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Statistical mechanical descriptions of turbulent coagulation
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A fundamental tenet of statistical mechanics is that the rate of collision of two objects is related to
the expectation value of their relative velocities. In pioneering work by Saffman and Tdrrdeuid
Mech.1, 16(1956], two different formulations of this tenet are used to calculate the collision kernel

I" between two arbitrary particle size groups in a turbulent flow. The first or spherical formulation
is based on the radial componewt of the relative velocityw between two particlesIsP"
=27R?*(|w,|), where w,=w-R/R, R is the separation vector, anB=|R|. The second or
cylindrical formulation is based on the vector velocity itsélf?"=27rR2(|w|>, which is supported

by molecular collision statistical mechanics. Saffman and Turner obtained different results from the
two formulations and attributed the difference to the form of the probability functiom o$ed in

their work. A more careful examination reveals that there is a fundamental difference between the
two formulations. An underlying assumption in the second formulation is that the relative velocity
at any instant is locally uniform over a spatial scale on the order of the collision rRdiubkich is
certainly not the case in turbulent flow. Therefore, the second formulation is not expected to be
rigorously correct. In fact, both our analysis and numerical simulations show that the second
formulation leads to a collision kernel about 25% larger than the first formulation in isotropic
turbulence. For a simple uniform shear flow, the second formulation is about 20% too large. The two
formulations, however, are equivalent for treating the collision rates among random molecules and
the gravitational collision rates. @998 American Institute of Physid§1070-663(98)01410-X]

I. INTRODUCTION cited paper in turbulent coagulation literature. In that paper,
Saffman and Turnémresented two formulations of the col-
The rate of coagulation in turbulent dispersions of smalljjsion kernelT" between two arbitrary particle size groups
solid particles and droplets is important to many areas ofwe shall limit our discussions to body-force-free, inertialess
meteorology and engineering. Examples include precipitaparticles of size much smaller than the Kolmogorov lehgth
tion and cloud processing of aerosols, production ofin the first formulation, the average collision kernel is de-
titanium-dioxide pigments, fine spray combustion, and for-scribed as the average volume of fresh fluid entering a col-
mation of industrial emissions. The overall coagulation ratgjsjon sphere per unit time,
of finite-size particles in fluid turbulence is governed by
three consecutive and interrelated procesgBsgeometric 'SP 277R2( |, |) 1)
collision due to particle—turbulence interactiot®, collision e
Eg;}c:?g%)g?ge:g;gﬁﬂt%iﬁ:flf?cigr?gcfsa;é?grmigct')r;tirjc_ The collision sphere is defined, relative to a reference par-

face sticking characteristics. The starting point of turbulentt'Cle’ as a sphere of radi=r,+rp, centered on the ref-

coagulation is a formulation of the average collision kernelS ¢NCce particlgFig. (a)]. Herer, andr, are the radii of the

that measures the percentage of particle pairs that will adhe?%vo particle size groupsy; is the radial component of the

to form larger particles per unit time and volume. There isrelatlve velocityw, namely w, =w-R/R, R is the separation

o ector, andR=|R|. Since this first formulation, Eq1), is
more than one standard way to express the collision kerne&ased on a spherical geometry, we shall cahét spherical
and the question of whether they are equivalent has not bee%n '

. o ormulation One important assumption of E(.) is that the
made clear, particularly when turbulent coagulation is O™ elative velocityw is incompressible, thus influx and outflux
sidered. In this paper, we will use the geometric collision yw P !

. over the sphere surface are equal. The collision kernel is then
rate as a way to clarify and compare two popular formula- P d

tions used in the pioneering work of Saffman and Turner, half the' surfacz_a area mgluphed by the average magnitude of
e radial relative velocity.

although these formulations are also used as a basis to study In the second formulation. the collision kernel is de-
other aspects of the coagulation processes. . ) - N ;
. scribed in terms of the relative velocity directly and is de-
The paper by Saffman and Turhés probably the most S )
fined as the cylindrical volume passing through a reference
particle per unit time, with cross-sectional ared&? and
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whereu; is the flow velocity ands; is the local rate of strain
surface of y tensor. Although the velocity gradients can be assumed to be
the collision sphere uniform over a spatial scal®, the relative velocities will
depend on the orientation & over the surface of the colli-
sion sphere. Thus, the spherical formulation is general,
whereas the cylindrical formulation reduces to the spherical
X formulation under the circumstances stated. For collision of
random molecules in statistical mechanics, we will demon-
strate that the two formulations lead to the same result.

