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Numerical experiments have been performed to study the geometric collision rate of finite-size
particles with zero inertidi.e., fluid elementsin isotropic turbulence. The turbulent flow was
generated by the pseudospectral method. We argue that the formulation of Saffman andJurner
Fluid Mech.1, 16 (1956 for the average collision kernel is correct only under the assumptions that
the particles are kept in the system after collision and allowed to overlap in space. This was
confirmed, for the first time, by numerical experiments to within a numerical uncertainty as small as
1%. Finite corrections to the Saffman and Turner result must be made if one applies the theory to
actual coagulation process where particles are not allowed to overlap before collision and particles
are removed from a given size group after collision. This is due to the fact that Saffman and Turner
assumed auniform, time-independent concentration fighd their formulation of the average
collision kernel, while in the actual modeling of population evolution the particle number
concentratiorthanges in timand may bdocally nonuniformas a result of a biased removal process
due to spatially nonuniform coagulation rates. However, the quantitative level of the deviations from
the Saffman and Turner result remain to be explained. Numerical experiments in simple shear flow
were also conducted to elaborate our findings. 1898 American Institute of Physics.
[S1070-663(198)00901-5

I. INTRODUCTION be extended to polydisperse system. We shall assume that

The rate of coagulation in turbulent dispersions of smallthe particles are small in size, typ|3c:a_H31//4on the order of the
Flow Kolmogorov length scaley=(v°/€)*", wherev and e

solid particles and droplets is important to many areas Oare fluid Kinematic viscosity and the averaqe rate of ener
meteorology and engineering. In the atmosphere it contrib- N ¢ viscosily a € average rate ot energy

utes to precipitation and cloud processing of aerosols. To giSSipfatiO”. per unit mass, respectiveéy. In addi.“"”' the par-
wide variety of technologies in chemical and energy indus—'rcrl]eII '?is"'ﬂ t;esgoas& Itr'nmeTpr:\fF;?rﬁl(lspv) s /ﬂ‘fgh
tries, formation of particle clusters due to coagulation has a ?het tha rt? I 0 ¢ ”OW ?r?o IO I ﬂeig’cﬁi_ r(1V i) i, |
profound effect on the stability of dispersions, the quality of >0 3 edpa cles Ot'ol d'e O(Ea ud q otion p felzc_ze y:
dried products, and the efficiency of energy conversion. Thé—|ere p andpy are particle diameter and densigyjs flul

wide range of applications include modeling of cloud micro—Sjgi'ga;hzé;rs;?;:t'fa??sissunr:gtt'(\)/grj I(z)a ?gye(\lsifhvgge?nthe
hysical processes, production of titanium-dioxide pigments . !
Phy P P Pig tratiform clouds and small cumulus cloyidsd the particle

design of fine spray combustion nozzles and gas cleaning._ . - . " .

equipment, and control of industrial emissions. In these a >1z€ 1S sufﬁmently small. Our purpose |s_tc_) critically examine
plications, we wish to develop an accurate model, or popufEhe (_:Iassmgl result on the average collision kerr_1e| for zero-
lation balance equations, for the time evolution of the sizeInertla particles obtained by Saffman and Tufnier 1056

distribution of the particles for which turbulent coagulation g"_:;o the 1988 Corrigendum; hereafter will be referred 1o as
is a key physical process. IC id di ‘ st ;
The overall coagulation rate of finite-size particles in onsider a monodisperse system consistinglpfpar-

fluid turbulence is governed by three consecutive and interiiCl€S in @ volumet), the collision rate per unit volume/ ",

related processe€1) geometric collision due to particle— 'S Written as
turbulence interactiong?) collision efficiency due to local ) nZ
particle—particle aerodynamic interactions, a8y coagula- N =T e (1)

tion efficiency as determined by surface sticking characteris-
tics. We focus here on the geometric collision rate, whichprovided thalN,>1, wheren= N,/Q is the average particle
describes the rate of geometric overlaps among particles dygimber concentration in the volume afidis the collision
to turbulent transport. . _ . kernel. For zero-inertia particles, Saffman and Tufner
In this paper we consider the geometric collision of showed that
monodisperse particles, however, results to be presented can
I'=27R?|w,]|, 2
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tive velocity in the longitudinal direction between two points very difficult to perform well-controlled experiments in
separated by a distané& An underlying assumption it2)  which one can isolate one collision mechanism from others
is that the particle concentration field is uniform in space, sdsay, shear-induced collision from Brownian coagulation,
that the overbar i62) denotes an ensemble or spatial averagegeometric collision from hydrodynamic interaction®n the
in homogeneous turbulence. If, on the other hand, the pamwther hand, numerical simulations can be used to study one
ticle concentration is nonuniform, the effect of concentrationmechanism at a time and have recently been used to derive
variation must be taken into account in the definition of thethe collision kernel for both buoyant and heavy
average collision kernel. In other words, the average for thearticles>®2=*In this paper we will use numerical simula-
relative velocity should be weighted with the particle con-tions to provide information necessary to clarify existing
centration field. theory for zero-inertia particles. In part 2 of this wdrkye
After further assuming thaR< », the turbulent flow is apply similar numerical experiments to particles with finite
locally isotropic, and the probability distribution of the ve- inertia. We use turbulent flow fields generated by numeri-
locity gradient is Gaussian, Saffman and Tufngave the cally integrating the full Navier—Stokes equations directly.

