
On the collision rate of small particles in isotropic turbulence.
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Numerical experiments have been performed to study the geometric collision rate of finite-size
particles with zero inertia~i.e., fluid elements! in isotropic turbulence. The turbulent flow was
generated by the pseudospectral method. We argue that the formulation of Saffman and Turner@J.
Fluid Mech.1, 16 ~1956!# for the average collision kernel is correct only under the assumptions that
the particles are kept in the system after collision and allowed to overlap in space. This was
confirmed, for the first time, by numerical experiments to within a numerical uncertainty as small as
1%. Finite corrections to the Saffman and Turner result must be made if one applies the theory to
actual coagulation process where particles are not allowed to overlap before collision and particles
are removed from a given size group after collision. This is due to the fact that Saffman and Turner
assumed auniform, time-independent concentration fieldin their formulation of the average
collision kernel, while in the actual modeling of population evolution the particle number
concentrationchanges in timeand may belocally nonuniformas a result of a biased removal process
due to spatially nonuniform coagulation rates. However, the quantitative level of the deviations from
the Saffman and Turner result remain to be explained. Numerical experiments in simple shear flow
were also conducted to elaborate our findings. ©1998 American Institute of Physics.
@S1070-6631~98!00901-5#
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I. INTRODUCTION

The rate of coagulation in turbulent dispersions of sm
solid particles and droplets is important to many areas
meteorology and engineering. In the atmosphere it cont
utes to precipitation and cloud processing of aerosols. T
wide variety of technologies in chemical and energy ind
tries, formation of particle clusters due to coagulation ha
profound effect on the stability of dispersions, the quality
dried products, and the efficiency of energy conversion. T
wide range of applications include modeling of cloud micr
physical processes, production of titanium-dioxide pigme
design of fine spray combustion nozzles and gas clea
equipment, and control of industrial emissions. In these
plications, we wish to develop an accurate model, or po
lation balance equations, for the time evolution of the s
distribution of the particles for which turbulent coagulatio
is a key physical process.

The overall coagulation rate of finite-size particles
fluid turbulence is governed by three consecutive and in
related processes:~1! geometric collision due to particle–
turbulence interactions,~2! collision efficiency due to loca
particle–particle aerodynamic interactions, and~3! coagula-
tion efficiency as determined by surface sticking characte
tics. We focus here on the geometric collision rate, wh
describes the rate of geometric overlaps among particles
to turbulent transport.

In this paper we consider the geometric collision
monodisperse particles, however, results to be presented
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be extended to polydisperse system. We shall assume
the particles are small in size, typically on the order of t
flow Kolmogorov length scaleh5(n3/ ē)1/4, wheren and ē
are fluid kinematic viscosity and the average rate of ene
dissipation per unit mass, respectively. In addition, the p
ticle inertial response timetp5rpdp

2/(18rn) is much
smaller than the flow Kolmogorov time scaletK5(n/ ē)1/2,
so that the particles follow the local fluid motion precise
Heredp andrp are particle diameter and density;r is fluid
density. The zero-inertia assumption is only valid when
turbulence dissipation rateē is not very large~such as in
stratiform clouds and small cumulus clouds! and the particle
size is sufficiently small. Our purpose is to critically exami
the classical result on the average collision kernel for ze
inertia particles obtained by Saffman and Turner1 in 1956
~also the 1988 Corrigendum; hereafter will be referred to
ST!.

Consider a monodisperse system consisting ofNp par-
ticles in a volumeV, the collision rate per unit volume,Ṅ c ,
is written as

Ṅ c5G
n̄2

2
, ~1!

provided thatNp@1, wheren̄[Np /V is the average particle
number concentration in the volume andG is the collision
kernel. For zero-inertia particles, Saffman and Turn1

showed that

G52pR2uwr u, ~2!

where R is the geometric collision radius, the distance
which two particles start to touch each other, and is equa
dp for a monodisperse system. Hereuwr u is the average rela

n-
.
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tive velocity in the longitudinal direction between two poin
separated by a distanceR. An underlying assumption in~2!
is that the particle concentration field is uniform in space,
that the overbar in~2! denotes an ensemble or spatial avera
in homogeneous turbulence. If, on the other hand, the
ticle concentration is nonuniform, the effect of concentrat
variation must be taken into account in the definition of t
average collision kernel. In other words, the average for
relative velocity should be weighted with the particle co
centration field.

After further assuming that,R!h, the turbulent flow is
locally isotropic, and the probability distribution of the ve
locity gradient is Gaussian, Saffman and Turner1 gave the
following expression forG:

G51.294R3S ē

n D 1/2

. ~3!

Using a more accurate lognormal distribution for the veloc
gradient, Balachandar2 showed that the coefficient in~3!
would be increased slightly, depending on the flatness fa
of the velocity gradient. It should be noted that Eq.~2!, in
principle, can be used even forR.h if the relative velocity
can be related toR and turbulence parameters. Delichats
and Probstein,3 for example, used Eq.~2! for R in the inertial
subrange. Therefore, Eq.~2! is much more general than Eq
~3!.

The ST results are viewed to be more rigorous than
earlier result by Camp and Stein,4 who first applied the
theory of Smoluchowski5 for simple shear flow to turbu
lence. Although Eqs.~2! and~3! have been widely cited an
used in the literature, they have never been confirmed
rectly. We note that Saffman and Turner derived Eq.~2! by
considering auniform, time-independent concentration fie
in which particles could overlap if distributed randomly. Th
result, Eq.~2!, was formulated before they studied the pop
lation evolution later in their paper in which the concent
tion changed in timeand might belocally nonuniformas a
result of a biased removal process due to spatially non
form local coagulation rates~See Sec. IV C!. Therefore,
there is an inconsistency in the ST work when their resul
applied to the actual coagulation process. The main purp
of our paper is to clarify the effect of this inconsistency
the exact value of the collision kernel when the particles
either not allowed to overlap or removed as a result of c
lisions.