It should be noted that both formulations have been
widely cited in the literature, but the difference in the two
formulations has never been made clear. The spherical for-
mulation was used recently in the studies of Koziol and

(a) Projection of the collision sphere on the x-y plane Leighton* Hu and Mei® Wang et al,® and Zhouet al.;’
while the cylindrical formulation or its equivalent form was
used in the studies of Kruis and Kustéend Sundaram and
Collins® We have shown recently through direct numerical
simulations that the spherical formulation gives the correct
collision kernel, under the assumptions that particles can
overlap and are retained in the system after collisfons.
Therefore, we argue that the cylindrical formulation should
not be used for treating turbulent coagulation. An estimation
of the level of error involved in the cylindrical formulation
will be given later in this paper.

Il. ANALYSIS

Now let us demonstrate the above points. In isotropic
(b) The concept of the collision cylinder turbulence, the statistical averages|wf| and|w| are inde-
pendent of the direction dR. Therefore, we may limit our-
selves to the case & aligned with thex direction. In this
case, we have

FIG. 1. Geometrical description of the two statistical formulations.

This second formulation will be referred to #e cylindrical
formulation In both the above two equations, the angle ) s o] [U\P\ RPe
brackets denote averages over all orientatiorR ahd space (W) =(w;)=R o | T15y 7 (4)
in isotropic turbulence. We note that the cylindrical formu-
lation, which employs the concept of a collision cylinder, is and
standard_textbook mat.erial in statistical mechaise=, e.g., (w2>=<w§>+<w§)+(w§>, (5)
McQuarri¢) and multiphase flow textbookée.g., Crowe ) _
et al3). Saffman and Turner viewed the final result based ofvhere we use the notatiom= (w,,w, ,w,), € is the average
the spherical formulation the exact result as in their cylindri-"ate of viscous dissipation per unit mass, ant the fluid
cal formulation they had to make an assumption on the problglnemanc viscosity. For isotropic turbulence, it can be
ability density function of the relative velocity field. shown that

Saffman and Turnérobtained different results from the <W§>:<W§>:202, (6)
two formulations and attributed the difference to the form of
the probability function ofw used in their work. We shall and
show here that thgldifferen.ce cannot. be ref:onciled, even if (W, Wy ) = (W, W,) = (Wyw,) =0. 7)
the correct probability function ofv in isotropic turbulence
is used. In fact, there is an underlying assumption in th
cylindrical formulation that the relative velocity at any in- < auq\? aug\?
stant is locally uniform over a spatial scale on the order of ( ) >:<(_) >: <
the collision radiusR. Alternatively, particles of different
velocities must be statistically independent in the cylindricalfor isotropic turbulence field. It follows that

MNote that Eq.(6) follows simply from the fact that
duq\?
—1) > ®)

9%y

Xy X3

formulation and thus can be considered separately in the col- 2y =542, (9)
lision process. This assumption is certainly not valid in tur- ) ]
bulent flow. For very smalR, the relative velocities are re- W€ shall now make the assumption that the relative ve-
lated to the local velocity gradients by locities follow a Gaussian probability distribution, although
it is now well known that this is not the caseThis simple
w—R au; _RiRjdui _RiR 3 assumption, however, is consistent with the original work of
= 7

C—, W,=——— = Sii , :
I ox; " R X R ™ Saffman and Turnérand allows us to evaluate the relative
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velocity statistics in Eq91) and(2) explicitly in terms ofo. TABLE |. Statistics of two-point relative velocities in DNS flow field& (
Furthermore, for the first- and second-order velocity mo-~ 7).

ments of concern here, the Gaussian assumption is a reason- 3 3
L : o - 32, 64°, 96°, 128,
able approximation. Equatia@) implies that the probability R,=24 R,=45 R,=59 R,=75 Gaussian
distribution ofw, may be written as
(wi) 1.3426  1.0692 09226  0.8232
1 w? ) 3.0175 1.9069  1.4499  1.15605
pP(W,)=—=——exp — 53 (10) .
r Pro 207’ (w]) 3.4115 2.6546  2.28907 2.0214
(W-w) 15.2749 95984  7.3307 57028 -
then () 0.7729  0.7743 07662  0.7657  0.7979
o 2 V(wp)
<|wr|>=J |w,|p(w,)dw, = — o (11 (Iwl) 0.8729 0.8568 0.8454  0.8465  0.9173
o _ V{w-w)
Combining Egs.(1), (4), and (11), we arrive at the well- 1 (|w)) 12705  1.2413  1.2406  1.2278 1.286
known result of Saffman and Turnér: T 2w, )