following expression fol: By this means, local flow dynamic features are represented
— 1 without anyad hocmodeling.
€ Th i ized as foll In th t secti
I'=1.29R3 = 3) 'he paper is organized as follows. In the next section we
4 provide the details of the flow simulation, particle tracking,
and collision detection. In Sec. lll, we describe numerical

Using a more accurate lognormal distribution for the velocity
gradient, Balachandarshowed that the coefficient if3)
would be increased slightly, depending on the flatness fact
of the velocity gradient. It should be noted that Ef), in
principle, can be used even fB> 7 if the relative velocity
can be related t&R and turbulence parameters. Delichatsios
and Probsteir for example, used Eq2) for R in the inertial
subrange. Therefore, EQR) is much more general than Eq. Il. NUMERICAL SIMULATION
3. . . A. Flow field
The ST results are viewed to be more rigorous than the
earlier result by Camp and Steélnwho first applied the A homogeneous and isotropic turbulent flow was gener-
theory of SmoluchowsRifor simple shear flow to turbu- ated by full numerical simulations using a pseudospectral
lence. Although Eqs(2) and(3) have been widely cited and method. The spectral code was originally developed by Ru-
used in the literature, they have never been confirmed dietsch and Maxey and was used as a basis for the study of
rectly. We note that Saffman and Turner derived Ex).by  particle settling and concentration field by Wang and
considering auniform, time-independent concentration field Maxey® The incompressible Navier—Stokes equations,
in which particles could overlap if distributed randomly. The ou
result, Eq.(2), was formulated before they studied the popu- E=u><c5—V
lation evolution later in their paper in which the concentra-
tion changed in timeand might belocally nonuniformas a  were solved along with the continuity equati®nu=0 in a
result of a biased removal process due to spatially nonuniperiodic box of sidd.=2#. Here@=V xu is the vorticity
form local coagulation rate$See Sec. IV @ Therefore, andP is the pressure. The flow domain is discretized uni-
there is an inconsistency in the ST work when their result iSormly into N® grid points, which defines the wave number
applied to the actual coagulation process. The main purposgomponents in Fourier space ks=*n;(2w/L), wheren;
of our paper is to clarify the effect of this inconsistency on=0,1,...,1/A for j=1,2,3. A small portion of the energy in
the exact value of the collision kernel when the particles arghe higher wave numbersk|=1/2N—1.5, is truncated at
either not allowed to overlap or removed as a result of coleach time step to reduce aliasing errors, so the highest wave
lisions. number realized in our simulation l§,,=1/2N—1.5. The
Equation(3), apart from the coefficient 1.294, must be time evolution is computed by applying a second-order
correct forR< 5 as it can be derived simply from a dimen- Adams—Bashforth scheme to the nonlinear terms, a second-
sional analysi$. Similar expressions with different coeffi- order Crank—Nicholson scheme for the viscous terms, and
cients are found in the literatufé:”® Recent numerical the Euler scheme for the random forcing term. The pressure
simulation® also showed a slightly different collision ker- is eliminated through the continuity equation.
nel than(3). We will demonstrate that E¢2) [and (3) if the The flow was generated from rest by the random forcing
Gaussian distribution is a good approximation for the flowtermf(x,t), which was nonzero only at low wave numbers,
field andR< %] correctly describes the collision rate of zero- |k|< /8, following the forcing scheme developed by Eswa-
inertia particles, under the assumptions that the particles aman and Popé’ In this scheme the forcing term is specified
kept in the system after collision and are allowed to overlapas a complex, vector-valued Uhlenbeck—Ornstel®) sto-
in space. Finite corrections to the ST result are needed, dehastic process. The net rate of energy addition was specified
pending on the details of the collision detection. by the amplitude and correlation time scale of the forcing,
It should be noted that several attempts had been takethe values of which can be found in Wang and MaX@y.
to measure the collision kernel direcf§:!**However, itis  Nonlinear interactions propagate energy from low to high

simulation results in a frozen turbulence and compares them
do the ST theory. A close examination of the ST theory is
presented in Sec. IV in light of numerical results. The results
for an evolving turbulence are given in Sec. V. Finally main
conclusions are summarized in Sec. VI.

+ v V2u+f(x,1), (4)

P 1,
b 2"
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wavenumbers and eventually viscous dissipation becomds>t;, whered(t) is the separation distance from center to

active, leading to a quasisteady balance of the forcing energgenter at timet between two particles in a pair selected for

and the viscous dissipation. In addition to the grid resolutiorcollision detection. Therefore, collision detection is mainly

and the forcing parameters, the only remaining physical padone by computingi(t).

rameter that needs to be specified for the flow simulation is  In a numerical simulation, if the orbit of each particle is

the kinematic viscosity. The spatial resolution of a spectral known exactly,d(t) can be computed exactly for any time

simulation is often monitored by the value k{7, which intervalt(M<t<t("*1) by interpolation. If the time stegt is

should be greater than unity for the smallest scales of themall enough, we can trace each particle before and after a

flow to be resolvedsee, for example, Eswaran and Pbpe  collision. However, in practice, we would like to choage

For the simulations in this studi,,,,» was about 1.30. The as large as possible in order to save computer time, with the

time step was chosen to ensure that the CFL number was Or8quirement that any particle does not participate in more

or less for numerical stability and accuradyOther details than one collision in the time interval. Then care must be

of the flow simulation can be found in Wang and Max@y. taken to prevent omissions in counting the collisions. For
For most discussions in this paper, the flow was frozerany given time interval, there are three situations when a

after the statistically stationary stage was reached, and pacollision eventmust be counted.