Equation~3!, apart from the coefficient 1.294, must b
correct forR!h as it can be derived simply from a dimen
sional analysis.6 Similar expressions with different coeffi
cients are found in the literature.3,4,7,8 Recent numerica
simulations2,9 also showed a slightly different collision ke
nel than~3!. We will demonstrate that Eq.~2! @and~3! if the
Gaussian distribution is a good approximation for the fl
field andR,h# correctly describes the collision rate of zer
inertia particles, under the assumptions that the particles
kept in the system after collision and are allowed to over
in space. Finite corrections to the ST result are needed,
pending on the details of the collision detection.

It should be noted that several attempts had been ta
to measure the collision kernel directly.3,8,10,11However, it is
Phys. Fluids, Vol. 10, No. 1, January 1998
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very difficult to perform well-controlled experiments i
which one can isolate one collision mechanism from oth
~say, shear-induced collision from Brownian coagulatio
geometric collision from hydrodynamic interactions!. On the
other hand, numerical simulations can be used to study
mechanism at a time and have recently been used to de
the collision kernel for both buoyant and heav
particles.2,9,12–14In this paper we will use numerical simula
tions to provide information necessary to clarify existin
theory for zero-inertia particles. In part 2 of this work,6 we
apply similar numerical experiments to particles with fin
inertia. We use turbulent flow fields generated by nume
cally integrating the full Navier–Stokes equations direct
By this means, local flow dynamic features are represen
without anyad hocmodeling.

The paper is organized as follows. In the next section
provide the details of the flow simulation, particle trackin
and collision detection. In Sec. III, we describe numeric
simulation results in a frozen turbulence and compares th
to the ST theory. A close examination of the ST theory
presented in Sec. IV in light of numerical results. The resu
for an evolving turbulence are given in Sec. V. Finally ma
conclusions are summarized in Sec. VI.

II. NUMERICAL SIMULATION

A. Flow field

A homogeneous and isotropic turbulent flow was gen
ated by full numerical simulations using a pseudospec
method. The spectral code was originally developed by R
etsch and Maxey15 and was used as a basis for the study
particle settling and concentration field by Wang a
Maxey.16 The incompressible Navier–Stokes equations,

]u

]t
5u3vW 2“S P

r
1

1

2
u2D1n ¹2u1f~x,t !, ~4!

were solved along with the continuity equation“–u50 in a
periodic box of sideL52p. HerevW [“3u is the vorticity
and P is the pressure. The flow domain is discretized u
formly into N3 grid points, which defines the wave numb
components in Fourier space askj56nj (2p/L), wherenj

50,1,...,1/2N for j 51,2,3. A small portion of the energy in
the higher wave numbers,uku>1/2N21.5, is truncated at
each time step to reduce aliasing errors, so the highest w
number realized in our simulation iskmax51/2N21.5. The
time evolution is computed by applying a second-ord
Adams–Bashforth scheme to the nonlinear terms, a sec
order Crank–Nicholson scheme for the viscous terms,
the Euler scheme for the random forcing term. The press
is eliminated through the continuity equation.

The flow was generated from rest by the random forc
term f(x,t), which was nonzero only at low wave number
uku,A8, following the forcing scheme developed by Esw
ran and Pope.17 In this scheme the forcing term is specifie
as a complex, vector-valued Uhlenbeck–Ornstein~UO! sto-
chastic process. The net rate of energy addition was spec
by the amplitude and correlation time scale of the forcin
the values of which can be found in Wang and Maxey16

Nonlinear interactions propagate energy from low to hi
267Wang, Wexler, and Zhou
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wavenumbers and eventually viscous dissipation beco
active, leading to a quasisteady balance of the forcing ene
and the viscous dissipation. In addition to the grid resolut
and the forcing parameters, the only remaining physical
rameter that needs to be specified for the flow simulatio
the kinematic viscosityn. The spatial resolution of a spectr
simulation is often monitored by the value ofkmaxh, which
should be greater than unity for the smallest scales of
flow to be resolved~see, for example, Eswaran and Pope17!.
For the simulations in this study,kmaxh was about 1.30. The
time step was chosen to ensure that the CFL number was
or less for numerical stability and accuracy.17 Other details
of the flow simulation can be found in Wang and Maxey.16

For most discussions in this paper, the flow was froz
after the statistically stationary stage was reached, and
ticles were then introduced into the flow. The start of parti
release will be denoted ast50. This provides us with an
identical flow microstructure for different runs with variou
particle parameters and collision counting methods. It is a
in the context of ST, as they essentially assumed a qu
steady local straining flow field. The case of evolving flo
will be briefly considered in Sec. V.

Since all the important flow scales are resolved in a
numerical simulation, the grid resolution determines
scale separation, and thus the Reynolds number of the re
ing flow. For the purpose of this paper, we only use a l
resolution flow at 323 with a Taylor microscale Reynold
number of 24. It should be noted that the flow Reyno
number is irrelevant as far as Eq.~2! is concerned. It can
however, alter the probability distribution of the velocity gr
dient and lead to a slightly different coefficient in~3!. The
important flow parameters are given here for later usen
50.6, ē53569, h50.088250.45Dx, tk50.013, and the
rms fluid fluctuating velocityu8517.02.