2
e 2WR2\[ \/= &z = R_1 294— (12)
Tk assumed thab(w) was independent of the orientation of the
where 7,=v/€ is the Kolmogorov time scale. Similarly, separation vector, which led their formulation to be equiva-
their paper are not correct. The above two problems happen
1 W>2< 1 wy W, to cancel each other in their formulation when applied to
p(w)= o AT 262 2w 202 %X 402
{Iw,]), {wl), and other related statistics for turbulent flow
Therefore, fields generated by direct numerical simulations and used in
was set to the Kolmogorov length=(»%/€)¥*. The first
( \/; \F) row shows the grid resolutions and Taylor microscale Rey-
=0 ~ — .
A detailed derivation of the above result is given in the Ap- (|w, |>/\/—2§ and<|w|)/\/W These ratios are equal to
pendix. Substituting Eq14) into Eq. (2), we have 0.7979 and 0.9173 for Gaussian turbulence, and the simula-
h
This result is almost the same as that given by Saffman anfitry/ T and changes from 1.271 to 1.228 as the flow Rey-
One can further show that the two formulations give
W-W) different results for a simple shear flow with velocity field

considering Eqs(4), (6), and(7), we can write the probabil- !ent to the cylindrical formulation. The variances of the rela-
ity distribution ofw as tive velocity components used in their wofEq. (2.3) in
fluid elements.
(13 To confirm the above results, we computed directly
> our previous worksee Zhotet al.” for numerical simulation
<|W|>:f dfo f dwydw,p(W) Wi+ Wy +w; detaily. The results are listed in Table I. The separation
(14 nolds numbers for DNS turbulent flow fields. Let us first
check the Gaussian assumption by comparing the ratios
R3 tion results give similar values but deviate slightly more
o= WRZ( \[ \[) — —=1 664— (15)  from the Gaussian results as the flow Reynolds number in-
V15 T creases. Finally, the ratiq|w|)/2(|w,|) corresponds to
Turnef* based on thésotropicform of the probability distri- nolds number increases, comparable to the predicted value of
bution for p(w): 1.286 based on the Gaussian assumption.
1
p(w) = (\/ﬂa )3 exp ~ 209 (16) given asu=(vyz,0,0). For this flow field, the averages over
! the collision sphere surface can be directly evaluated. Using

with o3=202. Their result is spherical polar coordinates, we have,=y(rir3/R)
3 =(yR/2)cosysin 20 and |w|=rz(du,/dxs)| = yR|cosé|
0 BWR _ - on the surface of the collision sphere, whérés the polar

I, s7= 7R =1 671 . (17 : .
\/_57 9 7 angle andy is the azimuthal angle. Hem, r,, andr are

N . the vector components &. Therefore,
In summary, our result based on the cylindrical formulation P

and the correct Gaussian probability function is 28.6% larger N m . YR )
than the result obtained from the spherical formulation, while ~ {|Wrl)= 7~ 0 dy o d6-sin 6- —-[cos - sin 20|
'Y s—=1.29Th. Saffman and Turnérealized the incon-

sistency between the two formulations, but attributed this 2

inconsistency to the simplified probability distribution given "3 R, (18
by Eqg.(16). Here we have clarified that this is not the reason.

Sundaram and Collifsmade an effort to derive an expres- (|w|>— il J dl//J’ d6-sin 8- yR|cos 6| = . (19
sion of the collision kernel for finite-inertia particles. They
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It follows that (3) The cylindrical formulation can overpredict the collision
sph _ 4 p3_ 3 kernel by 20% or more in a turbulent flow field.
Tshear= 37R™=1.333R", (20 (4) The Gaussian assumption results in reasonable predic-
T tions of low-order relative velocity statistics.
[ dea= 5 YRO=1LETHR?, (21)

In short, the cylindrical formulation is not recommended
therefore, the cylindrical formulation leads to a result 189,for turbulent coagulation studies or should at least be used

larger than the spherical formulation. The spherical formulaWith caution. _ .
tion gives the correct, well-known result of von As a final note, we would like to suggest an alternative

Smoluchowski2 expression for the collision kernel when weak particle inertia
We shall now present two physical situations for which and gravitational effect are included. Saffman and Tdrner

the two formulations actually give identical results. The first9@ve the following expression:
one concerns the collision kernel of random molecules such

' isti ' ' [ ' 1 € 2 Du)\?
as in statistical mechaniésln this case there is no spatial Tgr=227R? —9-R2 ;_'_(1_ &) (71_72)2<(E) >

correlation of particle velocities and the relative velocity sta- »

tistics do not depend on the orientationR®f namely, Shear ™ Acioration g

(Wi =(wp)=(wl) =0 (22 . IRPRTC 28)

g —e2 1=} 2
Then the probability distribution ofv is t3(n=m) (1 pp) 8| -
B 1 W-wW 23 ”

p(W) = (\/Z_T)g ex F , ( ) Gravity . - N

' where p, and p; are particle and fluid densitiesr;
leading to =(pp!ps)(d?/18v) (i=1,2) are the Stokes response times of

