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ABSTRACT

Prediction of the effect of air turbulence on statistics relevant to a collision–coalescence process repre-
sents a key challenge in the modeling of cloud microphysics. In this paper, collision-related statistics for
gravity-driven motion of droplets are considered and various probability distributions associated with
geometric configuration and relative motion of colliding droplets are theoretically derived. The theoretical
results agree well with numerical results obtained from direct numerical simulations (DNSs). In the absence
of air turbulence, the probability distributions, calculated at the beginning of the time steps used for
collision detection, nontrivially depend on the time step size. Next, a novel theory is developed to quantify
the effect of turbulence on the angle-of-approach � and radial relative velocity |wr,c| for colliding pairs. A
logical decomposition is used to construct extended collision volumes for a specific level of radial motion
caused by air turbulence. It is shown that the inward relative motion due to turbulent fluctuations dominates
the effect of turbulence in modifying the probability distributions of � and |wr,c|. Two key dimensionless
parameters are identified in the theory: one measures the effect of finite time step size in numerical collision
detection and the second measures the relative magnitude of air turbulence. The theory is compared with
11 numerical experiments from DNS. It is shown that the theory captures the essential physics of the effect
of air turbulence and provides a quantitatively good representation of the statistics for �. For most numeri-
cal experiments, the theory predicts ��� to within 5%. The probability distribution of |wr,c| is more sensitive
to the influence of air turbulence and shows larger intermittency at large |wr,c| than what is assumed in the
theory. The theoretical framework developed here may be of value to other problems involving gravita-
tional settling and weak turbulence, such as parameterization of collision kernel and hydrodynamic inter-
actions of droplets in warm rain processes.
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1. Introduction

Collision-induced coalescences of particles and drop-
lets in a turbulent fluid are of importance to a wide
variety of applications in engineering and a host of phe-
nomena in nature. Examples include motion of cloud
droplets in the atmosphere (Pruppacher and Klett
1997), sedimentation in rivers (Tory 1996), transport of
dust and pollutants in air (Seinfeld and Pandis 1997),
and deposition of pulp fibers in paper manufacturing
(Smook 1982). The motivation here is to understand
and quantify the effect of turbulence on the collision
rates of droplets in atmospheric warm clouds. Cloud
droplets of radii larger than 10 to 15 �m grow primarily
by collision coalescence, leading to the formation of
warm rain (Pruppacher and Klett 1997). For this spe-
cific application, the collision–coalescence process is
driven mainly by the gravitational effect but air turbu-
lence has been shown to have a significant impact on
the collision rate when either droplets are small or col-
lisions between droplets of similar sizes are considered
(Franklin et al. 2005; Wang et al. 2005a). It has been
recognized that air turbulence broadens the distribu-
tions of relative velocity and angle of approach of col-
liding pairs (Arenberg 1939; Manton 1974; Reuter et al.
1988; Khain and Pinsky 1997; Franklin et al. 2005).

In a stagnant air, collision coalescences are caused by
the difference in terminal velocities if the system con-
tains droplets of different sizes. The average rate of
collision per unit volume between droplets of two dis-
tinct radii a1 and a2 (a2 � a1) can be written as

�Ṅ 12� � �R2�W1 � W2	E12n1n2, �1	

where R 
 a1 � a2 is the geometric collision radius, W1

and W2 denote the terminal velocities for the two sizes,
n1 and n2 are the average number concentrations, and
E12 is the collision efficiency measuring the effect of
local hydrodynamic interactions. The above expression
implies a geometric collision kernel � of R2(W1 � W2)
or the geometric capture volume swept by a droplet of
radius a1 due to the differential settling velocity �W 

W1 � W2, as shown in Fig. 1a. Such a geometric–
kinematic description is known as the cylindrical for-
mulation and is applicable to simple gravitational col-
lision coalescence without background air turbulence,
but becomes inaccurate for turbulent collision (Wang et
al. 1998b, 2005c).

The more general approach to geometric collision is
the spherical formulation originally developed by Saff-
man and Turner (1956), which states

� � 2�R2�|wr�r � R	|�, �2	

where the radial relative velocity is defined in terms of
the center-to-center separation vector r (pointing from
a droplet of radius a2 to a droplet of radius a1), the
velocity V1 of the a1 droplet, and the velocity V2 of the
a2 droplet as wr � r · (V1 � V2)/r with r � |r|. The angle
brackets denote averages over all orientations of r and
the spatial locations of the a2 droplets. In the spherical
formulation, the geometric collision kernel is viewed as
the rate of volume influx through the geometric colli-
sion spherical surface of radius R (Fig. 1b). In Eq. (2),
the area (2R2) represents the area of the spherical
collision surface where the relative motion is toward
each other (wr � 0).

FIG. 1. Two kinematic formulations of geometric gravitational kernel. (a) The cylindrical formulation
based on swept volume; and (b) the spherical formulation based on net volume influx.
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Within this spherical formulation, wr(r � R) depends
on the polar angle � measured with respect to the ver-
tical direction (Fig. 1b), namely, for the gravitational
collision,

wr�r � R	 � ��W cos�. �3	

Therefore, wr is negative for exactly half of the surface
defined by 0 � � � /2. The rate of volume influx
through the same portion of the surface can be calcu-
lated as

�
0

��2

2��R sin�	R d� |wr| � 2�R2�W �
0

��2

sin� cos� d�

� �R2�W, �4	

giving the expected geometric collision kernel and

�|wr�r � R	|��g	 � �W�2, �5	

where the superscript (g) denotes contribution due to
the gravitational collision mechanism only (hereafter
referred to as the base case). Therefore, |wr| for any
droplet pair separated by a distance R varies from 0 to
�W with a mean of �W/2.

It has long been recognized that air turbulence can
increase the geometric capture volume or the relative
velocity such that �|wr(r � R)|� are usually larger than
�|wr(r � R)|�(g) leading to a geometric collision kernel
larger than that of the base case (Arenberg 1939; Saff-
man and Turner 1956; Manton 1974; Reuter et al. 1988;
Khain and Pinsky 1997; Franklin et al. 2005; Wang et al.
2005a).

The above formulations assume that droplets are uni-
formly distributed in space. When droplets have finite
relative inertia, namely, the inertial response time of
the droplets �p � 2�pa2/(9�) is comparable to the Kol-
mogorov time scale, �k, of the air turbulence, droplets
are known to accumulate in regions of high strain and
low vorticity (Maxey 1987). This preferential concen-
tration effect can significantly increase the average col-
lision kernel since the local collision rate is proportional
to the second-order moment of local concentrations.
Here �p is the density of a droplet, � is the fluid dy-
namic viscosity. The spherical formulation has been ex-
tended to include the preferential concentration effect
by Sundaram and Collins (1997) and Wang et al.
(1998b, 2000) and becomes

� � 2�R2 �|wr�r � R	|�g12�r � R	. �6	

The additional factor g12 is the radial distribution func-
tion and measures the effect of preferential concentra-
tion on the pair number density at separation r � R. In
direct numerical simulations (DNS), g12 can be com-
puted, at any given time, as

g12�r	 �
Npair �Vs

N1N2 �VB
, �7	

where Npair is the total number of pairs detected with
separation distance falling within a thin spherical shell
of average radius r, Vs is the volume of the spherical
shell, N1 is the total number of a1 droplets used in the
simulation, and N2 is the total number of a2 droplets.
Also, VB is the volume of the computational domain.
The interpretation of �|wr(r � R)|� remains the same. In
the presence of gravity, the kinematic properties are no
longer spherically symmetric, but the above formula-
tion should still apply since the kinematic properties are
understood as being averaged over all orientations
(Wang et al. 1998b, 2005c). In this paper, we consider
statistics related to the relative velocity only; the effect
of particle clustering can be treated separately through
g12 but will not be discussed any further in this paper.

