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Abstract

An open question in warm rain process and precipitation formation is how rain forms in warm cumulus as rapidly as it has
sometimes been observed. In general, the rapid growth of cloud droplets across the size gap from 10 to 50 μm in radius has not
been fully explained. Three aspects related to the air turbulence and stochastic coalescence are considered here in an attempt to
resolve this open question. The first is the enhanced geometric collision rates caused by air turbulence. The second is the effect of
air turbulence on collision efficiencies. The third is stochastic fluctuations and correlations in the collision–coalescence process.
Rigorous approaches are developed to address these issues. Preliminary results indicate that turbulence could shorten the time for
drizzle formation to about a half of the time needed for the same growth process based on hydrodynamic–gravitational mechanism
alone. To address the effect of stochastic correlations, we derive and validate a true stochastic coalescence equation. It is hoped that
this new mean field equation will be useful in the future to improve the deterministic kinetic collection equation.
© 2006 Elsevier B.V. All rights reserved.
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1 This time is typically defined as the time interval for radar
1. Introduction

Cloud droplets of radii less than 10 to 15 μm grow
efficiently through diffusion of water vapor, and
droplets larger than 30 to 50 μm in radii grow efficiently
through gravitational collisions (Langmuir, 1948;
Kogan, 1993; Beard and Ochs, 1993; Pruppacher and
Klett, 1997). An open question is why rain forms in
☆ Submitted to Atmospheric Research on January 31, 2005. Revised
version submitted on June 15, 2005.
⁎ Corresponding author. Department of Mechanical Engineering,

126 Spencer Laboratory, University of Delaware, Newark, Delaware
19716-3140, USA. Tel.: +1 302 831 8160; fax: +1 302 831 3619.

E-mail address: lwang@udel.edu (L.-P. Wang).

0169-8095/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.atmosres.2005.12.011
warm (i.e., ice-free) cumulus clouds as rapidly as it has
sometimes been observed. Radar observations in
tropical regions show that rain can form in cumulus
clouds by warm rain process in approximately 15 to
20 min (Szumowski et al., 1997; Knight et al., 2002).1
reflectivity to evolve from about −20 dBZ to at least 20 dBZ, roughly
corresponding to 10 μm and 250 μm average droplet sizes in radius,
respectively, for a liquid water content at 0.5 g/m3. However, as noted
by Knight et al. (2002), it is difficult to define precisely the starting
time and ending time for rain initiation in radar observations, as the
radar reflectivity depends on both the average droplet size and the
liquid water content. For this reason, only a very few published
observational studies reported this time interval.
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This 20-min time interval is also quoted in Rogers and
Yau (1989, p. 121) as the average time for the initiation
of warm rainfall (i.e., from the initial development of a
cumulus cloud to the first appearance of rain).
Theoretical predictions based on the gravitational-
coalescence mechanism alone would require a time
interval on the order of an hour for droplets to grow from
20 to 100 μm in radius (the actual time depends on the
initial droplet size spectrum in clouds, see Pruppacher
and Klett, 1997) Therefore, there appears to be a factor
of 2 or more difference between the predicted growth
time and the observed growth time. In general, it is
difficult to explain the rapid growth of cloud droplets in
the size range from 10 to 50 μm in radius (i.e., the so-
called size gap) for which neither the condensation nor
the collision–coalescence mechanism is very effective.
The onset of drizzle-size (∼100 μm in radius) raindrops
is still poorly understood in many precipitating cloud
systems. A related issue is the discrepancy between the
width of measured and simulated size distributions of
cloud droplets. In particular, the question why measured
droplet size distributions are in general broader is not
fully understood (Beard and Ochs, 1993; Khain et al.,
2000; Brenguier and Chaumat, 2001; Chaumat and
Brenguier, 2001).

Several mechanisms have been considered in the past
to explain the rapid development of rain in shallow
convective clouds (Beard and Ochs, 1993; Pruppacher
and Klett, 1997; Khain et al., 2000). The first
mechanism involves entrainment of dry environmental
air into the cloud. Although entrainment lowers the
cloud water content (and thus has a negative impact on
rain development), it can result in dramatic impact on
cloud droplet spectra. In particular, broad spectra are
typically produced as a result of entrainment and mixing
(Brenguier and Grabowski, 1993; Su et al., 1998). The
second mechanism involves effects of giant aerosol
particles which allow formation of large cloud droplets
(Johnson, 1982). Srivastava (1989) suggested that the
droplet spectral width can be broadened by considering
local values of the water vapor supersaturation rather
than the mean supersaturation that a large population of
cloud droplets experience. However, recent numerical
results by Vaillancourt et al. (2001, 2002) suggest that
this effect contributes insignificantly to the width of the
cloud droplet spectrum. The fourth mechanism concerns
effects of air turbulence on the relative motion of
droplets, concentration fluctuations, and collision effi-
ciencies (Khain et al., 2000; Franklin et al., 2005;Wang
et al., 2005b). Finally, in addition to the above physical
mechanisms, the commonly used kinetic collection
equation for modeling the time evolution of droplet size
distribution is not fully consistent with the stochastic
nature of the collision–coalescence process (Telford,
1955; Scott, 1967; Gillespie, 1972, 1975a).

This paper concerns the effects of air turbulence and
stochastic coalescence. A brief overview of recent
advances towards quantifying the effects of air turbu-
lence on collision rate and collision efficiency will be
presented. The impact of enhanced geometric collision
rate by turbulence on droplet size distribution will be
illustrated by Monte-Carlo simulations. The role of
stochastic coalescence will be explicitly revealed by a
rigorously derived, true stochastic coalescence equation
(TSCE) which contains correlations of droplet numbers
in different sizes. We shall validate the TSCE using
Monte-Carlo simulations and the analytical result of
Bayewitz et al. (1974). The level and nature of
stochastic correlations and fluctuations will also be
discussed.

