ε, and
the timescale ratio Te/τk . Parameters of the particulate phase are the collision radius
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Grid resolution 323 643 963 1283

u′ 17.02 18.22 18.30 18.64
ε 3568.8 3421.0 3554.7 3374.4
ν 0.6000 0.2381 0.1387 0.09450
Rλ 24.25 45.05 58.41 75.36
η 0.08820 0.04457 0.02943 0.02236
τk 0.01297 0.008343 0.006247 0.005292
Te 0.08117 0.09704 0.09421 0.1030
Te/τk 6.26 11.6 15.1 19.5
R/η 1.0 1.0 1.0 1.0
Np 3072×2 8192 5280×2 6144×2
α (×103) 8.9 1.5 0.57 0.29

Table 1. Flow characteristics and parameters for the particle system.

R (which is equal to the particle diameter for a monodisperse system), total number
of particles Np, and particle volume fraction α. Other details of the simulated flows
can be found in Wang & Maxey (1993).

3.2. Particle motion

We consider the motion of small, heavy, spherical particles in a non-uniform turbulent
flow. Under the assumption that the density of the particle ρp is much larger than the
density of the fluid ρ, and that a quasi-steady Stokes drag can be used, the equation
of motion for a heavy particle becomes (Maxey & Riley 1983)

dV (t)

dt
=
u(Y (t), t)− V (t)

τp
, (3.2)

where V (t) and Y (t) are the velocity and the centre position of a heavy particle,
respectively. τp = ρpd

2
p/(18ρν) is the particle inertial response time. Here, dp and ρp

are particle diameter and density; ρ is fluid density.
Typically, 103 ∼ 104 particles were introduced at t = 0 into the computational

domain at random initial positions with an initial velocity equal to the local fluid
velocity. After about 3τp, any effects of the initial velocity condition on the particle
motion became lost. The simulation was continued for at least 13τp or 5 large-eddy
turnover times during which collision counts and other statistical averages were taken.
It should be noted that the particle concentration field may not reach its asymptotic,
statistically stationary stage at t = 3τp since the local accumulation process is affected
by large-scale fluid motion (Wang & Maxey 1993). On the other hand, in practical
applications, the particle collision statistics shortly after the particle release may be
of more interest than the asymptotic value. With this in mind and for the purpose of
obtaining a small statistical uncertainty, we take t = 3τp as the starting time for all
statistical averages. The particle concentration field for τp/τk = O(1) may not reach
the statistically stationary stage completely, as will be shown by a slight unbalance of
relative fluxes in § 4. This transient effect can be corrected through (2.8).

3.3. Collision rate Ṅc and the DNS collision kernel

The collision detection algorithm used to compute Ṅc was described in our recent
papers (Wang et al. 1998a; Zhou et al. 1998) and will not be repeated here.

For convenience, we refer to the collision kernel computed directly based on the
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numerical value of Ṅc and (2.1) as the DNS collision kernel

ΓDNS = 2Ṅc/n
2
0. (3.3)

In this paper, we used Scheme 1 as described in Zhou et al. (1998) to compute Ṅc.
In this scheme, particles were allowed to overlap in the system at the beginning of a
timestep and were not removed from the system after collision. This was shown to
be the only scheme that is consistent with the Saffman & Turner (1956) formulation.
Use of this scheme will facilitate the validation procedure for independent, separate
quantifications of the turbulent transport effect and the local accumulation effect
(see § 3.4). Another advantage of using this scheme is that we can calculate the
radial distribution function at contact g(R) accurately. In contrast, in the hard-sphere
model used by Sundaram & Collins (1997), g(R) cannot be determined directly, so a
local extrapolation was employed. For the purpose of examining the two statistical
formulations, an accurate evaluation of g(R) is essential.

We consider only binary collisions as the particle loadings are dilute enough in
our numerical simulations (see table 1). The collision search was conducted using the
efficient cell-index method and the concept of linked lists (Allen & Tildesley 1987).
The collision-detection cell was made large enough so that two particles residing in
unconnected cells would not collide within a numerical timestep (Sundaram & Collins
1996; Wang et al. 1998a). Averages over both time and initial realizations of particle
locations were used to reduce the statistical uncertainties.

3.4. Relative velocities and g(R)

The Lagrangian pair relative velocity statistics (〈|wr|〉 or 〈|w|〉) measures the turbulent
transport effect while the radial distribution function at contact g(R) quantifies the
accumulation effect. Their computations were completely independent of the collision
kernel simulation. The procedure for relative velocities and g(R) calculations is as
follows:

(i) Particle pair identification: at each timestep, we detected all the pairs with
interparticle distance r given as R−δ/2 < r < R+δ/2 with δ = 2%R. This detection
was performed using the same efficient cell-index method and the concept of linked
lists. However, the size of the detection grid, W , could now be made much smaller
than that needed for the collision kernel simulation. In fact, W = R+δ/2 is sufficient
for the detection. Obviously, only a fraction of these pairs will participate in collision
events during the next numerical timestep. A question arises as to how large we should
set δ/R. The smaller the δ/R, the more precise the pair is closer to contact. On the
other hand, δ/R should be made large enough so that there are enough independent
samples. As long as δ/R � 1, the relative velocity statistics should not depend on
δ/R. This is demonstrated in figure 2, which shows 〈|wr|〉 and g(R) as a function of
δ/R. The error bars represent the statistical standard deviations computed based on
12 realizations. We observe that 〈|wr|〉 and g(R) are insensitive to the thickness of the
spherical shell for δ/R < 0.2. We typically used δ = 2%R. For larger shell thickness,
〈|wr|〉 increases with δ because a slightly larger size range of eddies of larger velocity
fluctuations contributes to the relative velocity. On the other hand, the averaging over
a larger shell reduces the level of non-uniform concentration, leading to a smaller g(R).

