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Statistical mechanical descriptions of turbulent coagulation
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A fundamental tenet of statistical mechanics is that the rate of collision of two objects is related to
the expectation value of their relative velocities. In pioneering work by Saffman and Turner@J. Fluid
Mech.1, 16~1956!#, two different formulations of this tenet are used to calculate the collision kernel
G between two arbitrary particle size groups in a turbulent flow. The first or spherical formulation
is based on the radial componentwr of the relative velocityw between two particles:Gsph

52pR2^uwr u&, where wr5w–R/R, R is the separation vector, andR5uRu. The second or
cylindrical formulation is based on the vector velocity itself:Gcyl52pR2^uwu&, which is supported
by molecular collision statistical mechanics. Saffman and Turner obtained different results from the
two formulations and attributed the difference to the form of the probability function ofw used in
their work. A more careful examination reveals that there is a fundamental difference between the
two formulations. An underlying assumption in the second formulation is that the relative velocity
at any instant is locally uniform over a spatial scale on the order of the collision radiusR, which is
certainly not the case in turbulent flow. Therefore, the second formulation is not expected to be
rigorously correct. In fact, both our analysis and numerical simulations show that the second
formulation leads to a collision kernel about 25% larger than the first formulation in isotropic
turbulence. For a simple uniform shear flow, the second formulation is about 20% too large. The two
formulations, however, are equivalent for treating the collision rates among random molecules and
the gravitational collision rates. ©1998 American Institute of Physics.@S1070-6631~98!01410-X#
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I. INTRODUCTION

The rate of coagulation in turbulent dispersions of sm
solid particles and droplets is important to many areas
meteorology and engineering. Examples include precip
tion and cloud processing of aerosols, production
titanium-dioxide pigments, fine spray combustion, and f
mation of industrial emissions. The overall coagulation r
of finite-size particles in fluid turbulence is governed
three consecutive and interrelated processes:~1! geometric
collision due to particle–turbulence interactions,~2! collision
efficiency due to local particle–particle aerodynamic inter
tions, and~3! coagulation efficiency as determined by su
face sticking characteristics. The starting point of turbul
coagulation is a formulation of the average collision ker
that measures the percentage of particle pairs that will ad
to form larger particles per unit time and volume. There
more than one standard way to express the collision ker
and the question of whether they are equivalent has not b
made clear, particularly when turbulent coagulation is c
sidered. In this paper, we will use the geometric collisi
rate as a way to clarify and compare two popular formu
tions used in the pioneering work of Saffman and Turne1

although these formulations are also used as a basis to s
other aspects of the coagulation processes.

The paper by Saffman and Turner1 is probably the most

a!Corresponding author: Department of Mechanical Engineering, 126 S
cer Laboratory, University of Delaware, Newark, Delaware 19716-31
Telephone: ~302! 831-8160; Fax: ~302! 831-3619; Electronic mail:
LWANG@ME.UDEL.EDU
2641070-6631/98/10(10)/2647/5/$15.00

Downloaded 01 Jul 2005 to 128.117.47.188. Redistribution subject to AIP
ll
f
-
f
-
e

-

t
l
re

s
el,
en
-

-
,
dy

cited paper in turbulent coagulation literature. In that pap
Saffman and Turner1 presented two formulations of the co
lision kernel G between two arbitrary particle size group
~we shall limit our discussions to body-force-free, inertiale
particles of size much smaller than the Kolmogorov lengt!.
In the first formulation, the average collision kernel is d
scribed as the average volume of fresh fluid entering a
lision sphere per unit time,

Gsph52pR2^uwr u&. ~1!

The collision sphere is defined, relative to a reference p
ticle, as a sphere of radiusR5r 11r 2 , centered on the ref-
erence particle@Fig. 1~a!#. Herer 1 andr 2 are the radii of the
two particle size groups,wr is the radial component of the
relative velocityw, namely,wr5w–R/R, R is the separation
vector, andR5uRu. Since this first formulation, Eq.~1!, is
based on a spherical geometry, we shall call itthe spherical
formulation. One important assumption of Eq.~1! is that the
relative velocityw is incompressible, thus influx and outflu
over the sphere surface are equal. The collision kernel is t
half the surface area multiplied by the average magnitude
the radial relative velocity.

