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A six-dimensional nonlinear dynamic system describing the Lagrangian motion of a heavy 
particle in the Arnold-Beltrami-Childress (ABC) flow was numerically studied. Lyapunov 
exponents and fractal dimension were used to quantify the chaotic motion. A single set of ABC 
flow parameters and a limited set of initial conditions were used. Given these restrictions, the 
following were found. ( 1) Attractor fractal dimension varies significantly with Stokes number, 
and, depending on inertia, periodic, quasiperiodic, and chaotic attractors may, exist. (2) 
Particle drift reduces the fractal dimension when the drift is small. It can also cause irregular 
jumps when the drift parameter is close to one. (3) Quasiperiodic orbits on smooth two- 
dimensional manifolds were shown to be the most common ultimate solutions of the system 
when either the inertia or the drift is relatively large. (4) Different initial conditions can lead 
to different attracting sets; however, most of them have the same dimension. (5) A direct 
measure of dispersion based on mean square displacement was defined, but no relation between 
this dispersion measure and fractal dimension was found. 

I. INTRODUCTION 

Mixing, diffusion, and dispersion of passive particles in 
a fluid flow are naturally related to the particle’s motion 
along its trajectory,’ i.e., the Lagrangian motion, as opposed 
to the Eulerian motion based on fixed space coordinates. If 
the Eulerian flow field is known, the Lagrangian motion is 
then defined by a set of nonlinear ordinary differential equa- 
tions, usually a dynamical system rich enough to display 
nonintegrable or chaotic behavior. Recently, the methods of 
modern nonlinear dynamics have been used to study the La- 
grangian motion of particles and fluid pointszV6 Even in 
simple steady flows, such as the Stokes flow or the Arnold- 
Beltrami-Childress (ABC) flow, the Lagrangian motion of 
fluid particles can be chaotic.2z3 Aref and Jones” found that, 
if the flow exhibited chaotic advection, separation of diffus- 
ing fluid particles in a Stokes flow was enhanced. 

In this paper, we consider the motion of heavy particles 
under linear Stokes drag in the ABC flow. Heavy particles 
are any small passive particles in the flow with a density 
much larger than the density of the fluid. In an external 
potential force (usually gravity) field, heavy particles have a 
free-fall velocity that is of the order of the fluid characteristic 
velocity. The density difference and free fall cause the heavy 
particle to not exactly follow the motion of the surrounding 
fluid. The equations of motion for a heavy particle can be 
written in dimensionless form as 

dVi uiCY,tl - [‘I YsL3 -s 
dt St -Sty 

i = 1,2,3; i la) 

dYi 
--& = vi, i = 1,2,3. 

Here, Stokes number, St =r, u,/L, is the ratio of a particle’s 
aerodynamic response time to a characteristic time of the 
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flow, y = rag/u, is the ratio of the particle’s drift velocity 
r,g to a characteristic velocity of the flow, where L and u,, 
are the characteristic length and velocity of the flow, respec- 
tively, and g is the body force per unit mass, and ui (x,t) 
represents the instantaneous Eulerian fluid velocity. For 
steady ABC flow, the flow field is defined by 

u1 =A sin(2rrx,) + Ccos(27rxz), i2a) 
u2 = B sin(2nx, ) + A cos(2rx, ), i2b) 
u3 = Csin(2rx2) + Bcos(2m, 1. (2c) 

This flow is an exact solution of Euler’s equation, because 
the vorticity vector is parallel to the velocity vector at all 
points in space. In the real world, this flow would decay 
because of the viscosity of the fluid. The details of the tlow 
structure have been discussed by Dombre et 01.~ 

The dynamical system (la) and (lb) is six-dimension- 
al, strongly nonlinear, and nonautonomous. It is dissipative, 
since the volume expansion rate associated with (la) and 
(lb) is - J/St if the flow is incompressible. It is also quite 
different from the dynamic system for the motion of fluid 
points, Eq. (lb) with v, replaced by ui, which is three-di- 
mensional and nondissipative. The chaotic motion of passive 
particles in this ABC flow was investigated by McLaugh- 
lin.5 He found that chaotic particle trajectories existed and 
that chaos tended to be eliminated by the particle inertia and 
virtual mass. McLaughlin did not quantify the chaotic be- 
havior. In addition, he reduced the six-dimensional dynamic 
system to a three-dimensional dynamic system by assuming 
the inertia to be small. In his study, the particle velocity vi (t) 
was given simply by replacing dv,/dt in Eq. (la) with 
dq/dt. Therefore his dynamic system for the motion of par- 
ticles is valid only when the inertia is very small (i.e., St Q 1) . 

