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Using direct numerical simulations (DNS) and large-eddy simulations (LES) of ve-
locity and passive scalar in isotropic turbulence (up to 5123 grid points), we examine
directly and quantitatively the refined similarity hypotheses as applied to passive scalar
fields (RSHP) with Prandtl number of order one. Unlike previous experimental inves-
tigations, exact energy and scalar dissipation rates were used and scaling exponents
were quantified as a function of local Reynolds number. We first demonstrate that
the forced DNS and LES scalar fields exhibit realistic inertial-range dynamics and
that the statistical characteristics compare well with other numerical, theoretical and
experimental studies. The Obukhov–Corrsin constant for the k−5/3 scalar variance
spectrum obtained from the 5123 mesh is 0.87 ± 0.10. Various statistics indicated
that the scalar field is more intermittent than the velocity field. The joint probabil-
ity distribution of locally-averaged energy dissipation εr and scalar dissipation χr is
close to log-normal with a correlation coefficient of 0.25 ± 0.01 between the loga-
rithmic dissipations in the inertial subrange. The intermittency parameter for scalar
dissipation is estimated to be in the range 0.43 ∼ 0.77, based on direct calculations
of the variance of ln χr . The scaling exponents of the conditional scalar increment
δrθ|χr ,εr suggest a tendency to follow RSHP. Most significantly, the scaling exponent
of δrθ|χr ,εr over εr was shown to be approximately − 1

6
in the inertial subrange, con-

firming a dynamical aspect of RSHP. In agreement with recent experimental results
(Zhu et al. 1995; Stolovitzky et al. 1995), the probability distributions of the random

variable βs = δrθ|χr ,εr /(χ1/2
r ε

−1/6
r r1/3) were found to be nearly Gaussian. However,

contrary to the experimental results, we find that the moments of βs are almost
identical to those for the velocity field found in Part 1 of this study (Wang et al. 1996)
and are insensitive to Reynolds number, large-scale forcing, and subgrid modelling.

† Author to whom correspondence should be addressed: e-mail: lwang@me.udel.edu.
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1. Introduction

Progress in characterizing turbulence structure is limited by the complexity associ-
ated with strong nonlinear couplings over a wide range of scales. The separation of
scales at high Reynolds numbers makes it fruitful to study the structure of turbulence
in a scale-space description. A simplification of a scale-space description of turbulence
was made by Kolmogorov (1941a, b, referred to herein as K41), who related the statis-
tics of velocity increments to the average dissipation rate of kinetic energy ε based
on a model of local energy cascade and dimensional arguments. This K41 theory was
later extended to account for strong intermittency in local energy dissipation rate by
Obukhov (1962) and Kolmogorov (1962), now known as the K62 refined turbulence
theory. Both the K41 and K62 theories lead to predictions of scaling parameters in
high Reynolds number turbulence, some of which have been confirmed experimen-
tally (e.g. Monin & Yaglom 1975; Anselmet et al. 1984; Meneveau & Sreenivasan
1991).

The K62 theory was based on a set of refined similarity hypotheses (RSH). Direct
examinations of these hypotheses have been carried out experimentally (Stolovitzky,
Kailasnath & Sreenivasan 1992; Praskovsky 1992; Thoroddsen & Van Atta 1992a;
Zhu, Antonia & Hosokawa 1995) and numerically (Hosokawa & Yamamoto 1992;
Chen et al. 1993; Wang et al. 1996).

In Part 1 of this work (Wang et al. 1996), we examined in detail the refined hypothe-
ses, using direct numerical simulation (DNS) and large-eddy simulation (LES) data
and measured scaling exponents over the local scale r and the locally-averaged dissi-
pation rate εr of kinetic energy. Although the transverse Taylor-microscale Reynolds
number of the DNS flows was about 200, the scale-dependent Reynolds number Rεr
(to be defined later in this section) was sufficient to identify an inertial range and mea-
sure universal constants in the K62 theory. Two significant observations were made.
First, like Kraichnan (1974a), we argued that absolute values should be placed around
velocity differences. Second, the K62 theory is better realized when the full kinetic-
energy dissipation rate is used rather than the one-dimensional surrogate necessarily
used in experimental studies. This point was also made by Hosokawa & Oide (1996).
It has recently been observed that transverse velocity increments probably follow a
different scaling than longitudinal velocity increments at finite Reynolds numbers
(Boratav & Pelz 1997; Grossmann, Lohse & Reeh 1997; Camussi & Benzi 1997;
Chen et al. 1997; Dhruva, Tsuji & Sreenivasan 1997). It has been suggested (Chen
et al. 1997) that transverse velocity increments scale better using locally averaged
enstrophy rather than locally averaged dissipation rate.

Turbulence enhances mixing through the generation of small-scale scalar fluctua-
tions, distortion of scalar interfaces, and creation of intermittent large scalar gradients
at very small scales, enhancing subsequent diffusive mixing at the molecular level.
The K41 similarity theory for turbulent velocity was extended to passive scalar by
Obukhov (1949), Yaglom (1949), and Corrsin (1951). Complications resulting from
non-unity Prandtl (or Schmidt) numbers were treated by Batchelor (1959) and Batch-
elor, Howells & Townsend (1959). The RSH can be extended to scalars by considering
fluctuations in both local energy dissipation and scalar dissipation rates.

Analyses of the refined similarity hypotheses for passive scalar (RSHP) are given
by Monin & Yaglom (1975), Van Atta (1971), and Antonia & Van Atta (1975).
Antonia et al. (1984) compiled measurements of power-law exponents for temperature
structure functions up to n = 12 and found that both the log-normal (Van Atta 1971)
and the β (Frisch, Sulem & Nelkin 1978) models are unsatisfactory. The scaling
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theory for passive scalar fluctuations is further developed in Meneveau et al. (1990)
using a joint multifractal formulation of two fluctuating dissipation rate fields. They
obtained intermittency parameters for the dissipation fields and correlation coefficients
between the logarithm of scalar and energy dissipation rates. Starting from RSHP,
Hosokawa (1994) devised an analytical model for the probability distribution of scalar
increments and scalar gradient which shows good agreement with the experimental
data of Antonia et al. (1984) and Thoroddsen & Van Atta (1992b). Scaling exponents
based on RSHP and a joint log-Poisson model have been developed by Cao & Chen
(1997).

Direct examinations of RSHP using experimental data were made by Zhu et al.
(1995) and Stolovitzky, Kailasnath & Sreenivasan (1995). Before summarizing these
studies, however, we first describe the Obukhov–Yaglom–Corrsin theory, RSHP, and
our notation. We focus in this study on the case of Pr ≈ 1, as in Zhu et al. (1995)
and Stolovitzky et al. (1995).

1.1. Summary of the Obukhov–Yaglom–Corrsin theory and RSHP

Let Ls be the integral scale of the passive scalar field θ(x, t), which is usually compara-
ble to the integral scale Lf of the velocity field. When applied to a passive scalar, the
first hypothesis of Obukhov–Yaglom–Corrsin theory states that the distribution of
the scalar difference, ∆rθ ≡ θ(x+ r, t)−θ(x, t), between two points in space is uniquely
determined by a local length scale r ≡ |r| where r � Lθ , ν, D, ε, and the mean rate of
dissipation of scalar variance per unit mass χ. Here a bar over a quantity implies an
ensemble average. If the scalar field is locally isotropic at the scale r, then statistics of
∆rθ are independent of the orientation of r. The energy and scalar dissipation rates
are given by

ε(x, t) =
ν

2

(
∂ui

∂xj
+
∂uj

∂xi

)(
∂ui

∂xj
+
∂uj

∂xi

)
, χ = 2D

∂θ

∂xi

∂θ

∂xi
, (1.1)

where ui(x, t) and θ(x, t) are the velocity and scalar fields, respectively. The one-dimen-
sional surrogates of ε and χ are ε′ = 15ν(∂u1/∂x1)

2 and χ′ = 6D(∂θ/∂x1)
2. The prime

will also be used for quantities derived from ε′ and χ′. The K41 type of scaling implies
that the moments of δrθ ≡ |∆rθ| are given by

(δrθ)n = (χ1/2 ε−1/6 r1/3)nFn(Rr, P r), (1.2)

where Rr = ε1/3 r4/3/ν = (r/η)4/3 is a local Reynolds number at scale r with local
velocity scale (εr)1/3 and Kolmogorov scale η = (ν3/ε)1/4. Fn(Rr, P r) are universal func-
tions at high global Reynolds numbers, Rλ = λurms/ν, where λ ≡ (15νu2

rms/ε)
1/2 and

urms are the transverse Taylor microscale and r.m.s. component fluctuation velocity,
respectively.