It is important to point out that the relative velocities
and the radial distribution function that appeared in the
above formulations are kinematic properties of the par-
ticle pairs, namely, they are calculated, using field data
at a single time instant, by making use of all pairs at a
given separation. Of course, averaging over a multiple
of uncorrelated time instants can be taken to reduce
statistical uncertainties. We also use the term kinematic
at-contact pairs to represent all kinematic pairs having
a center-to-center separation equal to R. On the other
hand, dynamically colliding pairs refer to the subset of
particle pairs that actually collide; the term dynamic
implies that the distance between a pair must be fol-
lowed over time in order to determine whether the pair
will collide. In this paper, we will focus mainly on dy-
namic pair statistics. We will demonstrate that the dy-
namic pair statistics are very different from the kine-
matic pair statistics, as noted previously by Mei and Hu
(1999) and Wang et al. (2000, 2005c) for the mean rela-
tive velocity.

In an attempt to understand how turbulence modifies
the relative motion of colliding pairs relative to the base
case driven only by gravity, Franklin et al. (2005) in-
vestigated the probability distributions of |wr| and geo-
metric configuration for colliding pairs. At any instant,
the relative position configuration of a colliding pair
can be represented by the polar angle � (see Fig. 1b) as
the relative motion is statistically independent of the
azimuthal angle even in turbulent airflow. The distri-
bution of � for colliding droplets in a turbulent flow was
previously discussed qualitatively in Pinsky et al.
(2000). Following Pinsky et al. (2000), Franklin et al.
(2005) termed � the angle of approach and studied nu-
merically the probability distribution of � at several dif-
ferent levels of airflow dissipation rate �. They found
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that both the mean and variance of � increase with �.
While � can only vary from 0° to 90° for the base case,
they showed that � could take any value from 0° to 180°
so that an a1 droplet may approach an a2 droplet from
below because of turbulent fluid motion. Their DNS
data also indicated that the mean and variance of |wr,c|,
that is, |wr| based on numerically detected colliding
pairs, vary with �. These probability distributions and
average statistics provide insightful details of the effect
of air turbulence on the geometric collision process.

In this paper, we will provide a rigorous and thor-
ough theoretical treatment of these statistics. In section
2, we first consider the base case of gravitational colli-
sions without air turbulence for two purposes: 1) to
illustrate the notion of geometric interpretations using
this simple setting and 2) to reveal the influence of the
time step size used in the collision detection in terms of
a dimensionless parameter �̃ 
 �W dt/R.1 We then ex-
tend the theory in section 3 to include the effect of
turbulent motion, which will express the probability
distributions in terms of �̃ and a second dimensionless
parameter closely related to the dimensionless kine-
matic radial relative velocity. These theoretical predic-
tions will be compared to results from DNS in section 4.
Finally conclusions are summarized in section 5. Al-
though in this paper the discussion is limited to statistics
for geometrically colliding pairs, it is believed that the
theoretical understanding developed here is relevant to
the previously observed enhancement of collision effi-
ciency by air turbulence (de Almeida 1979; Koziol and
Leighton 1996; Pinsky et al. 1999; Wang et al. 2005b).

2. Theory for the base case without air turbulence

a. Infinitesimal time step

We shall first consider gravitational collision without
air turbulence. We have seen in the introduction that,
even for this base case, |wr| varies with � and takes a
value ranging from 0 to �W. It is instructive to inquire
about the probability distribution of |wr|, which, by defi-
nition, satisfies

�
0

�W

p�|wr|	 d|wr| � 1.0, �8	

�
0

�W

|wr|p�|wr|	 d|wr| � �|wr|� � �W�2. �9	

Using Eq. (4) and Eq. (9), we can show that the prob-
ability distribution of the kinematic at-contact relative
velocity is

p�|wr|	 � �1��W, if 0 � |wr| � �W;

0, otherwise.
�10	

This result is also consistent with Eq. (8). Therefore, the
probability distribution of |wr| is uniform over the range
of |wr| from 0 to �W.

In terms of the normalized variable w̃r 
 |wr|/�|wr|�(g)

� |wr|/(0.5�W), we have

p�w̃r	 � �0.5, if 0 � w̃r � 2;

0, otherwise,
�11	

with a mean and standard deviation for w̃r of 1.0 and
0.5774, respectively.

Next we derive the probability distribution of � based
on pairs that actually collide in an infinitesimal time
interval dt. This is equal to the ratio of the volume
influx over a differential surface defined by d� to the
total volume influx:

p��	 d� �
�2�R sin�	�R d�	|wr| dt

�R2�W dt
� sin�2�	 d�; �12	

namely,

p��	 � � sin�2�	, if 0 � � � ��2;

0, otherwise.
�13	

An alternative derivation of the same result with a bet-
ter physical intuition is to take a plane perpendicular to
the vertical axis and recognize that the flux is uniform
over a circle of radius R (so again the total flux is
R2�W). To convert to the polar angle representation,
one may ask what is the projected area of a differential
spherical surface onto the plane surface (Fig. 2). Since
the projected area is As � R2[sin2(� � d�) � sin2(�)]
� 2R2 sin� cos� d�, and p(�)d� � As/R2, we again
obtain p(�) � sin(2�) for 0 � � � /2.

1 Throughout this paper, a tilde (˜) over a quantity implies that
the quantity is normalized by the collision radius R if the quantity
has the dimension of length, or by the average kinematic radial
relative velocity �W/2 of the base case if the quantity has the
dimension of velocity.

FIG. 2. An alternative interpretation of p(�) for the
gravitational case.
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It follows that the mean and standard deviation for
the angle of approach in the limit of dt → 0 are

��� � �
0

��2

� sin�2�	 d� �
�

4
rad or 45� �14	

���� � ���	2� � ��
0

��2

�2 sin�2�	 d� � ��

4�2�1�2

� 0.341834 rad or 19.59�. �15	

Next we focus our attention on just these pairs that
collide dynamically within the infinitesimal time dt.
These are a total of R2�W dt n1n2 pairs per unit vol-
ume. We shall inquire about the probability density
of finding |wr,c| at a particular value. Since |wr,c| � �W
cos� and d|wr,c| � ��W sin� d�, we have

�
0

��2

p��	 d� � �
0

�W

sin�2�	
d|wr,c|

�W sin�

� �
0

�W 2
�W

|wr,c|
�W

d|wr,c|; �16	

therefore,

p�|wr,c|	 � �2|wr,c|���W	2, if 0 � |wr,c| � �W;

0, otherwise.
�17	

In terms of the normalized variable |w̃r,c| 
 |wr,c| /
(0.5�W) we have

p�|w̃r,c|	 � �0.5|w̃r,c|, if 0 � |w̃r,c| � 2;

0, otherwise.
�18	

The mean and standard deviation for |w̃r,c| are

�|w̃r,c|� � 4�3, 	|w̃r,c| ���|w̃r,c|
2� � ��|w̃r,c|�	

2

��2�3 � 0.4714. �19	

Therefore, we obtain

�|w̃r,c|� �
4
3 �w̃r�, �20	

namely, the mean relative velocity based on dynamic
colliding pairs is 33% larger than the mean relative
velocity based on kinematic at-contact pairs.

b. Finite time step

In direct numerical simulations (Sundaram and Col-
lins 1997; Wang et al. 2000, 2005b; Franklin et al. 2005),
the trajectories of droplets are followed by solving their
equations of motion. Collision events are detected dy-
namically by examining the separation distance of all
nearby pairs. A collision is registered if the distance r
changes from r � R to r � R. In actual code implemen-
tation, a finite time step size dt must be used and the
details of the collision event detection may differ from
one implementation to another.