Most of the work on the chaotic dynamics of Lagran- 
gian motion is still in its qualitative stage. In our recent paper 
(Wang et al.’ ), we calculated quantitative measures of both 
dispersion and chaos and found that the dispersion coeffi- 
cient of heavy particles in pseudoturbulence is linearly relat- 

1073 Phys. Fluids A 3 (5), May 1991 0899-8213191 I051 073-08$02.00 Q 1991 American Institute of Physics 1073 

Downloaded 01 Jul 2005 to 128.117.47.188. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



ed to the fractal dimension of the attractor for the heavy 
particles. In this paper, we shall examine quantitatively the 
Lagrangian motion of heavy particles’in the ABC flow in 
terms of both dispersion and chaotic behavior. ABC flow is 
very different than pseudoturbulence. The latter is random, 
statistically isotropic, and homogeneous. ABC flow, on the 
other hand, is spatially periodic, well organized, anisotropic, 
and inhomogeneous. Crisanti et al* quantitatively studied 
the Lagrangian motion of particles in a two-dimensional 
counterpart of the ABC flow with A = B = 2 and C - 0. For 
particles slightly heavier than the fluid, they found that the 
particle motion can be characterized by well-defined disper- 
sion coefficients and a positive largest ,Lyapunov exponent. 
They also showed, through numerical simulations, a similar- 
ity between the particle motion and the motion of fluid ele- 
ments in the presence of molecular diffusion. Because of the 
recent finding of Lagrangian turbulence,“‘-6 we believe that a 
dispersion measure makes sense when the particle motion 
becomes chaotic, even the flow responsible for such motion 
is simple and steady. If the particle motion happens to be 
periodic or quasiperiodic, the dispersion measure is not a 
valid notion. Indeed the possible breakdown of the disper- 
sion measure here motivates us to search for a better way of 
quantifying the Lagrangian particle motion, i.e., to use frac- 
tal dimension. 

The purpose of this study was to numerically calculate 
both fractal dimension and a measure of dispersion for the 
Lagrangian motion of heavy particles in ABC flow. The six- 
dimensional nonlinear ODE, ( la) and ( lb), were used since 
both finite inertia and finite drift were considered. Lyapunov 
exponents were used to estimate the fractal dimension (Ka- 
plan-Yorke conjecture9 ) . Time-averaged mean square dis- 
placements were introduced to quantify the dispersion. 

In this paper, we will describe only some preliminary 
results of our study. The complexities contained in the sys- 
tem are illustrated through a limited choice of the system 
parameters and the initial conditions. A more detailed study 
is currently in progress. 

II. COMPUTATION DETAILS AND FRACTAL 
DIMENSION 

Since the dynamic system, (la) and (lb), is generally 
nonintegrable, numerical integration is necessary to deter- 
mine the Lagrangian motion. This was done using the 
fourth-order Hamming” predictor-corrector scheme, with 
initialization using the fourth-order Runge-Kutta method. 
A time step of 0.01 was used in this study. Numerical tests 
showed that the Poincare map and Lyapunov exponents 
were independent of time step for time steps smaller than 
0.01. 

In this study, we focused on how the Lagrangian motion 
of a heavy particle would change with particle’s characteris- 
tics, the Stokes number, and the drift parameter. One set of 
flow parameters, A = 1, B ’ = 0.9, C2 = 0.5, was used. For 
this set of A, B, and C values, we have B ’ + C2>A ‘. It is 
known that there are eight distinct fixed points in the funda- 
mental box O<x< 1, 04;~~ I, O<z<: 1 and that regions of 
chaos exist along the heteroclinic lines connecting the unsta- 
ble fixed points for the Lagrangian motion of fluid elements* 

(note: if the drift is zero, the fixed points for the motion of 
heavy particle are exactly the same as those of fluid ele- 
ments). 

The initial conditions for the motion of a heavy particle 
were taken to be 

.Yi(t=O) =YOi% (3a) 
LJ;(t=o) =Ui(yo,o) - $,. (3b) 
The value for the initial location, yoi in (3a), may affect 

the long-time solution of the Lagrangian motion. To test 
this, we used two different initial locations, Si: 
(0.26,O.O,O.S) and&: (0.3,0.1,0.6) in our calculations. The 
point S, is near the edge of one of the principal vortices’ 
aligned along with the x, direction. The point S, is close to 
one of the fixed points (0.328, 0.109, 0.592). Other initial 
locations will be discussed later in the paper. 