B. Particle motion

The particles are assumed to follow the local fluid m
tion. The location of a particle at timet, Y(t), is governed
by

dY~ t !

dt
5u@Y~ t !,t#, ~5!

whereu(Y,t) is the fluid velocity at the particle location an
was determined numerically from the values at neighbor
grids using a six-point Lagrange interpolation. A fourt
order Adams–Bashforth method was used to advance
particle location. Typically, 103– 104 particles were intro-
duced att50 into the computational domain at random in
tial positions. The particle size was made as large asO ~h! so
that there were a significant number of collision events. T
particle volume fraction was small, typically less than 5%

C. Collision detection

1. Definition of collision

A careful definition of collisions is crucial to the imple
mentation of a collision detection algorithm in a numeric
simulation. We define a collision as an event when two p
ticles are brought together fromd(t1).R to d(t2)<R with
268 Phys. Fluids, Vol. 10, No. 1, January 1998
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t2.t1 , whered(t) is the separation distance from center
center at timet between two particles in a pair selected f
collision detection. Therefore, collision detection is main
done by computingd(t).

In a numerical simulation, if the orbit of each particle
known exactly,d(t) can be computed exactly for any tim
interval t (n),t,t (n11) by interpolation. If the time stepdt is
small enough, we can trace each particle before and aft
collision. However, in practice, we would like to choosedt
as large as possible in order to save computer time, with
requirement that any particle does not participate in m
than one collision in the time interval. Then care must
taken to prevent omissions in counting the collisions. F
any given time interval, there are three situations whe
collision eventmust be counted.

~i! If d(t (n)).R andd(t (n11))<R, a collision must oc-
cur and we shall refer to this collision as a type I collisio

~ii ! If d(t (n)).R and d(t (n11)).R, a collision could
occur in the time interval ifd(t)<R for t (n),t,t (n11). We
shall refer this type of collision as a type II collision.

~iii ! If d(t (n))<R andd(t (n11))<R, the particle pair is
already in contact at the beginning of the time step and
still in contact at the end of the time step. A collision eve
must be recorded ifd(t).R for t (n),t,t (n11). This will be
refered to as a type III collision.

2. Collision detection algorithm

We basically followed the algorithm of Balachandar.2 A
primary detection grid of cell sizeW was introduced, along
with a second grid of the same cell size but shifted in ea
direction byW/2. Each particle’s location was identified firs
with a cell in the primary grid. The collision detection in
volving this selected particle was restricted to a neighb
hood defined as the region formed by the eight cells in
second grid that overlapped with the cell in the primary g
where the particle was found. This method reduces dram
cally the total number of pairs to be checked for possi
collision within a given time step, by a factor o
@LB /(2W)#3, whereLB52p is the size of the computation
box. Obviously the smaller the cell sizeW, the more efficient
the method becomes. On the other hand, the cell sizeW has
to be large enough so that no collision pair could be miss

Assume that the probability distribution of the partic
velocity is close to Gaussian, then 99.999 94% of the p
ticles would have velocity magnitude in any direction belo
5u8. It is safe to assume that the relative velocity for a
particle pair in any direction is less than 10u8. To count
collisions, the algorithm selects a particle, identifies the p
mary cell for this particle, and then checks for other partic
in the same primary cell and in a neighborhood comprisin
1/2 cell width (W/2) surrounding the primary cell in all di
rections. Therefore the minimum distance between two p
ticles that are not considered for a collision isW/2. The
requirement to almost guarantee this particle pair will n
collide in dt is W/2.R110u8 dt. Therefore we set the
width of the detection grid to be

W.2S R

Dx
1

10u8 dt

Dx DDx, ~6!
Wang, Wexler, and Zhou
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whereDx is the grid spacing for turbulence simulation. A
an example, ifu8517, dt50.001, R/Dx50.8, N532, the
grid dimension for collision detection is INT (LB /W)59,
which is computationally 91 times faster than considering
pairs.

In numerical implementation, a coarse check for no c
lision was first done if

d~ t ~n!!.R1uDYu i1uDYu j , ~7!

to save time, whereuDYu i and uDYu j were the distance trav
eled in the time interval by the two particles, respective
The detection of the type I collision only requires the inte
particle distancesd(t (n)) and d(t (n11)), while both type II
and type III collisions require an accurate representation
d(t) in the time interval. This information was furnished b
interpolating the particle orbit in the time interval with
third-order polynomial, using the locations and velocities
each particle att (n) and t (n11). The total number of colli-
sions in the time interval is the sum of the collision events
three types. Obviously, ifdt is very small, type II and III
collisions rarely occur and type I collision accounts for
most all the collision events.

3. Post-collision treatment and collision kernel

As noted before, a given number of particles were int
duced into the flow with random initial locations. They we
transported subsequently by the flow and each particle
assumed to move independently. Three different collis
counting schemes were considered that led to different
sults of the numerical collision kernel.

Scheme 1.Particles were allowed to overlap in the sy
tem at the beginning of a time step and were not remo
from the system after collision. All the three collision even
described in Sec. II C 1 could occur and were summed
give the total collision count. This scheme appears to
irrelevant to reality, but, as we will show, gives a collisio
kernel consistent with the ST formulation. We wish to clar
the underlying assumptions in the ST formulation throu
such a hypothetical scheme.

Scheme 2.At the beginning of each time step, the ove
lapping particles were marked and excluded from the con
eration of collision detection. Therefore, the actual num
of particles used for collision detection was less than
total number of particles used and varied in time. Type
collisions were not possible in this scheme.

Scheme 3.Particles were removed immediately from th
system when they collided in the system. As a result,
total number of particles considered in collision detect
decreased with time and particles remaining in the sys
were nonoverlapping at the beginning of each time step.