In the second formulation, the collision kernel is d
scribed in terms of the relative velocity directly and is d
fined as the cylindrical volume passing through a refere
particle per unit time, with cross-sectional areapR2 and
length uwu @Fig. 1~b!#. The average collision kernel is then

Gcyl5pR2^uwu&. ~2!

n-
.

7 © 1998 American Institute of Physics
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This second formulation will be referred to asthe cylindrical
formulation. In both the above two equations, the ang
brackets denote averages over all orientations ofR and space
in isotropic turbulence. We note that the cylindrical form
lation, which employs the concept of a collision cylinder,
standard textbook material in statistical mechanics~see, e.g.,
McQuarrie2! and multiphase flow textbooks~e.g., Crowe
et al.3!. Saffman and Turner viewed the final result based
the spherical formulation the exact result as in their cylind
cal formulation they had to make an assumption on the pr
ability density function of the relative velocity field.

Saffman and Turner1 obtained different results from th
two formulations and attributed the difference to the form
the probability function ofw used in their work. We shal
show here that the difference cannot be reconciled, eve
the correct probability function ofw in isotropic turbulence
is used. In fact, there is an underlying assumption in
cylindrical formulation that the relative velocity at any in
stant is locally uniform over a spatial scale on the order
the collision radiusR. Alternatively, particles of different
velocities must be statistically independent in the cylindri
formulation and thus can be considered separately in the
lision process. This assumption is certainly not valid in t
bulent flow. For very smallR, the relative velocities are re
lated to the local velocity gradients by

wi5Rj

]ui

]xj
, wr5

RiRj

R

]ui

]xj
5

RiRj

R
si j , ~3!

FIG. 1. Geometrical description of the two statistical formulations.
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whereui is the flow velocity andsi j is the local rate of strain
tensor. Although the velocity gradients can be assumed to
uniform over a spatial scaleR, the relative velocities will
depend on the orientation ofR over the surface of the colli-
sion sphere. Thus, the spherical formulation is gene
whereas the cylindrical formulation reduces to the spher
formulation under the circumstances stated. For collision
random molecules in statistical mechanics, we will demo
strate that the two formulations lead to the same result.

It should be noted that both formulations have be
widely cited in the literature, but the difference in the tw
formulations has never been made clear. The spherical
mulation was used recently in the studies of Koziol a
Leighton,4 Hu and Mei,5 Wang et al.,6 and Zhouet al.;7

while the cylindrical formulation or its equivalent form wa
used in the studies of Kruis and Kusters8 and Sundaram and
Collins.9 We have shown recently through direct numeric
simulations that the spherical formulation gives the corr
collision kernel, under the assumptions that particles
overlap and are retained in the system after collision6

Therefore, we argue that the cylindrical formulation shou
not be used for treating turbulent coagulation. An estimat
of the level of error involved in the cylindrical formulatio
will be given later in this paper.

II. ANALYSIS

Now let us demonstrate the above points. In isotro
turbulence, the statistical averages ofuwr u and uwu are inde-
pendent of the direction ofR. Therefore, we may limit our-
selves to the case ofR aligned with thex direction. In this
case, we have

^wr
2&5^wx

2&5R2K S ]u

]xD 2L 5
R2

15

ē

n
[s2, ~4!

and

^w2&5^wx
2&1^wy

2&1^wz
2&, ~5!

where we use the notationw5(wx ,wy ,wz), ē is the average
rate of viscous dissipation per unit mass, andn is the fluid
kinematic viscosity. For isotropic turbulence, it can
shown that

^wy
2&5^wz

2&52s2, ~6!

and

^wxwy&5^wywz&5^wxwz&50. ~7!

Note that Eq.~6! follows simply from the fact that10

K S ]u1

]x2
D 2L 5 K S ]u1

]x3
D 2L 52K S ]u1

]x1
D 2L , ~8!

for isotropic turbulence field. It follows that

^w2&55s2. ~9!