Consider any time step from time t(n) to t(n�1) � t(n) � dt.
In the study of Franklin et al. (2005) developed at
McGill University (MU), the separation distance r(t)
for t(n) � t � t(n�1) was represented by a linear inter-
polation using the information at t � t(n) only (i.e., using
r[t(n)] and wr{r � r[t(n)]}). While in the studies con-
ducted at the University of Delaware (UD; Wang et al.
1998a, 2000; Zhou et al. 2001; Wang et al. 2005b), the
velocities and positions at t � t(n�1) were obtained first,
and a third-order polynomial representation was used
to describe r(t) during the time step interval using the
information of r and wr at both t � t(n) to t � t(n�1). The
UD implementation allows for three possible types of
collision events (Wang et al. 1998a) due to the nonlin-
ear representation of r(t): namely, (i) type I collisions
with r[t(n)] � R and r[t(n�1)] � R; (ii) type II collisions
with r[t(n)] � R and r[t(n�1)] � R but r(t) � R during
part of the time interval; (iii) type III collisions with
r[t(n)] � R and r[t(n�1)] � R but r(t) � R during part of
the time interval. For the base case without air turbu-
lence, the two implementations are identical. For the
general case of turbulent collision, the UD implemen-
tation is more accurate for large time steps. When the
time step size is properly controlled such that type I
collisions dominate, and types II and III collisions are
very unlikely to occur, the two implementations should
yield the same result for collision counts.

In both implementations, when a pair were found to
collide during the time interval t(n) � t � t(n�1), the
positions and velocities of the pair at the beginning of
the time step [t � t(n)] were saved in order to later
process the probability distributions for � and |wr|c. As
will be shown below, it is very important to distinguish
the information saved at t � t(n) from the information at
the instant of the collision when r(t) � R.

For the base case, two droplets separated at a center-
to-center distance of as much as R��W dt may collide
during the time interval. Therefore, if � 
 �W dt is
comparable to R, the probability distributions of � and
|wr,c| obtained with information at t � t(n) will differ
from the theoretical results obtained in section 2a.

In principle, the actual geometric configuration and
relative velocity at the instant of collision contact can
be interpolated or extrapolated in DNS to remove the
effect of time step size. However, we shall extend our
theory for infinitesimal time step, presented in the last
section, to finite time step size for several reasons. First,
the implementation of highly accurate interpolations
or extrapolations of the relative motion for all colliding
pairs in a system consisting of 100 000 droplets
can be tedious and time consuming. Second, previous
theoretical formulations such as Reuter et al. (1988);
Sundaram and Collins (1997) often considered finite-
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time delays in their derivations, for the reason that a
collision event is a dynamic process in which the inter-
particle separation r(t) is dynamically changed from r(t)
� R to r(t) � R(t). Third, efforts have begun to be made
to experimentally measure collision-related statistics
such as relative velocities and local pair clustering
(Meng et al. 2004; Yang et al. 2005); in these experi-
ments, only positions of particles at discrete times are
available. Finally, in computing kinematic relative ve-
locities and pair concentrations, pairs at a range of fi-
nite separations, instead of only at contact pairs, are
routinely used to increase the available number of
samples such that statistical uncertainties can be better
controlled (Wang et al. 2000; Zhou et al. 2001). For
these various reasons, pair statistics during a finite time
or within a finite separation right before the actual col-
lisions are central to the understanding and quantifica-
tion of collision interactions. Therefore, studying the
statistics at finite time steps are broadly motivated, in
particular we expect that the theoretical results devel-
oped here can help others better interpret experimental
observations, in addition to clarifying our own DNS
results. Having theories for both infinitesimal time
steps and finite time steps allows us to separate out the
time step effect from other physical effects. Alterna-
tively, by understanding the time step effect, we can offer
more flexibility to DNS and experimental observations.

We shall now show that these probability distribu-
tions based on the simulation data can be rigorously
derived for the base case. Since the relative motion is
constant and is pointing in the vertical direction, the
volume that contributes to the influx or geometric col-
lision, as illustrated in Fig. 3, is a region bounded at the
bottom by the original half geometric collision spherical
surface of � � /2, and at the top by a half-spherical
surface created by simply shifting the original spherical
surface vertically upward by �, and on the sides by a
cylindrical surface of height � and radius R. This volu-
metric region will be referred to as the collision volume.
If the center of any a1 droplet is located in this volume,
this droplet will collide with an a2 droplet during t(n) �

t � t(n�1). It is important to note that the total volume
of this bounded region is R2�, therefore, the net rate
of geometric collisions, which is proportional to R2�/dt
or R2�W, does not depend on the time step size and
all the kinematic formulations discussed in the intro-

duction remain valid when compared to DNS results
(Wang et al. 2000; Zhou et al. 2001).

Assuming dynamic colliding droplets are distributed
uniformly in this bounded region, the probability for
the angle of approach, p(�), is then the differential
overlap volume of the conical shell of polar angle from
� to � � d� and the above bounded region, divided by
the total volume R2�. For � � �c 
 arctan(R/�), we
then have

p��	 d� �

2� �
r�R

r�Rt

r2 dr sin� d�

�R2

�

2 sin��Rt
3 � R3	

3R2

d�,

�21	

where Rt is the radial distance of the top surface of the
bounded volume at polar angle �. With the help of the
triangle graph on the right in Fig. 3, Rt can be related to
R, �, and � as

Rt � 
 cos� ��R2 � 
2 sin2�, �22	

while for � � �c,

p��	d� �

2� �
r�R

r�R� sin�

r2 dr sin� d�

�R2

,

�
2
3

R


 � 1

sin2�
� sin�� d�. �23	

Putting this altogether and introducing �̃ � �/R �
�W dt/R, we obtain the probability distribution of � as

p��; 
̃	 � �2 sin���
̃ cos� ��1 � 
̃2 sin2�	3 � 1� ��3
̃	, if � � arctan1�
̃;

2��sin�	�2 � sin����3
̃	, if arctan�1�
̃	 � � � ��2;

0, otherwise.

�24	

FIG. 3. The volume entering the geometric collision spherical
surface during a finite time interval dt as used in direct numerical
simulations.
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It can be shown that the above probability distribution
reduces to Eq. (13) as �̃ → 0. For finite dt or �̃, however,
the probability distribution of � depends on �̃.

By the similar reasoning as used in deriving Eq. (16), we
can relate the probability distribution of |wr,c| to p(�;�̃),

p�|wr,c|; 
̃	 �
p��; 
̃	

�W sin�
. �25	

Therefore, we obtain the following result:

p�|w̃r,c|; 
̃	 � � ��1 � 0.25|w̃r,c|
2	�1.5 � 1���3
̃	, if |w̃r,c| � 2
̃��1 � 
̃2;

��0.5
̃|w̃r,c| ��1 � 
̃2�1 � 0.25|w̃r,c|
2	�3 � 1���3
̃	, if 2
̃��1 � 
̃2 � |w̃r,c| � 2.0;

0, otherwise.

�26	

This general result can recover Eq. (18) if we let �̃ → 0
or dt → 0. Note that the two nonzero regions in Eq. (24)
are interchanged when converted to Eq. (26).

3. Theory for turbulent collision

The theory and geometric interpretation developed
in the previous section for the base case shall now be
extended to include the effect of turbulent air motion
or the turbulent collision case. The collision volume
shown in Fig. 3 needs to be properly expanded to ac-
count for the added relative motion due to turbulent air
motion.

a. Decomposition of radial relative motion

The strategy is to include turbulence effects in two
steps. First, it is assumed that the air turbulence alone
introduces a radial relative motion qr. In the first step,
qr is assumed to be a constant and spherically symmet-
ric. In the second step, the result from the first step is
integrated with the probability distribution of qr. This
two-step procedure makes it possible to formulate a
theory for the probability distribution of the angle of
approach using geometric interpretations. Further-
more, as will be shown later, it facilitates the conversion
of this probability distribution to the probability distri-
bution of radial relative velocity for colliding pairs.