Obviously, the differences lie in the questions of whi
subset of particles are used for collision detection a
whether particles are dropped upon collision. The advant
of keeping all the particles in the system is that one ha
statistically stationary particle system~in schemes 1 and 2!
and more accurate results can be obtained for a given in
number of particles. Since in scheme 3 the particle syste
not statistically stationary, care must be taken to prope
interpret the results, as will be shown in Sec. IV C.
Phys. Fluids, Vol. 10, No. 1, January 1998
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For each of the three schemes, one can define a loca
time collision kernel for any time stepdt as

G i~ t ~n!!5
2VNc~ t ~n!→t ~n11!!

dt@Npi~ t ~n!!#2 , ~8!

where i 51, 2, and 3 denotes the individual scheme
Nc(t

(n)→t (n11))'Ṅ cV dt is the total collision count in the
time step t (n),t<t (n11), Npi(t

(n)) is the total number of
particles participated in the collision detection and is giv
for each scheme as

Npi~ t ~n!!5H Np5const, for i 51;
Np22N0~ t ~n!!, for i 52;
Np~ t ~n!!, for i 53;

~9!

whereN0(t (n)) is the number of overlapping pairs att (n) in
scheme 2, andNp(t (n)) is the number of particles left in the
system in scheme 3. It is assumed that the particle volu
fraction is very small so that binary collisions dominate
the collision process. These local-in-time collision kern
were quitenoisy if Np is not very large. They can be im
proved by averaging over different realizations of the turb
lence field and initial particle locations. It should be not
that Eq.~8! is simply a rearrangement of Eq.~1!, with the
actual collision detection schemes clearly specified. Equa
~8! serves as a basis for testing various detection scheme
direct numerical or physical experiments.

For the first two schemes, the stationarity property
lows a further average over time to yield the final collisio
kernel^G i&. However, for the more realistic scheme 3,G3(t)
will decrease in time and care must be taken in interpret
the average kernel̂G3& ~see Sec. IV C!. We note that
G3(t)/V can also be viewed as the local slope of the 1/Np(t)
vs t curve sincedNp(t)522Nc(t

(n)→t (n11)), and upon in-
tegration we have

1

Np~ t ~n11!!
5

1

Np~ t ~n!!
1

G3~ t ~n!!

V
dt. ~10!

The decrease of the local slope with time was evident
previous studies by Balachandar2 and Hu and Mei,9 but was
not explained.

III. RESULTS FROM NUMERICAL EXPERIMENTS

We shall first present results from the numerical expe
ments and compare them with theoretical predictions
Smoluchowski5 for simple shear flow and by ST for isotropi
turbulence. We argue that the collision counting schem
reproducesexactlythe predictions while deviations must oc
cur for the other two schemes.

A. Simple shear flow

We first performed numerical experiments in simp
shear flow with a velocity field given as

u~x,y,z!5gz, v~x,y,z!50, w~x,y,z!50, ~11!

whereg is the shear rate. These experiments serve two p
poses. First, they provide a simple way to validate the co
sion detection algorithm. Second, they will help to illustra
an important consequence of a subtle difference between
269Wang, Wexler, and Zhou
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simple shear flow and the isotropic turbulence: in the form
the straining field or local dissipation rate field is uniform
while it is nonuniform in the latter.

The exact expression for the collision kernel was deriv
by Smoluchowski5 to be

G5
4

3
gR3, ~12!

with the assumption that particles are uniformly distribut
in an infinite domain. The computation domain for the sim
lation is a finite cube of size 2p and periodicity in all the
three directions allows the extension of the domain to in
ity. However, the velocity field~11! is periodic inx and y
only. To circumvent this problem, we only distribute pa
ticles in a domain 0,x,2p, 0,y,2p, 0.5p,z,1.5p
with periodicity applied inx andy only. A boundary correc-
tion must be added to the average collision kernel in t
domain with respect to~12! ~see the Appendix!,

G5
4

3
gR3S 12

3p

16

R

l D , ~13!

wherel 5p is the domain size in thez direction.
The numerical experiment was done withg560, R

50.832p/32, Np51024, anddt50.0004. The particle vol-
ume fraction was 1.68%. Here 21 realizations of particle
tial locations were used to reduce the numerical uncert
ties. The implied boundary correction in~13! is about 3%.

The results for the average collision kernel along w
the 95% numerical confidence intervals are given in Tabl
The numerical confidence intervals were estimated base
the 21 realizations of the average collision kernels. It is cl
that scheme 1 gives a collision kernel 0.6% less than
theory given by Eq.~13!, with a numerical uncertainty o
1.7%. Schemes 2 and 3, however, overestimateG by about
6% and 8%, respectively. The origin for the larger numeri
values will be explored in Sec. IV B. It should be noted th
the numerical results in Table I were unchanged as we
creaseddt to 0.004.

B. Isotropic turbulence

Table II gives results for a typical numerical experime
in isotropic turbulence withR50.832p/32, Np52048, dt
50.002, and a total integration timet50.8 ~about ten large-
scale eddy turnover times!. Again 21 realizations of particle
initial locations were used to evaluate the 95% numer
confidence intervals shown in Table II. Also provided are
prediction based on Eq.~2! with uwr u computed directly from
the given flow field~the overbar is taken as a usual spat
average!, and the prediction by Eq.~3!. Comparison between

TABLE I. Collision kernel in simple shear flow.

^G& ^G&/G, Eq. ~13!