(ii) g(R), 〈|wr|〉 and 〈|w|〉 calculation: the simulation was run for the same period of
time as in the collision kernel computation and the initial 3τp time interval was not
used for statistical averaging. The timestep dt can be made as large as possible as
long as the particle trajectories can be integrated accurately, whereas in the collision
kernel simulation, single collision among pairs may impose further restriction on the
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step size. The rule of thumb was that dt = min(0.2τp, 0.2τk). All the pairs of separation
R − δ/2 < r < R + δ/2, along with individual particle velocities and the separation
vectors, were recorded during the simulation. These data were postprocessed to give an
average value for |wr| and g(R) for that run. For example, g(R) was computed simply as

g(R) =
Total number of pairs detected× Vbox

Vs ×Nt ×Np(Np − 1)/2
, (3.4)

where Vs = 4π[(R + δ/2)3 − (R − δ/2)3]/3 is the shell volume, Vbox = (2π)3 is the
volume of the flow domain, and Nt is the number of timesteps for which the pair
detections were undertaken.

(iii) Improving the statistics: the simulation was repeated for Nr times with indepen-
dent realizations of the initial particle locations, as in the collision kernel simulation.
This then allows a further averaging over the realizations (thus further reducing the
uncertainties) and, more importantly, an estimation of statistical uncertainties can be
made. Note that the records in a given realization may not be independent when dt
is small. But the averaged values over time from different realizations can be treated
as independent samples.

To validate the above numerical procedure and the computer code, we first consider
the case of fluid elements. In this case, the statistics of relative velocities between two
Lagrangian particles are identical to those of relative velocities between two spatial
points separated by the same distance. The two-point relative velocities can be
computed easily based on the Eulerian fluid velocity field. For example, the resulting
two-point relative velocity statistics for the Rλ = 24 flow field with R = 0.8∆x are
shown in the first row in table 2, while the relative velocity statistics based on all
Lagrangian particle pairs are shown in the second row. Here, ∆x = 2π/N is the grid
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Relative velocities 〈|wr|〉 〈w2
r 〉 〈|w|〉 〈w2〉

Eulerian two-point (E) 2.379 9.453 6.031 47.49
All Lagrangian pairs (L) 2.411±0.023 9.563 6.023±0.046 47.42
Colliding pairs only (c) 4.450±0.034 26.80 8.006±0.056 79.95

Table 2. Relative velocity statistics and their standard deviations for
Rλ = 24, R = 0.8∆x, Np = 1024, and Nr = 21.

spacing, where N is the mesh resolution. Table 2 shows that the relative velocity
statistics for Lagrangian pairs are the same (within statistical uncertainties) as the
Eulerian statistics, confirming our numerical procedure. One can confirm immediately
that the spherical formulation is correct since Γsph = 2πR2〈|wr|L〉 = 0.3738 ± 0.0034
while the collision kernel based on direct collision detection is ΓDNS = 0.3737 ±
0.00036. This consistency was pointed out in Wang et al. (1998b). On the other hand,
the cylindrical formulation overestimates the collision kernel by about 25%.

It is important to note that the relative velocity statistics based on only those
particle pairs which participate in collision events are quite different (last row in table
2). An explanation for this observation is given here. The main idea is that, even for
uniform particle distribution, the non-uniform flow field leads to a non-uniform local
distribution of the collision rate and thus the local number of samples being used for
the computation of the average Lagrangian relative velocity between colliding pairs.
Namely, the relative radial velocity between only colliding pairs can be related to
those based on all pairs close to contact as

〈|wr|c〉 =

∫
|wr| × number of collision pairs per unit volume d3x∫

number of collision pairs per unit volume d3x

≈

∫
|wr|2πR2|wr|d3x∫

2πR2|wr|d3x

=

∫
|wr|2p(wr)dwr∫
|wr|p(wr)dwr

=
〈w2

r 〉
〈|wr|〉 . (3.5)

Here, the subscript c denotes statistics for colliding pairs only. A uniform concentra-
tion is assumed in the above derivation. For a Gaussian velocity field, we can show
that (Wang et al. 1998b),

〈|wr|c〉 =
〈w2

r 〉
〈|wr|〉 = 1.5707〈|wr|〉, (3.6)

namely, 〈|wr|c〉 must be larger than 〈|wr|〉. For our DNS flow field, we find that
〈|wr|c〉 = 1.84〈|wr|〉, slightly larger than the estimation based on Gaussian fields.

In summary, the collision kernel measures dynamical events which are related to the
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Figure 3. Comparison of the spherical and cylindrical formulations with DNS results for
τp/τk < 1.2. The flow Reynolds number is 45.

change of inter-particle distance, while both relative velocities and g(R) are kinematic
quantities which are defined at any given time. In numerical simulations, since the
timestep size is finite, the dynamic and kinematic properties must be computed
separately. In a theoretical formulation, the limit of very small timestep can be taken,
so a relationship between dynamic and kinematic properties can be established, as
was demonstrated in the elegant analysis by Sundaram & Collins (1997).

For the purpose of presenting results in subsequent discussions, we denote the
collision kernels estimated with numerical kinematic properties of the suspension
using (2.4) and (2.5) as

Γ
cyl
est = πR2〈|w|〉g(R), (3.7)

Γ
sph
est = 2πR2〈|wr|〉g(R). (3.8)

4. Results
4.1. Comparison between cylindrical and spherical estimations

First, let us compare the cylindrical and spherical estimations with DNS results.
Figure 3 shows the ratios of the estimated collision kernels, (3.7) and (3.8), over ΓDNS
as a function of particle Stokes number τp/τk at Rλ = 45. The error bars throughout
this paper represent an estimation of standard deviations. A ratio of one implies that
the estimate is exact. In agreement with Wang et al. (1998b), in the limit of τp/τk → 0,
the spherical formulation is exact, while the cylindrical formulation overpredicts the
collision kernel by 22%. The interesting observation is that the difference between the
two formulations diminishes very quickly as τp/τk increases. This can be explained
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as follows. The origin of the problem in the cylindrical formulation is the directional
dependence of the relative particle velocity on the orientation of the separation vector.
For fluid elements, this anisotropy of relative velocity statistics is due to the difference
in the radial (or longitudinal) strain rate and the transverse strain rate (Wang et
al. 1998b). Finite-inertia particles, however, do not respond only to the local fluid
flow. They respond to a wider range of eddy motion along their previous trajectories.
Furthermore, the orientation of the particle separation vector is random before the
two particles come into contact. This combination seems to remove very quickly
the orientational dependence of the Lagrangian particle-pair relative velocity. For
τp/τk > 1, the two formulations are almost identical. As a side note, we recall that
the statistics of relative velocity components between fluid elements always depend
on the orientation of the separation, no matter whether the separation is in the order
of the Kolmogorov length or the integral length (Hinze 1975).