2. Effects of air turbulence

Over the last 10 years, several studies have been
published in both engineering and atmospheric literature
concerning the collision rate of particles in a turbulent
flow. These studies suggest, at least qualitatively, that the
enhancement of the collision–coalescence mechanism
associated with the cloud turbulence might be a likely
explanation for the rapid growth of cloud droplets across
the size gap. These recent advances are based mostly on
numerical simulations and qualitative theoretical argu-
ments, indicating that the collection kernel of cloud
droplets can be enhanced by several effects of turbu-
lence, including (1) enhanced relative motion due to
differential acceleration and shear effects (Kruis and
Kusters, 1997; Pinsky and Khain, 1997; Sundaram and
Collins, 1997; Wang et al., 2000; Zhou et al., 2001;
Dodin and Elperin, 2002); (2) enhanced average pair
density due to local preferential concentration of droplets
(Sundaram and Collins, 1997;Wang et al., 2000; Zhou et
al., 2001; Zaichik and Alipchenkov, 2003; Zaichik et al.,
2003); (3) enhancement due to selective alterations of the
settling rate by turbulence (Wang and Maxey, 1993;
Davila and Hunt, 2001; Ghosh and Jonas, 2001), and (4)
enhanced collision efficiency (Koziol and Leighton,
1996; Pinsky et al., 1999, 2000; Wang et al., 2005b). The
levels of enhancement depend, in a complex manner, on
the size of droplets (which in turn determines the
response time and settling velocity) and the strength of
air turbulence (i.e., the dissipation rate, Reynolds
number, etc.).

While all the studies consistently point to collision
enhancements by air turbulence, they should be viewed
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as qualitative results as far as the collision–coalescence
of cloud droplets is concerned. This is because the
context and the approximations used in most of these
studies do not match the conditions of cloud droplets,
e.g., see discussions in Grabowski and Vaillancourt
(1999) and Vaillancourt and Yau (2000). Also, the levels
of enhancement concluded from different studies are
vastly different. This status is related to the complexity of
the collisional interactions in a turbulent flow, and the
lack and inaccuracy of direct measurements of turbu-
lence and droplet distribution in clouds. Recent observa-
tions and analyses of observational data from the Fast
FSSP probe suggest some evidence that clouds droplets
inside adiabatic cores may not be distributed randomly in
space, but the conclusions have not been consistent and
the issue remains largely unresolved (Chaumat and
Brenguier, 1998; Jameson and Kostinski, 2000; Kos-
tinski and Shaw, 2001; Pinsky and Khain, 2002). For a
more elaborated discussion of observational studies on
the spatial distribution of cloud droplets, the readers are
referred to Section 3 of Grabowski and Vaillancourt
(1999). In a wind tunnel setting, Vohl et al. (1999)
reported that turbulence could lead to a 10% to 20%
increase in the overall collision kernel when the flow
dissipation rate was in the range of 110 to 690 cm2/s3.
Due to the different regions in the parameter space that
different studies tend to address (Vaillancourt and Yau,
2000), the extent and dominant lengthscale associated
with clustering of cloud droplets and turbulence effects
are still an open question. Although with these limita-
tions, the recent studies do contribute to a major progress
in the understanding and kinematic formulation of
collection kernel for droplets with and without hydro-
dynamic interactions (Sundaram and Collins, 1997;
Wang et al., 1998, 2000; Zhou et al., 2001; Wang et al.,
2005b), which will be useful in the future for the
parameterization of collection kernel of cloud droplets.

2.1. Impact of enhanced geometric collision rate

Although with the above limitations, a major progress
has been made in the understanding and kinematic
formulation of collection kernel (Sundaram and Collins,
1997; Wang et al., 2000; Zhou et al., 2001). The average
geometrical collision kernel between two arbitrary
droplet size groups can be described kinematically as
(Sundaram and Collins, 1997; Wang et al., 1998, 2000)

c12 ¼ 2pR2 < jwrðNo HIÞj > g12ðNo HIÞ: ð1Þ

where the geometric collision radius R is the sum of the
radii of two colliding droplets, R=a1+a2, wr is the radial
relative velocity, the abbreviation “No HI” denotes
statistics computed without considering the disturbance
flows due to droplets, g12 is the radial distribution
function measuring the effect of preferential concentra-
tion on the pair number density at separation r. By
geometric collisions, these kinematic properties are
computed without considering droplet–droplet hydro-
dynamic interactions. Air turbulence can increase wr due
to local fluid acceleration and shear effects (Saffman and
Turner, 1956; Wang et al., 1998). Furthermore, when the
inertial response time of droplets is on the order of the
flow Kolmogorov time scale, droplets could respond
effectively to the dynamics of small-scale flow structures
and become nonuniformly distributed, a phenomenon
known as the preferential concentration (Maxey, 1987;
Squires and Eaton, 1990;Wang andMaxey, 1993). Since
the average collision rates are related to the second
moment of the droplet concentration, the preferential
concentration can cause g12 to be greater than one
(Sundaram and Collins, 1997; Wang et al., 2000) and
thus significantly increases the collision kernel.

To gain a quantitative understanding of how the
enhanced geometric collision rates by turbulence may
promote to growth of cloud droplets, the following
idealized but exact calculation using discrete mass
classes was performed. Consider a system, say about
1 cm3 volume, initially containing 60 droplets of 20 μm
in diameter and another 60 droplets of 22 μm in
diameter. These two droplet sizes were placed in bin 3
and bin 4 as two discrete sizes since their mass ratio is
very close to 4 /3, as such bin 1 and bin 2 were
unoccupied in the full discrete mass representation
involving a total of 420 bins. The elemental mass (the
mass for bin 1) is taken to be 1/3 of the mass of a 20-μm
droplet. If all these droplets were to coalesce to form a
single droplet, the final droplet size would be 103.8 μm
in diameter and would belong to the mass bin 420 (i.e.,
420=60×3+60×4).