ticles were then introduced into the flow. The start of particle (i) If d(t‘™)>R andd(t("*Y)<R, a collision must oc-

release will be denoted as=0. This provides us with an cur and we shall refer to this collision as a type | collision.

identical flow microstructure for different runs with various (i) If d(t‘)>R and d(t""Y)>R, a collision could

particle parameters and collision counting methods. It is als@ccur in the time interval ifi(t)<R for tM<t<t("*1, we

in the context of ST, as they essentially assumed a quasshall refer this type of collision as a type Il collision.

steady local straining flow field. The case of evolving flow (i) If d(t™M)<R andd(t"*Y)<R, the particle pair is

will be briefly considered in Sec. V. already in contact at the beginning of the time step and is
Since all the important flow scales are resolved in a fullstill in contact at the end of the time step. A collision event

numerical simulation, the grid resolution determines themust be recorded ifi(t) >R for t(™W<t<t("*1), This will be

scale separation, and thus the Reynolds number of the resulefered to as a type Il collision.

ing flow. For the purpose of this paper, we only use a low

resolution flow at 32 with a Taylor microscale Reynolds 2. Collision detection algorithm

number of 24. It should be noted that the flow Reynolds ] ]

number is irrelevant as far as E®) is concerned. It can, ~ We basically followed the algorithm of Balachandak.

however, alter the probability distribution of the velocity gra- Primary detection grid of cell siz&/ was introduced, along

dient and lead to a slightly different coefficient (@). The  With & second grid of the same cell size but shifted in each

important flow parameters are given here for later use: direction byW/2. Each particle’s location was identified first

—0.6, e=3569, 7=0.0882=0.45A%, m,=0.013, and the With a cell in the primary grid. The collision detection in-
rms fluid fluctuating velocityu’ = 17.02. volving this selected particle was restricted to a neighbor-

hood defined as the region formed by the eight cells in the
second grid that overlapped with the cell in the primary grid
where the particle was found. This method reduces dramati-
The particles are assumed to follow the local fluid mo-cally the total number of pairs to be checked for possible
tion. The location of a particle at time Y(t), is governed collision within a given time step, by a factor of

B. Particle motion

by [Lg/(2W)]3, whereLg=27 is the size of the computation
dy(t) box. Obviously the smaller the cell si¥é, the more efficient
T=U[Y(t),t], (5  the method becomes. On the other hand, the cell\8lzeas

to be large enough so that no collision pair could be missed.
whereu(Y,t) is the fluid velocity at the particle location and Assume that the probability distribution of the particle
was determined numerically from the values at neighboringselocity is close to Gaussian, then 99.999 94% of the par-
grids using a six-point Lagrange interpolation. A fourth- ticles would have velocity magnitude in any direction below
order Adams—Bashforth method was used to advance theu’. It is safe to assume that the relative velocity for any
particle location. Typically, 18-10* particles were intro- particle pair in any direction is less than /0 To count
duced att=0 into the computational domain at random ini- collisions, the algorithm selects a particle, identifies the pri-
tial positions. The particle size was made as large'ag so  mary cell for this particle, and then checks for other particles
that there were a significant number of collision events. Thén the same primary cell and in a neighborhood comprising a
particle volume fraction was small, typically less than 5%. 1/2 cell width (\W/2) surrounding the primary cell in all di-

rections. Therefore the minimum distance between two par-
C. Collision detection ticles that are not considered for a collision\Ii&/2. The
requirement to almost guarantee this particle pair will not

o o ] ) ] collide in dt is W/2>R+10u’ dt. Therefore we set the
A careful definition of collisions is crucial to the imple- \\iqth of the detection grid to be

mentation of a collision detection algorithm in a numerical

1. Definition of collision

simulation. We define a collision as an event when two par- (R 10" dt} ®
ticles are brought together froo(t;) >R to d(t,) <R with AX Ax '
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whereAx is the grid spacing for turbulence simulation. As For each of the three schemes, one can define a local-in-
an example, ifu’=17, dt=0.001,R/Ax=0.8, N=32, the time collision kernel for any time steght as
grid dimension for collision detection is INTLE/W)=09, 2N (1M t(1+1)
o . . N (M=t )
which is computationally 91 times faster than considering all  ,(t(W)= e (8)
pairs. dt{Npi(t™)]
In numerical implementation, a coarse check for no colyhere i=1, 2, and 3 denotes the individual schemes,
lision was first done if N (MW=t Dy~ 7.0 dtis the total collision count in the
d(t™)>R+|AY];+|AY];, (7)  time stept™M<t<t™*H Ny(t™) is the total number of
particles participated in the collision detection and is given
for each scheme as

to save time, wher@AY|; and|AY/|; were the distance trav-
eled in the time interval by the two particles, respectively.

The detection of the type | collision only requires the inter- Np=const, fori=1;
particle distancesl(t(") and d(t(""1), while both type II Npi(t™)=1 Np—2No(t™), for i=2; (9)
and type llI collisions require an accurate representation of Np(t“”), for i=3;

d(t) in the time interval. This information was furnished by
interpolating the particle orbit in the time interval with a

third-order polynomial, using the locations and velocities Ofsystem in scheme 3. It is assumed that the particle volume

i (n) (n+1) i-
g%%hs ﬁ}atrﬁglﬁn?; intgpvc;: is thé ;Tren g;t?r:en;gﬂ%?gnogfgrl,ltls Offraction is very small so that binary collisions dominate in
X o the collision process. These local-in-time collision kernels

three types. Obviously, iflt is very small, type Il and IlI

. - were quitenoisy if N, is not very large. They can be im-
collisions rarely occur and type | collision accounts for al- : : Lo
most all the collision events proved by averaging over different realizations of the turbu-

lence field and initial particle locations. It should be noted

that Eq.(8) is simply a rearrangement of E{L), with the

actual collision detection schemes clearly specified. Equation
As noted before, a given number of particles were intro-(8) serves as a basis for testing various detection schemes in

duced into the flow with random initial locations. They were direct numerical or physical experiments.