Figure 4 shows the ratios for a much larger particle inertia range. Both formulations
appear to predict exactly the collision kernel for τp/τk > 1, given the statistical
uncertainties in the simulations.

A minor, but definite feature in figure 3 is that there is a dip around τp/τk ≈ 0.5 for
both curves. For the spherical formulation, this dip causes a slight underprediction
of the collision kernel. The maximum deviation from one is about 4% at τp/τk = 0.6.
Since the standard deviation is only 1% at τp/τk = 0.6, the deviation is significant
and due to the fact that the particle concentration has not reached the asymptotic
stationary stage, as indicated in § 2.

To confirm this, we plot the ratios of w−r /w+
r and Cp = Pw−r /[(1 − P )w+

r ] in
figure 5. Note that we used a much larger number of particles in the simulations for
τp/τk < 1.3 than for τp/τk > 1.3, thus the statistical uncertainties are much smaller for
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τp/τk < 1.3. It is very clear that w−r /w+
r > 1 when τp/τk = O(1), as a result of local

accumulation in the region of low flow vorticity and high strain rate (Maxey 1987;
Wang & Maxey 1993). At least for very weak inertia (τp/τk � 1), the particle velocity
divergence field can be defined and related to the fluid strain rate and vorticity field
as (Maxey 1987)

∇ · v = τp(
1
2
ω2 − sijsij), (4.1)

where ω = ∇× u and sij = (∂ui/∂xj + ∂uj/∂xi)/2 are the local fluid vorticity and rate
of strain field, respectively. This indicates that the local velocity divergence seen by
particle pairs at contact tends to be negative. As a result, w−r would be larger than
w+
r . This bias is physically expected.
On the other hand, the ratio of relative fluxes, Cp, should be equal to one if the

concentration field is statistically stationary. Figure 5, however, shows a slightly larger
inward flux owing to the transition to the stationary stage. This effect can be corrected
in the spherical formulation by (2.8). The corrected results are compared with the
DNS collision kernel in figure 6. Clearly, the dip has been removed. This correction
could also be applied to the cylindrical formulation.

We found very similar results for other flow Reynolds numbers. For fluid elements
(τp/τk = 0), the cylindrical formulation overpredicts the collision kernel by 25%, 22%,
23%, and 21% for Rλ = 24, 45, 58, and 75, respectively. The level of overprediction
is given by 〈|w|〉/(2〈|wr|〉)− 1. A simple model based on Gaussian probability density
function (p.d.f.) of relative velocity then predicts 28.6% overprediction (Wang et al.
1998b). For very small fluid elements, the p.d.f. of wr is the same as the p.d.f. of
the radial (or longitudinal) fluid velocity gradient (e.g. ∂u/∂x). Figure 7(a) shows the
p.d.f.s of the radial velocity gradient for the DNS flow fields. The velocity gradients
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were computed from Eulerian statistics and normalized by their respective r.m.s.
value. The radial velocity gradient is negatively skewed, with a skewness of about
−0.5 (Wang et al. 1996). The symmetry of the transverse velocity gradient is only a
consequence of the flow isotropy. In agreement with previous experimental (Anselmet
et al. 1984) and numerical results (Vincent & Meneguzzi 1991), the p.d.f. exhibits
exponential tails, which becomes more evident as Rλ increases. A generic exponential
p.d.f. was used by Sundaram & Collins (1997) as a model for the p.d.f. of relative
velocity w at small τp/τk . In one dimension, the generic exponential p.d.f. can be
written as

f(x) =
n

2

1

p3

1

Γ (3/n)
exp

[
−
( |x|
p

)n]
, with p ≡

√
Γ (1/n)

Γ (3/n)
, (4.2)

where Γ is the gamma function. Note that both the coefficient of f(x) and the
definition of p differ from those given in Sundaram & Collins (1997) for a
three-dimensional vector field x. This p.d.f. has a unit standard deviation and∫ ∞
−∞ f(x) dx = 1. When n = 1, the p.d.f. is a simple exponential, whereas n = 2

represents a standard Gaussian p.d.f. For |wr| < 2〈w2
r 〉1/2, the Gaussian curve appears

to match the data better than the simple exponential p.d.f. (n = 1). We note that
the Gaussian p.d.f. model predicts 〈|wr|〉/〈w2

r 〉1/2 = 0.798 and the exponential p.d.f.
model predicts 〈|wr|〉/〈w2

r 〉1/2 = 0.707 (L. R. Collins 1998, personal communications).
The actual value of 〈|wr|〉/〈w2

r 〉1/2 for the DNS flow fields is about 0.77 (Wang et
al. 1998b), which is better predicted by the Gaussian p.d.f. model. This is due to the
facts that (i) the ratio is determined mainly by the p.d.f. at small to intermediate wr;
and (ii) the asymmetry causes the Gaussian model to be better for large positive wr ,
although the exponential p.d.f. is a better model for large negative wr .

To be complete, we also show the p.d.f. of the transverse velocity gradient (e.g.
∂u/∂y) in figure 7(b). The p.d.f. is now symmetric. The exponential model appears
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Figure 7. The probability distribution functions (p.d.f.s) for different flow Reynolds numbers:
(a) the radial velocity gradient; (b) the transverse velocity gradient.

to be a better model than the Gaussian model, especially for large magnitudes of
relative velocity. This is consistent with the observation of Sundaram & Collins
(1997). This implies that the exponential model might give a better prediction for
〈|w|〉/(2〈|wr|〉)− 1, although we are unable to evaluate this analytically.

For finite-inertia particles, we observed similar results regarding the comparison
of the two formulations and the flux correction. We found that the flux correction
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was the largest for lowest flow Reynolds number (Rλ = 24) owing to very limited
separation in scales and thus the large-scale fluid motion presented the strongest
influence on the transition of the concentration field from uniform to the asymptotic
non-uniform stage. At larger flow Reynolds numbers, the flux balance appeared to
be established sooner.