A fully stochastic collision–coalescence calculation
was carried out using the Monte-Carlo method of
Gillespie (1975b). The Monte-Carlo method, although
computationally more expensive, inherently incorpo-
rates all stochastic correlations (see Section 3 below for
further details) and also eliminates the numerical errors
in solving the kinetic collection equation (Bott, 1998;
Tzivion et al., 1999; Simmel et al., 2002). Eq. (1) was
used to parameterize the collision kernel with the model
of <|wr|> after Wang et al. (1998) and g12 taken from
Zhou et al. (2001). The parameterization of g12 in Zhou
et al. (2001) was developed based on direct numerical
simulations (DNS) at low flow Reynolds numbers but
was extrapolated to high flow Reynolds numbers. This
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Fig. 1. The time evolution of average number in (a) bin 3 (20 μm in
diameter), (b) bin 81 (60 μm in diameter), and (c) bin 420 (103.8 μm in
diameter).
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extrapolation was done using established Reynolds-
number scaling rules for local fluid shear rates and for
the ratio of large to small scales in high Reynolds-
number turbulence (Hinze, 1975). Stokes drag was
assumed and the collision efficiency was set to unity.
10,000 Monte-Carlo realizations were used to obtain the
average droplet size distribution and related statistics.
The rms fluctuation velocity u′ of the air turbulence was
assumed to be 1 m/s in order to derive the Taylor
microscale Reynolds number which was given as
Rk ¼ u V2

ffiffiffiffiffiffiffiffiffiffiffiffi
15=me

p
, where ν is air kinematic viscosity

and ϵ is the flow dissipation rate.
In Fig. 1 we show time evolution of the average

numbers in three separate bins, namely, from top to
bottom, corresponding to 20, 60, and 103.8 μm in
diameter, respectively. Three levels of flow dissipation
were considered and the results were compared to the
base case of no air turbulence. Statistical uncertainties,
an inherent feature of Monte-Carlo simulations, were
also shown. The time was normalized by the character-
istic time scale Tof the gravitational coagulation process
(T=2891 s). The average number for 20-μm droplets
decreases monotonically due to collision–coalescence
events; however, the rate of depletion depends on the
flow dissipation rate. The higher the flow dissipation,
the faster the depletion rate.

While for the intermediate sizes (Fig. 1(b)), the mean
number first increases with time (the production phase),
reaches a peak value at a critical time, and then
decreases afterwards (the depletion phase). The produc-
tion phase and the critical time occur earlier as the flow
dissipation rate is increased. The peak value is also less
for larger flow dissipation rate due to a faster spreading
of the size spectrum. Finally the depletion phase
happens earlier and is completed faster as the flow
dissipation rate increases. All of these imply an
enhanced growth of cloud droplets due to effects of
turbulence.

The average number for the last bin increases
monotonically as expected (Fig. 1(c)). One can see
that turbulence can shorten the time for the largest
droplet to form. For the case of ϵ=400 cm2/s3,the time
for the coalescence process to complete is roughly half
of that for the pure gravitational case.

To better quantify how turbulence promote the
growth of droplets, we computed the droplet diameter
based on the mean droplet mass and show its time
evolution in Fig. 2. Clearly, the droplets grow faster as
the flow dissipation rate is increased. We show in Table
1 the time in seconds for the droplet diameter based on
mean mass to reach a certain size. At high flow
dissipation rate, turbulence may shorten the growth time
by as much as 30% to 40%. This clearly shows that
turbulence can speed up the growth of cloud droplets.

The main open issue here is the modeling of the
radial distribution function g12 at high flow Reynolds
numbers and how the radial distribution function is



Table 1
Time in seconds for the droplet diameter based on mean mass to reach
a certain size

ϵ(cm2/s3) 40 μm 60 μm 90 μm

0 2208 2703 3354
25 2148, 97% 2594, 96% 3131, 93%
100 1938, 88% 2270, 84% 2646, 79%
400 1500, 68% 1763, 65% 2081, 62%

The percentages are obtained by dividing the times by the
corresponding value for the gravitational case.
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affected by the gravitational settling, as the relative
velocity, wr, can be more easily modelled. Theoretical
advances in this direction are currently being made
(Jeffery, 2001; Sigurgeirsson and Stuart, 2002; Zaichik
and Alipchenkov, 2003; Zaichik et al., 2003). DNS and
experimental data at higher flow Reynolds are certainly
desired as well. The recent DNS studies by Franklin et
al. (2005) and Wang et al. (2005b) represent efforts to
obtain quality simulation data relevant to cloud droplets.

2.2. Collision efficiencies

For droplets of radii less than 60 μm, hydrodynamic
interactions between two colliding droplets can sig-
nificantly affect the trajectories of the droplets due to
short inertial response time and small settling rate. It
follows that the collision efficiency is a sensitive
function of droplet sizes (Klett and Davis, 1973;Wang
et al., 2005). While there have been a large number of
studies on the collision efficiency due to the gravita-
tional–hydrodynamic interaction of two isolated cloud
droplets (Pruppacher and Klett, 1997), only a very few
studies exist in the literature concerning collision
efficiencies of cloud droplets in turbulent air (de
Almeida, 1979; Grover and Pruppacher, 1985; Jonas,
1996; Koziol and Leighton, 1996; Pinsky et al., 1999,
2000; Wang et al., 2005b). A careful review of these
studies reveals that different kinematic formulations
were used to define the collision efficiency, almost all of
which are some extensions to the definition based on
grazing trajectory, which is only strictly valid for the
gravitational–hydrodynamic interaction of two isolated
cloud droplets (Wang et al., 2005b). Furthermore, these
kinematic definitions of collision efficiency were used
in these studies without direct validation using dynamic
collision statistics. This problem along with various
(often) inaccurate representations of the air turbulence
µm

Fig. 2. Diameter in micrometers based on the average droplet mass as a
function of time.
and different droplet-size combinations has generated
somewhat controversial conclusions regarding the
influence of turbulence on collision efficiencies.