transported subsequently by the flow and each particle was For the first two schemes, the stationarity property al-

assumed to move independently. Three different collisiodows a further average over time to yield the final collision

counting schemes were considered that led to different rekernel(I";). However, for the more realistic schemel3(t)

sults of the numerical collision kernel. will decrease in time and care must be taken in interpreting
Scheme 1Particles were allowed to overlap in the sys-the average kerne{I';) (see Sec. IVE We note that

tem at the beginning of a time step and were not removed '5(t)/{) can also be viewed as the local slope of thé,[f)

from the system after collision. All the three collision eventsvst curve sincedNy(t) = — 2N (t("—t™*Y), and upon in-

described in Sec. Il C1 could occur and were summed tadegration we have

give the total collision count. This scheme appears to be 1 1 (1)

irrelevant to reality, but, as we will show, gives a collision = 3

kernel consistent with the ST formulation. We wish to clarify ~ Np(t™"*)  Np(t™) Q

the underlying assumptions in the ST formulation throughThe decrease of the local slope with time was evident in

such a hypothetical scheme. previous studies by Balachan8and Hu and Mef, but was
Scheme 2At the beginning of each time step, the over- not explained.

lapping particles were marked and excluded from the consid-

eration of collision detection. Therefore, the actual number
of particles used for collision detection was less than thd!l- RESULTS FROM NUMERICAL EXPERIMENTS

total number of particles used and varied in time. Type Il we shall first present results from the numerical experi-

collisions were not possible in this scheme. ments and compare them with theoretical predictions by
Scheme 3Particles were removed immediately from the Smoluchowski for simple shear flow and by ST for isotropic

system when they collided in the system. As a result, theurbulence. We argue that the collision counting scheme 1

total number of particles considered in collision detectionreproducesxactlythe predictions while deviations must oc-
decreased with time and particles remaining in the systerayr for the other two schemes.

were nonoverlapping at the beginning of each time step. ,

Obviously, the differences lie in the questions of which Simple shear flow
subset of particles are used for collision detection and We first performed numerical experiments in simple
whether particles are dropped upon collision. The advantagshear flow with a velocity field given as
of keeping all the particles in the system is that one has a
statistically stationary particle systefim schemes 1 and)2
and more accurate results can be obtained for a given initiakhere y is the shear rate. These experiments serve two pur-
number of particles. Since in scheme 3 the particle system igoses. First, they provide a simple way to validate the colli-
not statistically stationary, care must be taken to properlysion detection algorithm. Second, they will help to illustrate
interpret the results, as will be shown in Sec. IV C. an important consequence of a subtle difference between the

whereNy(t(™M) is the number of overlapping pairs & in
scheme 2, andll,(t(™) is the number of particles left in the

3. Post-collision treatment and collision kernel

dt. (10

u(x,y,z2)=vyz, wv(xy,z)=0, w(x,y,z)=0, (11
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TABLE |. Collision kernel in simple shear flow. TABLE II. Collision kernel in frozen turbulence.

(I ()T, Eq.(13) () ()T, Eq. (2)
Scheme 1 0.29920.0050 0.994:0.017 Scheme 1 0.37240.0034 1.016:0.009
Scheme 2 0.31810.0070 1.05%0.023 Scheme 2 0.39540.0042 1.072:0.011
Scheme 3 0.32510.0114 1.086:0.038 Scheme 3 0.30970.0062 0.846:0.017
Eq. (13) 0.3009 Eq. (2) 0.3688
Eq. (27) 0.3211 1.067 Eq. (3) 0.3868 1.049
Eq. (27) 0.3935 1.067

simple shear flow and the isotropic turbulence: in the former

the straining field or local dissipation rate field is uniform, the two predictions indicates that E(8) overpredicts the

while it is nonuniform in the latter. ~ kernel by about 4.9%, which involves about 0.8% overpre-
The exact expression for the collision kernel was derivediction due to the assumptidR< 7, i.e.,

by SmoluchowskKito be

4 1.008= || 24 4| 20) 2w
=39k, (12) fwel X 1.008= 3 | 5+ |5y| *| 52
for R=0.8Ax=1.78p, (14

with the assumption that particles are uniformly distributed
in an infinite domain. The computation domain for the simu-and 4.1% overprediction due to the Gaussian assumption. In
lation is a finite cube of size 2 and periodicity in all the the following, we will refer to the prediction of Eq2), I
three directions allows the extension of the domain to infin-=0.3688, as the exact prediction of the theory.

ity. However, the velocity field11) is periodic inx andy We observe that scheme 1 gives almost the same value
only. To circumvent this problem, we only distribute par- as the prediction, with a relative error of about 1%. We note
ticles in a domain &x<2w, 0<y<2sw, 0.5m<z<1l.57 that the 95% numerical confidence interval is equivalent to
with periodicity applied inx andy only. A boundary correc- 1% of I'. Therefore we can claim thdl";)=I". Scheme 2
tion must be added to the average collision kernel in thiooverestimates the kernel by 7.2%. The most interesting result

domain with respect t612) (see the Appendix is that the average numerical kernel from scheme 3 is smaller
than the theoretical value by about 16%, a result in striking
4 37 R e oo .
I'=-yR31-— |, (13) contrast to the result in simple shear flow. This will be dis-
3 16 | cussed further in Sec. IV C.