The total instantaneous relative velocity is

wr � ���W cos� � qr	, �27	

where qr is positive if turbulence induces inward rela-
tive motion. It is further assumed that qr has a Gaussian
probability distribution of zero mean and standard de-
viation �q, namely,

p�qr	 �
1

�2�	q

exp��
qr

2

2	q
2�. �28	

The true probability distribution of qr is likely to be
non-Gaussian. It has been shown by Sundaram and
Collins (1997) and Wang et al. (2000) using DNS that
the probability distributions of particle relative velocity
are better fitted by stretched exponential. Another
good alternative is the lognormal distribution (e.g.,
Falkovich et al. 2002). Here we chose Gaussian distri-
bution to simplify the derivation.

The polar angle � may also be viewed as a random
variable. If the a1 droplets are assumed to be found with
uniform probability on the surface of the collision
sphere, the probability distribution of the polar angle
for kinematic at-contact droplet pairs is the percent-
age of collision-sphere surface covered by differential
polar angle d�, divided by d�, and is

p0��	 � ��2�R sin�	R d�

4�R2 � 1
d�

� 0.5 sin�. �29	

The average total radial velocity can then be calculat-
ed as

FIG. 4. The relationship between �̃q and �|w̃r|� according to
Eq. (30).
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where the standard error function is defined as erf(x) �
(2/�) �x

0 e�y2

dy. In the limit of �W → 0, the above
result reduces to �|wr|� � �q�2/, as expected for tur-
bulent relative motion without gravity (Wang et al.
1998b). On the other hand, if the turbulence effect is
very weak compared to gravity or �q → 0, we recover
the expected result of �|wr|� � 0.5�W. Equation (30)
implies a one-to-one relationship between the two non-
dimensional variables �|w̃r|� 
 �|wr|�/(0.5�W) and �̃q 

�q /(0.5�W), which is shown in Fig. 4. We observe that
�̃q increases quickly with �|w̃r|� when the air turbulence
is weak or �̃q is small. Also, �̃q can be larger than �|w̃r|�
since a very strong turbulence will result in �̃q � �/2
�|w̃r|� � 1.2533�|w̃r| � because most of |wr| are less than �q

in the Gaussian distribution.
To validate the theoretical predictions in this paper,

we shall introduce five sets of DNS data generated at
MU and six sets of DNS data independently generated
at UD. The relevant parameters including grid resolu-

tion N in each direction, average flow dissipation rate �,
and the normalized time step �̃ for the five DNS runs
from MU are shown in Table 1. These runs are identi-
fied as run1 through run5, with run1 corresponding to a
base case (� � 0), and the other four for turbulent cases
at � � 95, 280, 656, 1535 cm2 s�3, respectively. Table 1
also shows the number of colliding pairs detected and
used to process the probability distributions, and the
flow Taylor–microscale Reynolds number. The Reyn-
olds numbers in DNS are about two orders of magni-
tude smaller than those in atmospheric clouds. Since
the droplets are much smaller than the Kolmogorov
eddy in air turbulence, and since terminal velocity is on
the order of flow Kolmogorov velocity and the Stokes
response time on the order of or less than the Kolmo-
gorov time, the relative motion of cloud droplets is de-
termined mainly by turbulent eddies in the viscous sub-
range. For this reason, the viscous dissipation rate is the
key parameter in determining the droplet collision sta-

TABLE 1. The parameter setting, �|w̃r|�, and �̃q for DNS runs conducted at MU (a1 � 20 �m, a2 � 10 �m, �W � 3.6958 cm s�1).

Run ID Run1 Run2 Run3 Run4 Run5

N — 80 120 180 240
� (cm2 s�3) 0 95 280 656 1535
dt (�s) 100 800 200 80 50
�̃ 0.123 0.985 0.246 0.0985 0.0616
No. of pairs 2564 7980 3284 2315 2737
R� — 33 40 48 55
w̃r, DNS 1.0 1.0093 1.074 1.150 1.489
�̃q, Eq. (30) 0.0 0.192 0.544 0.775 1.443

TABLE 2. The parameter setting, �|w̃r|�, and �̃q for DNS runs conducted at UD (a1 � 30 �m, a2 � 20 �m, �W � 6.412 cm s�1).

Run ID Run6 Run7 Run8 Run9 Run10 Run11

N 32 32 64 64 128 128
� (cm2 s�3) 100 400 100 400 100 400
dt (�s) 962.1 721.7 1110 555.1 898.2 449.1
�̃ 1.235 0.926 1.425 0.712 1.153 0.576
No. of pairs 39 727 62 676 22 535 24 008 18 030 30 722
R� 23.4 23.4 43.0 43.0 72.4 72.4
w̃r, DNS 1.016 1.123 1.038 1.128 1.032 1.122
�̃q, Eq. (30) 0.253 0.702 0.390 0.716 0.358 0.699

888 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



tistics. The flow Reynolds number is assumed to be of
secondary importance here. Run2 through run5 were
used in Franklin et al. (2005) to study effects of turbu-
lence on geometric collision rate, and further details of
the runs can be found there. The droplet radii were
fixed to a1 � 20 �m and a2 � 10 �m, giving �W �
3.6958 cm s�1. Five distinct time step sizes were used in
run1 through run5, leading to a range of �̃ from 0.0616
to 0.985. The values of � |w̃r| � obtained from DNS are
also listed in Table 1, followed by the values of �̃q de-
rived from Eq. (30). The magnitude of �̃q will be a key
input parameter for the theory to be developed next.

The six UD runs are listed in Table 2 and identified
as run6 through run11. These represent two levels of �
and three levels of grid resolutions. The time steps are
somewhat larger giving a value of �̃ from 0.576 to 1.425.
The droplet size combination for these runs is a1 � 30
�m and a2 � 20 �m. The differential settling velocity
�W is 6.412 cm s�1. The numbers of collision pairs de-
tected are roughly one order of magnitude larger than
the MU runs. Again the key parameter �̃q has been
derived from Eq. (30) and listed in the table.

b. Formulation for a given qr

We shall now examine the consequence of including
qr in the radial relative motion, in particular, its influ-
ence on the collision volume. For the moment qr is
assumed to be a constant and positive, and, therefore,
will enhance the droplet–droplet radial relative motion
toward each other. Within the concept of a collision
sphere, a positive qr enhances inward flux across the
surface of the collision sphere. This then will expand
the collision volume shown in Fig. 3 to one of the three
geometric configurations shown in Fig. 5, depending on
how s 
 qr dt is compared to � � �W dt. Because of the
cylindrical symmetry of the collision volume, only the
planar section through the axis of symmetry is shown in
Fig. 5. For convenience, let us introduce s̃ 
 s/R.

The starting point is to realize that all a1 droplets
located in the spherical shell relative to a2 droplets, R �

r � R � s would penetrate the collision-sphere surface
within dt because of turbulent motion should there be
no differential gravitational settling. Adding the differ-
ential gravitational settling is, to a first approximation,
to shift the shell region upward by �. The region formed
during the shifting, but outside the original collision
sphere, then constitutes the collision volume.

When s̃ � �1 � �̃2 � 1 (case Ia), the shifted outer
surface of the shell with radius equal to (R � s) inter-
cepts the original collision surface of radius R above the
� � /2 surface, that is, the line O–a–b in Fig. 5a. In this
case, the effect of turbulence is to expand the collision
volume from the base case volume formed by revolving

FIG. 5. The proposed regions that contribute to the geometric
collisions when both gravity and air turbulence are considered and
qr � 0 (category I): (a) s/R � �1 � �̃2 � 1; (b) �1 � �̃2 � 1 �
s/R � �̃; (c) s/R � �̃.
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the area a–d–g–f–e–C–E–a, to the shaded area shown in
Fig. 5a. However, the maximum angle of approach re-
mains 90°. There is a slight ambiguity in defining the
portion a–c–d–a since in reality the gravity effect and
turbulent motion occur simultaneously rather than in
sequence as assumed here. As a simple yet reasonable
choice we take a straight line connecting point c to
point a as the boundary for that portion.