4.2. The turbulent transport effect

Now we study separately the turbulent transport effect and the accumulation effect.
The turbulent transport effect is quantified by the radial relative velocity 〈|wr|〉. Figure
8 shows the radial relative velocity, normalized by the fluid r.m.s. velocity, as a function
of the particle inertial response time (τp/Te) for different flow Reynolds numbers. The
relative velocity increases quickly with particle inertia for τp < Te because large-scale
turbulent fluctuations contribute to the particle motion. In addition the velocities
of the two particles become less correlated as τp increases (figure 9), which also
contributes to the increase [see (2.9)]. For τp > Te, the relative velocity starts to
decrease slowly with τp as there are no more large-scale fluctuations in the flow
and particle response to the flow becomes sluggish. Except for the case of Rλ = 24,
the dimensionless particle radial relative velocity is almost independent of Rλ for
τp = O(Te), confirming the large-scale scaling of 〈|wr|〉. Our simple eddy–particle
interaction model predicts the shape reasonably well.

Figure 9 shows the correlation coefficient ρ12 of particle radial relative velocities
(see equation (2.11)) as a function of τp for different Reynolds numbers. Again, the
Rλ = 24 flow field shows different behaviour from the others, while for the three other
higher flow Reynolds numbers, the data for ρ12 collapse well. For zero inertia, the



Turbulent collision of inertial particles 135

0.8

0.6

0.4

0.2

0 1 2

Rk = 24

45
58

75

(5.11), h = 0.5sp/Te

sp/Te

1.0

(5.11), h = sp/Te

q12

Figure 9. The correlation coefficient, ρ12, as a function of particle inertial.

correlation coefficient can be shown, using Taylor expansion, to be

ρ12 ≈ 1 +
R2

2u′2

〈
u
∂2u

∂x2

〉
= 1− R2

2u′2

〈
∂u

∂x

∂u

∂x

〉

= 1−
(
R

η

)2
1

2
√

15Rλ
, (4.3)

which is 0.9947, 0.9971, 0.9978, and 0.9983 for Rλ = 24, 45, 58, and 75, respec-
tively. The corresponding simulation results based on Lagrangian particle pairs are
0.9949±0.0001, 0.9970±0.0001, 0.9978±0.00005, and 0.9983±0.00005. The qualitative
agreement (up to 4 significant digits) between the numerical predictions and the trend
of the theory validates the simulation code, while their quantitative agreement shows
the level of numerical accuracy. As τp increases, particles start to respond to random
eddies before coming into contact and thus the velocities at contact are less correlated.
At large inertia, the correlation coefficient decays rather slowly, partly due to the use
of frozen flow fields. This slow decorrelation makes the prediction of relative velocity
based on kinetic theory (Abrahamson 1975) only applicable for extremely large τp/Te.
Our simple eddy–particle interaction model gives reasonable prediction of ρ12. Since
the model was developed based on a one-dimensional eddy–particle interaction, the
definition of θ may be adjusted to fit the data better. Indeed, a slight modification of
θ from θ = 0.5τp/Te to θ = τp/Te improves the prediction. We, therefore, expect that
the slow decorrelation may be observed even for evolving flow fields.

In figure 10 we compare the simulation results of total relative velocity with
analytical predictions of Williams & Crane (1983) and Kruis & Kusters (1997). Note
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Figure 10. The normalized total relative velocity, 〈|w|〉/u′, as a function of particle inertia.

that both Williams & Crane (1983) and Kruis & Kusters (1997) related the collision
kernel to the total relative velocity 〈|w|〉 using the cylindrical formulation. Although
Kruis & Kusters’ prediction agrees well with DNS results for τp/τk < 1 at Rλ = 24,
it underpredicts the relative velocity for higher Reynolds numbers and large particle
inertias by about 18%. The prediction of Williams & Crane (1983) is worse when
compared with our data.

We shall now discuss how the p.d.f.s of relative velocities change with the particle
inertia parameter and flow Reynolds numbers. Figure 11 shows the p.d.f.s of both
the transverse relative velocity wt and the radial relative velocity wr at τp = 0.1τk . The
transverse relative velocity wt is defined as |w × R|/|R|. Since the particle inertia is
weak, particles almost follow the local fluid velocity. Therefore, the p.d.f.s are quite
similar to those in figure 7 for fluid elements. Since the p.d.f.s for fluid elements
were computed based on Eulerian field data, a good comparison at weak inertia also
validates our numerical code for computing p.d.f.s of Lagrangian particle-pair relative
velocity.

Figure 12 shows the p.d.f.s at τp = τk . The most interesting feature is that now
the tails of p.d.f.s are much more stretched. In fact, a fit of the generic exponential
form (4.2) to the transverse p.d.f.s yields a value of n = 0.40 − 0.70 (table 3). A
smaller n indicates that the relative velocity is more intermittent, namely, with large
probabilities of observing small and very large values. This is a result of local
accumulation, which drives particles to regions around intense vortex tubes and other
high-strain-rate regions (Squires & Eaton 1991; Wang & Maxey 1993). Another
observation is that the p.d.f.s for Rλ =45, 58, and 75 overlap very well with each
other, even in the tails. This overlap is also better than in the case of fluid elements.
This demonstrates an Rλ independence, or certain features of small-scale structures
have already reached their asymptotic characteristics even at moderate flow Reynolds
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Figure 11. The p.d.f.s of relative velocity at τp/τk = 0.1 (τp/Te = 0.016 at Rλ = 24, τp/Te = 0.0086
at Rλ = 45, τp/Te = 0.0066 at Rλ = 58, τp/Te = 0.0051 at Rλ = 75): (a) the radial relative velocity;
(b) the transverse relative velocity. The relative velocities are normalized by their respective standard
deviation.

numbers. This observation is important and shows the value of conducting careful
DNS even at low flow Reynolds numbers. A similar point was noted in the work of
Wang et al. (1996) who studied more completely the relative velocity statistics of fluid
elements in DNS. The asymmetry in the p.d.f.s of radial relative velocity is noticeable
at this particle inertia, as shown by the large negative skewness in table 4.
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Figure 12. The p.d.f.s of relative velocity at τp/τk = 1.0 (τp/Te = 0.16 at Rλ = 24, τp/Te = 0.086
at Rλ = 45, τp/Te = 0.066 at Rλ = 58, τp/Te = 0.051 at Rλ = 75): (a) the radial relative velocity;
(b) the transverse relative velocity.