Therefore, the topic of collision efficiency of cloud
droplets in a turbulent suspension is widely open.
Recently we have successfully developed a hybrid direct
numerical simulation (HDNS) approach (Wang et al.,
2005b) to allow an accurate evaluation of the effect of
turbulence on collision efficiency. The HDNS approach
combines a pseudospectral simulation of air turbulence
with an improved superposition method (Wang et al.,
2005a) for the disturbance flows due to droplets. This
approach allows, for the first time, the direct incorpora-
tion of hydrodynamic interactions within DNS and
computations from first principles of all statistical
information related to collision–coalescence.

Our main findings to date are summarized here. First
we have demonstrated that the same kinematic formula-
tion, Eq. (1), can be used to describe the collision kernel
of hydrodynamically interacting droplets, namely,

C12 ¼ 2pR2 < jwrðHIÞj > g12ðHIÞ ¼ 2pR2

< jwrðNo HIÞj > g12ðNo HIÞE12; ð2Þ
but now the kinematic properties wr and g12 are
computed with droplet–droplet hydrodynamic interac-
tions considered. Here “HI” indicates statistics com-
puted with hydrodynamic interactions included in the
simulations, namely, droplets move under the influence
of disturbance flows due to all other droplets, in addition
to the drag force due to the background flow, gravity,
and inertia (Wang et al., 2005b). On the other hand, the
abbreviation “No HI” denotes statistics computed
without considering the disturbance flows due to
droplets. Computations of kinematic properties require
finite corrections due to the fact that droplets can no
longer overlap in space (Wang et al., 2005b). The true
collision efficiency E12 is defined as

E12 ¼ < jwrj > ðHIÞ
< jwrj > ðNo HIÞ �

g12ðHIÞ
g12ðNo HIÞ : ð3Þ



Fig. 3. Enhancement factors due to the turbulence measured relative to
the results of the gravitational–hydrodynamic case for a1=20 and
30 μm as a function of a2 /a1 (ϵ=400 cm2 / s3). The total enhancement
factor is the enhancement factor on geometric kernel times the
enhancement factor on collision efficiency.
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This kinematic formulation then separates the effect of
turbulence on collision efficiency from the enhanced
geometric collision rate.

Fig. 3 shows enhancement factors due to turbulence
measured relative to the results of the gravitational–
hydrodynamic case, when the flow dissipation rate is
400 cm2/s3. Air turbulence increases both the geometric
collision rate and the collision efficiency, particularly
when collisional interactions between similar-size dro-
plets (a2 /a1→1) are considered. For a1=30 μm, the
enhancement factor on the geometric collision rate is
larger than the enhancement factor on collision effi-
ciency. However, when a1=20 μm, the enhancement
factor on the collision efficiency is much greater that that
of the geometric collision rate. In other words, the effect
of air turbulence on the collision efficiency depends
sensitively on the size of the larger droplets. Further-
more, both the effects of turbulence on the collision
efficiency and the geometric collision rate depend on the
level of flow dissipation rate. We observe that hydro-
dynamic interactions are less effective in changing the
relative radial velocity in a turbulent flow, when
compared to the pure hydrodynamic–gravitational
problem. This is the main reason that turbulence enhances
the collision efficiency, in addition to augment the
geometric collision rate. We also find that hydrodynamic
interactions increase the near-field pair density, resulting in
higher radial distribution function at contact when
compared to the geometric collision case. The overall
enhancement factor on collision kernel by turbulence can
be as large as 2 to 6 when the flow dissipation rate is high.

Furthermore, the collision efficiency for collisions
among equal-size droplets depends on the presence of
the other size droplets in a binary suspension, due to the
cumulative weak far-field hydrodynamic interactions of
all droplets in the suspension (Wang et al., submitted for
publication). This observation implies that the collision
efficiency based on the interaction of two isolated
droplets, as is often theoretically treated in the past, may
not be applicable to a suspension of many droplets, even
for the hydrodynamic–gravitational problem.

Much work is needed to understand and quantify the
effect of turbulence on collision efficiency. We are in the
process of conducting a parametric study of collision
efficiency for different droplet-pair sizes, different flow
dissipation rates, and Reynolds numbers. The goal will
be to develop a parameterization model to quantify the
enhanced collision efficiency by air turbulence which
can later be used to study its impact on the size evolution
of cloud droplets.
3. Stochastic coalescence

Typically, the modeling of size distribution in a collision–coalescence system is performed by a mean-field equation
such as the classical Smoluchowski coagulation equation (Smoluchowski, 1917),

dNm

dt
¼ 1

2

Xm�1

k¼1

Ck;m−kNkNm−k−Nm

Xl
k¼1

Cm;kNk ð4Þ

where Nm is the average number of droplets of mass equal to m elemental mass units, per unit volume at time t. Cm,k is
the collision kernel between m-size droplets and k-size droplets. Here we only consider the discrete formulation as in
Gillespie (1972). The first term on the right hand side represents rate of generation of m-size droplets due to all
coalescence events of pairs of small droplets with the sum of their masses equal to that of m-size droplet. The second
term on the right hand side is the rate of depletion due to all coalescence events involving m-size droplets. Such
deterministic Smoluchowski equation or kinetic collection equation (KCE) describes how the number density of a
certain mass evolves in time. Although the term “stochastic” has been associated with the above equation for historical



Table 2
Analogy between coalescence modeling and fluid mechanics

Level of approach Coalescence models Fluid mechanics

Particle-level Monte-Carlo method (e.g., Gillespie, 1975b) Molecular dynamics
Phase space State space probability (e.g., Sec. 2 of Bayewitz et al., 1974) Boltzmann equation
Field variables P (n, m; t) (e.g., Gillespie, 1972) Navier–Strokes eqn
Full moment eqns Not fully known (e.g., Sec. 3 of Bayewitz et al., 1974) Full Reynolds-averaged Navier–Strokes (RANS) eqn
Modeled moment eqns Example: Smoluchowski equation (Smoluchowski, 1917) Modeled RANS eqns
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reasons to imply that a full spectrum of different droplet sizes are considered, the above equation is clearly deterministic
and has no stochastic correlations or fluctuations included.