We shall now make the assumption that the relative
locities follow a Gaussian probability distribution, althoug
it is now well known that this is not the case.11 This simple
assumption, however, is consistent with the original work
Saffman and Turner1 and allows us to evaluate the relativ
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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velocity statistics in Eqs.~1! and~2! explicitly in terms ofs.
Furthermore, for the first- and second-order velocity m
ments of concern here, the Gaussian assumption is a rea
able approximation. Equation~4! implies that the probability
distribution ofwr may be written as

p~wr !5
1

A2ps
expS 2

wr
2

2s2D , ~10!

then

^uwr u&5E
2`

`

uwr up~wr !dwr5A2

p
s. ~11!

Combining Eqs.~1!, ~4!, and ~11!, we arrive at the well-
known result of Saffman and Turner:1

G turb
sph52pR2A2

p

R

A15
Aē

n
5A8p

15

R3

tk
51.294

R3

tk
, ~12!

where tk[An/ ē is the Kolmogorov time scale. Similarly
considering Eqs.~4!, ~6!, and~7!, we can write the probabil-
ity distribution of w as

p~w!5
1

A2ps
expS 2

wx
2

2s2D 1

2p•2s2 expS 2
wy

21wz
2

4s2 D .

~13!

Therefore,

^uwu&5E dwxE E dwydwzp~w!Awx
21wy

21wz
2

5sSAp

2
1A2

p D . ~14!

A detailed derivation of the above result is given in the A
pendix. Substituting Eq.~14! into Eq. ~2!, we have

G turb
cyl 5pR2SAp

2
1A2

p D R

A15

1

tk
51.664

R3

tk
. ~15!

This result is almost the same as that given by Saffman
Turner1 based on theisotropic form of the probability distri-
bution for p(w):

p~w!5
1

~A2ps1!3
expS 2

w–w

2s1
2 D , ~16!

with s1
25 5

3s
2. Their result is

G turb,ST
cyl 5pR2A40

3p

R

A15tk

5A8p

9

R3

tk
51.671

R3

tk
. ~17!

In summary, our result based on the cylindrical formulati
and the correct Gaussian probability function is 28.6% lar
than the result obtained from the spherical formulation, wh
Gturb,ST

cyl 51.291Gturb
sph. Saffman and Turner1 realized the incon-

sistency between the two formulations, but attributed t
inconsistency to the simplified probability distribution give
by Eq.~16!. Here we have clarified that this is not the reas
Sundaram and Collins9 made an effort to derive an expre
sion of the collision kernel for finite-inertia particles. The
Downloaded 01 Jul 2005 to 128.117.47.188. Redistribution subject to AIP
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assumed thatp(w) was independent of the orientation of th
separation vector, which led their formulation to be equiv
lent to the cylindrical formulation. The variances of the re
tive velocity components used in their work@Eq. ~2.3! in
their paper# are not correct. The above two problems happ
to cancel each other in their formulation when applied
fluid elements.

To confirm the above results, we computed direc
^uwr u&, ^uwu&, and other related statistics for turbulent flo
fields generated by direct numerical simulations and use
our previous work~see Zhouet al.7 for numerical simulation
details!. The results are listed in Table I. The separationR
was set to the Kolmogorov lengthh[(n3/ ē)1/4. The first
row shows the grid resolutions and Taylor microscale R
nolds numbers for DNS turbulent flow fields. Let us fir
check the Gaussian assumption by comparing the ra
^uwr u&/A^wr

2& and ^uwu&/A^w–w&. These ratios are equal t
0.7979 and 0.9173 for Gaussian turbulence, and the sim
tion results give similar values but deviate slightly mo
from the Gaussian results as the flow Reynolds number
creases. Finally, the ratiô uwu&/2^uwr u& corresponds to
Gturb

cyl /Gtub
sph and changes from 1.271 to 1.228 as the flow R

nolds number increases, comparable to the predicted valu
1.286 based on the Gaussian assumption.