When �1 � �̃2 � 1 � s̃ � �̃ (case Ib), the collision
volume is shown as the shaded region in Fig. 5b and a
portion of the collision volume has � greater than 90°.
This physically increases the range of the angle of ap-
proach as the intensity of turbulence motion is in-
creased or s/� � qr/�W is increased.

Finally, when s̃ � �̃ (case Ic), the outer surface of the
shifted shell completely covers the original collision
sphere as shown in Fig. 5c. In this case, the larger drop-
lets can approach the smaller droplets from any direc-
tion.

Having determined the collision volumes for qr � 0,
we now proceed to derive the probability distribution
p(�; �̃, s̃) of angle of approach for a given �̃ and a given
s̃. This probability can be computed as

p��; 
̃, s̃	d� �

2� �
r�R

r�Rt

r2 dr sin� d�

Vcv
, �31	

namely,

p��; 
̃, s̃	 �
2� sin��Rt

3 � R3	

3Vcv
, �32	

where Vcv denotes the total volume of the collision vol-
ume, Rt(�) is the distance from the origin O of a point
on the outer boundary of the collision volume with po-
lar angle equal to �. Both Rt and Vcv also depend on R,
�, and s. The formula for computing Rt and Vcv may be

derived for all � for each case. The details are somewhat
laborious, and it is sufficient to present the final results
in a readily usable form in Table 3. The correctness of
the formula was checked by the following consistency
condition

�
��0

���

p��; 
̃, s̃	 d� � 1 �33	

for any �̃ or s̃. The angle �c and �max in Table 3 for cases
Ia and Ib are shown in Figs. 5a and 5b, respectively.

We shall next consider qr � 0 in which the collision
volume is reduced by outward relative motion caused
by turbulence. It is necessary now to divide this into two
categories. The first category (II) applies to � � R and
the cases under this category are depicted in Fig. 6. Let
us define s 
 |qr|dt and s̃ 
 s/R. In this category, the
center of the shifted shell, which now has an inner ra-
dius (R � s) and outer radius R, is located inside the
original collision sphere. The collision volume is gradu-
ally reduced as s is increased. If s � �, then there is no
collision volume outside the original collision sphere,
and it is assumed Vcv � 0 and there is no need to obtain
p(�; �̃, s̃). The difference between case IIa and case IIb
is whether the interception point of the inner surface of
the shifted shell with the horizontal plane passing
through O� is outside the original collision sphere or
not. If the interception point is outside (case IIa), there
are two transition angles �c1 and �c2. The formula for
Vcv and Rt for the cases in category II are provided in
Table 4.

The category III is concerned with qr � 0 and R � �
� 2R, and the cases are illustrated in Fig. 7. In category
III, the center of the shifted shell is located outside the
original collision sphere. A finite collision volume is
permitted for all values of s 
 |qr|dt. In case IIIa, the
inner surface of the shell overlaps with the original col-

TABLE 3. Formula for Vcv and Rt in Eq. (32) for category I cases (qr � 0).

Case Ia Vcv/(R3) � �̃ � 2[(1 � s̃)3 � 1]/3 � �̃s̃(1 � s̃/3)

s̃ � �1 � �̃2 � 1 Rt /R � �̃ cos� � �(1 � s̃)2 � (�̃ sin�)2, for � � �c

Rt /R � �̃/[�̃ sin� � s̃ cos�], for �c � � � /2,
where �c � arctan[(1 � s̃)/�̃].
Note p(�; �̃, s̃) � 0 for � � /2.

Case Ib Vcv/(R3) � �̃ � 2[(1 � s̃)3 � 1]/3 � �̃(2s̃ � s̃2 � �̃2/3) � (2s̃ � s̃2 � �̃2)2/(4�̃)

�1 � �̃2 � 1 � s̃ � �̃ Rt /R � �̃ cos� � �(1 � s̃)2 � (� sin�)2, for � � �max

where �max � arcsin[(2s̃ � s̃2 � �̃2)/(2�̃)] � /2.
Note p(�; �̃, s̃) � 0 for � � �max

Case Ic Vcv/(R3) � �̃ � 2[(1 � s̃)3 � 1]/3 � �̃(2s̃ � s̃2 � �̃2/3) � (2s̃ � s̃2 � �̃2 � �̃] � (1 � s̃)2(s̃ � �̃)
� [(1 � s̃)3 � (1 � �̃)3]/3

s̃ � �̃ Rt /R � �̃ cos� � �(1 � s̃)2 � (�̃ sin�)2.

890 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 63



lision sphere, while in case IIIb, the inner surface of the
shell is completely outside the original collision sphere.
When s � R (case IIIc), the inner surface shrinks to a
point, as shown in Fig. 7c. Again, there are ambiguities
in defining certain portions of the outer boundary of
the collision volume for category III cases. However, as
will be shown later, the effect of turbulence will be
mainly contributed by qr � 0 because of a large relative
weighting in the final integration, these ambiguities for
qr � 0 should have little impact on the final result. The
formula for Vcv and Rt for the cases in category III are
provided in Table 5.

All the category II and category III cases do not
cause the maximum angle of approach to be larger than
90°. Therefore, only when qr dt � �R2 � �2 � R (case
Ib and case Ic) or when there is a sufficient radial in-
ward motion due to turbulence, can the maximum
angle of approach be made larger than 90°. There is no
need to consider � � 2R, since all the DNS runs were
performed with � � 2R.

As a summary of all the nine cases discussed above,
the boundaries of all the cases are shown in Fig. 8 with
the horizontal axis being qr dt/R and the vertical axis
being �̃. For a given DNS run, �̃ is given, so p(�; �̃, s̃) can
be obtained for all qr from �� to �� using the rela-
tionship and formula discussed above. As qr is in-
creased from �� to ��, the calculation of p(�; �̃, s̃) can
involve going through cases IIc, IIb, IIa, Ia, Ib, and Ic in
order for �̃ � 1 or through cases IIIc, IIIb, IIIa, Ia, Ib,
and Ic in order for �̃ � 1.

c. Integration over qr

The final step for obtaining probability distribution
of � is to integrate contributions from different levels of
qr. This is carried out by the following weighted integral

p��; 
̃, 	̃q	 � �
��

�

�qr	p��; 
̃, s̃	 dqr, �34	

where the weighting function is defined as

�qr	 �
Vcv�qr	p�qr	

�
��

�

Vcv�qr	p�qr	 dqr

. �35	

The weighting function is proportional to the flux or
collision counts at a given qr. Since the statistics real-
ized by dynamic colliding pairs are of concern, such a
weighting procedure is necessary. The weighting also
ensures that the final distribution p(�; �̃, �̃q) is properly
defined such that

�
��

�

p��; 
̃, 	̃q	 d� � 1. �36	

This final distribution then depends on the two param-
eters �̃ and �̃q. The first parameter measures the effect
of finite time interval dt as discussed in section 2. The
second parameter measures the effect of air turbulence
in modifying the probability distribution.