The initial particle velocity may not be realistic. We 
chose (3b) mainly for the purpose of limiting the number of 
conditions to be studied. If the long-time solution of the sys- 
tem is not unique, different choices of initial conditions may 
lead to different attractors. See Sec. IV C for a limited dis- 
cussion of the effect of initial conditions on the type of attrac- 
tor realized. 

Lyapunov exponents characterize the mean exponential 
rate of divergence of trajectories surrounding a given trajec- 
tory in a phase space. For the autonomous six-dimensional 
system given by (la) and (lb), there exist six Lyapunov 
exponents. ” It is well known that a dissipative nonlinear 
system may have a variety of different attracting sets for 
different system parameters and initial conditions, ** there- 
fore the Lyapunov exponents are not unique. In this study, 
the Lyapunov exponents were found using the procedure of 
Wolf et al.” A brief description of the procedure is given 
here. A base trajectory was produced first by numerical inte- 
gration of the motion equations of a particle. Then, six neigh- 
boring trajectories were computed using the linearized ver- 
sion of the equations of motion, starting from six 
orthonormal directions. A Gram-Schmidt reorthonormali- 
zation procedure on the vector frame was used after every 
time duration r to form a new orthonormal set. After n inter- 
vals, the Lyapunov exponents were estimated by 

pt(n) =-$ -2, log, [Norm,(/)], i = 1,...,6, (4) 
I- 

where Norm, 0’) is the length of projection of the evolved 
vector i in its new normalization direction at timejr. If n is 
sufficiently large, cri will no longer depend on n (Fig. 1) . For 
most of the results presented, YI is 4000 and r is 1.0. Two 
important features of the Lyapunov exponents were ob- 
served in our computations: ( 1) At least one of the Lya- 
punov exponents was zero (all of the attractors we found 
were of dimension of one or greater); (2) the sum of the 
Lyapunov exponents was equal to - 3/St multiplied by the 
factor log, e. 

A further measure of a system attractor is the fractal 
dimension. The Kaplan and Yorke or Lyapunov dimen- 
sion”,13 df was calculated as 

(51 
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FIG. 1. Lyapunov exponents as a function of the number of intervals for the 
attractor of Lagrangian motion of a heavy particle starting from the point 
S, and with St = 1.0 and y = 0.0. 

where j is defined by the condition that 

2 o;>O and ‘soi<O. 
i-l ,= 1 

(6) 

Ill. MEASURE OF DISPERSION 

One measure of the dispersion of particles in a turbulent 
flow is diffusivity, which is one-half of the.time derivative of 
mean square displacement. For homogeneous flows, the 
long-time mean square displacement is a linear function of 
time and thus it is possible to calculate a long-time diffusiv- 
ity. This idea was used to introduce a measure of dispersion 
for the motion of particles in our deterministic and steady 
ABC flow. The use of a dispersion measure here was moti- 
vated by the recent finding of Lagrangian turbulence2-6 and 
the practical relevance of quantifying Lagrangian motions. 

The mean square displacement was calculated from one 
trajectory of a heavy particle. We divided the trajectory into 
N sections of time length To. For each section, we defined 
the displacement-G, (t,k) as the change of location relative to 
the starting point of the section, jji (t,k) = yi [ (k - 1) To 
+ t ] - yi [ (k - 1) To 1. Then the mean square displace- 

ment is 

_ for O<r< ‘Ta, i= 1,2,3, 

where the mean displacement is defined as 
(7a) 

j-+(t) =’ __ N k~Ih(t,k)a 
The mean d&%siuity F( t) is one-half of the time derivative of 
the average mean square displacement 

dt) =$-$ [ @-&+ m+ m(t)]. (8) 

A constant long-time diffusivity can be calculated if the aver- 
age mean square displacement is linearly related to t when t 
is sufficiently large. Figure 2 shows the mean square dis- 
placements for two different y with St = 1. At y = 0.0, the 
average long-time mean square displacement is a linear func- 

i 
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FIG. 2. Mean square displacements for a heavy particle starting from S, 
and with St = 1.0. A long-time diffusivity for y = 0.0 can be defined while it 
cannot be defined for y = 0.4. 

tion of time and Z is equal to 0.375. For y = 0.4, the average 
long-time mean square displacement is not a linear function 
of time but is approximately proportional to t 2. Such a ballis- 
tic dispersion was also observed by Crisanti et aZ.* For this 
case, the long-time diffusivity cannot be defined. Direct visu- 
alization (three-dimensional trajectory plots) indicated that 
the trajectory for y = 0.0 and St = 1.0 has a very irregular 
shape, while the trajectory for y = 0.4 and St = 1 .O is quasi- 
periodic with a helical turning behavior. We will report the 
value of the long-time diffusivity only when it is defined. For 
all the diffusivity calculations, an N of 300 and To of 20 was 
used. 