One can further show that the two formulations gi
different results for a simple shear flow with velocity fie
given asu5(gz,0,0). For this flow field, the averages ov
the collision sphere surface can be directly evaluated. Us
spherical polar coordinates, we havewr5g(r 1r 3 /R)
5(gR/2)cosc sin 2u and uwu5ur 3(]u1 /]x3)u5gRucosuu
on the surface of the collision sphere, whereu is the polar
angle andc is the azimuthal angle. Herer 1 , r 2 , andr 3 are
the vector components ofR. Therefore,

^uwr u&5
1

4p E
0

2p

dcE
0

p

du•sin u•
gR

2
ucosc•sin 2uu

5
2

3p
gR, ~18!

^uwu&5
1

4p E
0

2p

dcE
0

p

du•sin u•gRucosuu5
gR

2
. ~19!

TABLE I. Statistics of two-point relative velocities in DNS flow fields (R
5h).

323,
Rl524

643,
Rl545

963,
Rl559

1283,
Rl575 Gaussian

^uwru& 1.3426 1.0692 0.9226 0.8232 ¯

^wr
2& 3.0175 1.9069 1.4499 1.15605 ¯

^uwu& 3.4115 2.6546 2.28907 2.0214 ¯

^w–w& 15.2749 9.5984 7.3307 5.7028 ¯

^uwr u&
A^wr

2&

0.7729 0.7743 0.7662 0.7657 0.7979

^uwu&
A^w–w&

0.8729 0.8568 0.8454 0.8465 0.9173

Gturb
cyl

Gturb
sph5

^uwu&
2^uwr u&

1.2705 1.2413 1.2406 1.2278 1.286
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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It follows that

Gshear
sph 5 4

3gR351.333gR3, ~20!

Gshear
cyl 5

p

2
gR351.571gR3, ~21!

therefore, the cylindrical formulation leads to a result 18
larger than the spherical formulation. The spherical formu
tion gives the correct, well-known result of vo
Smoluchowski.12

We shall now present two physical situations for whi
the two formulations actually give identical results. The fi
one concerns the collision kernel of random molecules s
as in statistical mechanics.2 In this case there is no spatia
correlation of particle velocities and the relative velocity s
tistics do not depend on the orientation ofR, namely,

^wx
2&5^wy

2&5^wz
2&5s2. ~22!

Then the probability distribution ofw is

p~w!5
1

~A2ps!3
expS 2

w–w

2s2 D , ~23!

leading to

^uwu&5E
0

`

w•p~w!•4pw2dw52A2

p
s52^uwr u&, ~24!

where w5uwu. Therefore, the two formulations give th
identical result:

Grandom
sph 5Grandom

cyl 5A8pR2s. ~25!

The second case concerns the gravitational collision
nel in which the relative velocity is uniform and equal tow
5(0,0,DV), whereDV is the differential settling rate. Obvi
ously the cylindrical formulation gives

Ggravity
cyl 5pR2DV. ~26!

While the spherical formulation will predict

Ggravity
sph 52pR2

1

4p E
0

2p

dcE
0

p

du sin uuDV cosuu

5pR2DV, ~27!

which is identical to the prediction based on the cylindric
formulation.

III. CONCLUSIONS

From the above four example problems, we can draw
following conclusions.

~1! The spherical formulation in Eq.~1! always gives the
correct prediction under the assumptions that partic
can overlap in space and are retained in the system
collisions, as shown by Wanget al.6

~2! The cylindrical formulation in Eq.~2! is equivalent to
the spherical one when the relative velocity is an unc
related isotropic random field or uniform over the spat
scale ofR.
Downloaded 01 Jul 2005 to 128.117.47.188. Redistribution subject to AIP
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~3! The cylindrical formulation can overpredict the collisio
kernel by 20% or more in a turbulent flow field.

~4! The Gaussian assumption results in reasonable pre
tions of low-order relative velocity statistics.

In short, the cylindrical formulation is not recommende
for turbulent coagulation studies or should at least be u
with caution.

As a final note, we would like to suggest an alternati
expression for the collision kernel when weak particle iner
and gravitational effect are included. Saffman and Turn1

gave the following expression:

~28!

where rp and r f are particle and fluid densities,t i

5(rp /r f)(di
2/18n) ( i 51,2) are the Stokes response times

the particles,Du/Dt is the x component of the fluid accel
eration, andg is the gravitational acceleration. The first ter
represents the effect of local shear in the turbulent flow~the
shear term!; the second term results from the differential r
sponse of the particles to local fluid acceleration~the accel-
eration term!; and the last term is due to differential settlin
by gravity ~the gravity term!.