Scheme 1 0.299260.0050 0.99460.017
Scheme 2 0.318160.0070 1.05760.023
Scheme 3 0.325160.0114 1.08060.038
Eq. ~13! 0.3009 •••
Eq. ~27! 0.3211 1.067
270 Phys. Fluids, Vol. 10, No. 1, January 1998
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the two predictions indicates that Eq.~3! overpredicts the
kernel by about 4.9%, which involves about 0.8% overp
diction due to the assumptionR!h, i.e.,

uwr u31.0085
R

3 S U]u

]xU1U]v
]yU1U]w

]zU D ,

for R50.8Dx51.78h, ~14!

and 4.1% overprediction due to the Gaussian assumption
the following, we will refer to the prediction of Eq.~2!, G
50.3688, as the exact prediction of the theory.

We observe that scheme 1 gives almost the same v
as the prediction, with a relative error of about 1%. We n
that the 95% numerical confidence interval is equivalent
1% of G. Therefore we can claim that^G1&5G. Scheme 2
overestimates the kernel by 7.2%. The most interesting re
is that the average numerical kernel from scheme 3 is sma
than the theoretical value by about 16%, a result in strik
contrast to the result in simple shear flow. This will be d
cussed further in Sec. IV C.

To further support the above observations, we perform
a series of numerical experiments by varying eitherNp or
particle sizeR. The total integration time was set tot50.8
with dt50.001. Use of a smaller time step yielded ess
tially the same results. Figure 1 shows the average nume
collision kernels normalized by the ST prediction as a fun

TABLE II. Collision kernel in frozen turbulence.

^G& ^G&/G, Eq. ~2!

Scheme 1 0.372460.0034 1.01060.009
Scheme 2 0.395460.0042 1.07260.011
Scheme 3 0.309760.0062 0.84060.017
Eq. ~2! 0.3688 •••
Eq. ~3! 0.3868 1.049
Eq. ~27! 0.3935 1.067

FIG. 1. Numerical collision kernels, normalized byG052pR2uwr u, as a
function of particle size or collision radiusR/Dx. The error bars indicate the
95% confidence intervals. For this set of simulations, parameters are s
Np51024,dt50.001,t50.8.
Wang, Wexler, and Zhou
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Fo
tion of R with Np51024. Scheme 1 with the 95% numeric
confidence interval agrees with the theory for allR. Scheme
2 overestimates the collision kernel and the relative devia
increases withR. Scheme 3 underestimates the collision k
nel and the relative deviation is almost independent ofR.
Figure 2 displays results for a fixedR but varyingNp . Simi-
lar conclusions can be drawn. In addition, the results fo
new scheme, scheme 4, are given in Fig. 1. Scheme 4
modification to scheme 3, in which we added randomly
same number of particles that were removed due to collis
Scheme 4 may be viewed as a more realistic scheme
scheme 3 if we consider the generation of particles in
current size group as a result of collisions of smaller p
ticles. It has the additional advantage of being stationary
the total number of particles. Interestingly, the collision k
nel for scheme 4 lies in between the results of schemes 2
3. Furthermore, the difference between scheme 4 and sch
2 is essentially the same as the difference between sche
and the ST prediction. This may be explained by the fact t
scheme 4 is essentially a combination of the requirements
scheme 2 and scheme 3. Therefore, the first three sche
we focus on here are indeed the building blocks for m
complicated schemes such as scheme 4.

IV. A CRITICAL EXAMINATION OF THE SAFFMAN
AND TURNER THEORY

We shall now examine the ST theory in the light of t
numerical results. We first interpret the ST result in a som
what different manner, namely, in the pure statistical se
of Gillespie.18,19 The origin for the deviations from the
theory in schemes 2 and 3 will be explored next.

A. Rephrasing the Saffman and Turner theory

Consider scheme 1, which was shown to have the s
collision kernel as the ST theory. Leta be the probability
that any given particle pair will collide, in the sense of t
collision definition of Sec. II C 1, in the time interval be
tweent and t1dt, then

FIG. 2. Numerical collision kernels, normalized byG052pR2uwr u, as a
function of Np . The error bars indicate the 95% confidence intervals.
this set of simulations, parameters are set toR50.8Dx, dt50.004, t
50.4.
Phys. Fluids, Vol. 10, No. 1, January 1998
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a5G dt/V, ~15!

whereG is the collision kernel given by Eq.~2!. In fact,G dt
is the volume of fresh fluid coming into the collision zone1 of
a given particle during the time interval. If one assumes t
every collision is independent,20 then the probability of hav-
ing k collisions in the time interval follows the Binomial~or
Bernoulli! distribution,

P~k!'
M !

k! ~M2k!!
ak~12a!M2k, for k50,1,2,...,M ;

~16!

whereM5Np(Np21)/2 is the total number of possible pai
in the system. Therefore, the average number of collision
aM with a standard deviation ofAaM . The average colli-
sion kernel can then be estimated as

G5
V^Nc~ t ~n!→t ~n11!!&

M dt
5

2V^Nc~0→t !&
tNp

2 5^G1&.

~17!

Since onlyNc is a random number and its standard deviat
is ANc, the standard deviation of the estimateG is

s5
VA^Nc~0→t !&

Mt
5

VA~GtM /V!

Mt

5AGV

Mt
'

1

Np
A2GV

t
, ~18!

wheret is the total integration time. Therefore we can ev
predict the uncertainty in the numerical experiment, which
inversely proportional toNp and t1/2 for scheme 1. This un-
certainty prediction can be applied to the other two schem
as well, with Np modified according to Eq.~9!. Of signifi-
cance is the observation that while single-particle statis
such as particle rms fluctuating velocity involves an unc
tainty inversely proportional toNp

1/2, the collision kernel is a
two-particle statistics and the uncertainty drops more quic
with increasingNp .

In the above interpretation, the underlying assumptio
are that~a! each particle moves independent of other p
ticles in the system and as such may overlap in space
another particle;~b! the presence of each particle is not a
fected by any collision event, for example, particles sho
not be removed from the system when a collision occu
This is exactly our collision counting scheme 1.