Telford (1955), in his pioneering work on stochastic coalescence, first introduced the probabilistic interpretation to
the occurrence of instantaneous coalescence events assuming that (1) the concentration of the droplets available for
collection remains unchanged during their removal by coalescences and (2) the collecting drops do not interact among
themselves. The possibility of having a range of sizes for the collecting drops greatly increases the spectral width of the
drops than in the earlier continuous growth model in which all collecting drops are assumed to be of the same size.
Recently, Kostinski and Shaw (2005) published a simplified version of Telford's analysis to illustrate that stochastic
fluctuations can lead to a factor-of-10 acceleration in the growth of a few lucky drops. However, the descriptions of
Telford (1955) and Kostinski and Shaw (2005) are stochastically rather incomplete. In general, coalescence events occur
randomly and its local rates vary in space, time, and with realizations, the size distribution modeling must consider the
stochastic nature of the coagulation process. The stochastic completeness of the kinetic collection equation was later
studied by Scott (1967), Warshaw (1967), Long (1971), Gillespie (1972, 1975a), Bayewitz et al. (1974). The common
wisdom is that when the system volume or number of droplets is very large, the stochastic fluctuations tend to be small
compared to the mean values. However, we may argue that, when a particular droplet size class is considered, the
number may not always be large simply due to the system initial condition. Spatial inhomogeneity and fluctuations can
also be augmented by air turbulence, which adds another dimension to the stochastic nature of the coalescence process.

Here we shall revisit the question of stochastic completeness in coalescence modeling. Table 2 provides an overview
of all the different approaches that have been developed to model size distribution of droplets in a collision–coalescence
system, and draws an analogy between these approaches and different approaches used to describe fluid flow. From top
to bottom in Table 2, the degrees of freedom of the system are systematically reduced while the nature of governing rules
or equations changes from linear to nonlinear. Of importance is that the full moment equations for a coalescence system
have not been derived in general, except for the special case of constant collision kernel by Bayewitz et al. (1974). We
will show below how to derive the full mean field equation at the first order which we will refer to as the true stochastic
coalescence equation (TSCE). Full mean field equations at higher order could be similarly derived. We will then point
out an error in the derivation of Bayewitz et al. (1974), namely, Eq. (6) of their paper.

3.1. The master equation or the V-equation

We shall follow the approach of Bayewitz et al. (1974, hereafter BYKS74) by specifying the state of a realization of
the system at any time by the numbers of droplets for all possible discrete mass (or size) groups, x1, x2, x3, …., xN0

. The
total number of droplets is denoted by N, namely, N=∑xk.

Let M1 be the mass of the elemental droplets. The mass of the k-th size group is assumed to be given as Mk=k M1.
For any given realization, the mass conservation states

X
k

Mkxk ¼ M1

X
k

kxk ¼ M1N0; ð5Þ

where N0 is the largest possible mass class. The system would be completely specified by the probability distribution v
(N, x1, x2, x3, …; t) of the state space (N, x1, x2, x3, …) and, by definition, the summation of over the state space is unity:

X
x1

X
x2

N
XX

xN0

vðN ; x1; x2; x3 N ; tÞ ¼ 1 ð6Þ
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It is assumed that the coalescence kernels Cj,k; j,k=1, 2,…, N0, have been determined such that Cj,kdt represents the
probability that a given pair of cloud droplets with masses Mj and Mk will coalesce in the next infinitesimal time
interval dt (Gillespie, 1972; Bayewitz et al., 1974; Gillespie, 1975a,b). Cj,k may be a function of Mj and Mk, but we
shall assume Cj,k does not depend on xj and xk, a reasonable assumption as long as the total volume concentration of
droplets is very small and only binary collisions need to be considered.

To develop a governing equation for v(N, x1, x2, x3…; t), we follow the arguments of BYKS74 and examine three sets
of scenarios, during the infinitesimal time interval from t→ t+dt, that will contribute to v(N, x1, x2, x3…; t+dt): (1) a
coalescence takes place between two droplets of the same size; (2) a coalescence occurs between two droplets of
different sizes; and (3) no coalescence occurs. The first contribution requires consideration of all neighboring states (N
+1, x1, … , xk+2,…, x2k−1, ….) at time t and, after summing over all different pairs and droplets sizes, is given as

X
k

vðN þ 1; x1; N ; xk þ 2; N ; x2k−1; N ; tÞ xm þ 2
2

� �
Ck;kdt:

The second contribution requires consideration of all neighboring states (N+1, x1, …, xj+1, … xk+1, …, xj+1−1, …)
at time t and isX

j

X
k|fflfflffl{zfflfflffl}

j<k

vðN þ 1; x1; N ; xj þ 1; N ; xk þ 1; N ; xjþk−1; N ; tÞðxj þ 1Þðxk þ 1ÞCj;kdt:

The last contribution should be

vðN ; x1; x2; x3 N ; tÞ 1−
X
j

X
k|fflfflffl{zfflfflffl}

j<k

xjxkCj;kdt−
X
k

xk
2

� �
Ck;kdt

2
66664

3
77775:

The sum of these three contributions will be equal to v(N, x1, x2, x3…; t), therefore, the governing equation for v(N, x1,
x2, x3…; t) can be written as

d
dt
vðN ; x1; x2; x3; N ; tÞ ¼

X
j

X
k|fflfflffl{zfflfflffl}

j<k

vðN þ 1; x1; N ; xj þ 1; N ; xk þ 1; N ; xjþk−1; N ; tÞ � ðxj þ 1Þðxk þ 1ÞCj;k

þ
X
k

vðN þ 1; x1; N ; xk þ 2; N ; x2k−1; N ; tÞ
xk þ 2

2

� �
Ck;k

−vðN ; x1; x2; x3; N ; tÞ
X
j

X
k|fflfflffl{zfflfflffl}

j<k

xjxkCj;k þ
X
k

xk
2

� �
Ck;k

2
66664

3
77775: ð7Þ

We shall call the above equation the master equation or V-equation. The above equation extends the formulation
of BYKS74 for the special case of constant coalescence kernel to arbitrary collision kernels. The above
description is stochastically complete. Once the probabilities of the states are determined, one can derive all other
statistical quantities. The probability distribution for a given particle mass can be written as:

Pðn;m; tÞ ¼
X

All but xm

vðN ; x1; x2; N ; xm ¼ n; N ; tÞ; ð8Þ

where the summation is understood as over all the state variables except xm.
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The mean and moments of particle number for a given mass are

< xm > u
X
All

xmv; < xnm > u
X
All

xnmv; ð9Þ

where the summation is over the full state space. Likewise, correlations can also be evaluated as

< xjxk > u
X
All

xjxkv: ð10Þ

Here the brackets imply an average over all realizations in the state space. We shall define the cross-correlations
coefficient ρjk as

qjk ¼
< xjxk > − < xj >< xk >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð< x2j > − < xj >2Þð< x2k > − < xk >2Þ
q : ð11Þ

Of particular importance is the fact that the system of equations represented by Eq. (7) are linear and can, in
principle, be solved analytically for arbitrary variable collision kernels, in terms of eigenvalues and eigenvectors of the
linear system. Furthermore, random initial conditions can be handled by a probability-weighted superposition of
deterministic initial conditions because of the linearity. The analytical solutions can be used to validate numerical
solutions such as those based on Monte-Carlo method (Gillespie, 1975b) and to study the correlations between
different particle sizes (BYKS74). Of course, in practice, this is only feasible for a system containing a small number of
droplets since the total number of states increases extremely quickly with N0. For example, the total number of states
for N0=5, 10, 40, and 100 are 7; 42; 37,338; and 190,569,292; respectively.2
3.2. Derivation of the true stochastic coalescence equation (TSCE)

We shall now present a derivation for the true stochastic collision–coalescence equations. While BYKS74 presented
such an equation for the special case of constant collision kernel, no derivation was given in their paper. Therefore, this
section serves two purposes: (1) to present a detailed derivation and (2) to show that it is possible to develop the true
stochastic coalescence equations for arbitrary collision kernels. To our knowledge, this has not been attempted in terms
of discrete masses, although some discussions in terms of continuous mass are provided by Ramkrishna and co-
workers (Ramkrishna and Borwanker, 1973, 1974; Ramkrishna et al., 1976).

Multiplying Eq. (7) by xm and then summing over all state space, we have

d < xm >

dt
¼

X
All

X
k

v N þ 1; N ; xk þ 2; N ; x2k−1; N ; tð Þ ðxk þ 2Þðxk þ 1Þ
2

xmCk;k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

þ
X
All

X
j

X
k|fflfflffl{zfflfflffl}

j<k

vðN þ 1; N ; xj þ 1; N ; xk þ 1; N ; xjþk−1; N ; tÞðxj þ 1Þðxk þ 1ÞxmCj;k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
B

−
X
All

X
j

X
k|fflfflffl{zfflfflffl}

j<k

vðN ; x1; x2; x3; N ; tÞxjxkxmCj;k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C

−
X
All

X
k

vðN ; x1; x2; x3; N ; tÞ xkðxk þ 1Þ
2

xmCk;k

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

: ð12Þ

The range of values that k may take in term A is from 1 to int N0
2

� �
, where

int
N0

2

� �
u

N0=2; if N0 is even
ðN0−1Þ=2; if N0 is odd:

�
ð13Þ
2 Finding all distinct states for a given total number is known as the partition problem, see for example, (Andrews, 1998).
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Rewriting Term A in Eq. (12) as

A ¼
X
All

X
k

ðdÞ ¼
X
k

X
All

ðdÞ ¼
X
k|{z}

kpm=2;kpm

X
All

ðdÞ þ gðmÞ
X
All

ðdÞk¼m=2 þ xðmÞ
X
All

ðdÞk¼m; ð14Þ

where we have introduced the notation, following Gillespie (1972), that

gðmÞu 1; if m is even
0; if m is odd:

�
ð15Þ

The second notation ω(m) is defined as

xðmÞu
1; if mVint

N0

2

� �

0; if m > int
N0

2

� �
:

8>><
>>: ð16Þ

Noting the state location of the probability v, the three parts of the term A then become