wherel = 7 is the domain size in the direction. To further support the above observations, we performed
The numerical experiment was done wiy=60, R & series of numerical experiments by varying eithir or

=0.8x27m/32,N,=1024, anddt=0.0004. The particle vol- particle sizeR. The total integration time was set te-0.8

ume fraction was 1.68%. Here 21 realizations of particle ini-with dt=0.001. Use of a smaller time step yielded essen-

tial locations were used to reduce the numerical uncertaintially the same results. Figure 1 shows the average numerical

ties. The implied boundary correction {&3) is about 3%. collision kernels normalized by the ST prediction as a func-
The results for the average collision kernel along with

the 95% numerical confidence intervals are given in Table I.

The numerical confidence intervals were estimated based o . Sch;:me 1

the 21 realizations of the average collision kernels. It is clear - Scheme 2

that scheme 1 gives a collision kernel 0.6% less than the ] + Scheme 3

theory given by Eq.(13), with a numerical uncertainty of ' —— S &T’s Theory, Eqn (2)

1.7%. Schemes 2 and 3, however, overestinhatey about Ls i @7 Scheme 4

6% and 8%, respectively. The origin for the larger numerical

values will be explored in Sec. IV B. It should be noted thatg 13k +

the numerical results in Table | were unchanged as we in-

creasedit to 0.004. Vil T L =

R I

B. Isotropic turbulence 09 % x i Y T
Table Il gives results for a typical numerical experiment

in isotropic turbulence wittR=0.8x 27/32, N,=2048, dt 07

=0.002, and a total integration tinte= 0.8 (about ten large- 05

scale eddy turnover timgsAgain 21 realizations of particle oo 02 04 06 R(/)X Lo 12 14 16
initial locations were used to evaluate the 95% numerical x
confidence intervals shown in Table Il. Also provided are the ! coll cornel ired B o

L . . FIG. 1. Numerical collision kernels, normalized by=27R*|w,|, as a
predlgtlon baseq on qu) with |Wr,| CompUted dlreCﬂy from, function of particle size or collision radil’®/ Ax. The error bars indicate the
the given flow field(the overbar is taken as a usual spatialgse, confidence intervals. For this set of simulations, parameters are set to

averagg and the prediction by E@3). Comparison between N,=1024,dt=0.001,t=0.8.
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® Scheme 1
- Scheme 2
2 Scheme 3
—— S & T’s Theory, Eqn. (2)

=
=13}
R
[\_‘/ 1.1 T

A ki3 @€

i ¥ F ¥ 0§ . a &

0.9 P 3 I & T 3 I

0.7

0.5 L L L L L

400 800 1200 1600 2000 2400 2800

Number of Particles (N,

FIG. 2. Numerical collision kernels, normalized H5§6=277R2W, as a
function of N,. The error bars indicate the 95% confidence intervals. For
this set of simulations, parameters are setRe0.8Ax, dt=0.004,t
=0.4.

tion of R with N,=1024. Scheme 1 with the 95% numerical
confidence interval agrees with the theory forRllScheme
2 overestimates the collision kernel and the relative deviatio
increases withR. Scheme 3 underestimates the collision ker-
nel and the relative deviation is almost independenRof

a=T dt/(, (15

wherel is the collision kernel given by E@2). In fact,I" dt

is the volume of fresh fluid coming into the collision zdmé

a given particle during the time interval. If one assumes that
every collision is independeft, then the probability of hav-
ing k collisions in the time interval follows the Binomig&br
Bernoulli) distribution,

P(k)=~ aX(1—-a)YK  for k=0,1,2,..M;

(16)

M!
KI(M—K)!

whereM =N (N,—1)/2 is the total number of possible pairs
in the system. Therefore, the average number of collisions is
aM with a standard deviation ofaM. The average colli-
sion kernel can then be estimated as

Q(N(tM -1+
M dt Bl

20(N(0—1))

I'= 2
tNy

=(Ty).
17

Since onlyN.. is a random number and its standard deviation

is VN, the standard deviation of the estimates

QV(TtM/Q)

Q\/<Nc(0_>t)> _
Mt -

o=

Figure 2 displays results for a fixd®ibut varyingN,, . Simi-
lar conclusions can be drawn. In addition, the results for a T 1 [2rQ
new scheme, scheme 4, are given in Fig. 1. Scheme 4 is a “Vvi N V1
modification to scheme 3, in which we added randomly the P
same number of particles that were removed due to collisionyheret is the total integration time. Therefore we can even
Scheme 4 may be viewed as a more realistic scheme thatedictthe uncertainty in the numerical experiment, which is
scheme 3 if we consider the generation of particles in thenversely proportional toN,, andt2 for scheme 1. This un-
current size group as a result of collisions of smaller parcertainty prediction can be applied to the other two schemes
ticles. It has the additional advantage of being stationary izs well, with N, modified according to Eq(9). Of signifi-
the total number of particles. Interestingly, the collision ker-cance is the observatlon that while single-particle statistics
nel for scheme 4 lies in between the results of schemes 2 a%ch as part|c|e rms ﬂuctuatmg Ve|oc|ty involves an uncer-
3. Furthermore, the difference between scheme 4 and schemginty inversely proportional tNUZ the collision kernel is a
2 is essentially the same as the difference between schemeygo-particle statistics and the uncertamty drops more quickly
and the ST prediction. This may be explained by the fact thajyith increasingN,,.
scheme 4 is essentially a combination of the requirements for  |n the above interpretation, the underlying assumptions
scheme 2 and scheme 3. Therefore, the first three SChemg% that(a) each partic|e moves independent of other par-
we focus on here are indeed the bUIIdlng blocks for MOrgicles in the System and as such may over|ap in space with
complicated schemes such as scheme 4. another particle(b) the presence of each particle is not af-
fected by any collision event, for example, particles should
not be removed from the system when a collision occurs.
This is exactly our collision counting scheme 1.
The numerical uncertainties were compared with the
We shall now examine the ST theory in the light of the prediction of Eq.(18) in Fig. 3 for a fixedN, with varying
numerical results. We first interpret the ST result in a someR, and in Fig. 4 with differenfN,. The agreement is excel-
what different manner, namely, in the pure statistical senséent, considering that there is a significantmerical uncer-
of Gillespie!®® The origin for the deviations from the tainty in the uncertainty