Equation (1.2) with n = 2 implies that a universal scalar variance spectrum G(k)
exists at high wavenumbers such that

G(k)

(χ/ε)(εν5)1/4
= (kη)−5/3ψ(kη, P r). (1.3)

The more specific Batchelor scaling assumes that the scalar field is affected by the
velocity field only through the mean rate of strain (ε/ν)0.5 and (1.3) reduces to

G(k)

χη
B
(ν/ε)1/2

= (kη
B
)−5/3ψ

B
(kη

B
), (1.4)

where the Batchelor scale η
B
≡ (νD2/ε)1/4.
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Kolmogorov’s second similarity hypothesis for a scalar field states that when Rr � 1
(i.e. r � η or k � η−1 and r � Ls, Lf), the distribution of the normalized scalar differ-

ence δrθ/(χ
1/2 ε−1/6 r1/3) becomes independent of ν and D. It follows that in this inertial

subrange,

(δrθ)n = Hn(χ
1/2 ε−1/6 r1/3)n, (1.5)

where Hn are universal constants. In particular, when n = 2, (1.5) implies the well-
known scalar variance spectrum for the inertial subrange,

G(k) = Csχε
−1/3k−5/3, (1.6)

where Cs is the Obukhov–Corrsin constant, and Cs = 0.4H2 (Monin & Yaglom
1975, p. 385). The k−5/3 scalar variance spectrum has been observed in numerous
experiments (see Monin & Yaglom 1975, pp. 499–501; Jayesh, Tong & Warhaft
1994), suggesting that any intermittency correction under the RSHP is very small.
The higher-order moments of the scalar increments (n > 2) do not agree with the
above K41 formulation due to the intermittent fluctuations of the two dissipation
fields χ and ε (e.g. Mydlarski & Warhaft 1998).

In analogy to the refined formulation of Kolmogorov–Obuhkov (1962) for the
velocity increments, a refined formulation for scalar increments can be made (e.g.
Monin & Yaglom 1975; Van Atta 1971). The locally volume-averaged dissipation
rates over spheres of diameter r are

χr(x, t) =
6

πr3

∫
|h|6 r/2

χ(x+ h, t)dh, εr(x, t) =
6

πr3

∫
|h|6 r/2

ε(x+ h, t)dh. (1.7)

The first part of the refined turbulence theory assumes that the probability distribution
of (χr , εr) is jointly log-normal in the inertial subrange, i.e.

f(χr, εr) =
1

2πσrπr
√

1− ρ2
r

1

χrεr
exp

{
− 1

2(1− ρ2
r )

[
(ln χr − br)2

π2
r

− 2ρr
(ln χr − br)

πr

(ln εr − mr)
σr

+
(ln εr − mr)2

σ2
r

]}
, (1.8)

where br = ln χr , mr = ln εr , and πr and σr are standard deviations of ln χr and ln εr ,
respectively. The correlation coefficient ρr is

ρr =
(ln χr − br)(ln εr − mr)

πrσr
. (1.9)

In addition the theory assumes that the variances follow the scalings

π2
r = As + µs ln

L

r
, σ2

r = A+ µ ln
Lf

r
, (1.10)

where µs and µ are theoretically universal intermittency parameters, the constants As
and A depend on flow geometry, and L = min (Lf, Ls).

The refined similarity hypotheses (RSHP) are specified separately from the as-
sumed log-normality of dissipation fluctuations (e.g. Stolovitzky et al. 1995). The first
hypothesis relates the moments of δrθ conditioned on both χr and εr to ν, D, χr , εr ,
and r, in a manner analogous to (1.2),

(δrθ)n|χr ,εr = (χ1/2
r ε−1/6

r r1/3)n Pn(Rεr , P r) for r � L, (1.11)

where Pn(Rεr , P r) are hypothesized to be universal functions of a new local Reynolds



Examination of Kolmogorov refined turbulence theory. Part 2 167

number Rεr = ε
1/3
r r4/3/ν and the Prandtl number. In spatially homogeneous flows, the

conditional expectation is calculated based on a subset of spatial regions where both
χr and εr are fixed. A more general statement of this RSHP is that the probability
distribution of the normalized scalar increment

βs ≡ δrθ|χr ,εr
χ

1/2
r ε

−1/6
r r1/3

, (1.12)

is a universal function of Rεr and Pr. The corresponding random variable for the
velocity field is β ≡ δru|εr/(εrr)1/3 with δru being the longitudinal velocity increment.
The corresponding variables when the one-dimensional surrogates of dissipation rates
are used will be denoted by β′s and β′.

The second refined similarity hypothesis states that when Rεr � 1 and Pr ∼ 1, the
function Pn(Rεr , P r) has asymptotic value. Therefore,

(δrθ)n|χr ,εr = Wn(χ
1/2
r ε−1/6

r r1/3)n, (1.13)

where Wn are universal constants and the probability distribution of βs takes a
universal form independent of Rεr and Pr.

Taylor expansion in the limit of r/η → 0 gives

(δrθ)2|χr ,εr ∼
(∂θ
∂x

)2

r2 =
1

6

(χr
D

)
r2, (1.14)

which is consistent with the first RSHP, equation (1.11), when P2 = Pr Rεr/6. More
generally,

(δrθ)n|χr ,εr ∼
(χr
D

)n/2
rn as r/η → 0. (1.15)

1.2. Analysis of RSHP

Zhu et al. (1995) examined in some detail RSHP experimentally in a circular jet at
Rλ = 250, and in the atmospheric surface layer at Rλ = 7200. In both experiments
Pr = 0.7 (air). They examined qualitatively the scaling exponents of scalar increments,
and mixed scalar–velocity increments over combined variables x′ ≡ (rε′r)1/3 and x′s ≡
r1/3 ε′r

−1/6
χ′r

1/2 using the one-dimensional surrogates. They found that the statistics
of β′ and β′s were not independent of the local scale r even in the inertial subrange.
Nevertheless, they found that, in agreement with RSHP, the conditional p.d.f.s of β′
and β′s appear to be nearly independent of local Reynolds number Rε′r when Rε′r & 50
and the distributions are nearly Gaussian.

Stolovitzky et al. (1995) rationalized the r-dependence of the random variables β′
and β′s in the inertial subrange and proposed a modified version of RSHP in terms
of ε′r and χ′r . With a new assumption of local isotropy, they derived a refined Yaglom
equation for ∆ru(∆rθ)2|χ′r ,ε′r . In a wake flow behind a heated cylinder at Rλ = 160

and Pr = 0.7, they found experimentally that p.d.f.s of the random variable β′s for
large Rε′r were nearly Gaussian. They also observed a linear dependence on r of

the conditional expectation ∆ru(∆rθ)2|χ′r ,ε′r . They remarked that ‘it would be highly
desirable that similar tests be performed using DNS of passive scalars mixed by
turbulence, considering the full expression for both dissipation rates’.

Mydlarski & Warhaft (1998) reported conditional passive scalar statistics in nearly
isotropic grid turbulence for Rλ up to 731. They observed an almost linear dependence
of δrθ|x′s on x′s, in agreement with RSHP. However, they did not observe the expected
correlation between the energy dissipation rate ε′r and the temperature increment in
the inertial subrange.
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The difficulties specific to direct examinations of RSHP are worth emphasizing. In
DNS, the Reynolds numbers are moderate and the inertial subrange, if it exists, is
very narrow in the scale space. On the other hand, even when Rλ is moderate, the
local Reynolds number Rεr extends over a much wider range and certain small-scale
features of turbulence approach their asymptotic state (Part 1). As we pointed out
in Part 1, there are significant advantages in numerical experiments, which makes it
useful to conduct a careful study of RSH even with moderate Reynolds numbers.
The first is the access to the exact local dissipation rates. The second is the accurate
evaluation of spatial derivatives and the use of spatial averages in homogeneous
turbulence and consequent accurate statistics of conditional quantities.

In physical experiments (Meneveau et al. 1990; Zhu et al. 1995; Stolovitzky et al.
1995), the one-dimensional surrogates of dissipation rates are necessarily analysed
in place of the full dissipation rates, and Taylor’s frozen flow hypothesis is invoked
to measure spatial derivatives from time derivatives. Furthermore, the temperature
probe and the velocity probe have to be separated by a finite distance to avoid mutual
interferences.

1.3. Objective

Our main objective is to test RSHP, using exact dissipation rates accessible in our
DNS flow fields. The scaling exponents will be quantified as a function of local
Reynolds number. The question of whether universal moments of βs exist will be
studied.

General features of the isotropic, homogeneous turbulent scalar fields from high-
resolution simulations are presented and compared with experimental observations
in § 2. In § 3 we examine the probability distribution of χr and the joint distribution
of χr and εr , as functions of both the spatial scale r and the local Reynolds number.
We then study in § 4 the RSHP directly by quantifying the scaling exponents over χr ,
εr , and r. We also analyse the universal constants Wn in (1.13) and the probability
distribution of βs. In addition, we consider throughout the paper the use of large-eddy
simulation, in which the dissipative scales are modelled, in examining RSHP in the
inertial range of scales.