The numerical uncertainties were compared with
prediction of Eq.~18! in Fig. 3 for a fixedNp with varying
R, and in Fig. 4 with differentNp . The agreement is excel
lent, considering that there is a significantnumerical uncer-
tainty in the uncertainty.

B. The deviation in scheme 2

We can now answer the question of why the count
scheme 2 gives a slightly larger collision kernel. In th
scheme, the overlapping particles at the beginning of e
time step are excluded from the collision detection. Let
examine what the effect is of the nonoverlapping assump
on the numerical collision kernel.

r
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Let us first estimate analytically the value ofN0 , the
number of overlapping pairs in a system withNp particles.
Since any two particles will overlap if the center of the se
ond particle is within a distanceR from the center of the firs
particle, the probability that any two particles will overlap
p[4pR3/(3V). All together, there areM[Np(Np21)/2
possible pairs. As a first approximation, we may assume
all the pairs are independent, so the possibility of observink
overlapping pairs,P(k), again follows the Binomial distri-
bution,

P~k!'
M !

k! ~M2k!!
pk~12p!M2k, for k50,1,2,...,M ;

~19!

and since typically,M@1 andp!1, this reduces to a Pois
son distribution,

P~k!'
lk

k!
e2l, ~20!

with l5pM. Therefore, the average number of overlapp
pairs is

FIG. 3. Numerical standard deviation on^G1& as a function of collision
radiusR with Np51024,dt50.001, andt50.8.

FIG. 4. Numerical standard deviation on^G1& as a function ofNp , with
R50.8Dx, dt50.004, andt50.4.
272 Phys. Fluids, Vol. 10, No. 1, January 1998
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at

N0'pM5
2p

3
Np~Np21!

R3

V
, ~21!

and the standard deviation of this estimate is roughlyAN0.
As an example, if Np51,024, V5(2p)3, and R50.8
32p/32, thenN0'34.365.9. Numerical experiments with
the same number of particles show^N0&534.5, which is in
excellent agreement with~21!.

The ratio of N0 to Np is easily shown to be directly
proportional to the particle volume fraction,f, if Np@1,

N0

Np
'4f. ~22!

We shall now derive an approximate relationship b
tween ^G2& and G. We note that scheme 2 considers,
average, a system ofNp22N0 particles. The total number o
possible pairs considered for collision isM 8[(Np22N0)
3(Np22N021)/2. To ease our discussion, let us separ
the whole particle system into two groups. The subset of 2N0

overlapping particles is referred to as groupA and the re-
mainingNp22N0 particles are grouped into groupB. First,
collisions among groupA particles are negligible, this in
cludes type III collision events and type I and II collision
among groupA particles. Type III collisions are negligible
anyway if dt is very small. Type I and II collisions amon
groupA particles are not significant, because the numbe
on the order ofN0

2G dt/V, which is of higher order, if
N0 /Np!1, as compared to collisions between groupA and
groupB. The possible collisions between groupA particles
and groupB particles are not considered in scheme 2. T
total number for this type of collision may be written as

Nc~AB!5N0~Np22N0!@P~AB!#, ~23!

whereP(AB) is the probability that any particle from grou
B will collide with a particle in a pair from group A. The
probability for a particle in group B to collide with a pa
from A is about^G2&dt/V, which could lead to two distinct
values forP(AB): ~a! only one particle in the pair partici
pates in the collision andP(AB)5^G2&dt/V; ~b! both par-
ticles in the pair collide with the particle from group B an
two collisions should be counted, which leads toP(AB)
52^G2&dt/V. Therefore,P(AB) is bounded bŷ G2&dt/V
and 2̂ G2&dt/V. As an estimate we take the avera
P(AB)51.5̂ G2&dt/V. Substituting this into~23!, we have

Nc~AB!5N0~Np22N0!
1.5̂ G2&dt

V
. ~24!

SinceNc'Nc(BB)1Nc(AB), we have

GNp
2 dt

2V
'

^G2&~Np22N0!2 dt

2V

1N0~Np22N0!
1.5̂ G2&dt

V
, ~25!

and it follows that

^G2&5GS Np
2

Np
22N0Np22N0

2D . ~26!

This expression can be simplified, ifN0 /Np!1, to
Wang, Wexler, and Zhou
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^G2&'GS 11
N0

Np
D'G~114f!. ~27!

This shows that the effective collision kernel for scheme 2
larger thanG by a factor (11N0 /Np), to leading order. This
prediction is shown in Tables I and II and is consistent w
numerical results.

The above analysis demonstrates that the ST expres
does not apply to group B particles in a rigorous sense, a
system of nonoverlapping particles of a given number
slightly more collision events than a system of exactly
same size but truly randomly distributed~as in scheme 1!. In
Fig. 5, we replotted the numerical results for scheme
shown in Fig. 1, along with the modified theory, Eqs.~26!
and ~27!. We observe an excellent agreement between
~26! and the numerical results, although the expression
P(AB) was not derived rigorously. The leading-order e
pression, Eq.~27!, shows little difference from~26! for
R/Dx<1.0 or equivalently forf<1.6%, but underpredicts
the numerical results for largerf. This correction also works
very well for the results of scheme 2 presented in Fig. 2

C. The deviation in scheme 3

In scheme 3 particles are removed immediately o
they collide with another particle in the system. Particles t
remain in the system do not overlap~so caution is taken to
eliminate those particles that overlap att50 due to random
initial distribution!. This scheme closely represents reality
both the collision efficiency and coagulation efficiency a
close to unity, since two particles upon collision will form
particle of a larger size and as such will disappear from
current size group.