(18

IV. A CRITICAL EXAMINATION OF THE SAFFMAN
AND TURNER THEORY

theory in schemes 2 and 3 will be explored next.

A. Rephrasing the Saffman and Turner theory

Consider scheme 1, which was shown to have the samecheme 2 gives a slightly larger collision kernel.

collision kernel as the ST theory. Let be the probability
that any given particle pair will collide, in the sense of the
collision definition of Sec. 11 C 1, in the time interval be-
tweent andt+dt, then
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B. The deviation in scheme 2

We can now answer the question of why the counting
In this

scheme, the overlapping particles at the beginning of each
time step are excluded from the collision detection. Let us
examine what the effect is of the nonoverlapping assumption
on the numerical collision kernel.
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FIG. 3. Numerical standard deviation @if;) as a function of collision
radiusR with N,=1024,dt=0.001, and=0.8.

Let us first estimate analytically the value bif,, the
number of overlapping pairs in a system with particles.

3
ﬁ!
and the standard deviation of this estimate is rougfiNp.
As an example, ifN,=1,024, Q=(27)° and R=0.8
X 2m/32, thenNy~34.3+5.9. Numerical experiments with
the same number of particles sh@iy)=34.5, which is in
excellent agreement wit{21).

The ratio of Ny to N, is easily shown to be directly
proportional to the particle volume fractios, if N> 1,

2

No~PM= 5~ Ny(N,~1) (22)

4. (22)

P
We shall now derive an approximate relationship be-
tween(I',) and I'. We note that scheme 2 considers, on
average, a system of,— 2N, particles. The total number of
possible pairs considered for collision M'=(N,—2Ng)
X(Np—2No—1)/2. To ease our discussion, let us separate
the whole particle system into two groups. The subsetNf 2
overlapping particles is referred to as groApand the re-
mainingN,— 2N, particles are grouped into grouh First,

Since any two particles will overlap if the center of the sec-co|lisions among groupA particles are negligible, this in-

ond particle is within a distande from the center of the first

cludes type Il collision events and type | and Il collisions

partiCle, the probablllty that any two partiCIeS will Overlap is among groupd\ partides_ Type Il collisions are neg||g|b|e

p=47R%/(3Q). All together, there are=N,(N,—1)/2

anyway ifdt is very small. Type | and Il collisions among

possible pairs. As a first approximation, we may assume thajroup A particles are not significant, because the number is
all the pairs are independent, so the possibility of obserking on the order ofN2I' dt/Q, which is of higher order, if

overlapping pairsP(k), again follows the Binomial distri-
bution,

P(k)~ CpK(L-pMK for k=0,1,2,..M;

M!
k' (M—kK)
19

and since typicallyM>1 andp<1, this reduces to a Pois-
son distribution,
)\k

P(k)wﬁ e, (20

No/N,<1, as compared to collisions between grou@and
groupB. The possible collisions between groApparticles
and groupB particles are not considered in scheme 2. The
total number for this type of collision may be written as

Nc(AB)=No(Np—2No)[P(AB)], (23)

whereP(AB) is the probability that any particle from group
B will collide with a particle in a pair from group A. The
probability for a particle in group B to collide with a pair
from A is about(I",)dt/Q), which could lead to two distinct
values forP(AB): (a) only one particle in the pair partici-
pates in the collision an®(AB)=(I",)dt/Q; (b) both par-

with A =pM. Therefore, the average number of overlappingicjes in the pair collide with the particle from group B and

pairs is

0.10

| * DNS
Theory, Eqn. (18)

o o o
g & =
:

Numerical Uncertainty (G)

o
Q
(=
/
/

0.00
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FIG. 4. Numerical standard deviation ¢i;) as a function ofN,,, with
R=0.8Ax, dt=0.004, and=0.4.
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two collisions should be counted, which leads RYAB)
=2(T,)dt/Q. Therefore,P(AB) is bounded byT,)dt/Q)
and 2T,)dt/Q). As an estimate we take the average
P(AB)=1.5T,)dt/Q. Substituting this intd23), we have

1.5T,)dt

Ne(AB)=No(Np—2Ng) —5— (24)
SinceN.~N.(BB)+ N.(AB), we have

I'N; dt (T'2)(Np—2Np)? dt

20 20
1.5T,)dt
+No(Np—=2No) —5—. (25
and it follows that
N2
r,)=r —p) (26)
(I'2) (Ng—NoNp—zNg

This expression can be simplified,Nf/N,<1, to
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FIG. 6. Ratios of local-in-time collision kernels for a typical simulation in
simple shear flow.