2. Analysis of the high-resolution simulation scalar fields
In this section, we describe the various scalar fields we used to study the refined

turbulence theory for passive scalar fields. The simulations were performed on a 512-
node CM-5 at Los Alamos National Laboratory. The velocity fields were identical to
those described in Part 1. Therefore, we shall focus on the description of scalar field
characteristics.

2.1. Simulation method

In addition to the velocity field solved by numerically integrating the Navier–Stokes
equations and the continuity equation, the advection–diffusion equation for a passive
scalar field θ(x, t)

∂θ

∂t
+
∂(θui)

∂xi
= D

∂2θ

∂xi∂xi
, (2.1)

was solved simultaneously on a cube of side LB = 2π using a standard pseudospectral
algorithm, with periodic boundary conditions in the three coordinate directions.
The flow domain is discretized uniformly into N3 grid points, which defines the
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wavenumber components in Fourier space as kj = ± nj(2π/LB) = ± nj , where nj =
0, 1, . . . N/2 − 1 for j = 1, 2, 3. A small portion of the velocity and scalar fields at
higher wavenumbers, k > kmax with kmax = N

√
2/3, is truncated at each time step to

reduce aliasing errors.
Table 1 lists all the different scalar fields used in this study; the fields are identified

with the same names as in Part 1 and the corresponding velocity field statistics can
be found in table 1 therein. Both freely decaying and forced stationary isotropic
turbulence fields were simulated. The freely decaying flows (d256c1 and d256c2)
were generated from a previously developed forced stationary turbulence. The forced
isotropic fields (f128, f256, and f512) were generated by applying forcings to both
velocity and scalar fields in the wavenumber space at k < 3, to maintain kinetic energy
and scalar variance spectra in the first two shells consistent with k−5/3. This produces
statistically stationary velocity and scalar fields with a more extensive nominal k−5/3

inertial range and higher global flow Reynolds number, compared with the freely
decaying turbulence. The forcing, however, introduces artifacts to the large-scale fluid
motions which may affect the structure and internal similarity scaling near the forcing
scales. Thus only wavenumber bands larger than these forced bands are used for
scaling analyses in this paper.

The spatial resolution of a spectral simulation is often monitored by the value of
kmaxη, which should be greater than 1 for the smallest scales of the flow velocity to
be resolved (Eswaran & Pope 1988a). This also ensures adequate resolution for the
scalar field of Pr 6 1. Since the scalar fields are somewhat more intermittent and the
smallest scale in the scalar field is a factor of 0.64 smaller than the velocity field (see
§ 2.2 below), we typically use kmaxη > 1.4 for passive scalar simulations of Pr 6 1.

The Fourier coefficients of the velocity and scalar fields were advanced in time
using a second-order Adams–Bashforth method for the nonlinear terms and an exact
integration for the diffusion terms (Chen & Shan 1992). The time step was chosen to
ensure that the Courant number was 0.4 or less for numerical stability and accuracy
(Eswaran & Pope 1988a).

The inertial range in the DNS fields is necessarily very narrow because the maximum
scale separation is limited by the grid resolution. To extend the inertial subrange,
we also made use of a scalar field (les256) generated by moving the smallest inertial
scales to higher wavenumbers through large-eddy simulation (LES). We modelled the
scales below the grid spacing (filter scale) in both the velocity and scalar fields, using
the subgrid scale (SGS) closure scheme of Métais & Lesier (1992). We also apply the
same forcing method to the first two wavenumber shells to maintain the energy and
scalar fluctuations in the resolved fields of the LES, thus moving the large-scale side
of the inertial range to the lowest possible wavenumbers.

2.2. Statistical characteristics of the scalar fields

Here we shall document important statistics of the scalar fields for later discussions.
We shall also demonstrate that realistic turbulent scalar fields are simulated by making
various comparisons with known numerical, experimental, and theoretical results.

In table 1 we compile scalar field statistics. The first 15 quantities shown in the table
(from top to bottom) are (dimensional variables are given in arbitrary units): the r.m.s.
scalar fluctuation θrms, the average dissipation rate χ of scalar variance, the scalar
diffusivity D, Taylor-microscale Reynolds number Rλ ≡ urmsλ/ν, Prandtl number,
the third-order mixed-derivative skewness, the flatness of the scalar derivative, the
Batchelor scale, Corrsin microscale, scalar integral scale, the longitudinal integral
length scale Lf of velocity, the two dimensionless scalar dissipation rates, and ratios
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Simulation d256c1 d256c2 f128 f256 f512 LES256
Grid 2563 2563 1283 2563 5123 2563 Experiment Experiment

Plot symbol � � 5 e • � SAD77[a] MW98[b]

θrms 0.766 0.141 1.09 1.09 1.10 1.04 — 0.580
χ 0.3449 0.004424 0.4190 0.4400 0.5012 0.3843[c] — 0.581

D 1.429×10−3 1.429×10−3 0.004 0.002 0.001 7.48×10−4[d] — 22.1×10−6

Rλ 132 68.1 100 151 195 — 175 247

Pr 0.7 0.7 1.0 1.0 1.0 0.58[e] 0.71 0.707

(∂u/∂x)(∂θ/∂x)2

(∂u/∂x)2
1/2

(∂θ/∂x)2
−0.446 −0.493 −0.480 −0.477 −0.490 — — −0.451

(∂θ/∂x)4(
(∂θ/∂x)2

)2 11.3 10.4 11.7 16.8 13.8 — 7.0 ∼ 10.9 25.4

η
B

0.0103 0.0196 0.0490 0.0245 0.0122 6.02×10−3 — —

λs
[f] 0.121 0.196 0.260 0.180 0.121 — — —

Ls
[f] 0.752 0.883 0.956 0.937 0.918 1.00 — —

Lf 1.072 1.049 1.530 1.514 1.412 1.470 — —

χLf/urmsθ
2
rms 0.932 0.912 0.630 0.656 0.669 0.610 — —

χu2
rms/εθ

2
rms 1.49 1.06 1.28 1.53 1.33 1.40 — —

Ls/Lf 0.701 0.842 0.625 0.619 0.650 0.680 — —

λs/λ 0.617 0.737 0.556 0.511 0.555 — —

(∂θ/∂y)2
1/2

(∂θ/∂x)2
1/2

1.003 1.001 0.960 0.985 1.023 — 1.07 1.0

(∂θ/∂z)2
1/2

(∂θ/∂x)2
1/2

0.987 1.025 1.012 1.038 0.995 — 1.21 1.2

ξ2
1/2

χ

[g]

2.31 2.20 2.36 2.92 2.58 — —

Sξ
[g] 7.10 6.77 7.59 9.29 7.50 — 2.95 18.3

Fξ
[g] 89.5 93.3 99.5 140.0 95.8 — 19.96 586.0

−gigjsij
g2 (sij sij )

1/2

[h]

0.409 0.461 0.448 0.440 0.459 — — —

β[i] 0.53 0.48 0.49 0.50 0.51 — — —

[a] Sreenivasan et al. (1977) in the inner region of a fully developed turbulent boundary layer at y/δ = 0.24,
where δ is the velocity boundary layer thickness. The full scalar dissipation rate χ was measured.

[b] Mydlarski & Warhaft (1998) for grid-generated scalar turbulence. Only the pseudo-scalar dissipation rate
χ′ was measured. The ◦C-m-s unit system is used.

[c] This number is computed as the total scalar variance flux across the filter cut-off.
[d] Effective diffusivity, see § 4.
[e] Computed based on effective viscosity and diffusivity, see § 4.

[f] Computed as: λs =
√

6Dθ2
rms/χ; Ls = π/(2θ2

rms)
∫ ∞

0 dk G(k)/k.

[g] ξ ≡ χ− χ, Sξ and Fξ are skewness and flatness factor of ξ, respectively.

[h] gi = ∂θ/∂xi.
[i] The ratio between two normalized production terms, β ≡

(
ωiωjsij

ω2 (sij sij )
1/2

)/(
−gigjsij

g2 (sij sij )
1/2

)
.