This expression, although widely cited in the literatu
has a number of inconsistencies due to the use of the cy
drical formulation and the isotropic form of the probabili
density function forw. A more consistent expression is

~29!

wherelD is the longitudinal Taylor-type microscale of flui
acceleration~see Hu and Mei5!. In addition to the terms of
same physical origins as in Eq.~28!, we have included a term
accounting for the combined effect of spatial variation
fluid acceleration and particle inertia~the coupling term!,
according to Hu and Mei.5 This coupling term does not ap
pear in the work of Saffman and Turner because they
sumed that the local fluid accelerations are perfectly co
lated in space.

Equation~29! represents several improvements over E
~28!: ~1! the shear term, for the reason discussed in this
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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per, is corrected;~2! the gravity term in Saffman and Turne1

is not correct due to their incorrect probability function forw
if the gravity effect is considered alone; and~3! the coupling
term derived by Hu and Mei5 can be more important than th
acceleration term when monodisperse particles are con
ered. We note that the only term identical to that in Saffm
and Turner’s expression1 is the acceleration term, which i
expected because the isotropic probability distribution of
type in Eq. ~16! applies for fluid acceleration. The finit
density-ratio correction, (12r f /rp), which is not consid-
ered in Hu and Mei,5 is included in Eq.~29!. This density
correction originates from the pressure-gradient force te
~e.g., Maxey and Riley13! and can be easily included in th
Hu and Mei analysis by considering (12r f /rp)t i as an ef-
fective response time. One significant assumption in Eq.~29!
is that the possible couplings between the gravitational ef
and the others are not directly considered. Another sign
cant assumption is that the effect of nonuniform particle c
centrations due to particle–flow microstructure interactio
is negligible. This last effect can lead to an order of mag
tude increase in the collision kernel if the particle iner
time is comparable to the flow Kolmogorov time, as sho
in two recent studies.7,9
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APPENDIX: THE DERIVATION OF Šzwz‹ FOR A
GAUSSIAN RELATIVE VELOCITY FIELD

In this appendix, we provide a detailed derivation f
^uwu&, the average magnitude of the relative velocity betwe
two colliding particles. We would like to demonstrate th
^uwu& can be derived analytically for a general Gaussian re
tive velocity field, with the correct nonisotropic probabilit
function given by Eq.~13!. The derivation requires severa
nontrivial steps of integration by parts. This was proba
the reason for Saffman and Turner1 to use the isotropic prob
ability function, Eq.~23!, instead.

We start by substituting Eq.~13! into the first part of Eq.
~14!. A change of variables from (wy ,wz) to cylindrical co-
ordinates~r,u! is made to reduce the triple integration
double integration:

^uwu&5E dwxE E dwydwzp~w!Awx
21wy

21wz
2

5
1

~A2p!32s3 E2`

`

expS 2
wx

2

2s2Ddwx

3E
0

`

expS 2
r2

4s2D2prdr•Awx
21r2.
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At this point, we can simplify the expression by settingx
[wx /(2s) and y[A(wx

21r2)/(2s). The integration can
be written in terms ofx andy as

^uwu&5
4&s

Ap
E

0

`

e2x2
dxE

x

`

yd~2e2y2
!.

Integration by parts then gives

^uwu&5
4&s

Ap
S E

0

`

e22x2
xdx1E

0

`

dxE
x

`

e2~x21y2!dyD .

The first integral can be easily carried out and the symme
property of the second integrand allows us to write

^uwu&5
4&s

Ap
S 1

4
1

1

8 E
2`

`

dxE
2`

`

e2~x21y2!dyD .

A change of variables from (x,y) to cylindrical coordinates
allows the second integration to be performed analytically

^uwu&5
4&s

Ap
S 1

4
1

1

8 E
0

`

e2r2
2prdr D

5sSAp

2
1A2

p D ,

which is the final result used in the paper.
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