Rλ Fluid elements
τp

τk
= 0.1

τp

τk
= 1.0

τp

Te
= 1.0

Tp

Te
= 2.5

24 1.0 1.2 0.7 1.1 1.5
45 1.0 1.0 0.43 1.35 1.8
58 1.0 1.0 0.37 1.45 1.8
75 1.0 1.0 0.40 1.45 1.8

Table 3. The exponential index n for different Reynolds numbers and particle inertias.
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Figure 13. The p.d.f.s of radial relative velocity at τp/Te = 1 (τp/τk = 6.3 at Rλ = 24, τp/τk = 11.6
at Rλ = 45, τp/τk = 15.1 at Rλ = 58, τp/τk = 19.5 at Rλ = 75).

Rλ Fluid elements
τp

τk
= 0.1

τp

τk
= 1.0

τp

Te
= 1.0

Tp

Te
= 2.5

24 −0.47 −0.66 −1.86 −0.16 −0.05
45 −0.48 −0.71 −1.86 −0.06 −0.02
58 −0.53 −0.72 −1.27 −0.05 −0.08
75 −0.48 −0.58 −2.03 −0.02 −0.03

Table 4. The skewness of radial relative velocity fluctuations.

The p.d.f.s for much larger particle inertia, τp = Te, are shown in figure 13. The
important observation is that the asymmetry in the radial relative velocity p.d.f. disap-
pears and the p.d.f.s for the radial relative velocity and the transverse relative velocity
(not shown) are almost identical. This is consistent with the observation that the
cylindrical and spherical formulations are identical at large particle inertia. Unexpect-
edly, the p.d.f.s are closer to the simple exponential curve than the Gaussian curve,
particularly for relative velocities within three standard deviations. For very large
relative velocity, the p.d.f.s appear to approach the Gaussian curve as Rλ increases.

The p.d.f.s for even larger particle inertia, τp = 2.5Te, are shown in figure 14.
Very interestingly, the tails now match the Gaussian curve, particularly for larger Rλ
cases, in agreement with the observation of Sundaram & Collins (1997). However,
for relative velocities within two standard deviations, the p.d.f.s fit better to the
exponential curve. This could be due to the influence of persistent large-scale eddies
in the frozen flow fields, i.e. some particles may be trapped by them and their relative
motion is strongly correlated, as shown by the ρ12 plot. The asymmetry completely
disappears for the radial relative velocity. Putting all the plots together, we conclude
that as τp/Te increases further, the p.d.f. will eventually be Gaussian.

In summary, there is a strong dependence of the shape of the p.d.f. on the particle
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inertia. If measured by the exponent n of the generic exponential curve (4.2), n
decreases with inertia for weak inertia, reaches a minimum at τp/τk = O(1), then
increases with τp for τp > τk . This dependence was first noted by Sundaram & Collins
(1997), although no quantitative information on n for finite inertia was provided
in their paper. In table 3 we provide quantitative estimates of n. The values were
obtained by trial and error to best match the simulated p.d.f.s with the generic
exponential, (4.2), for relative velocities larger than two standard deviations. The
exponent also depends on Reynolds number, namely, as Rλ increases, the exponent
is smaller at τp = τk but returns to the Gaussian value (n = 2) more quickly at large
inertia. At small particle inertia, the p.d.f. for the radial relative velocity differs from
that for the transverse relative velocity in two ways: first the variance is different,
secondly the p.d.f. is asymmetric for the radial component but is symmetric for the
transverse component. Figure 15 shows the ratio of the variances, 〈w2

t 〉/〈w2
r 〉, as a

function of τp/τk . For fluid elements, this ratio is two (Hinze 1975). The ratio drops
very quickly towards one as τp approaches τk , consistent with the comparison of
the two formulations shown in figure 3. This ratio is Rλ-independent except for the
scatters due to statistical uncertainties. The skewness of the relative velocities are
listed in table 4. In agreement with previous experimental (Anselmet et al. 1984) and
numerical (Wang et al. 1996) results, the skewness is about −0.5 for fluid elements.
Its magnitude increases with particle inertia and reaches a maximum at τp = τk , then
drops back to zero at large inertia. The skewness itself, however, has no direct effect
on the formulation of the collision kernel.

4.3. The accumulation effect

Figure 16 shows the radial distribution function at contact, g(R), as a function of
particle inertial response time (τp/τk) for four different flow Reynolds numbers. All
the curves have a very similar shape. For very weak inertia (τp/τk � 1), the particle
concentration field is statistically uniform, so g(R) = 1. As τp increases, g(R) increases
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Figure 15. The variance ratio as a function of particle Stokes number.

very quickly. A maximum is reached at τp/τk ≈ 1. For τp/τk > 1, g(R) decreases
with particle inertia. This behaviour is quite similar to the dependence of global
accumulation measures on particle inertia, as shown in Wang & Maxey (1993). This
is expected since g(R) is a measure of the preferential concentration on pair density
distribution and can be viewed as a global measure of the accumulation. Since the
preferential concentration is a result of dissipation-range flow structures, the peak
location is scaled by the flow Kolmogorov scale. Wang & Maxey (1993) reported
that the peak value in global accumulation occurs at τp/τk ≈ 0.8, slightly less than
τp/τk ≈ 1 here. This could be due to the fact that frozen flow fields were used in this
work but evolving flow fields were used in Wang & Maxey (1993).

Our results also agree well with the g(R) curve for evolving flow reported by
Sundaram & Collins (1997) . With very few data points around τp/τk = 1, they found
that the maximum g(R) occurred at τp/τk = 0.4. Since an extrapolation was used in
their work for g(R) computation and a significant uncertainty was noted, their peak
location should not be compared with ours quantitatively. In addition, their g(R) at
τp/τk = 0.4 was overestimated owing to the artificial repeated collisions under the
hard-sphere model used in their work (see Sundaram & Collins 1997 and Zhou et
al. 1998 for further discussions). A comparison of the DNS collision kernels between
our collision-detection scheme and the hard-sphere model at Rλ = 45 showed that
at τp/τk = 0.4 the artificial repeated collisions almost double the collision rate (see
figure 4 in Zhou et al. 1998). We can compare directly the results at τp/τk = 1 as
the artificial effect due to the hard-sphere model is no longer important (Zhou et al.
1998). At τp/τk = 1, our g(R) is 9.3 at Rλ = 58 and Sundaram & Collins (1997) had
g(R) ≈ 7.6 at Rλ = 54. This level of difference is consistent with the difference in
collision kernels between the frozen flow and the evolving flow at τp/τk = 1, as shown
in Zhou et al. (1998). In general, we expected that, relative to frozen flow fields, the
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peak value of g(R) is smaller in evolving flow since small-scale vortex tubes have
finite lifetime and the accumulation is a dynamic process.