This scheme was used previously by Balachandar2 and
more recently by Hu and Mei,9 with the expectation to match
the ST prediction. However, we have demonstrated in
previous section, that the numerical collision kernel^G3& in
isotropic turbulencecan be much less than the ST resu
Interestingly^G3& in the simple shear flow is similar tôG2&
and is larger than the theory. This gives us a clue that

FIG. 5. Comparison of the modified theory for scheme 2 with numer
results and the Saffman and Turner theory.
Phys. Fluids, Vol. 10, No. 1, January 1998
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difference must be related to the nonuniform distribution
spatial variation of the local strain rate~or local dissipation
rate! in turbulence, since one can imagine that the local str
rate determines the local-in-space collision kernel.

In the simple shear flow, the local straining rate is u
form. Initially uniform particle concentration will remain
uniform in scheme 3, as the probability of removal is ind
pendent of spatial location, although the magnitude of c
centration decreases in time. Both the removal of partic
due to collisions in scheme 3 and the exclusion of nonov
lapping particles in scheme 2 have no spatial preference.
argue then that̂G3& must be the same aŝG2& in simple
shear flow, although the numerical uncertainty in scheme
larger because the removal is permanent while the over
ping in scheme 2 is not. As a consequence, the collis
kernel G3 in simple shear flow is a stationary random va
able in the mean, with increasing variance in time. This i
demonstrated in Fig. 6, where the local-in-time ratiosG3 /G1

and G2 /G1 are shown for typical numerical experiments
simple shear flow, as discussed in Sec. III A. Note that fo
given flow and a given initial realization of the particle sy
tem, all the collisions in a given time step using scheme
form a subset of the collisions in scheme 2, which again
a subset of the collisions in scheme 1. Therefore the ra
exhibit somewhat lower statistical variations than the loc
in-time collision kernels.

Hu and Mei9 also tested scheme 3 in simple shear flo
but with the expectation to match the original Smoluchow
ki’s result given by Eq.~12!. A careful examination of their
results, however, indicates that the numerical collision ker
^G3& is slightly larger thanG0[4gR3/3. For the simple
shear flow one can relate^G3& to G0 by combining Eqs.~13!
and ~27!,

^G3&'G0S 12
3p

16

R

l D ~114f!. ~28!

Therefore, while the boundary correction reduces the ker
the nonoverlapping correction increases the kernel, rela
to G0 . In the Hu and Mei’s experiment,R/ l 50.01 andf

l

FIG. 6. Ratios of local-in-time collision kernels for a typical simulation
simple shear flow.
273Wang, Wexler, and Zhou
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50.005 24, giving^G3&'1.015G0 . This explains why the
numerical collision kernel is slightly larger thanG0 in their
work.

Now let us return to the isotropic turbulence where t
local dissipation rate is nonuniform. In addition to the co
rection in scheme 2, the spatial variation of the strain rate
affect the average collision kernel. In regions of high loc
dissipation rate collisions tend to occur more often, as
local collision rate is directly proportional to the local stra
rate. Thus particles tend to be removed from the hig
strain-rate regions in any time interval. For example, num
cal results show that, for the scheme 3 shown in Table II,
average local strain-rate on the colliding particles is 7
larger than its field mean and the average dissipation ra
14% larger than its field mean. For the similar case un
scheme 4, numerical results show that the average l
strain rate on the colliding particles is 16% larger than
field mean and the average dissipation rate is 32% la
than its field mean. Consequently, the average local st
rate seen by particles left in the system at later times mus
less than the field-averaged strain rate. This effectively
duces the average numerical collision kernel. Note that
preferential removal is counteracted by turbulent advect
which tends to mix up the particles left in the flow. Th
implies thatG3 will drop initially due to the preferential re
moval and isnot a stationary random variable, even in th
mean. We must keep in mind that while this effect redu
the collision kernel, the nonoverlapping requirement
creases it. Numerical results seem to suggest that the
effect overrides the second effect, leading to a net reduc
of the collision kernel.

Figure 7 shows the local-in-time ratios,G3 /G1 , along
with G2 /G1 , for the same numerical experiments shown
Table II. While G2 /G1 is stationary, initially G3 /G1 de-
creases in time quickly, followed by a slow decay in t
mean at later times. At much later times,G3 /G1 appears to
level off. This is consistent with the decrease in slope
1/Np(t) versus time, evident in Balachandar2 and Hu and
Mei.9 As a consequence, the time-averaged value^G3& will
depend on the total integration time. Figure 7 shows that

FIG. 7. Ratios of local-in-time collision kernels for the numerical expe
ments in the frozen turbulence shown in Table II.
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relative reduction in scheme 3 can be on average as larg
20%.

Figure 8 shows the average longitudinal strain rate a
local dissipation rate, normalized by their respective fie
mean, seen by the particles in the system for all th
schemes. No bias is observed in schemes 1 and 2, how
a small bias of about 1%–2% is clearly present in schem
consistent with our speculation. There is a strong phase
relation among the three schemes as the particles in sche
form a subset of the particle systems in schemes 1 an
Also, a phase correlation exists between the longitudi
straining rate and local dissipation rate, as the former con
tutes a significant part of the latter, by definition. A loo
correlation between Fig. 7 and Fig. 8 can be seen, altho
the data in Fig. 7 look much noisier, since collision eve
involve a small number of particles, while in Fig. 8 all th
particles considered for the collision detection are used.
observed bias in Fig. 8 is very small, though, compared

TABLE III. Collision kernels in evolving turbulence.

^G& ^G&/G, Eq. ~2!