IV. RESULTS AND DlSCUSSlONS 
A. Lagrangian motion of heavy particles with zero drift 

We first consider the Lagrangian motion of a heavy par- 
ticle assuming the drift is zero ( y = 0). Figure 3 shows the 
largest Lyapunov exponent o, as a function of the Stokes 
number. Here, o, increases with particle inertia very rapidly 
for St ~0.3 but decreases with particle inertia for 
0.3 < St < 2, and reaches its maximum value of about 2 when 
St = 0.3. When the Stokes number is larger than 2.25, or is 
consistently close to zero. Since a positive U, is a necessary 
condition for chaotic motion, the Lagrangian motion of a 
heavy particle with large inertia is at most weakly chaotic. It 
is worth noting that the largest Lyapunov exponent for the 
attractor of a fluid element starting from S, is 0.000, which is 
expected, since S, is near one of the principal vortices and 
the orbit is quasiperiodic. The motion of a fluid element 
starting from S, has a chaotic trajectory with CJ, equal to 
0.517. Therefore gI for the attractor of a fluid element de- 
pends on the initial location. However, 0, showed no signifi- 
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FIG. 3. Largest  Lyapunov exponents  as  a  function of the Stokes number  
when the drift is zero. 

cant dependence on initial location for the attractor of a  
heavy particle for most inertia values. For a heavy particle 
with very small inertia and starting from S,, (pi was near 
zero and thus is different than (+, for a fluid element starting 
from the same location. This agrees with McLaughlin’s 
qualitative result.5 

The Kaplan-Yorke fractal dimension has a shape simi- 
lar to u, (Fig. 4). The maximum df is 4.45 and occurs when 
St is 1.25. A Stokes number close to one is physically impor- 
tant since, in this case, the particle response time is about the 
same as the flow characteristic time. The power spectra for 
the three velocity components at St = 1.0 are shown in Fig. 
5  (a). We  see that the three spectrum curves are very similar 
and contain broadband frequency contributions, which im- 
plies that the Lagrangian particle motion is nearly random 
and isotropic. It is also interesting to note that the curves are 
almost a straight line on the log-linear plot. The d, value for 
the attractor of the particle starting from S, is very close to 
that starting from SZ for all St, indicating no detectable de- 
pendence of d, on the initial location of the particle. For 
St>2.25, the first two Lyapunov exponents are equal to zero 

1 0 

0 s . . . . . . . . . . . .2 

0 
0 2 4 6 a 

St 

FIG. 4. Fractaldimension as a  function of the Stokes number  when the drift 
is’zero. 

and the remaining four less than zero so that df is equal to 
two. The velocity power spectra for such a case are shown in 
Fig. 5(b). All the peaks in Fig. 5(b) are resolved by using 
two discrete frequencies, ji =3.01 and f2 33.83, and their- 
combination frequencies. The fact that d, = 2 suggests that 
the ratio of these two frequencies is an irrational number and 
the motion is quasiperiodic. The attracting set for this case in 
the phase space is then a two-dimensional smooth manifold 
such as toroidal surface or closed sheet. 

To gain a further understanding of the above results, we 
constructed Poincare maps in the plane x = 0 for the parti- 
cle’s orbit for some of the inertia values (Fig. 6). The Poin- 
care map was formed by recording the particle’s y and z 
coordinates each time the particle crossed the plane x = 0 
and imposing periodic boundary conditions in all three di- 
rections.$ In general, the larger the fractal dimension the 
more the attractor spreads on the Poincare map. When the 
Stokes number is one and d, is nearly maximized, the Poin- 
care map has almost a uniform distribution of intersection 
points and shows no structure. 

Figure 7 shows the mean long-time diffusivity as a func- 
tion of Stokes number. The diffusivity increases with St for 
St < 1.3 and is very close to zero for St > 2.3. The’long-time 
mean square displacement was not linearly related to time 
for 1.3 <St < 2.3, thus the diffusivity could not be defined in 
this region. Comparing Fig. 7  to Fig. 4, we find no correla- 
tion between df and Z. 