In agreement with the results of Wang & Maxey (1993), the peak value increases
with Reynolds number. A more careful examination of the Rλ dependence will be
presented in the next section.

Another interesting observation is that the uncertainties here are much smaller
than those in the relative velocity statistics. This can be explained as follows. In a
given flow, the number of small-scale dissipation range eddies is much larger than the
number of large-scale eddies. Since g(R) is determined by interactions of particles with
small-scale eddies, while the relative velocity statistics are governed by interactions
with large-scale eddies, there are many more statistically independent samples for
g(R) computation than that for relative velocity statistics.

5. Model development
In this section, we will develop empirical models for both g(R) and 〈|wr|〉 in order

to predict the collision kernel accurately. The model will then be compared with the
DNS collision kernel and also used to speculate results at much higher flow Reynolds
numbers than is possible in our numerical simulations.

5.1. Asymptotic behaviour of g(R) for small particle inertia

First, we present an asymptotic result for g(R) at φ ≡ τp/τk � 1. Recall that g(R)
is the probability of observing particle pairs with separation near R, normalized by
the reference probability in a random uniform suspension. Since R is small, the local
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probability is proportional to [n(x, t)]2. We can make the following approximation,

g(R) ≈ 〈n
2〉
n2

0

, (5.1)

where n(x, t) is the local particle number concentration. For φ� 1, the local concen-
tration can be related to local flow vorticity and rate of strain

n ≈ n0[1 + τpτf(sijsij − 1
2
ω2)], (5.2)

where τf is a history timescale of the order τk (Zhou et al. 1998). Substituting (5.2)
into (5.1), we obtain a leading-order approximation for g(R) at φ� 1:

g(R) ≈ 〈[1 + C1τpτk(sijsij − 1
2
ω2)]2〉

≈ 1 + C2 · φ2, (5.3)

where C1 and C2 are dimensionless constants. In deriving (5.3), we made use of the
facts that (sijsij − ω2/2) is scaled with τ−2

k and 〈sijsij − ω2/2〉 = 0. Hence, we expect
that g(R) increases with φ quadratically at small particle inertia. In addition, under
that limit, C2 is independent of Rλ.

The numerical simulation results are compared with this asymptotic theory in figure
17. C2 = 18 is obtained by fitting (5.3) to the DNS results for small φ. In agreement
with the previous observation, when a similar asymptotic theory was applied to the
collision kernel (Zhou et al. 1998), g(R) is independent of Rλ for Rλ > 45 and φ 6 0.5.
The quadratic behaviour is clearly seen. At very low Reynolds number, there is not
enough scale separation in the flow for the above asymptotic expansion to apply.



144 L.-P. Wang, A. S. Wexler and Y. Zhou

5.2. An empirical model for g(R)

An important observation from figure 17 is that, except for a small region of φ < 0.5
as discussed above, g(R) depends on flow Reynolds number. A careful examination
reveals a surprisingly simple scaling, namely, g(R) − 1 scales linearly with Rλ, as
shown in figure 18. The data for the three higher flow Reynolds numbers collapse
extremely well, while the data for the lowest flow Reynolds number do not show such
a good collapse and are not included in this figure, owing to very limited separation
of flow scales. We cannot conclude definitely that this scaling is valid for all high
flow Reynolds numbers, since our simulations cover a small range of flow Reynolds
numbers. Nevertheless, this simple scaling appears to separate out the Rλ dependence.

Therefore, we may propose the following simple relationship for φ > 0.5:

g(R)− 1

Rλ
= F(φ). (5.4)

For the purpose of having a closed-form empirical model, we express F(φ) explicitly.
This was constructed as follows. First, for 0.5 < φ < 1.25, an analytical form is
assumed:

y1(φ) = 0.36φ2.5 exp (−φ2.5) for 0.5 < φ < 1.25. (5.5)

This form has a maximum at φ = 1. For φ > 1.25, there appear to be two exponential
decay regions, one for 1.25 < φ < 5 and the second for τp/τk > 10. These regions can
be fitted by the following simple exponential functions (figure 18):

y2(φ) = 0.24 exp (−0.5φ) for 1.25 < φ < 5, (5.6)

y3(φ) = 0.013 exp (−0.07φ) for φ > 10. (5.7)

A composite fit is then constructed in the following manner:

g(R)− 1

Rλ
=
y0(φ)[1− z2

0(φ)]

Rλ
+z2

0(φ){y1(φ)[1−z1(φ)]+y2(φ)z1(φ)+y3(φ)z2(φ)}, (5.8)

where y0(φ) = 18φ2 according to the asymptotic analysis, and zi(φ) are smooth
transition functions defined as

z0(φ) =
1

2

[
1 + tanh

φ− 0.5

0.25

]
,

z1(φ) =
1

2

[
1 + tanh

φ− 1.25

0.1

]
,

z2(φ) =
1

2

[
1 + tanh

φ− 6.5

2.5

]
.

The first term in (5.8) is added to recover the asymptotic result at φ < 0.5. The
composite fit, (5.8), compares very well with the simulation data, as shown in figures
17 and 18. Note that figure 18(b) covers a much wider range of particle inertia than
figure 16.

Although we are unable to provide a good explanation for the exponential decay in
g(R) for large particle inertia, we shall mention that similar behaviour has been ob-
served for other systems. For a stochastic system of hard spheres, the non-overlapping
assumption leads to g(r) > 1 for r > R. It is known that the radial distribution func-
tion appears to decay exponentially at large separation distance for a system of hard
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spheres (Tang & Lu 1995, 1997). In our large-inertia particle system, the motion
of particles is determined mainly by large-scale, random events. The concentration
distribution is nearly uniform and the small-scale vortical structures responsible for
non-uniform concentration only introduce a weak perturbation to otherwise uniform
concentration field. We speculate that a system of large-inertia particles bears some
similarity to a system of hard spheres at large separation distance.