While it is difficult to perform the above integrations
analytically, it is rather straightforward to integrate
them numerically since all the components in the inte-
gral expressions are known analytically. The results to
be presented in section 4 were based on numerical in-
tegrations using equal � bins of width 1° and equal qr

FIG. 6. The proposed regions that contribute to the geometric
collisions when both gravity and air turbulence are considered, qr

� 0, and � � R (category II): (a) | s| � R � �R2 � �2; (b) R �
�R2 � �2 � | s| � �. Note if |s| � �, the collision volume is zero.
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bins of width 0.025�q. It was also checked to ensure that
the numerical results are unchanged when finer bins are
used.

d. The probability distribution for |wr,c|

The probability distribution p(|wr,c|; �̃, �̃q) of the ra-
dial relative velocity |wr,c| for colliding pairs is very dif-
ferent from that of the radial relative velocity |wr| for
kinematic at-contact pairs. The method for obtaining
p(|wr,c|; �̃, �̃q) is described next.

At the level of a given qr, |wr,c| is directly related to
� as

|wr,c | � |�W cos� � qr |. �37	

In terms of the dimensionless variable |w̃r,c|, we have

|w̃r,c | � � |2 cos� � 2s̃�
̃|, if qr � 0;

|2 cos� � 2s̃�
̃|, if qr � 0.
�38	

The conversion procedure starts with a given qr or s̃, by
mapping numerically the � axis in p(�; �̃, s̃) to the |w̃r,c|
axis in p(|w̃r,c|; �̃, s̃), according to the above relationship
between |w̃r,c| and �, and that

p��; 
̃, s̃	 d� → p�|w̃r,c|; 
̃, s̃	 d|w̃r,c|. �39	

Numerically, the � axis was divided into 180 equal bins
of width equal to 1°, and the |w̃r,c| axis was divided into
200 equal bins from 0 � |w̃r,c| � 10�|w̃r|�. The probability
in each � bin, p(�; �̃, s̃) d�, is transferred to one, two, or
more |w̃r,c| bins according to the � to |w̃r,c| mapping. The
amount received by a |w̃r,c| bin is equal to the � bin
probability times the percentage of the mapped |w̃r,c|
range that falls into the |w̃r,c| bin. The probability for
each |w̃r,c| bin is being accumulated as this procedure is
applied to different � bins in order. Finally, p(|w̃r,c|; �̃, s̃)

for a bin is equal to the accumulated probability divided
by the |w̃r,c| bin width.

Next, p(|w̃r,c|; �̃, �̃q) is obtained by the same weighted
integral

p�|w̃r,c |; 
̃, 	̃q	 � �
��

�

�qr	p�|w̃r,c |; 
̃, s̃	 dqr. �40	

This completes the calculation of p(|w̃r,c|; �̃, �̃q). Again,
tests were done to ensure that the bin size has negligible
effect on the final result.

4. Results and comparisons with DNS data

In this section, we compare the various theoretical
expressions derived above with the 11 DNS runs intro-
duced in section 3a and shown in Tables 1 and 2.

a. Theoretical predictions for the base case

First, in Fig. 9 we show the theoretical prediction for
p(�; �̃) for the base case, given by Eq. (24), for four �̃
values corresponding to run2 through run5. The limit-
ing case of dt → 0 as given by Eq. (13) is also shown and
it is symmetric with respect to � � 45°. For finite dt or
�̃, the distribution is biased toward � � 45° with the
peak location moving to smaller � with increasing �̃.
When �̃ � 0.985, the peak occurs at � � 28°.

The theoretical prediction is compared directly with
DNS data for run1 (�̃ � 0.123) in Fig. 10. Other than the
numerical uncertainties in DNS data due to the limited
number of collision pairs used, the data and the theory
are in perfect agreement.

For the base case, run1, the statistical mean ��� and
the standard deviation �� for the angle of approach,
calculated by discretizing the theoretical curves into
bins of 1° width, are compared with DNS results in

TABLE 4. Formula for Vcv and Rt in Eq. (32) for category II cases (qr � 0 and �̃ � 1).

Case IIa Vcv/(R3) � (1 � s̃)2(�̃ � s̃) � [(1 � s̃)3 � (1 � �̃)3]/3 � (1 � �̃)[(1 � s̃)2 � 1 � �̃]
� s̃(�̃2 � z2

1)/�̃ � (1 � s̃2/�̃2)(�̃3 � z3
1)/3

s̃ � 1 � �1 � �̃2 Rt /R � �̃ cos� � �(1 � s̃)2 � (�̃ sin�)2, for � � �c1

Rt /R � �̃/[�̃ sin� � s̃ cos�], for �c1 � � � �c2,
where �c1 � arctan[(1 � s̃)/�̃], �c2 � 2 arctan(�̃/s̃) � /2, z1 � �̃/(s̃ � �̃ tan�c2).
Note p(�; �̃, s̃) � 0 for � � �c2.

Case IIb Vcv/(R3) � (1 � s̃)2(�̃ � s̃) � [(1 � s̃)3 � (1 � �̃)3]/3 � (1 � �̃ � z2)[(1 � s̃)2 � 1 � �̃2]
� �̃[(1 � �̃)2 � z2

2]

1 � �1 � �̃2 � s̃ � �̃ Rt /R � �̃ cos� � �(1 � s̃)2 � (�̃ sin�)2, for � � �c,
where �c � arccos(�̃ � z2), z2 � (2s̃ � �̃2 � s̃2)/(2�̃).
Note p(�; �̃, s̃) � 0 for � � �c.

Case IIc Vcv � 0,

s̃ � �̃ note p(�; �̃, s̃) � 0 for all �.
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column 2 of Table 6. For this base case, the predicted
mean value is essentially the same as the DNS result,
and the predicted standard deviation agrees with the
DNS value to within 1%.

Before the presentation of theoretical predictions for
turbulent collision in the next subsection, we would like
to point out that a significant portion of the changes in
��� for run2 through run5 is simply caused by the
change in the time step size. To visually separate out
the effect of air turbulence from the effect of time step
size, we display in Fig. 11a the value of ��� for all 11
DNS runs (symbols) along with the theoretical value
(the curve) for the base case, as a function of �̃. The
open square represents run1 and lies exactly on the
theoretical curve for the base case, and all other DNS
data are located above the curve. The four stars, from
right to left, denote the results of run2 through run5.
The vertical distance of each data point above the curve
may be viewed as representing the effect of turbulence
after the effect of time step size being removed. Clearly,
the effect of turbulence increases with �. The three
crossed circles represent the three UD runs at � � 100
cm2 s�3 and filled circles for the other three runs at � �
400 cm2 s�3. One may conclude, after removing the ef-
fect of time step, that the relative increase in ��� are
about the same at a given level of �. However, this
effect of turbulence could also depend on other param-
eters such as the inertial response times of the droplets.

A similar plot (Fig. 11b) is constructed for the stan-
dard deviation ��. Once again, part of the increase in ��

from run2 to run5 is caused by the decrease in dt. The
change in �� at a given � is largely explained by the use
of different dt.

The theory for p(|w̃r,c|; �̃), given by Eq. (26), is com-
pared directly with DNS data from run1 in Fig. 12. The
data are well predicted by the theory clearly showing
the parabolic dependence from very small |w̃r,c| and the
related augmentation near |w̃r,c| � 2 due to finite �̃. This
shift can be intuitively explained by the reduced appar-
ent angle of approach due to a finite time step, resulting
in an increase in probability density for higher radial
relative velocity. The predicted mean value for |w̃r,c| is
essentially the same as the DNS result, and the pre-
dicted standard deviation agrees with the DNS value to
within 7% (see Table 6).