B. Lagrangian motion with a fixed particle inertia (St= 1) 

To study the effect of particle drift on the Lagrangian 
motion of a  heavy particle, we now fix the particle inertia, 

(al StA.0 

(b) St96.0 

Frequency 

FIG. 5. Power spectra of the particle velocities vi(t) for y =  0. 
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FIG. 6. Poincare maps for some of the points shown in Fig. 4. 

St = 1.0. Figure 8 shows the largest Lyapunov exponent (T] 
as a function of the drift parameter. For very small ;y, cI is 
almost constant. Then it decreases quickly with increasing y 
for 0.3 < y< 0.5. For y> 1.1, U, is equal to zero, indicating 

FIG. 7. Mean long-time ditfusivity as a function of the Stokes number when 
the drift is zero. The shaded region is where the diffusivity cannot be de- 
fined. 
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FIG. 8. Largest Lyapunov exponents as a function of the drift parameter 
when the Stokes number is set to one. 

the motion is not chaotic. However, for. the region 
0.7 < y < 1.1, there are some irregular jumps in the value of 
CT,. This suggests the possibility of bifurcations. The fractal 
dimension (Fig. 9) has a shape similar to or. Here, d/ for 
y> 1.2, as in the case of large St in Fig. 4, is equal to two, 
which indicates the attractor is a two-dimensional manifold. 
Power spectra and direct trajectory projection of the motion 
of a particle starting from S, with y = 1.7 showed the trajec- 
tory to have a periodic orbit on a toroidal surface, i.e., two 
rationally related basic frequencies governing the motion. 
An expansion of the fractal dimension for 0.6 < y < 1.1 is 
given in Fig. 10. The jumps in df in Fig. 10 have different 
shapes for different initial particle locations. Therefore, in 
addition to structure bifurcation, multiattractors can be 
present in this region. At some values of y, d, is equal to one. 
Most of the df = 1 cases can be shown to have periodic orbits 
on a toroidal surface, as for y = 1.7. We also found that for at 
least one case, y.= 1.1 and initial location S, , the velocity 
power spectra show peaks at a single frequency and its multi- 
ples and the attractor projected onto the u, , u2, u3 space is a 
closed curve. These results indicate that the attractor is a 
limit cycle. The existence of limit cycles, quasiperiodic orbits 
and chaotic attractors suggest that the route to chaos for the 
system is via quasiperiodicity.” Further study, however, is 

FIG. 9. Fractal dimension as a function of the drift parameter when the 
Stokes number is fixed to one. 
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FIG. 10. An expanded view of the region from y = 0.6 to y = 1.1 in Fig. 8. 

needed to verify the nature of these bifurcations. A detailed 
look at the Poincart maps on the z = 0 plane (Fig. 11) also 
suggests that the larger the fractal dimension,. the more the 
attractor spreads on the Poincare map. 

Finally, the diffusivity for large values of y (y> 0.7) is 
close to zero (Fig. 12). For very small values of y, the diffu- 
sivity increases with the drift. For some values of y, the diffu- 
sivity cannot be defined. No rational connection between df 
and Z can be drawn. 

C. Other initial conditions 

A brief discussion on the effect of initial conditions on 
the types of attractors is given here. The nonlinear system is 
dissipative and it is not difficult to show that the particle 
velocities are bounded. The particle locations are not neces- 
sarily bounded, however, they can be truncated to the unit 
cubic box due to the periodicity of the ABC flow. Then, for 
the six-dimensional, volume-contracting and bounded sys- 
tem, the orbits may be asymptotic to one of the following 
attracting sets:14 (i) stable fixed points, (ii) simple closed 
curves, i.e., stable limit cycles, (iii) quasiperiodic (or period- 
ic) orbits on a two-dimensional torus (or one-dimensional 
toroidal curve), (iv) possible additional periodic and quasi- 
periodic orbits on higher dimensional surfaces, and (v) 
strange attractors. We can show that, for 
y<dm ’ - A ‘) , all the lixed points of the system are 
unstable and, for y> $?(C’ -t B 2 - -4 ‘) , no fixed point ex- 
ist, therefore (i) is not possible. We have observed (ii), (iii), 
and (v) for the limited values of particle drift and inertia and 
one set of A, B, and C. 