In the above empirical model, we chose φ = 0.5 as the transition for the two
scaling behaviours of g(r). This transition was chosen based on simulation results at
low Reynolds numbers and may not be the optimum value for high Reynolds number
flows.
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5.3. Model for 〈|wr|〉
We have seen in figures 8 and 10 that no existing models can accurately predict
the particle relative velocity, 〈|wr|〉. However, one encouraging observation is that
the shape of Kruis & Kusters prediction is very similar to that of the numerical
results. Therefore, we modify Kruis & Kusters’ theory to fit our simulation results.
The result of Kruis & Kusters for the acceleration mechanism can be simplified in a
monodisperse system without body force to

〈w2
accel,i〉
u′2

=
2γθ

γ − 1

[
1− (1 + 2θ)1/2

1 + θ

]
×
[

1

(1 + θ)2
− 1

(1 + γθ)2

]
, (5.9)

where θ = 2.5τp/Te and γ = 0.183u′2/(εν)1/2 = 0.183u′2/v2
k , the subscript i denotes

individual components. Here, the acceleration mechanism refers to the effect of relative
motion of particles from the local fluid motion, owing to finite particle inertia, on the
particle pair relative velocity. The parameter γ signifies the Rλ dependence, since for
fully developed turbulence we have (Hinze 1975, p. 225)

u′/vk = R0.5
λ /150.25 ≈ R0.5

λ /2.0, Te/τk = Rλ/150.5 ≈ Rλ/3.9. (5.10)

We shall assume this same form applies to the radial relative velocity:

〈w2
r,accel〉
u′2

= Cw
2γθ

γ − 1

[
1− (1 + 2θ)1/2

1 + θ

]
×
[

1

(1 + θ)2
− 1

(1 + γθ)2

]
, (5.11)

where a constant factor Cw is added to better fit the simulation data, the value of
which is determined by curve fitting to simulation data. It is important to note that,
for very large flow Reynolds number, γ � 1, equation (5.11) reduces to

〈w2
r,accel〉
u′2

= Cw2θ

[
1− (1 + 2θ)1/2

1 + θ

]
× 1

(1 + θ)2
. (5.12)

This function increases with increasing particle inertia for θ < 3.61, owing to the
influence of increasing range of turbulent eddies on the particle motion, and then
decreases with increasing particle inertia for θ > 3.61, owing to an increasingly sluggish
response of particles to turbulent fluctuations. There is a maximum of 0.128Cw at
θ = 3.61 or equivalently τp/Te = 1.44, thus the turbulent transport effect is most
pronounced when τp/Te = O(1).

For very small inertia particles, the relative velocity is related to the local shear
rate in the flow. This shear contribution to the relative velocity is (Saffman & Turner
1956)

〈w2
r,shear〉
v2
k

=
1

15

(
R

η

)2

. (5.13)

It is significant that the shear contribution scales with the Kolmogorov velocity vk
while the acceleration mechanism scales with the large-scale fluctuation u′.

One way to include both the shear contribution and the acceleration mechanism is
to specify the total relative velocity as

〈w2
r 〉 = 〈w2

r,accel〉+ 〈w2
r,shear〉. (5.14)

This format was used by Saffman & Turner (1956) to combine several collision
mechanisms. If we assume the p.d.f. of wr is Gaussian, then we have

〈|wr|〉 =

(
2

π
〈w2

r 〉
)1/2

=

[
2

π
(〈w2

r,accel〉+ 〈w2
r,shear〉)

]1/2

, (5.15)
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with 〈w2
r,accel〉 and 〈w2

r,shear〉 given by (5.11) and (5.13), respectively. By fitting the above
relation to our simulation data at Rλ = 58, we obtain Cw = 1.68. In light of (5.10),
we may express the above model in either of the following forms

〈|wr|〉
u′

= F

(
τp

Te
, Rλ,

R

η

)
,
〈|wr|〉
vk

= F

(
τp

τk
, Rλ,

R

η

)
. (5.16)

Obviously, the first form is more appropriate for large inertia (τp = O(Te)), whereas
the second form is more appropriate for small inertia (τp = O(τk)). The dependence
on R/η is known since this dependence appears only through the shear contribution.

In figure 19 we compare the above model with simulation results. The agreement
is reasonable, given that many of the steps in Kruis & Kusters’ derivation involves
properties of turbulent flows at high Reynolds number. The model, however, is
qualitatively correct at any Rλ.

5.4. Collision kernel

Since we have models for both the radial distribution function g(R) and the radial
relative velocity, we can now predict the collision kernel Γ using (2.5). The model
predictions show satisfactory agreement with DNS collision kernels in figure 20.

5.5. Qualitative prediction at high Rλ

The model, while formulated and validated at relatively low Reynolds numbers
(Rλ < 75), can now be used to describe qualitatively the collision kernels at high flow
Reynolds numbers. We stress that the following predictions represent an extrapolation
of our model. Figure 21 shows the model predictions of Γ , normalized by the collision
kernel for fluid elements Γ0 = (8π/15)1/2R3vk/η, as a function of τp/τk for Rλ ranging
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from 50 to 5000. The dimensionless collision kernel can be expressed as

Γ

Γ0

= 4.85
η

R
g(R)

〈|wr|〉
vk

. (5.17)

At low Rλ, there is only one maximum owing to the strong overlap between the
turbulent transport effect and the accumulation effect, as seen in our DNS. At very
high Rλ, the overlap is diminished as the separation between Te and τk is increased.
As a result, the turbulent transport effect shows up at τp ≈ Te while the accumulation
effect is realized separately at τp ≈ τk , yielding two evident peaks. There could also
be a weak maximum point between these two main peaks owing to residual overlap
effect, although this may be an artifact of the model.