Scheme 1 0.391160.0042 1.00860.011
Scheme 2 0.416960.0047 1.07460.012
Scheme 3 0.351960.0080 0.90760.021
Eq. ~2! 0.3881 •••
Eq. ~3! 0.4050 1.044
Eq. ~27! 0.4141 1.067

FIG. 8. ~a! The average longitudinal strain rate and~b! the average local
dissipation rate, normalized by their respective field mean, on those part
considered for collision detection as a function of time.
Wang, Wexler, and Zhou
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FIG. 9. Ratios of local-in-time collision kernels for the numerical experiments in the evolving turbulence shown in Table III.
a
W
S
ig

tu
n

le
ft
er
at

a

g
ul
al

m
i
ld
a

e
on
he
io

b

an
e

7.

time
ng

be
ace

he
e-
ed

m-
f
ed

ow.
the relative reduction in the collision kernel,G3 /G1 . It is not
clear to us how this small bias can produce such a signific
reduction or whether there is another mechanism at play.
are unable to formulate the correction in this case to the
theory. Interestingly the average reduction, as shown in F
1 and 2, is insensitive to the system parameters.

V. RESULTS FOR EVOLVING TURBULENCE

The numerical experiments considered so far used a
bulent field that did not evolve in time. Here we prese
results for the same parameter setting as shown in Tab
but the forcing at large scales continued to be applied a
the particles were introduced and collision events w
counted. The flow field was exactly the same as beforet
50, but was time dependent fort.0. One other difference
was the time stepdt, which was set to 0.0004 to ensure
small CFL number for numerical stability.

Table III shows the numerical collision kernels alon
with the 95% numerical confidence intervals, which sho
be compared to the results in Table II. Since the spati
averaged relative velocity in Eq.~2! and the dissipation rate
in Eq. ~3! were a function of time, we further averaged the
in time to give the Saffman and Turner predictions shown
Table III. We observe that the frozen and evolving flow fie
yield the same collision kernel for scheme 1, implying th
the formulation of Saffman and Turner1 is valid for the col-
lision of fluid elements in an evolving flow. This should b
expected since fluid elements follow the local fluid moti
exactly, whether the flow is evolving or not; therefore t
collision kernel is unchanged. Scheme 2 results in a collis
kernel that is 7.4% larger than the prediction by Eq.~2!. This
relative difference is almost the same as in the frozen tur
lence case, suggesting that the same correction by Eq.~26!
would apply.
Phys. Fluids, Vol. 10, No. 1, January 1998
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The collision kernel by scheme 3 is about 10% less th
the prediction. Figure 9 shows the ratios of the local-in-tim
collision kernels as a function of time, similar to Fig.
Qualitatively, the behavior for̂G3& is similar as in figure 7,
for the same reason as discussed in Sec. IV C. The long-
reduction of the collision kernel in scheme 3 for the evolvi
flow is less than in the frozen turbulence case. This should
expected, as the flow structures now move around in sp
with a finite lifetime, the turbulence would homogenize t
particle distribution more quickly after the preferential r
moval due to collision. Nevertheless, the effect of bias
removal cannot be overlooked.

VI. SUMMARY

Careful numerical experiments were designed to exa
ine critically the well-known theory on the collision rate o
finite-size fluid elements in isotropic turbulence develop

FIG. 10. A sketch to illustrate the boundary correction in simple shear fl
275Wang, Wexler, and Zhou
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by Saffman and Turner1 over 40 yr ago. We have identifie
preciselythe underlying assumptions in the ST formulatio
and confirmed, for the first time, the theory with numeric
simulations to within a numerical uncertainty as small as 1

We conclude that, rigorously speaking, the ST the
must not be exact for actual coagulation processes w
particles are neither distributed independently nor kept in
same size group after collision. The nonoverlapping requ
ment involves a correction to the ST theory that is prop
tional to the particle volume fraction. The nonuniform dis
pation rate in turbulence induces a biased removal
renders the particle system nonstationary. This, together
other unknown mechanisms, could result in a reduction
the collision kernel as large as 10% in an evolving turb
lence and 20% in a frozen turbulence. As a conseque
care must be taken in interpreting the average collision k
nel. We hope that by pointing out clearly the underlyi
assumptions in the Saffman and Turner theory, the ex
modification to the theory for an actual coagulation proc
can be identified in the near future.

Although we limit the discussion to the monodisper
case, similar results are to be expected for a general par
system. The question of how the corrections can be es
lished for a polydisperse system remains to be resolved, s
the effect of the corrections on the evolution of particle s
distribution.

ACKNOWLEDGMENTS

This work was supported by the University of Delawa
Research Foundation and the IBM Watson Research Ce
LPW is grateful to Professor Martin Maxey, Professor Lan
Collins, and Professor Renwei Mei for several helpful d
cussions in the course of this work.

APPENDIX: THE BOUNDARY CORRECTION OF THE
COLLISION KERNEL IN SIMPLE SHEAR FLOW

The boundary correction accounts for the fact that p
ticles near vertical boundaries~within a distanceR! experi-
ence a smaller local-in-space collision kernel since no p
ticles exist outside the domain.

Assume a particle located at a distance equal tos(s,R)
away from the boundary~Fig. 10!, then the local collision
kernel is modified to

G~s!5
4

3
gR32E

s

R

gz12AR22z1
2dz1

5
4

3
gR32

2

3
g~R22s2!3/2,

where the second term represents the volume of fluid, fr
outside the domain, crossing over the collision volume of
given particle. The average collision kernel for the dom
should be
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gR3dz2E

0

R 2

3
g~R22s2!3/2dsD

5
4

3
gR3S 12

3p

16

R

l D ,

wherel is the domain size in thez direction.
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