" 2 the particlesDu/Dt is thex component of the fluid accel-

<|W|>:f w-p(w) - 4rwdw=2 \ﬁ a=2{(|w,|), (24) eration, andy is the gravitational acceleration. The first term
0 m represents the effect of local shear in the turbulent fithe

where w=|w|. Therefore, the two formulations give the Shear terny the second term results from the differential re-

identical result: sponse of the particles to local fluid accelerat{tme accel-
sph o ) eration terny;, and the last term is due to differential settling
I andon=1 randoni= V8 TR0 (25 by gravity (the gravity tern.

The second case concerns the gravitational collision ker-  This expression, although widely cited in the literature,
nel in which the relative velocity is uniform and equalvo has a number of inconsistencies due to the use of the cylin-
=(0,0AV), whereAV is the differential settling rate. Obvi- drical formulation and the isotropic form of the probability

ously the cylindrical formulation gives density function forw. A more consistent expression is
T o= TR?AV. (26) - 2 2
gravity 1 € p Du
=7 Pmp2 — 2 _ _Fr -2 ==
While the spherical formulation will predict I'=2V27R%| SR V+(1 Pp) (1= 72) <(Dt) >
h 1 2w T ] Shear Acceleration ’
L ohaviny=2mR? yp fo d:pfo dé sin §|AV cos 6| L Du\?\ R? i
+2( 1- p—) 7172<(E) > F 3 (r1—7)
=7R?AV, (27 P b, . 29
Coupling
which is identical to the prediction based on the cylindrical ps 2 i
formulation. X 1——) g’ .
Pp
—————
Gravity

IIl. CONCLUSIONS

where\p is the longitudinal Taylor-type microscale of fluid
From the above four example problems, we can draw the : i
. | accelerationsee Hu and Mé). In addition to the terms of
following conclusions. . - . .
same physical origins as in E@8), we have included a term
(1) The spherical formulation in Eq.l) always gives the accounting for the combined effect of spatial variation of
correct prediction under the assumptions that particle$luid acceleration and particle inertidhe coupling terny
can overlap in space and are retained in the system afteccording to Hu and Mei.This coupling term does not ap-
collisions, as shown by Wangt al® pear in the work of Saffman and Turner because they as-
(2) The cylindrical formulation in Eq(2) is equivalent to sumed that the local fluid accelerations are perfectly corre-
the spherical one when the relative velocity is an uncordated in space.
related isotropic random field or uniform over the spatial Equation(29) represents several improvements over Eq.
scale ofR. (28): (1) the shear term, for the reason discussed in this pa-
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per, is corrected:2) the gravity term in Saffman and Turrfer At this point, we can simplify the expression by setting
is not correct due to their incorrect probability functioner =w,/(20) and yE\/(wX2+ p9)/(20). The integration can
if the gravity effect is considered alone; a(8) the coupling  be written in terms ok andy as
term derived by Hu and M&can be more important than the
acceleration term when monodisperse particles are consid- _ MV2o f”’ %2 f“ —y2

A _ (w))y=—7== | e Xdx| yd(—e™¥).
ered. We note that the only term identical to that in Saffman NE x
and Turner's expressidris the acceleration term, which is
expected because the isotropic probability distribution of th
type in Eq.(16) applies for fluid acceleration. The finite MWio | [ ., . 5,
density-ratio correction, (+p¢/p,), which is not consid- (Jw)y= —= (f e xdx+f dxf e Xty )dy).
ered in Hu and Me, is included in Eq.(29). This density J 0 X

éntegration by parts then gives

correction originates from the pressure-gradient force ternThe first integral can be easily carried out and the symmetry
(e.g., Maxey and Rile})) and can be easily included in the property of the second integrand allows us to write
Hu and Mei analysis by considering {Jp/p,) 7; as an ef-

fective response time. One significant assumption in(E9).

is that the possible couplings between the gravitational effect ()= Mﬁ }+ 1 J"” dxf“ e(xz*y2>dy)

and the others are not directly considered. Another signifi- Jr (4 8 )« —w '

cant assumption is that the effect of nonuniform particle con-

centrations due to particle—flow microstructure interactionsy change of variables fromx(y) to cylindrical coordinates

is negligible. This last effect can lead to an order of magni-y|iows the second integration to be performed analytically as
tude increase in the collision kernel if the particle inertia
time is comparable to the flow Kolmogorov time, as shown

in two recent studie§?® Mo (1 1 (=
<|W|>:f atg ), e 2mrde
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