Another observation is that the accumulation effect is much stronger than the
turbulent transport effect at high Reynolds number. At Rλ = 5000, the first peak is
about ten times the value of the second peak. At this Reynolds number, the collision
kernel for particles with τp = τk is about 700 times larger than that for fluid elements.
The accumulation effect is dominant in, for example, collisions in clouds for particle
sizes near τp ≈ τk . Although the Rλ scaling of g(R) requires further investigations, we
believe that the above result is qualitatively correct.

To stress the importance of the accumulation effect further, we plot in figure 22
the modelled g(R) as a function of τp/τk in a manner similar to figure 21. The value
of g(R) represents the difference between our model and the previous models that do
not consider the accumulation effect (e.g. Williams & Crane 1983; Kruis & Kusters
1997). At τp/τk = 1, the accumulation effect causes an additional increase in the
collision rate by a factor of 8, 71, and 701 for Rλ = 50, 500, and 5000, respectively.
Furthermore, there is a finite-range of particle size with τp spanning τk for which the
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accumulation effect is significant. Therefore, it is crucial to include this effect in future
modelling of turbulent coagulations.

6. Conclusions
We have conducted numerical experiments in order to advance our understanding

of the collision rate of solid particles in a turbulent gas, extending the recent studies
of Sundaram & Collins (1997) and Zhou et al. (1998). The collision rate is affected
by two mechanisms, namely, turbulent fluctuations that cause relative motion be-
tween particles (the turbulent transport effect) and the preferential concentration that
leads to a highly intermittent local pair density distribution and thus an additional
enhancement to the average collision rate (the accumulation effect). The traditional
formulation of the collision kernel by Saffman & Turner (1956) needs to be modified
to include this accumulation effect for τp = O(τk).

We have developed and validated the methodology to numerically separate the
turbulent transport effect from the accumulation effect on the collision rate. This,
along with DNS results of collision kernels, allows us to compare the spherical
formulation and cylindrical formulation for finite-inertia particles, extending our
recent work on the comparison of the two formulations for zero-inertia particles
(Wang et al. 1998b). The accumulation effect is accounted for by the radial distribution
function g(R) at contact, which was first derived rigorously by Sundaram & Collins
(1997). One assumption made by Sundaram & Collins (1997), that the probability
density function of relative velocity is isotropic, however, renders their formulation
equivalent to the cylindrical formulation. We found that the spherical formulation gave
accurate prediction to the collision kernel for all τp/τk , as long as the concentration
field had reached the statistically stationary stage. If the stationarity is not established,
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which may be the case in practical applications, a correction can be made to the
spherical formulation in terms of the ratio of relative mass fluxes. We also found that
the relative inward velocity can be 50% larger than the relative outward velocity when
τp/τk is of the order of one. This is due to the probable negative velocity divergence
in regions of high particle concentration (Maxey 1987).

The cylindrical formulation overpredicts the collision kernel for τp/τk = O(1).
The level of overprediction is largest for fluid elements (about 25%) but decreases
quickly with particle inertia. The two formulations become identical for large particle
inertia since interactions of particles with a wide range of random eddies remove the
orientational dependence of the relative velocity on pair separation vector. Probability
density functions, variance, and asymmetry of the relative velocity have all been
quantified in both the radial and transverse directions to further corroborate the
above finding.

We have quantified the turbulent transport effect and the accumulation effect
for a full range of particle inertia and several flow Reynolds numbers. For fully
developed turbulence, the turbulent transport effect can lead to an increase of inter-
particle collision rate by a factor of as much as u′/vk , relative to the collision rate
of fluid elements. Therefore, the maximum level of the turbulent transport effect

scales with R
1/2
λ (Hinze 1975). Various analytical models for the pair relative velocity

are compared to simulation results. A working model is proposed for the turbulent
transport effect as a function of Rλ and τp/τk .

The accumulation effect is strongest when τp/τk = 1, in accordance with the
Kolmogorov scaling for particle concentration first discovered by Wang & Maxey
(1993). Within a rather limited range of flow Reynolds number, we found that
the accumulation effect scales linearly with flow Reynolds number. A qualitative
explanation is that the level of intermittency of the vortical structures increases with
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flow Reynolds number and thus the level of particle accumulation. The maximum
increase in the collision rate due to the accumulation effect is around (1 + 0.14Rλ),
relative to the collision rate in a random suspension. Furthermore, we have devised
an empirical expression to describe the accumulation effect in terms of the relative
particle inertia. An analytical model for the accumulation effect based on vortex tube
structure is needed and should be explored in the future.

Finally, an integrated working model for predicting the collision kernel in terms of
flow Reynolds number and particle inertia has been proposed. This model suggests
that while at low Reynolds number, there is a peak collision kernel at intermediate
particle inertia (τk < τp < Te) owing to the overlap of the turbulent transport effect
and the accumulation effect; there can be multiple peaks at large flow Reynolds
number. The first peak, which is most pronounced, occurs at τp/τk = 1, owing
to the accumulation effect. A secondary peak occurs at τp/Te = 1, owing to the
dominant contribution of the turbulent transport effect. There may also be a weak,
third peak at intermediate inertia, owing to the overlapping of the two effects. Such
a model is essential for modelling particle size distribution in turbulent suspension
using population balance equations (e.g. Pruppacher & Klett 1978). It is also useful
for numerical modelling of particle–particle collisions using large–eddy simulation
approach (Gourdel, Simonin & Brunier 1998).

The strong dependence of the collision rate on Reynolds number when τp/τk = O(1)
has an important application to the modelling of cloud microphysics. The average
dissipation rate ε can range from about 10 cm2 s−3 for stratiform clouds, 100 cm2 s−3

for small cumulus clouds, and up to 2500 cm2 s−3 in very strong cumulus congestus
(Ackerman 1967; Panchev 1971; Weil, Lawson & Rodi 1993). Therefore, droplets in
the size range from 10 to 200 µm could have an inertial response time of the order
of the flow Kolmogorov time. The Taylor microscale Reynolds number in the clouds
is of the order of 103 to 104. Therefore, the accumulation effect can lead to 100 to
1000 times increase in the collision rate. This may help explain the rapid growth
of droplets in size ranges where neither condensation nor differential gravitational
settling is effective.

Although this paper is restricted to monodisperse systems, the methods can be
easily extended to polydisperse systems. These results are being collected and will be
presented in a subsequent paper.
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