Table 1. Scalar field characteristics from the simulations. Note that the symbols are used
consistently throughout the paper to identify specific fields.
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of integral lengths and Taylor microscales between the scalar and velocity fields. Note
that the mixed-derivative skewness is close to −0.5 and almost independent of flow
Reynolds number. The flatness of the scalar derivative is much higher (by a factor of
2 to 3) than the flatness of the velocity derivative shown in Part 1. These observations
are in good agreement with previous numerical (e.g. Kerr 1985) and experimental
(Antonia & Van Atta 1978; Antonia & Chambers 1980) results, although experiments
typically show a slightly larger value (−0.52 to −0.62 at Rλ ≈ 104 or higher) and a
very weak Reynolds-number dependence for the mixed-derivative skewness (Antonia
& Chambers 1980; Sreenivasan & Antonia 1997), possibly due to the inhomogeneity
and isotropy of the experimental flows. The integral length scale was computed from
the three-dimensional scalar variance spectrum G(k):

Ls =
π

2θ2
rms

∫ ∞
0

G(k)

k
dk, (2.2)

where the scalar variance spectrum G(k) is defined such that

θ2
rms =

∫ ∞
0

G(k) dk. (2.3)

The spectrum was calculated by dividing wavenumber space into N/2 shells centred
on radius k and with unit bin width ∆k = 1, and then summing the modal scalar
variance in each shell. The spatially averaged dissipation rate χ is related to the scalar
variance spectrum G(k) by

χ ≡ 2D
∂θ

∂xj

∂θ

∂xj
= 2D

∫ ∞
0

k2G(k) dk. (2.4)

Table 1 shows that the average scalar dissipation rate χ appears to be scaled better by
εθ2

rms/u
2
rms than by θ2

rmsurms/Lf . Equivalently, we may state that the two dissipation-rate
time scales, u2

rms/ε and θ2
rms/χ, are simply proportional. The same observation was

made by Ashurst et al. (1987). Excluding the lowest Rλ case (d256c2), the four other
DNS fields yield χ = (1.40±0.10)εθ2

rms/u
2
rms. Furthermore, if χ and ε are replaced by the

flux of scalar variance and kinetic energy in the LES, we obtain χ = 1.40εθ2
rms/u

2
rms, in

excellent agreement with the scaling for the DNS scalar fields. The two ratios, Ls/Lf
and λs/λ, depend somewhat on large-scale structures, with the decaying flows giving
a larger value than the forced flows. The Taylor microscale of the scalar field is about
30% to 45% smaller than that of the velocity field.

Figure 1(a) shows log-log plots of normalized three-dimensional scalar variance
spectra for the various DNS scalar fields pre-multiplied by k5/3 so that an inertial
range, if there is one, would appear as a region of zero slope. Several observations
can be made from this figure. First, with the exception of the lowest-Rλ d256c2
field, the energy spectra for different Rλ show a very good collapse almost over
all wavenumbers, consistent with previous numerical results (Kerr 1990; Sullivan,
Mahalingam & Kerr 1994; Pumir 1994). Second, there appears to be a bump near the
energy dissipation peak, leading to a maximum value of 1.3 at kη

B
= 0.2. The bump

in the scalar spectrum is well-known (e.g. Hill 1978; Mydlarski & Warhaft 1998).
Tatarskii et al. (1992) developed an asymptotic theory which shows the appearance
of a bump in the scalar variance spectrum near the dissipation peak for a Prandtl
number of approximately 1. Finally, the highest-Rλ f512 field shows a tendency
towards an inertial range for kη

B
< 0.05, with an average Obukhov–Corrsin constant

of Cs = 0.75± 0.15.
In figure 1(b) we show the normalized one-dimensional scalar variance spectra,
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Figure 1. (a) The three-dimensional scalar variance spectrum function G(k) and (b) the
one-dimensional longitudinal scalar variance spectrum G(k1) for the simulated scalar fields shown
in table 1, using Batchelor scaling. For the forced turbulence fields, only the spectra for the unforced
region k > 2 or k1 > 2 are shown. The horizontal dashed line in (b) marks the level of 0.52, the av-
erage Obukhov–Corrsin constant observed in experiments. �, 2563, free-decaying flow at Rλ = 132
and Pr = 0.7; �, 2563, free-decaying flow at Rλ = 68.1 and Pr = 0.7; 5, 1283, forced stationary
flow at Rλ = 104 and Pr = 1.0; e, 2563, forced stationary flow at Rλ = 151 and Pr = 1.0; •, 5123,
forced stationary flow at Rλ = 195 and Pr = 1.0. The one-dimensional temperature spectrum of
Williams & Paulson (1977) for atmospheric surface layer flow at Rλ ≈ 2000 is shown by the crosses
(×). These symbols are used consistently throughout the paper and are shown in table 1.
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which are smoother than figure 1(a) at low wavenumbers due to the increased
sampling and the averaging over the three coordinate directions. The inertial range
becomes more evident for the f512 scalar field, with a level of Cs(1D) = 0.52 for
k1ηB < 0.05. This corresponds to a three-dimensional Obukhov–Corrsin constant of
Cs(3D) = Cs(1D) × 5

3
= 0.87 (Note that the conversion relationship from Cs(1D)

to Cs(3D) requires isotropy of the computed spectra at low wavenumbers which
may not be rigorously satisfied by the simulated flow fields, e.g. Yeung & Zhou
1997.). The analyses of Hill (1978) yielded Cs(3D) = 0.68 ∼ 0.83, while the RNG
theory (Yakhot & Orszag 1986) predicts Cs(3D) = 1.16. DNS of Pumir (1994) give
Cs(3D) = 1.1 and show a Pr dependence. Surveys of previous experimental data show
that Cs(1D) can vary from 0.31 to 1.16 (Hill 1978; Antonia, Chambers & Browne
1983; Sreenivasan 1996), with an average of about 0.40 according to the most recent
survey by Sreenivasan (1996). Our value of Cs(1D) compares well with the high-Péclet-
number grid turbulence data of Mydlarski & Warhaft (1998) who found that Cs(1D)
is in the range of 0.45 to 0.55. Similar to the velocity field, the diffusive cut-off for the
one-dimensional spectrum appears earlier than the three-dimensional spectrum. The
bump near the dissipation peak, although less severe than in the three-dimensional
spectrum, can also be observed. Also shown with crosses (×) is the one-dimensional
spectrum of temperature fluctuations by Williams & Paulson (1977) (taken directly
from Hill 1978) for the atmospheric boundary layer at Rλ ≈ 2000. The simulation
data agree well with the experimental data.

Linear-linear plots for the normalized scalar dissipation rate spectra are shown
in figure 2 for kη

B
< 1. The data collapse well for the four fields with Rλ > 100,

indicating that the Batchelor scaling (1.2) works well for moderately high Reynolds
numbers. The normalized dissipation rate spectrum has a peak value of about 1.56
at kη

B
≈ 0.25. This peak location also occurs at a higher wavenumber (smaller length

scale) than that of energy dissipation peak which takes place at kη = 0.16 (see Part 1),
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namely the smallest length scale in the scalar field is a factor 0.64 smaller for Pr = 1.
This is also an indication that the scalar field is more intermittent than the velocity
field. As Rλ decreases below 100, the normalized spectrum shifts to higher kη and
the peak magnitude decreases. Warhaft & Lumley (1978) measured both dissipation
spectra in heated grid turbulence of air. They found that the energy dissipation peak
occurs at kη ≈ 0.18 while the temperature dissipation peak occurs at kη ≈ 0.25 ∼ 0.27
(or equivalently kη

B
≈ 0.30 ∼ 0.32). Note that Rλ ≈ 48 in their experiment and the

peak locations might depend on the initial grid configuration. Therefore, there is a
good qualitative agreement between our DNS and their experiment.

The simulated small-scale scalar fields are nearly isotropic as demonstrated by the
ratios of local scalar gradient fluctuations in different directions in table 1. Also
shown in the table are a measure of scalar dissipation intermittency, (ξ2)1/2/χ, and
the skewness and flatness of the dissipation fluctuations. These values show again
that the scalar fields are more intermittent than the velocity fields (see table 1 in Part
1 for a comparison with the energy dissipation statistics).

Interestingly, we note that the scalar field f512 appears to be less intermittent than
the f256 field (e.g. by comparing the flatnesses of the scalar derivative and scalar
dissipation rate), although the former is at a higher flow Reynolds number. This
could be due to the strong time fluctuations in the scalar field as discussed in Chen
& Cao (1997) or the fact that the f512 was not run long enough to allow all the
small-scale features to asymptote (see table 1 in Part 1 for comparison of the total
integration times). It was much more expensive to run f512.

Comparisons of our simulated scalar fields with the experimental data of temper-
ature fluctuations by Sreenivasan, Antonia & Danh (1977) for the inner region of a
fully developed turbulent boundary layer and by Mydlarski & Warhaft (1988) for
grid-generated turbulence are made in table 1. Note that the experimental flows are
anisotropic. The general observation is that the high-order statistics were probably
underestimated in the experiment of Sreenivasan et al. (1977) due to a finite probe
resolution and other experimental difficulties as noted in § 1.