A ¼
X
k|{z}

kpm=2; kpm

1
2
< xkðxk−1Þxm > Ck;k þ gðmÞ

2
< xm=2ðxm=2−1Þðxm þ 1Þ > Cm=2;m=2 þ xðmÞ

2

< xmðxm−1Þðxm−2Þ > Cm;m ¼
X
k

1
2
< xkðxk−1Þxm > Ck;k þ gðmÞ

2
< xm=2ðxm=2−1Þ > Cm=2;m=2−xðmÞ

< xmðxm−1Þ > Cm;m ð17Þ
Similarly, the second term B can be handled as

B ¼
X
j

X
k|fflfflffl{zfflfflffl}

j<k;jþkVm−1

X
All

ðdÞ þ
X
j

X
k|fflfflffl{zfflfflffl}

j<k;jþk¼m

X
All

ðdÞ þ
X
j

X
k|fflfflffl{zfflfflffl}

j<k;jþkzmþ1;jpm;kpm

X
All

ðdÞ þ
X
j

X
k|fflfflffl{zfflfflffl}

j<k;jþkzmþ1;jpm;kpm

X
All

ðdÞ

þ
X
j

X
k|fflfflffl{zfflfflffl}

j<k;jþkzmþ1;jpm;kpm

X
All

ðdÞ

¼
X
j

X
k|fflfflffl{zfflfflffl}

Part 1: j<k;jþkVm−1

Cj;k < xm; xjxk > þ
X
j

X
k|fflfflffl{zfflfflffl}

Part 2: j<k;jþk¼m

Cj;k < ðxm þ 1Þxjxk >

þ
X
j

X
k|fflfflfflffl{zfflfflfflffl}

Part 3: j<k;jþkzmþ1;jpm;kpm

Cj;k < xm; xjxk > þ
X
j|{z}

Part 4: j<m

Cj;m < ðxm−1Þxjxm >

þ
X
k|{z}

Part 5: k>m

Cm;k < ðxm−1Þxmxk > : ð18Þ

It is crucial to understand all the possible combinations of j and k as represented by the five parts in term B. In Fig. 4,
we show all these combinations by different symbols and indicate the sub-domains covered by the five parts shown on
the right hand side of Eq. (18). Note that the last term in Eq. (18) would not be there if m > int

N0

2

� �
since j+k≤N0 (see

Fig. 4). However, it is harmless to drop the constraint j+k≤N0 and to let the domain extend over all the region covered
by k> j with k≤N0 and j≤ (N0−1). This is because the extended region makes zero contribution anyway since

< ð N Þxjxk >¼ 0; if jþ k > N0:



Fig. 4. The five sub-domains covered by the five parts in term B, as displayed in the order shown in Eq. (18).
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Namely, when j+k>N0, xj and xk cannot take non-zero value simultaneously because of the constraint of the total
system mass. This same concept may be applied to the other terms in Eq. (18), and that is why we did not explicitly
state j+k≤N0 in the summations. However, this domain extension must be taken with care when (i) the last two terms
in Eq. (18) are combined, as given in the next expression; (ii) any nonzero terms involving j=k> int(N0 /2) must be
excluded from the final equations.

Eq. (18) can be rearranged to obtain

B ¼
X
j

X
k|fflfflffl{zfflfflffl}

j<k

Cj;k < xmxjxk > þ
X
j

X
k|fflfflffl{zfflfflffl}

j<k; jþk¼m

Cj;k < xjxk > −
X
k

Ck;m < xkxm > þxðmÞCm;m < x2m >
ð19Þ

The reason for including ω(m) in the last term has been stated in the last paragraph. The key to the above steps is to
recognize that, when j or k overlaps with m / 2, m, or 2m, the terms must be handled with care.

The last two terms in Eq. (12) reduce to

C ¼
X
j

X
k|fflfflffl{zfflfflffl}

j<k

Cj;k < xmxjxk > ð20Þ

D ¼
X
k

Ck;k
1

2
< xmxkðxk−1Þ > ð21Þ

Substituting Eqs. (17), (19)–(21) into Eq. (12) and noting that

X
j

X
k|fflfflffl{zfflfflffl}

j<k; jþk¼m

Cj;k < xjxk >¼ 1
2

Xm−1
k¼1

Ck;m−k < xkxm−k > −
gðmÞ
2

Cm=2;m=2 < x2m=2 > :
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we obtain finally

d < xm >

dt
¼ 1

2

Xm−1
k¼1

Ck;m−k < xkxm−k >|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term A

�
XN0−m

k¼1

Cm;k < xmxk >|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term B

þxðmÞCm;m < xm >|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term C

−
gðmÞ
2

Cm=2;m=2 < xm=2 >|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Term D

ð22Þ
This is the true stochastic coalescence equation (TSCE).

3.3. Results and discussion

Eq. (22) is almost identical to Eq. (6) in BYKS74 when all Cj,k are set to one. However, there are two important
differences between our equation and the equation given in BYKS74. First, the range for k in the second term on the
right hand side is here explicitly specified. The upper bound k=N0−m is necessary to exclude any unphysical
coagulations between two particles with the sum of their mass larger than the total mass of the system. This is a very
important requirement and must be satisfied at each individual realization.

Secondly, the third term on the right hand side is zero here when m> int(N0 /2), because of ω(m). We can show
easily that ω(m) is necessary because of the mass conservation

d
dt

XN0

m¼1

m < xm >¼ 0: ð23Þ

Without ω(m), Eq. (22) would not satisfy Eq. (23), since the first two terms on the right hand side of Eq. (22) would
cancel each other if the operation

PN0
m¼1 mð::Þ is taken. Therefore, Eq. (6) in BYKS74 is not correct because ω(m) is

missing.
The third term (Term C) on the right-hand-side of Eq. (22) is a correction to Term B required to reinstate the correct

bookkeeping of the number of pairs for self-collisions. The forth term is a correction to term A for the same reason.
These correction terms are not relevant if self-collisions are not involved such as the case of gravitational collision–
coalescence.