FIG. 5. Comparison of the modified theory for scheme 2 with numerical
results and the Saffman and Turner theory.

difference must be related to the nonuniform distribution or

spatial variation of the local strain rater local dissipation

rate in turbulence, since one can imagine that the local strain
~I'(1+44¢). (27) rate determines the local-in-space collision kernel.

In the simple shear flow, the local straining rate is uni-

form. Initially uniform particle concentration will remain
This shows that the effective collision kernel for scheme 2 isuniform in scheme 3, as the probability of removal is inde-
larger thanl” by a factor (1 Ny/Np), to leading order. This pendent of spatial location, although the magnitude of con-
prediction is shown in Tables | and Il and is consistent withcentration decreases in time. Both the removal of particles
numerical results. due to collisions in scheme 3 and the exclusion of nonover-

The above analysis demonstrates that the ST expressidapping particles in scheme 2 have no spatial preference. We
does not apply to group B particles in a rigorous sense, and argue then tha{I';) must be the same g4,) in simple
system of nonoverlapping particles of a given number hashear flow, although the numerical uncertainty in scheme 3 is
slightly more collision events than a system of exactly thelarger because the removal is permanent while the overlap-
same size but truly randomly distributéal in scheme)lln  ping in scheme 2 is not. As a consequence, the collision
Fig. 5, we replotted the numerical results for scheme ZernelI'; in simple shear flow is a stationary random vari-
shown in Fig. 1, along with the modified theory, E¢26) ablein the mean with increasing variance in time. This is
and (27). We observe an excellent agreement between Egqlemonstrated in Fig. 6, where the local-in-time raiiggT';

(26) and the numerical results, although the expression foandI',/T"; are shown for typical numerical experiments in
P(AB) was not derived rigorously. The leading-order ex-simple shear flow, as discussed in Sec. Il A. Note that for a
pression, Eq.(27), shows little difference from(26) for  given flow and a given initial realization of the particle sys-
R/Ax=<1.0 or equivalently for¢=<1.6%, but underpredicts tem, all the collisions in a given time step using scheme 3
the numerical results for largef. This correction also works form a subset of the collisions in scheme 2, which again are
very well for the results of scheme 2 presented in Fig. 2. a subset of the collisions in scheme 1. Therefore the ratios
exhibit somewhat lower statistical variations than the local-
in-time collision kernels.

In scheme 3 particles are removed immediately once  Hu and Mef also tested scheme 3 in simple shear flow,
they collide with another particle in the system. Particles thabut with the expectation to match the original Smoluchows-
remain in the system do not overlégo caution is taken to  ki's result given by Eq(12). A careful examination of their
eliminate those particles that overlaptatO due to random results, however, indicates that the numerical collision kernel
initial distribution). This scheme closely represents reality if (T';) is slightly larger thanl'o=4yR®%3. For the simple
both the collision efficiency and coagulation efficiency areshear flow one can relatd ;) to I'y by combining Eqs(13)
close to unity, since two particles upon collision will form a and(27),
particle of a larger size and as such will disappear from the
current size group.

This scheme was used previously by Balachahdad 7 R
more recently by Hu and Mé&iwith the expectation to match <F3>%F0( 1- 16 T) (1+44). (28)
the ST prediction. However, we have demonstrated in the
previous section, that the numerical collision ker(ié}) in
isotropic turbulencecan be much less than the ST result. Therefore, while the boundary correction reduces the kernel,
Interestingly(T"3) in the simple shear flow is similar td",)  the nonoverlapping correction increases the kernel, relative
and is larger than the theory. This gives us a clue that théo I'y. In the Hu and Mei's experimen&/I=0.01 and¢

N
1+ 2

(I'p)=T Ny

C. The deviation in scheme 3
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FIG. 7. Ratios of local-in-time collision kernels for the numerical experi-
ments in the frozen turbulence shown in Table II.

L _ scheme 3

=0.005 24, giving{I'3)~1.019",. This explains why the
numerical collision kernel is slightly larger thdr, in their
work. ‘ ‘ J
Now let us return to the isotropic turbulence where the 0.0 02 0.4 0.6 0.8
local dissipation rate is nonuniform. In addition to the cor-
rection in scheme 2, the spatial variation of the strain rate can
affect the average collision kernel. In regions of high local o _
dissipation rate collisions tend to occur more often, as thg!S: 2 2 The averege ngtudra stan et e verage st
local collision rate is directly proportional to the local strain considered for collision detection as a function of time.
rate. Thus particles tend to be removed from the higher
strain-rate regions in any time interval. For example, numeri-
cal results show that, for the scheme 3 shown in Table I, theelative reduction in scheme 3 can be on average as large as
average local strain-rate on the colliding particles is 7%2Q0%.
larger than its field mean and the average dissipation rate is  Figure 8 shows the average longitudinal strain rate and
14% larger than its field mean. For the similar case undefocal dissipation rate, normalized by their respective field
scheme 4, numerical results show that the average locghean, seen by the particles in the system for all three
strain rate on the colliding particles is 16% larger than itsschemes. No bias is observed in schemes 1 and 2, however,
field mean and the average dissipation rate is 32% largeg small bias of about 1%—2% is clearly present in scheme 3,
than its field mean. Consequently, the average local straifonsistent with our speculation. There is a strong phase cor-
rate seen by particles left in the system at later times must be:|ation among the three schemes as the particles in scheme 3
less than the field—averaged strain rate. This effectively r'eform a subset of the partic|e systems in schemes 1 and 2.
duces the average numerical collision kernel. Note that thi$\|so’ a phase correlation exists between the |0ngitudina|
preferential removal is counteracted by turbulent advectionstraining rate and local dissipation rate, as the former consti-
which tends to mix up the particles left in the flow. This tutes a significant part of the latter, by definition. A loose
implies thatI"; will drop initially due to the preferential re-  correlation between Fig. 7 and Fig. 8 can be seen, although
moval and isnot a stationary random variable, even in the the data in Fig. 7 look much noisier, since collision events
mean. We must keep in mind that while this effect reducesnvolve a small number of particles, while in Fig. 8 all the
the collision kernel, the nonoverlapping requirement in-particles considered for the collision detection are used. The
creases it. Numerical results seem to suggest that the firgbserved bias in Fig. 8 is very small, though, compared to
effect overrides the second effect, leading to a net reduction
of the collision kernel.
Figure 7 shows the local-in-time ratioEz/I"y, along  TABLE lil. Collision kernels in evolving turbulence.
with T',/T"1, for the same numerical experiments shown in