The last two quantities in table 1 are the normalized rate of production of scalar
gradient and ratio of dimensionless enstrophy production (Part 1) to the dimensionless
scalar gradient production. The isotropic assumption implies that (Wyngaard 1971)

− ∂θ
∂xi

∂θ

∂xj
sij = −15

2

( ∂θ
∂x1

)2 ∂u1

∂x1

. (2.5)

It follows then that

− ∂θ
∂xi

∂θ

∂xj
sij = −

√
30

6
Sm = −0.913Sm, (2.6)

where Sm is the mixed derivative skewness shown as the sixth item in table 1. A
skewness of −0.446 to −0.490 would imply a dimensionless scalar gradient production
of 0.407 to 0.447, which is in excellent agreement with the dimensionless production
directly computed. This kind of consistency has not been demonstrated in physical
experiments, but should serve as a way of checking the accuracy of experimental
measurements of small-scale quantities. To date, the scalar-gradient production term
has not been measured directly. Finally, the dimensionless enstrophy production is
only about half the dimensionless scalar gradient production, indicating that the
scalar gradient is better aligned with the local rate of strain than the vorticity. This is
consistent with previous observation, for example, by Ashurst et al. (1987). A larger
dimensionless production also indicates the possibility of smaller length scale in the
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Figure 3. (a) The three-dimensional scalar variance spectrum and (b) the local Obukhov–
Corrsin constant Cs ≡ G(k)k5/3 ε1/3/χ as a function of the wavenumber k for the large-eddy
simulation scalar field. The dashed line in (a) marks the − 5

3
slope. The dashed line in (b) marks the

mean value of Cs (Cs = 0.86).

scalar field. It is important to note that both the dimensionless production rates and
their ratio are almost independent of flow Reynolds number and large-scale forcing,
which is valuable information for the modelling of turbulent scalar fields.

The scalar variance spectrum for the LES field is shown in figure 3(a). On the log-
log plot, the spectrum has a slope around − 5

3
. The local Obukhov–Corrsin coefficient,

defined as Cs(k) = G(k)k5/3 ε1/3/χ, is plotted in figure 3(b) against k on a linear-linear
plot. The two mean dissipation rates were estimated as the energy and scalar variance
flux, respectively, from the resolved field to the subgrid scales. Cs(k) varies in the range
from 0.6 to 1.1, with an average value of 0.86. This value is in excellent agreement
with the Obukhov–Corrsin constant obtained from DNS.

The physical space equivalence of the scalar spectrum is the second-order moment
of the scalar increment as shown in figure 4, under inertial range scaling. We can
clearly see a plateau region for the higher-Rλ DNS scalar fields and the LES scalar
field, indicating the inertial subranges. The level of the plateau regions, H2 in our
notation, lies between 1.7 and 2.1, which, using Cs = 0.4H2, gives an Obukhov–Corrsin
constant of 0.68 to 0.84, in close agreement with the value obtained from the scalar
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Figure 4. The second-order moment of the scalar increment as a function of r/Lf .
The two dashed lines mark the levels 1.7 and 2.1, respectively.

spectra. A survey of early measurements shows that H2 is in the range of 1.1 to
5.8 (Monin & Yaglom 1975). More recent experimental data of Zhu et al. (1995)
showed that H2 is in the range of 3.4 to 4, significantly larger than the level in
our simulations. On the other hand, the high Péclet number grid turbulence data of
Mydlarski & Warhaft (1998) shows H2 ≈ 2.0, a value very close to our observation.

Another comparison with experimental observation is displayed in figure 5, which
shows the probability density function of scalar increment at small separation. The
departure from Gaussianity and the existence of stretched tails are well known. Our
data of different types of flows show a high degree of collapse. For the DNS fields,
the p.d.f. is essentially that of scalar gradient since the scalar field is well resolved. The
agreement between the DNS data and the experimental data of Antonia et al. (1984)
and Mydlarski & Warhaft (1998) is good. We may also compare these data with
the experimental data of Prasad & Sreenivasan (1990), who measured scalar (dye in
water) increments at r ≈ 3η ≈ 120η

B
in a jet and wake of high Schmidt number at

1900. They only show the p.d.f. data for the region of −4 < ∆rθ/[(∆rθ)2]1/2 < 4 with
log10(p.d.f .) = −2.5 at |∆rθ/[(∆rθ)2]1/2| = 4, which compares well with our value of
−2.4. The p.d.f.s also compare very well with the data of Zhu et al. (1995) (figure 2
in their paper).

As the separation r increases, the tails of the p.d.f. of ∆rθ start to drop off first
while the centre region remains exponential (figure 6a). For r on the order of the flow
integral length, the p.d.f. becomes Gaussian (figure 6b). This is expected since the
scalar values at two points are only weakly correlated and the scalar variable itself is
nearly Gaussian. Similar observations were made, for example, by Zhu et al. (1995)
and Mydlarski & Warhaft (1998).

In summary, we have demonstrated that the simulated scalar fields have many
similar characteristics known previously. In general, we find that the scalar field is
more intermittent than the velocity field. We also provide a few new statistics and their
scalings. Other important statistics of the highest-Rλ DNS scalar field, such as flatness
factor of ∆rθ and the third-order mixed moment ∆ru(∆rθ)2, were documented by
Chen & Cao (1997). They also found that the scaling exponents of the unconditioned
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Figure 5. The probability density function of scalar increment at small separations. Only three
simulations at 2563 are shown with symbols following the convention given in table 1, the symbols
only mark every 6 points of the DNS data for identification purpose. The separation was set to
one grid spacing in the simulations. The experimental data of Antonia et al. (1984) for the scalar
field in a round jet with Rλ = 850 are shown by the × symbols. The p.d.f. of scalar gradient for
grid turbulence at Rλ = 247 and Pr = 0.707 (Mydlarski & Warhaft 1998) is shown by a dot-dashed
line. The separation as determined by the probe resolution in their experiment was about 20η.

scalar structure function over r agree very well with the experimental data by Antonia
et al. (1984). It is surprising that certain features of the scalar turbulence are rather
insensitive to changes of global Reynolds number. This indicates that a careful study
of scalar turbulence at moderate Rλ in DNS can be very relevant to high-Reynolds-
number scalar turbulence.

3. Phenomenology and statistics of dissipation rate fluctuations
The statistics of locally volume-averaged kinetic energy dissipation rate were studied

in Part 1. Here we focus on the statistics of the scalar dissipation rate and the
correlation between the energy dissipation rate and the scalar dissipation rate. These
statistics represent an important part of the refined turbulence theory for passive
scalar fields.

Figure 7 shows the local scalar dissipation rate χ on a line of length 4Lf for three
representative fields at different Rλ, where F∆s in figure 7(c) for the LES field is defined
as

F∆s ≡ 2Dt
∂θ̃

∂xi

∂θ̃

∂xi
. (3.1)

Here θ̃ is the resolved scalar field and Dt is eddy diffusivity. F∆s represents approxi-
mately the local scalar variance flux from resolved to subgrid scales. In equilibrium
turbulence, this flux into the subgrid volume ∆3 is dissipated within that volume on
average. Consequently we view F∆s as a good approximation for the average scalar
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Figure 6. The probability density function of scalar increment at (a) r = 6∆ and (b) r = 62∆.
Only three simulations at 2563 are shown with symbols following the convention given in table 1,
the symbols only mark every 6 points in (a) or 4 points in (b) of the DNS data for identification
purpose. The experimental data of Mydlarski & Warhaft (1998) for grid-generated scalar turbulence
with r/η = 40.5 at Rλ = 247 and Pr = 0.707 are shown by the × symbols. The dashed line is the
Gaussian distribution.

dissipation rate in the subgrid-scale volume, i.e.

χr(x, t)|r=∆ ≈ F∆s (x, t). (3.2)

Averages of χr(x, t)|r=∆ on a linear dimension r > ∆ are taken as χr in later scaling
analyses using the LES field. This same concept was used in Part 1 to define εr for
the LES field. Relative to the DNS local scalar dissipation rate χ, F∆s in figure 7(c)
can be viewed as local scalar dissipation rate at a much higher effective Reynolds
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y = z = LB/2 of length 4 integral length scales in the simulation box. (a) d256c2, Rλ = 68 and
Pr = 0.7; (b) f256, Rλ = 151 and Pr = 1.0; and (c) LES256.

number averaged over grid scale ∆. Visually, the local dissipation rate becomes more
spiky as Rλ increases, and both the spike magnitude and the number of spikes
in one integral length scale grow with Rλ. Compared with figure 5 in Part 1, the
scalar dissipation rate is much more intermittent than the local energy dissipation
rate. A similar observation was made in experimental measurements by Meneveau
et al. (1990) through local signals of pseudo-dissipation rates χ′ and ε′.

We shall now study the locally volume-averaged scalar dissipation rate χr . The
method for computing χr is identical to that used for εr (see Part 1). Figure 8 gives
the probability distribution of ln χr at four different r for forced turbulence f256 at
Rλ = 151. Here ln χr is centred on its mean br ≡ ln χr and normalized by its standard

deviation πr ≡
√

(ln χr − br)2. For convenience, we define qr ≡ (ln χr − br)/πr . Also
shown is the standard Gaussian distribution for comparison. Figure 8 shows that
whereas ln χr is nearly Gaussian for |qr| 6 2, the tails deviate significantly from the
Gaussian distribution. Furthermore, ln χr is negatively skewed at all r. These deviations
from Gaussianity are greatest at small r, and appear to reduce as r increases. These
observations are in good agreement with the findings of Sreenivasan et al. (1977) and
Eswaran & Pope (1988b). The probability distributions of ln χr for other DNS fields
and the LES field are similar. We find that the skewness of ln χr lies in the range
−0.10 to −0.20 for small r and approaches zero as r → Lf , while the flatness of
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Figure 8. Probability density function for ln χr at four different r of 1, 6, 20, 62 grid spacings for the
forced DNS field at Rλ = 151 and Pr = 1. The curves are shifted by different amounts for r > ∆.
The dashed lines represent the normal distribution.

ln χr is in the range 2.8 to 3.1, close to 3 for the Gaussian distribution. These values
conform well with experimental data of Sreenivasan et al. (1977).