An interesting observation from the data shown in
Table 6 is the nonmonotonic behavior of �|w̃r,c|� from
run1 through run5 when � is monotonically increased,
as one would expect a monotonic increase due to the
effect of turbulence. This can be explained by the effect
of time step size. Unlike the case shown in Fig. 11 for
���, here the decreasing time step reduces �|w̃r,c|� as
shown clearly in Fig. 13. The monotonic increase can be

FIG. 7. The proposed regions that contribute to the geometric
collisions when both gravity and air turbulence are considered, qr

� 0 and R � � � 2R (category III): (a) |s| � 2R � �; (b) 2R � �
� |s| � R; (c) �s� � R.
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restored if the vertical distance between the data and
the base curve in Fig. 13a is used to measure the effect
of turbulence. The competition between the effect of
turbulence and the effect of time step size makes the
statistics of |w̃r,c| particularly interesting. Overall, the
effect of turbulence is similar for the mean and stan-
dard deviation of |w̃r,c|, if the base case curve is taken as
the reference. Another important observation is that
the changes in the average relative velocity are mostly
determined by the flow dissipation rate (Fig. 13a), while
the changes in the mean angle of approach is mostly
due to the time step size (see Fig. 11a).

b. Theoretical predictions for turbulent collisions

Let us first apply the theory for turbulent collision to
run2 through run5. In Fig. 14, the weighting function  
given by Eq. (35) is plotted as a function of q̃r. Since the
collision volume increases with q̃r, the weighting func-
tion is biased toward positive q̃r. In fact, the location
where  obtains its maximum moves to larger q̃r as the
level of air turbulence (i.e., the flow dissipation rate) is
increased. Furthermore, the width of the  distribution
also increases with the dissipation rate, implying that
the probability distributions of � and |w̃r,c| deviate more
and more from their respective base case distribution.

The weighting functions for run6 through run11 can be
obtained to yield similar results.

In Fig. 15, the probability distributions of the angle of
approach for these runs are displayed. For each run,
DNS data are shown as symbols, the base case theory is
shown with a dashed line, and the theory for the tur-
bulent case is denoted by a solid line. For the weak
turbulence case (run2 in Fig. 15a), the present theory
deviates only slightly from the base case curve, and
both show a good agreement with the DNS data. The
theory for the turbulent case is in excellent agreement
with the DNS data for the other dissipation rate cases,
as shown in Figs. 15b, 15c, and 15d. This shows that the
theory captures the effect of turbulence well and the
geometric interpretations are rather accurate. It is
stressed that there is no adjustable parameter in the
theory. We also note that if there is some numerical
uncertainty in the value of �|wr|� obtained from DNS,
the performance of the theory will be affected as the

FIG. 8. The map for different regions as shown in Figs. 5–7.

FIG. 9. The probability distribution of angle of approach for
geometric gravitational collisions for four nonzero time step sizes
used in Franklin et al. (2005) and for dt → 0. Note that the prob-
ability density functions (PDFs) are defined with angle in radians
(1 rad � 57.296°).

TABLE 5. Formula for Vcv and Rt in Eq. (32) for category III cases (qr � 0 and 1 � �̃ � 2).

Case IIIa Vcv/(R3) � 2(1 � s̃)3/3 � �̃[(1 � s̃/�̃)3 � (1 � s̃)3]/(3s̃) � s̃(1 � z2
1)/�̃ � (1 � s̃2/�̃2)(1 � z3

1)/3

s̃ � 2 � �̃ Rt/R � �̃ cos� � �(1 � s̃)2 � (�̃ sin�)2, for � � �c1

Rt/R � �̃/[�̃ sin� � s̃ cos�], for �c1 � � � �c2,
where �c1 � arctan[(1 � s̃)/�̃], �c2 � 2 arctan(�̃/s̃) � /2, z1 � �̃/(s̃ � �̃ tan �c2).
Note p(�; �̃, s̃) � 0 for � � �c2.

Case IIIb All the expressions are the same as in case IIIa
2 � �̃ � s̃ � 1.0

Case IIIc Vcv/(R3) � (�̃ � 1)3/(3�̃2) � (1 � 1/�̃2)(1 � z3
1)/3 � (1 � z2

1)/�̃
s̃ � 1 Rt/R � �̃/[�̃ sin� � cos�], for � � �c,

where �c � 2 arctan(�̃) � /2, z1 � �̃/(1 � �̃ tan�c)
note p(�; �̃, s̃) � 0 for � � �c.
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input parameter �q may not be very accurate. No at-
tempt is made to adjust the value of �q here. Similar
conclusions can be drawn when the theory for p(�) is
compared to the data from run6 through run11 (plots
not shown).

Let us now compare the mean and standard devia-
tion of � for colliding droplets obtained from the theory
with the values obtained from DNS in Table 6. The
relative difference between the theory and DNS for the
mean is about 1% or less for run2 and run5. For run3
and run4, the relative difference is 2.2% and 2.4%, re-
spectively. The standard deviation of � was also well
predicted, with slightly larger relative errors.

The statistics for � are compared in Table 7 for run6
through run11. Both the mean and standard deviation
are well predicted by the theory. The largest difference
is seen for run9; and even for this case, the relative
error of the theory is less than 6%.

Next, let us examine the probability distributions of
|w̃r,c| for run2 and run5 in Fig. 16. Again, DNS data,
base case theory, and the theory for the turbulent case
are all shown for each case. Unlike p(�) where the de-

viation from the base case is small for the weak turbu-
lence case, DNS data show significant deviations even
for run2. The present theory not only successfully pre-
dicts the shape of this deviation, but is quantitatively
very accurate for all |w̃r,c|. For the strong turbulence
case, the probability distribution completely moves
away from the base case curve. The present theory
works well for |w̃r,c| � 1.5 and gives a satisfactory curve

FIG. 10. The probability distribution of angle of approach for
run1 compared with the theory. The DNS data were computed
using a bin size of 5°.

FIG. 11. Mean and standard deviation of � as a function of �̃.
The curve represents the theory for the base case.

TABLE 6. Comparison of the theory with DNS data for run1–run5.

ID Run1 Run2 Run3 Run4 Run5

DNS, ��� (deg) 42.75 ! 0.37 32.41 ! 0.18 42.99 ! 0.36 50.40 ! 0.52 58.84 ! 0.59
DNS, �� (deg) 18.67 16.31 20.68 24.99 30.83
Theory, ��� (deg) 42.76 32.05 43.92 49.21 58.90
Theory, �� (deg) 18.82 15.84 20.88 23.98 30.49
DNS, �|w̃r,c|� 1.392 ! 0.009 1.692 ! 0.004 1.648 ! 0.011 1.935 ! 0.022 2.760 ! 0.037
DNS, �| w̃r,c| 0.4334 0.3812 0.6272 1.069 1.915
Theory, �|w̃r,c|� 1.391 1.687 1.659 1.751 2.360
Theory, �| w̃r,c| 0.3998 0.3534 0.6076 0.7612 1.159
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for |w̃r,c| � 1.5. The DNS data show more intermittency
for |w̃r,c| � 6, perhaps due to non-Gaussian small-scale
physics in DNS turbulence. The noticeable quantitative
difference between the theory and the DNS data for

this strong turbulence case indicates that the probabil-
ity distributions of |w̃r,c| are more sensitive to the as-
sumptions made in the theory such as the Gaussian
probability distribution for qr and sequential rather
than simultaneous treatment of the gravity and turbu-
lence effects.

The basic statistics for |w̃r,c| are compared in Table 6
for run2 through run5. The relative error in the pre-
dicted mean value of |w̃r,c| increases with the flow dis-
sipation rate, and is 0.3%, 0.7%, 9.5%, and 14.5% for
run2, run3, run4, and run5, respectively. The theory
tends to underpredict �|w̃r,c|� and the standard deviation
�|w̃r,c| at higher levels of air turbulence. Both may be
because of the inability of the theory to capture the
high intermittency shown in DNS at large values of
|w̃r,c|. The theory can still be considered very satisfac-
tory given that no parameter is adjusted and that the
input parameter �̃q may not be very accurate.