In addition, the asymptotic solution may depend on the 
initial conditions. A complete search of different attracting 
sets and their respective basins of attraction is beyond the 
scope of this paper and may well be impossible in practice. 
(For a much simpler, low-dimension system such as a non- 
linear Duffing oscillator, a search of all attractors and their 
basins of attraction is possible but very tedious.‘2 ) Never- 
theless, we have tested some other initial conditions for the 
following two cases: (i) St = 2.4 and y = 0; (ii) St = 1.0 
and y = 0.85. In addition to the two initial locations S, and 
S, , the computation for ai and df were repeated for 27 initial 
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FIG. 11. Poincark maps for some of the points shown in Figs. 8 and 9. 

locations uniformly distributed in the unit cubic box, i.e., 
x, = & 4, and 2 for i = 1,2,3. The initial condition for particle 
velocity was still given by (3b). 

For the first case, we found that no matter where the 
initial particle location was, the Lyapunov exponents were 
about the same. The first two exponents were zero and the 
remaining four were less than zero, leading to df = 2. How- 
ever, the attractors were observed not to have identical struc- 
ture. The solutions for all 29 initial conditionswere project- 
ed onto the u1 -u, plane. Four solutions that have apparently 
different structures are shown in Fig. 13. What is not shown 
in the figure is the additional fact that three of the attracting 
sets 13(a), 13(c), and 13(d) have more than one orienta- 
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FIG. 12. Mean long-tjme diffusivity as a function of the drift parameter 
when the Stokes number is one. The shaded region is where the diffusivity 
cannot be defined. 

tion. Four different orientations were observed for both 
13 (a) and 13 (c) . Three different orientations were seen for 
13(c). This type of structure reflects the symmetry of the 
system. In summary, numerical solutions reveal that there 
are at least 12 different attractors (counting both structure 
and orientation differences) for the 29 initial conditions test- 
ed. (Strictly speaking, the same structure and orientation in 
the ui -uz plane do not guarantee a single attractor. ) Interest- 
ingly, they all have similar Lyapunov spectra and the same 
dimension. 

For the second case, two different attracting sets of dif- 
ferent structure and different dimension are observed (Fig. 
14). Two different orientations were seen for each of the sets. 
Therefore we have at least four different attractors for the 29 
initial conditions. 

(4 

FIG. 13. Projections of phase-space trajectory in the V, -u2 plane for a parti- 
cle starting from different initial locations with St.= 2.4 and y = 0. All of 
these four attractors represent particle orbit in a period of 614 time units and 
have a same dimension of two. 

(a). df=3.18 

(b). df=xoo 

FIG. 14. Two attractors of different dimensions observed for a particle 
starting from different initial locations with St = 1.0 and y = 0.85. 

V. CONCLUSIONS 
A study of Lagrangian motion for a heavy particle re- 

quires direct numerical integration of the six-dimensional 
nonlinear system. We have provided, through numerical ex- 
periments, some preliminary qualitative and quantitative 
data about the nature of the solutions for the system. The 
particle trajectory is chaotic when the Stokes number is close 
to one and the drift is small. Periodic and quasiperiodic or- 
bits are also observed for a variety of finite particle inertia 
and drift, The fractal dimension can be used to quantify the 
chaos. We found that the larger the fractal dimension, the 
more the attractor spreads on the Poincare map. In general, 
the fractal dimension has a shape similar to the largest Lya- 
punov exponent. For most of the particle parameters, the 
fractal dimension and the Lyapunov exponents are indepen- 
dent of the initial location. However, multiattractors can 
exist. 

The dispersion measure defined in this work is not relat- 
ed to the fractal dimension. We suggest that some direct 
measure of mixing based on line stretching” or return per- 
centage for a forward-reverse diffusion process” be intro- 
duced. It might be possible to find a relationship between 
such direct measure and the fractal dimension. At present, 
direct quantitative measures of mixing for particles in steady 
flows are lacking..The fractal dimension might be more use- 
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ful to quantify the Lagrangian motion than the diffusivity, 
since, as seen in this work, the diffusivity cannot always be 
defined. 

The quantification of chaotic dynamics shows that a 
Stokes number of one as well as a d&parameter close to one 
can be of physical significance. Structure bifurcation is ob- 
served when the drift parameter is close to one. Further 
work is needed to identify the nature of the bifurcations, the 
possibility of quasiperiodic orbits of higher dimension, and 
the effect of initial conditions for a range of St and y values. It 
is to be borne in mind that our conclusions are specific to the 
single set of ABC flow parameters and limited sets of initial 
conditions considered. 
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