More detailed comparisons with the log-normal distribution can be made by
computing moments of χnr . For a log-normal distribution (Kolmogorov 1962),

χnr = exp (nbr + n2π2
r /2). (3.3)

Using χr = χ yields for n = 1,

Q ≡ br + 0.5π2
r

ln χ
= 1, (3.4)

implying that the mean and standard deviation of ln χr are directly related if the
distribution of χr is log-normal. Figure 9 shows Q as a function of r. Excluding
the lowest-Rλ d256c2 field, Q deviates by less than 3% from log-normality at all r,
and improves with increasing r, suggesting that the log-normal model is accurate
for the first-order moment n = 1. However, the departures from the log-normal
distribution become more important for higher-order moments. To see this, we plot
the non-dimensional ratio

Rn ≡ 2

n(n− 1)
× ln χnr/(χ)

n

ln χ2
r /(χ)

2
, (3.5)

against n in figure 10 for fixed r, where Rn = 1 when n > 2 if χr is precisely log-normal.
Note that R2 is defined to be 1. Overall, Rn decreases continuously with increasing n,
indicating that the log-normal model tends to overpredict the magnitude of high-order
moments, as known previously (e.g. Antonia et al. 1984). The departure from log-
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Figure 10. The non-dimensional ratio defined by (3.5) for the three different flow fields. The four
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and Pr = 0.7; (b) f256, Rλ = 151 and Pr = 1.0; and (c) LES256 and Pr = 1.0.

normality decreases as r increases and approaches inertial-range scales. Furthermore,
the departure is less for higher flow Reynolds number.

The dependence of the variance of ln χr on r is shown in figure 11 on a linear-log
plot to determine the value of µs in equation (1.10). The LES field displays a well-
defined linear region with a slope of approximately µs = 0.43. The DNS fields, on the
other hand, display less clear linear regions at intermediate r with an approximate
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slope µs = 0.77. Taking the case f256, the range of r for which the slope applies is
from r/η = 8 to r/η = 65 (or r/Lf = 0.08 to r/Lf = 0.65). These values of µs are
much larger than µ for the energy dissipation rate (µ = 0.2 to 0.28, Part 1). The
difference between µs and µ appears to be consistent with the observed difference
in the level of intermittency between the scalar and energy dissipations. Sreenivasan
et al. (1977) measured the variance of ln χr directly (one of the very few experiments
of this kind). They found that µs = 0.35 and that the scaling range started from
r/η = 6 ∼ 8. A survey by Sreenivasan et al. (1977) showed a range of µs from 0.35 to
0.72. A more recent review by Sreenivasan & Antonia (1997) indicates that the best
estimate for µs is about 0.35 while the best estimate for µ is 0.25.

The more commonly used method for estimating µs experimentally is through the
correlation of χ, namely χ(x, t) χ(x+ r, t) ∼ r−µcs . In figure 12 we show this correlation
as a function of r. The scaling is not as good as seen for the variance in figure
11. There appears to be a linear region for the LES field with µcs = 0.27, a value
significantly less than µs = 0.43 based on the variance method above. Note that there
is no rigorous relationship between µs and µcs . Our results seem to explain the reason
for different values of µs (and µ) found in experiments. The review by Sreenivasan &
Antonia (1997) does show that the correlation method yields a significantly smaller
value of the scalar intermittency parameter than the variance method. Apart from the
possible Reynolds number dependence and flow-type dependence, the dependence of
the scalar intermittency parameter on measurement methods needs further study.

Having discussed the scalar dissipation rate χr here and the energy dissipation rate
εr previously in Part 1, we shall now report on the correlation between the two. First
we show in figure 13 the correlation coefficient between ln εr and ln χr as a function of
r. A significant positive correlation is seen for all values of r. The general behaviour
is that the correlation increases with r, reaches a maximum at a scale between η
and Lf , then drops again at large r. The high-Rλ fields and the LES field show a
plateau region at 0.25. Antonia & Chambers (1980) found that ρ′ ≡ ρ(ln χ′r, ln ε′r)
increases from 0.40 to 0.54 in the inertial subrange in the atmospheric surface layer.
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The theory of Hosokawa (1991) gives 0.51. Meneveau et al. (1990), on the other hand,
found a much lower value of 0.13 ± 0.04 in the wake of a heated jet. Antonia &
Chambers (1980) and Zhu et al. (1995) found experimentally that ρ′ increases from
0.13 to 0.55 as r increases for both jet flow and the atmospheric surface layer. Note
that all the experiments used pseudo-dissipation rates instead of the true dissipations.
It is possible that this correlation coefficient increases with flow Reynolds number.
It is also possible that the larger value observed in some experiments is due to the
contamination of the passive scalar signal by velocity signals.

Finally, we show the correlation coefficient between χr and εr in figure 14. The
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Figure 14. The correlation coefficient between χr and εr as a function of r/η.
The horizontal lines mark 0.15 and 0.17.

general behaviour is similar, but the level-off in the inertial subranges is less evident.
The correlation is around 0.15 to 0.17 for the high-Rλ fields and the LES field in
the inertial subrange, considerably lower than ρ(ln χr, ln εr). This difference was also
noted in the measurements of Antonia & Chambers (1980). Mydlarski & Warhaft
(1998) obtained a correlation coefficient of 0.13 ∼ 0.14 between the pseudo-dissipation
rates χ′r and ε′r in the inertial subrange.

We have also compared the joint p.d.f.s of the logarithmic dissipation rates with
the joint log-normal model, equation (1.8), by two-dimensional contour level plots of
the joint p.d.f. (not shown here). We observe that the joint log-normal model is a very
good model for most of the (χr, εr) region. The log-normal model does not fit well to
the region of very large χr but moderate εr . The model works better for larger r and
larger Rλ.

4. Direct examination of RSHP
A rather thorough examination of RSHP can now be provided. The objective is

to quantify the scaling exponents of δrθ|εr ,χr over χr, εr , and r, respectively. We shall
denote these exponents as φ, α, and ζ. To compute the conditional scalar increments,
δrθ|εr ,χr , the following procedure was used: (i) for a given r, compute the value of (χr, εr)
at each grid point; (ii) divide the dissipation-rate pair (χr, εr) into two-dimensional
bins based on a logarithmic scale, i.e. 101 by 101 equally-spaced bins are used for the
domain

−4 < qr ≡ lnχr − br
πr

< +4, −4 < sr ≡ lnεr − mr
σr

< +4; (4.1)

and (iii) compute δrθ|εr ,χr based on all the grid points falling into a particular

(χr, εr) bin. This procedure produced a two-dimensional field for δrθ|εr ,χr of dimension
101 × 101. The computation was repeated over roughly logarithmically distributed
values of r, with ri+1 ≈ 1.25ri, starting from r1 = ∆, the grid spacing.
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Figure 15. Scalar increment conditioned on the locally averaged dissipation rates, δrθ|εr ,χr , against χr
on a log-log plot, for the 2563 forced DNS field f256 at Rλ = 151 and Pr = 1. Each curve corresponds
to a fixed r and εr . (a) r = ∆; (b) r = 50∆. The dashed line shows 1

2
slope, qr ≡ (ln χr − ar)/πr .

4.1. Scaling exponent of δrθ|εr ,χr on χr

We first examine the scaling exponent of χr for the conditionally averaged scalar
increments. For this purpose, log-log plots of ln (δrθ|εr ,χr )/πr against qr are presented
in figure 15(a) for r = ∆ and figure 15(b) for r = 50∆ for the forced DNS field
f256. Different curves represent different ln εr bins (only the bins 1, 6, 11, . . . , for sr
are shown). The vertical axis is shifted by an amount proportional to the sr bin
numbr to separate the curves, as otherwise all the curves almost overlap as a result
of weak dependence of δrθ|εr ,χr on sr . The curves fluctuate at very small and very
large values of χr and/or εr due to the small number of samples. To eliminate these
edge fluctuations from the estimation of the scaling exponent, we only use the central
portion of the curves, selected by requiring the number of samples in a bin to be
larger than 1000. In addition, the number of retained points on each curve is required
to be larger than 5 so that a reasonable measure of slope can be made. As a result,
only about 12 curves out of 21 are shown. Figure 15 shows qualitatively that the
slope, which represents the scaling exponent φ, is close to 1

2
for both r values.