The average statistics of |w̃r,c| for run6 through run11
are listed in Table 7 for comparison. The maximum
difference in �|w̃r,c|� is less than 7% here, perhaps due to
better estimations of �|wr|� and, as such, of �q due to
much larger numbers of pairs detected (see Tables 2
and 1 for information on the number of pairs detected).
Larger dissipation rates for run4 and run5 may also
contribute to the larger difference between the theoret-
ical predictions and the DNS data.

Finally, a brief discussion of the relative motion as-
sociated with turbulent collisions of equal-sized drop-
lets is presented. Although such self-collisions are not
possible in stagnant air, they can occur when air turbu-
lence is present. In Fig. 17, the probability distribution
of angle of approach for a1 � a1 (i.e., 30 �m � 30 �m)
self collisions in run11 is displayed, based on 7722 col-
lision pairs numerically detected with dt � 449.1 �s.

FIG. 12. The probability distribution of |w̃r,c| for run1 compared
with the theory.

FIG. 13. Mean and standard deviation of |w̃r,c| as a function of �̃.
The curve represents the theory for the base case.

FIG. 14. The theoretical weighting function for run2–run5.
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Assuming the orientation for self-collision pairs is iso-
tropic, the probability distribution would be given by
Eq. (29). While this is roughly the case, the actual prob-
ability appears to be larger than the isotropic theory for
� � 50° and is smaller than the isotropic theory for 50°
� � � 120°. Note that average radial relative velocity
�|wr|� for 30 �m � 30 �m kinematic at-contact pairs is
only 0.0823 cm s�1 according to DNS, while the termi-
nal velocity W1 of 30-�m droplets is 11.542 cm s�1,
which is 140 times of �|wr|�. The Stokes number, the

ratio of droplet inertial response time to the flow Kol-
mogorov time is 0.573 for this case. Therefore, even a
very weak coupling of turbulent motion and the gravi-
tational settling through the inertial effect of droplets
will alter the isotropy of the angle of approach. Never-
theless, the isotropic theory predicts a mean and stan-
dard deviation for � of 90° and 39.2° (i.e., �2/4 � 2
rad), respectively, still a very decent prediction as DNS
gives a mean of 89.5° and a standard deviation of 42.2°.

The probability distribution for the radial relative ve-

FIG. 15. The probability distributions of angle of approach from DNS are compared to the theory for the turbulent collision and the
theory for the base case: (a) run2, (b) run3, (c) run4, and (d) run5.

TABLE 7. Comparison of the theory with DNS data for run6–run11.

ID Run6 Run7 Run8 Run9 Run10 Run11

DNS, ��� (deg) 30.94 35.92 29.74 37.98 31.68 39.90
DNS, �� (deg) 16.07 18.51 15.75 19.35 16.20 20.25
Theory, ��� (deg) 30.21 37.84 29.71 40.18 31.44 41.42
Theory, �� (deg) 15.45 19.87 15.47 20.78 15.90 21.06
DNS, �|w̃r,c|� 1.765 1.981 1.806 1.999 1.777 1.996
DNS, �| w̃r,c| 0.4021 0.7046 0.4095 0.7916 0.4316 0.8393
Theory, �|w̃r,c|� 1.768 2.113 1.913 2.041 1.832 1.961
Theory, �| w̃r,c| 0.3659 0.6396 0.4365 0.6647 0.4236 0.6647
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locity |wr,c| of dynamic colliding pairs is shown in
Fig. 18. Also shown is a theory based on the Gaussian
distribution, Eq. (28), weighted according to the local
flux as

p�|wr,c|	 �
|wr,c| p�|qr| � |wr,c|	

�
0

�

|wr,c| p�|qr| � |wr,c|	 d|wr,c|

�
|wr,c|
	q

2 exp�� �|wr,c|	
2

2	q
2 � �41	

with �q � �|wr|� �/2. This simple theory, although
giving a reasonable prediction of the peak location, is
far from satisfactory for the reason indicated above,
namely that a weak secondary coupling between the
turbulent motion and settling due to finite droplet in-
ertia may significantly broaden the distribution of rela-
tive velocity since W1 � �|wr|�.

5. Summary

This study was motivated by the need to understand
recent DNS results of the probability distribution of
angle of approach � and relative velocity |w̃r,c| for col-
liding droplet pairs in a turbulent flow (Franklin et al.
2005). First we developed a rigorous and thorough
theory to predict all relevant probability distributions
for gravitational collisions without air turbulence. In
particular, it was shown that the probability distribu-
tions, calculated at the beginning of the time steps used
for collision detection, can depend on the time step size.
This effect of time step size can be quantified theoret-
ically in terms of the nondimensional parameter �̃ �
�Wdt/R. The shape of these distributions is nontrivial
when �̃ is not small. This finding is important in view of
the facts that �̃ may not be small in the DNS simulations
and that �̃ varies from one DNS run to another. Only by
understanding this effect of time step size, can we cor-

FIG. 17. The probability distribution of angle of approach for 30
�m–30 �m self-collisions run11.

FIG. 16. The probability distributions of radial relative velocity
for colliding droplets (a) run2 and (b) run5.

FIG. 18. The probability distribution of radial velocity for
30 �m–30 �m self-collisions in 1283 DNS with � � 400 cm2 s�3.
The air turbulence is the same as in run11.
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rectly determine the true effect of air turbulence. We
also illustrate that the statistical information for dy-
namic colliding pairs is very different from that of ki-
nematic at contact pairs. This difference was previously
noted for collisions because of a simple shear or non-
uniform shears in isotropic turbulence (Mei and Hu
1999; Wang et al. 2000, 2005c).

The base case theory was shown to predict the DNS
data well when the air turbulence is not present. We
also demonstrate how one can effectively remove the
effect of time step size for the turbulent collision case
by using the base case theory as the reference.

For turbulent collisions, a novel theory has been de-
veloped to quantify the effect of turbulence on the sta-
tistics of the angle of approach and radial relative ve-
locity for colliding pairs. When air turbulence is con-
sidered, the collision volume is increased with more
contributions from larger inward relative motion
caused by turbulent fluctuations. The theory employs a
logical decomposition that facilitates the development
of the extended collision volumes and the derivations of
the probability distributions. The additive treatment of
the radial relative motion worked well for the cases we
considered, perhaps because the relative motion is
largely governed by the gravity. At this stage, we can-
not be certain how general this conclusion would be.

It is shown that the theory captures the essential
physics of air turbulence and provides a quantitatively
acceptable prediction of the statistics for the angle of
approach. For example, the theory predicts ��� to within
5% for most numerical experiments. It is also shown
that the probability distribution of relative velocity for
collision pairs is more sensitive to the presence of air
turbulence and also shows larger intermittency at large
radial velocity. Even for the more difficult quantity
|w̃r,c|, the theory represents a significant improvement
over the base case theory and is considered to be sat-
isfactory as there is no adjustable parameter in the
theory. Part of the success of the theory may be attrib-
uted to the use of the average kinematic relative veloc-
ity obtained directly from DNS. However, the derived
probability distributions provide a thorough description
of the angle of approach and the relative velocity for
dynamically colliding pairs. It should be noted that the
average kinematic relative velocity may be expressed
theoretically in terms of droplet inertial response time,
terminal velocity, flow dissipation rate, and Reynolds
number (Saffman and Turner 1956; Kruis and Kusters
1997). Such a theoretical model can be incorporated
into the current theory to eliminate the need of using
any DNS result in the theory.

It is believed that the theoretical framework devel-

oped here could be of value to other problems involv-
ing gravitational settling and weak turbulence, such as
parameterization of collision kernel and hydrodynamic
interactions of droplets. The theoretical results will also
be useful for proper interpretation of experimental re-
sults derived from observations at discrete times (Meng
et al. 2004; Yang et al. 2005).
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