Table II. While T',/T'; is stationary, initially ['5/T'; de- {0 (DIT, Bq. (2
creases in time quickly, followed by a slow decay in the Scheme 1 0.39110.0042 1.0080.011
mean at later times. At much later timds; /", appears to ~ Scheme 2 0.41690.0047 1.0740.012
level off. This is consistent with the decrease in slope of Eghg‘e 3 Ooéggjlﬁo.ooso 0.90%0.021

1/N_p§t) versus time, evident in Balachandand Hu qnd Eq (3) 0.4050 1044
Mei.” As a consequence, the time-averaged valig will Eq. (27) 0.4141 1.067
depend on the total integration time. Figure 7 shows that the
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FIG. 9. Ratios of local-in-time collision kernels for the numerical experiments in the evolving turbulence shown in Table III.

the relative reduction in the collision kernélz /T, . It is not The collision kernel by scheme 3 is about 10% less than
clear to us how this small bias can produce such a significarthe prediction. Figure 9 shows the ratios of the local-in-time
reduction or whether there is another mechanism at play. Weollision kernels as a function of time, similar to Fig. 7.
are unable to formulate the correction in this case to the STQualitatively, the behavior fofT"5) is similar as in figure 7,
theory. Interestingly the average reduction, as shown in Figdor the same reason as discussed in Sec. IV C. The long-time

1 and 2, is insensitive to the system parameters. reduction of the collision kernel in scheme 3 for the evolving
flow is less than in the frozen turbulence case. This should be
V. RESULTS FOR EVOLVING TURBULENCE expected, as the flow structures now move around in space

The numerical experiments considered so far used a tu?’-"ith a finite lifetime, the turbulence would homogenize the

bulent field that did not evolve in time. Here we presentp"’lrt'c:e dd'St;'bUt'OHr.‘ .morequcIt(rI]y Iafter tt::e pfrfefetrer;tlg] re- d
results for the same parameter setting as shown in Table jrova Iue 0 tC(E) |S|on.| ekvedr eless, the eflect of biase
but the forcing at large scales continued to be applied afteiemoval cannot be overiooked.

the particles were introduced and collision events wer

counted. The flow field was exactly the same as befoite at%/l' SUMMARY

=0, but was time dependent for-0. One other difference Careful numerical experiments were designed to exam-
was the time steglt, which was set to 0.0004 to ensure aine critically the well-known theory on the collision rate of
small CFL number for numerical stability. finite-size fluid elements in isotropic turbulence developed

Table 11l shows the numerical collision kernels along
with the 95% numerical confidence intervals, which should
be compared to the results in Table Il. Since the spatially
averaged relative velocity in Eq2) and the dissipation rate Boundary /\
in Eq. (3) were a function of time, we further averaged them
in time to give the Saffman and Turner predictions shown in
Table Ill. We observe that the frozen and evolving flow field
yield the same collision kernel for scheme 1, implying that
the formulation of Saffman and Turrles valid for the col-
lision of fluid elements in an evolving flow. This should be
expected since fluid elements follow the local fluid motion
exactly, whether the flow is evolving or not; therefore the
collision kernel is unchanged. Scheme 2 results in a collision
kernel that is 7.4% larger than the prediction by E). This
relative difference is almost the same as in the frozen turbu-
lence case, suggesting that the same correction by(Z&y.
would apply. FIG. 10. A sketch to illustrate the boundary correction in simple shear flow.

no particles
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by Saffman and Turnéover 40 yr ago. We have identified 1 12 4 R 2
preciselythe underlying assumptions in the ST formulation, I'= 12 ( J 3 YRz~ Jo 3 y(R?—s?)%4s
and confirmed, for the first time, the theory with numerical
simulations to within a numerical uncertainty as small as 1%. 4 37 R
We conclude that, rigorously speaking, the ST theory -3 YR ( - ET)=
must not be exact for actual coagulation processes where ) S o
particles are neither distributed independently nor kept in th&vherel is the domain size in the direction.
same size group after collision. The nonoverlapping require-
ment involves a correction to the ST theory that is propor-
tional to the particle volume fraction. The nonuniform dissi-
pation rate in turbulence induces a biased removal thatil3 G saff 43S T “On the collision of d o twrbulent
renders the particle systgm nonstationary. This, togethgr w_ith clou ds‘,f’i;,_m,:ﬂda&ecr', 17'16u(r1r;:,e5ré; a|20 gorcr?gésr:(c)j:rglge‘:ospgssl(nlﬁ;égs.u -
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