Next each curve was least-squared fit with a straight line to extract the slope. For
a given r, the slope was averaged over all the sr bins. The process was repeated for
all r values and different scalar fields. The final results for the scaling exponent φ as
a function of r/η are shown in figure 16. φ is 1

2
for the dissipation range according

to the Taylor expansion, equation (1.15). In the inertial subrange, the slope should
again be 1

2
, if RSHP is correct. Figure 16 shows that φ = 0.5± 0.05 for most of the

r/η region. The extent of this region also increases as Rλ increases, with the LES field
being most extended. The figure also shows that as r approaches the integral scale,
the scaling exponent drops below 1

2
. Since δrθ|εr ,χr will no longer change with r if

r � Lf , the scaling exponent will approach zero for very large r.

4.2. Scaling exponent of δrθ|εr ,χr on εr

Similarly, we show in figure 17 ln (δrθ|εr ,χr )/πr as a function of sr , for different qr
bins, at a given r. For r in the dissipation range (figure 17a), the curves are almost
horizontal, indicating no correlation between δrθ|εr ,χr and εr , consistent with equation
(1.15). For r in the inertial subrange, a negative correlation is clearly seen, in agreement
with RSHP as shown by equation (1.13).

The scaling exponent α for all the scalar fields is shown in figure 18. This is probably
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Figure 16. The scaling exponent of δrθ|εr ,χr over χr as a function of r/η for all the DNS
simulation fields. The results for the large-eddy simulation field are shown by �, where the
effective Kolmogorov scale is defined by the effective viscosity as given by equation (4.6) in Part 1.
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Figure 17. Scalar increment conditioned on the locally averaged dissipation rates, δrθ|εr ,χr , against sr
on a log-log plot, for the 2563 forced DNS field f256 at Rλ = 151 and Pr = 1. Each curve corresponds
to a fixed r and χr . (a) r = ∆; (b) r = 50∆. The dashed line shows − 1

6
slope. sr ≡ (ln εr − mr)/σr .

the most interesting figure, showing the strongest direct support for RSHP to date.
The figure shows that, while there is no correlation between the conditional scalar
increments and the energy dissipation rate at small r, there is a negative correlation,
at larger r, between the two as signified by a negative exponent of about − 1

6
, in



Examination of Kolmogorov refined turbulence theory. Part 2 187

0.1

0

–0.1

–0.2

–0.3

–0.4
0 1.0 2.0 3.0

0

–1/6

log10 r /è

α

Figure 18. The scaling exponent of δrθ|εr ,χr over εr as a function of r/η for all the DNS
simulation fields. The results for the large-eddy simulation field are shown by �, where the
effective Kolmogorov scale is defined by the effective viscosity as given by equation (4.6) in Part 1.

good agreement with equation (1.13). The DNS fields show a good collapse of data.
This negative correlation is of dynamical origin as there is no kinematic connection
between the scalar increment and kinetic energy dissipation rate, while there is a
kinematic connection betwen the scalar increment and scalar dissipation rate for
small r, as shown by (1.15).

4.3. Scaling exponent of δrθ|εr ,χr on r

It is slightly more complicated to obtain the scaling exponent over r. In principle, for
each bin of the fixed pair (qr, sr) and thus (χr, εr), we can plot δrθ|εr ,χr versus r on
a log-log plot and extract the slope. Since the bin values for (χr, εr) depend on r, a
linear interpolation procedure was used to match the value of (χr, εr) between two
consecutive r values. Figure 19 gives an example of a plot for δrθ|εr ,χr versus r, for
different χr bins, given εr ≈ 0. The curves have different slopes at small and large r,
in qualitatively agreement with the theory as presented in § 1.

The local slope for each curve was obtained by finite differencing between two r
fields and an average over all (χr, εr) bins was made to obtain ζ. The final results
are given in figure 20. The exponent collapses well for different scalar fields when
plotted against r/η. As expected, for small r, ζ is close to 1. As r moves to the inertial
subrange, there is a strong tendency for ζ to level off at about 1

3
. For the LES

scalar field, the 1
3

range extends for almost a decade. This clearly supports the scaling
dictated by RSHP.

4.4. Dependence on Rεr and universal constants

Since the inertial subrange is very narrow, the scaling exponents, for the most part,
show a tendency of conforming with RSHP. As shown in Part 1, a better way to
reveal the K62 inertial subrange is to condition on the local scale-dependent Reynolds

number, Rεr = ε
1/3
r r4/3/ν, along the line of the first RSHP, equation (1.11). We make
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Figure 20. The scaling exponent of δrθ|εr ,χr over r as a function of r/η for all the DNS simulation
fields. The results for the large-eddy simulation field are shown by�, where the effective Kolmogorov
scale is defined by the effective viscosity as given by equation (4.6) in Part 1.



Examination of Kolmogorov refined turbulence theory. Part 2 189

100

10–1

10–1 100 101 102 103 104

(a)

(b)

100

10–1

10–2

10–1 100 101 102 103 104

Rεr

Rεr

d r
h

| ε r
,ø

r/(
ø r1/

2
ε r–1

/6
r1/

3 )
d r

h
2 |

ε r
,ø

r
/(

ø r1/
2
ε r–1

/6
r1/

3 )
2

Figure 21. The dimensionless scalar increments against the local Reynolds number Rεr for the 2563

DNS field at Rλ = 151 and Pr = 1. (a) n = 1; (b) n = 2, the relation (δrθ2|εr, χr)/(χ1/2
r ε

− 1/6
r r1/3)2

= PrRεr /6 is shown as a dashed line.

use of the two forced DNS fields at the highest Rλ and the LES field. We first plot the
first- and second-order dimensionless scalar increments as a function of Rεr in figure
21 for the f256 scalar field. Figure 21(a) is essentially a replot of figure 15 for all εr
and r. A dot is drawn for each r and each bin in (qr, sr) if there are at least 1000
samples. Several interesting observations can be made. First, all the points collapse
reasonably well in figure 21, indicating that the first RSHP, equation (1.11), provides
a reasonable description for the conditionally averaged velocity increments. Second,
the local Reynolds number Rεr extends over about three and half decades, from 0.5
to over 1000, much larger than the length-scale separation in r, which is less than two
decades (e.g. figure 4). Third, based on a Taylor series expansion for r → 0, for small
Rεr the Reynolds number dependence should be

Pn(Rεr , P r) ∝ (Pr Rεr )
n/2. (4.2)

For n = 1 and n = 2, the slope should be 0.5 and 1.0, respectively, which is the case
for Rεr . 20. For n = 2, there is an exact relationship

P2(Rεr , P r) =
Pr Rεr

6
, (4.3)

which agrees with the data for Rεr . 20.
Most interestingly, those points following the inertial-subrange scaling in RSHP

form plateau regions for Rεr & 40. This suggests that the inertial-range scaling in
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Figure 22. As figure 21 but for the 5123 DNS field at Rλ = 195 and Pr = 1.

RSHP starts at Rεr ≈ 40. This agrees with Rεr ≈ 50 as suggested by Zhu et al. (1995)
based on experimental data and use of pseudo-dissipation rates. The somewhat smaller
value of the transition Rεr could be due to the use of true dissipation rates here (for
a discussion of the comparison between true dissipation rate and pseudo-dissipation
rate on the quality and extent of oberved scaling, see Part 1).

Figure 22 shows similar results for the f512 field. The overall features are similar
to figure 21, but with a slightly wider plateau. The level of the plateau provides a
reasonably accurate estimate for the universal constant Wn in equation (1.13). The
estimates according to figure 22 are W1 = 1.2± 0.1 and W2 = 2.3± 0.2. Similar plots
for third and fourth orders yield W3 = 5.5 ± 0.5 and W4 = 14.0 ± 1.0. Zhu et al.
(1995) found W2 = 4.0 ∼ 5.6 experimentally. Three differences between our estimates
and their estimates of Wn are: (i) their values are significantly larger than ours; (ii)
their estimate shows a significant Reynolds number and flow type dependence while
our estimate is rather insensitive to the change of flow Reynolds number, large-scale
forcing, and subgrid-scale modelling; and (iii) our estimate of the universal constants
for the scalar field is almost identical to that of velocity field while they show the
universal constants for the scalar field are a factor of 2 larger than those of the
velocity field. In Part 1, we showed that, while the use of pseudo-dissipation rates
decreases the quality of the inertial-range scaling, the universal constants remain the
same. We believe the experimental difficulties mentioned earlier could contribute to
these differences.

To construct a similar plot using the LES field, we introduce an effective viscosity
νe and effective diffusivity De. They are estimated according to field-averaged kinetic
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Figure 23. As figure 21 but for the 2563 LES field.

energy flux and scalar variance flux as

νe ≡ F∆

2s̃ij s̃ij
, De ≡ F∆s

2
∂θ̃

∂xi

∂θ̃

∂xi

, (4.4)

where s̃ij is the rate of strain computed according to the resolved velocity field. The re-
sulting viscosity and diffusivity are νe = 0.000434 and De = 0.000748, yielding a turbu-
lent Prandtl number of 0.58. This Prandtl number should be equal to the input Prandtl
number of 0.60, on average. With these parameters, the corresponding plot for the
LES field is constructed (figure 23). The plateau regions for both the first and second
moments extend over a decade, giving D1 = 1.15± 0.1 and D2 = 2.1± 0.2, almost the
same values as for the DNS scalar fields.