Unlike the usual, deterministic KCE, the TSCE, Eq. (22), contains correlations among instantaneous droplets of
different sizes. In Fig. 5, we display the value of all terms in the TSCE for the case of Ci,j=1 with N0=100 and m=80,
using the analytical solution of BYKS74. Initially, it is assumed that xm=N0δm1. This figure demonstrates that the left
hand side of TSCE and the right hand side of TSCE are exactly the same. We can also conclude that the additional term
C and term D in TSCE can be important for large droplet sizes or for later times. Using the analytical solution of
BYKS74, we can obtain correlation coefficients of droplet number fluctuations for different mass pairs for the case of
time (s)
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Fig. 5. Validation of the TSCE for the case of constant collision kernel when applied to 80. The initial system size is equal to 100.
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constant collision kernel. The analytical solution of BYKS74 involves subtractions of extremely large numbers in a
series summation, and care was taken to make sure that the final result is correct. Monte-Carlo simulations were also
used to check the results. Fig. 6(a) shows results for 1–2 and 2–3 pairs for two different system sizes N0. When plotted
against N0t, the results overlap for two system sizes. The magnitude of correlation coefficients can be quite large. ρ1,2 is
close to −1 at small times for the reason that, given the initial condition, only self collisions between size-1 droplets are
possible and these generate only size-2 droplets initially. ρ2,3 is almost always negative because the only way size-3
droplets are produced is through coalescences of size-2 droplets with size-1 droplets. Therefore, the production of size-
3 droplets goes with the depletion of size-2 droplets. The negative value of ρ2,3 will impact the production rate of size-5
droplets. Also shown in Fig. 6(b) is the ratio of rms fluctuation to the mean for three different droplet sizes and two
system sizes. We can see that the rms fluctuations may be much larger than the mean if the mean is small. For an
initially narrow size distribution, the mean values in large size bins are all necessarily small.

The non-zero correlations and large relative fluctuations shown above would imply that the size distribution may not
be correctly modelled by the usual KCE in general. Consider a system initially containing 100 monodisperse elemental
droplets and Ci,j=1. If all droplets coalesce, the final state is one large droplet of 100 times the elemental mass. We
compare, in Fig. 7, results of mass distribution using three different approaches: the stochastically complete approach
of BYKS74, KCE, and the truncated KCE (i.e., Eq. (4) with only 100 bins considered). Fig. 7 shows that the mass
distribution is almost the same for the three approaches at early time t=0.1. At later time (t=0.6), however, they give
different results. The difference is partly due to the fluctuation correlations discussed above. The truncation at
m=N0=100 also accelerates the production of the largest droplet when compared to the untruncated KCE.

Finally, we note that the nature of collision kernel can affect the level of the correlation coefficients. Fig. 8 compares
results obtained by Monte-Carlo simulations, for gravitational collision kernel and a turbulent collision kernel at
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Fig. 6. (a)Analytical correlation coefficients and (b) ratio of rms fluctuation to the mean for the case of constant collision kernel.
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Fig. 7. Mass distribution obtained from different approaches: (a) t=0.1; (b) t=0.6.

429L.-P. Wang et al. / Atmospheric Research 82 (2006) 416–432
ϵ=100 cm2/s3. These kernels and the initial conditions are the same as these used in Section 2.1. Of importance is that
the turbulent collision kernel results in larger correlation coefficients, implying that the deviation from the KCE
description due to the stochastic coalescence is larger in a turbulent flow. We also compared the mass distributions
obtained from the Monte-Carlo method with that obtained by solving the truncated KCE. Fig. 9 displays the
distributions at t=T for two of the cases discussed in Section 2.1. The difference between the two is indeed larger for
the turbulent kernel case, particularly at later times.

Our ultimate goal is to use TSCE to identify the conditions under which the usual deterministic collision–
coalescence mean-field equation such as KCE can be applied, or else how the mean field equation could be improved to
account for the stochastic nature of the coalescence process. Our strategy for future research developments is to use the
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Fig. 8. Correlation coefficients for hydrodynamic kernels with and without air turbulence. The time scale T=2891 s.
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Fig. 9. Mass distributions at t=T for two of the cases discussed in Section 2.1: (a) gravity kernel; (b) turbulent kernel at ϵ=100 cm2/s3. The open
circles are based on the truncated KCE and the filled circles are from Monte-Carlo simulations.
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TSCE and the Monte-Carlo method to understand the stochastic correlations and fluctuations, and then apply the
knowledge to design closure models for these stochastic variations when necessary.
4. Summary and remarks

While the potential importance of air turbulence on
the collision–coalescence growth of cloud droplets has
generally been recognized, quantitative descriptions of
various effects of air turbulence on the collision rate are
still incomplete. Turbulent coalescences of hydrodyna-
mically interacting droplets represent a complex problem
which necessarily requires sophisticated research tools.
Computational approaches such as HDNS (Wang et al.,
2005b) will continue to be a good quantitative research
tool as they provide important data to advance the
fundamental understanding of relevant physical pro-
cesses. Theoretical (Zaichik et al., 2003; Zaichik and
Alipchenkov, 2003) and accurate experimental tools
(Shaw, 2004; Chuang and Bachalo, 2004) are also much
needed, particularly when certain aspects such as the
effect of flow Reynolds number may not be directly
addressed by computational approaches. It is anticipated
that results from DNS, theoretical, and experimental
approaches will be integrated to address the Reynolds
number issue in the coming years.

In this paper, we summarized our on-going efforts in
quantifying the effects of turbulence and stochastic
coalescence on the growth of cloud droplets. We showed
that the enhanced geometric collision rates by air
turbulence may reduce the time for drizzle formation
due to coalescence by about 40% at ϵ=400 cm2/s3,
relative to the gravitational coalescence. Uncertainties
remain on the level of droplet accumulation due to
turbulence at high flow Reynolds numbers. Preliminary
results also show that air turbulence can significantly
increase collision efficiencies (Wang et al., 2005b).
Combining these two enhancements by turbulence is
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expected to further reduce the time for drizzle formation.
Future workwill be aimed at parameterizing these effects
by combining HDNS with a theoretical approach.

We also revisited the question of stochastic complete-
ness of the kinetic collection equation. It is shown that a
true stochastic coalescence equation can be derived for
arbitrary collision kernels. We also validated this new
mean field equation using known analytical results and
Monte-Carlo simulations. For a system of finite liquid
mass and narrow initial size distribution, it is demon-
strated that both stochastic correlations and fluctuations
are significant. Therefore, for certain initial conditions,
the stochastic correlations, which are not considered in
the usual kinetic collection equation, could be another
source of uncertainty in modeling rain formation. It is
hoped that the TSCE will be useful in the future to
improve the deterministic kinetic collection equation.
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