Alternatively, these universal constants can be estimated from the probability
density function of βs in the inertial subrange:

Wn =

∫ ∞
0

βns f(βs) dβs. (4.5)

We computed f(βs) based on a small selected (εr, r) domain that forms part of the
plateau regions in figures 21 to 23. Figure 24 shows the probability distributions on
log-arithmic scales, along with the Gaussian curve. The probability distribution is
almost the same for the three different scalar fields, supporting the universality of
the distribution. The discrepancy at large βs may be due to statistical variability. In
agreement with experimental observations of Stolovitzky et al. (1995) and Zhu et al.
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Figure 25. The universal constants Wn based on the probability distributions of βs shown in figure
24 for the three different flow fields (line captions are the same as figure 24). Symbols are values
determined from figures 21 to 23. The dotted line is the analytical expression based on the Gaussian
model, equation (4.11) in Part 1.

(1995), the probability distribution is close to Gaussian, but falls off slightly faster
than the Gaussian curve at large βs.

The moments of βs can be reasonably modelled by the Gaussian distribution, as
shown in figure 5. The analytical result for the Gaussian model is given in Part 1
and is plotted here for comparison. The numerical value of Wn was obtained through
equation (4.5) for the three fields. Also shown are the values and error bars obtained
from the moments of scalar increments. They compare extremely well, indicating the
probability distribution in figure 24 is reasonably accurate. It is important to note
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that Wn increases with n at a faster-than-exponential rate. Figure 25 indicates that the
Gaussian model works well, except for very large n.

5. Summary and concluding remarks
High-resolution simulations of scalar turbulence have been undertaken to study

small-scale phenomenology. The main focus was to examine the refined turbulence
theory when applied to passive scalar turbulence. Both aspects of the refined theory are
investigated: the distribution of the locally volumed-averaged scalar dissipation rate
and kinetic energy dissipation rate, and the refined similarity hypotheses for passive
scalar fluctuations (RSHP). We found that the log-normal assumption provides a
reasonable description, as the scale r is increased towards the inertial subrange. The
correlation coefficient between the logarithmic dissipation rates is close to 0.25 and
that between the dissipation fluctuations is about 0.15 to 0.17. These values are within
the range of experimental observations in terms of one-dimensional surrogates of
the dissipation rates. The fact that these correlation values are insensitive to flow
Reynolds number, large-scale forcing, and subgrid modelling in our simulations,
provided that a narrow inertial subrange exists, along with the accuracy of these
statistics, makes these values representative of what would be observed for higher
flow Reynolds numbers. To date, it has not been possible to experimentally measure
these correlations in terms of the true dissipation rates. The intermittency parameter
µs of the scalar dissipation fluctuations has been measured by various methods (e.g.
Sreenivasan & Antonia 1997). We show that the variance method yields a much higher
value than the correlation method, in agreement with the accumulated experimental
evidence (Sreenivasan & Antonia 1997). An attempt to use different methods to
estimate µs in a single experimental study needs to be made to further clarify this
observed dependence of µs on the methods.

Various observations from our simulated scalar fields show support for RSHP: (i)
for the first time, scaling exponents of the conditional scalar increments have been
quantified to show a tendency to approach the K62 inertial-subrange scalings; (ii) a
wider inertial subrange of the conditional statistics is observed in terms of the K62
local Reynolds number Rεr ; (iii) the probability distribution of the random variable βs
is shown to be Gaussian and insensitive to flow Reynolds number, large-scale forcing,
and subgrid modelling. The most important is the first quantitative confirmation of
the − 1

6
scaling of δrθ|εr ,χr over εr , as this shows clearly a dynamic aspect of RSHP.

Note that the relationship between the velocity increments and energy dissipation
rate has both kinematic and dynamic aspects (Chen, Doolen & Kraichnan 1995). The
moments of βs are different from the experimental observations of Zhu et al. (1995) in
two ways: (i) our moments are much smaller and (ii) our moments are independent of
flow Reynolds number, large-scale forcing, and subgrid modelling. The exact reason
for the differences between the simulation results and experiments is not clear. Possible
reasons include the use of pseudo-dissipation rates in experiments, the limited scale
separation in simulations, and various experimental difficulties of measuring both
dissipation rates accurately and simultaneously.

The accumulated evidence shows that while the velocity increments depend on
both locally averaged dissipation rate and enstrophy at least for finite flow Reynolds
number (e.g. Grossmann et al. 1997; Chen et al. 1997), the scalar increments mainly
depend on the locally averaged dissipation rates. The stretching of the scalar by local
velocity strain can alter quickly the local scalar gradient and thus the scalar increment.
The flow vorticity could also enhance the local scalar gradient if the scalar field is
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locally non-uniform (e.g. Wang & Maxey 1993). In fully developed turbulence, the
vortex tubes can generate large jumps in scalar field near these tubes (Pumir 1994).
The possibility of dependence of high-order scalar statistics (such as the conditional
statistics of increments of scalar gradient) on local enstrophy cannot be ruled out.

A very interesting picture emerging from this work is that the small-scale features of
the scalar field and those of the velocity field share both significant differences as well
as similarities. Both old and new unconditional statistics show that the scalar field is
more intermittent than the velocity field for Pr ≈ 1: (i) the local signal of the scalar
dissipation rate shows, within one integral length scale, a larger number of spikes with
higher magnitude than that of energy dissipation rate, (ii) the flatness factors of the
scalar gradient, of scalar increments over inertial-subrange scales (Chen & Cao 1997),
and of the scalar dissipation-rate fluctuations are larger than those of velocity gradient,
velocity increments, and energy dissipation-rate fluctuations; (iii) the scalar field has
a smaller Taylor microscale; (iv) it is certain, for the given flow Reynolds numbers
studied here, that the intermittency parameter µs of the scalar variance dissipation
rate is a factor 2 larger than the intermittency parameter µ of the energy dissipation
rate; (v) the length scale associated with the scalar dissipation peak is smaller than
that of kinetic energy dissipation; and (vi) the dimensionless production rate of scalar
gradient is a factor 2 larger than that of enstrophy. Most of these observations are not
new (e.g. Sreenivasan & Antonia 1997), although we believe that these statistics may
have been measured more accurately in this work than what is possible in laboratory
and field experiments. The accurate evaluation of these statistics, albeit made at
moderate flow Reynolds numbers, could help clarify the uncertainties surrounding the
above comparisons due to experimental difficulties. For example, there is a significant
overlap between the experimental values of µ and µs (Sreenivasan & Antonia 1997);
our results support the belief that µs > µ. Thus the unconditional scalar field is more
intermittent than the velocity field, over both dissipation and inertial-range scales.
Qualitative explanations for the differences between the scalar and velocity fields exist,
for example, in terms of relative alignment of the scalar gradient and vorticity with the
rate-of-strain field and related structures (Kerr 1985; Ashurst et al. 1987; Ruetsch &
Maxey 1992; Miller et al. 1995). Quantitative models for the above differences do not
exist. The statistics provided in this paper would be useful for testing future models
of this kind. It should be noted that the advection of passive scalar by a rapidly
decorrelating random velocity field (Kraichnan 1974b; Chen & Kraichnan 1998),
being a theoretically more tractable problem, has shed some light on the build-up of
scalar intermittency through repeated random straining or cascades.

On the other hand, the conditional statistics along the lines of Kolmogorov refined
turbulence theory show almost identical results, namely the two random variables β
and βs have a Gaussian probability distribution with almost identical moments in the
K62 inertial subrange. This latter observation is somewhat different from experimental
observations by Zhu et al. (1995) that the conditional moments are quite different for
the velocity and scalar fields. Our results imply that the stronger intermittency of the
scalar field is due to the dual dependence of the scalar field on energy and scalar
dissipation rates and also the stronger intermittency of the scalar dissipation rate. The
fact that the p.d.f.s of β and βs are Gaussian implies that the strong intermittencies
in the velocity and scalar fields are essentially removed as a result of the conditioning
over the two dissipation fluctuations.

We focus our analyses on the scalar increments only. The scalings of conditional
moments of mixed velocity and scalar increments, while in principle derivable from
the scalings of first-order moments studied in this paper and Part 1, may be worth
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a separate study. Experimental studies of the mixed moments have been done, for
example, by Zhu et al. (1995).

We also limit our discussions to full dissipation rates. Some differences of using
pseudo-dissipation rates for scalar field are documented, for example, by Sreenivasan
et al. (1977). We expect the general conclusions would be similar to those indicated in
Part 1 and Hosakawa & Oide (1996). Nevertheless, since experimental measurements
are almost always based on the the pseudo-dissipation rates, testing the use of pseudo
dissipation rates may prove to be necessary. This task would be better conducted
when higher Reynolds number DNS become possible.
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