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Abstract

Prediction of the effect of air turbulence on statistics relevant to a collision-coalescence

process represents a key challenge in the modeling of cloud microphysics. In this pa-

per, we first consider collision-related statistics for gravity-driven motion of droplets

and derive theoretically various probability distributions associated with geometric

configuration and relative motion of colliding droplets. The theoretical results agree

well with numerical results obtained from direct numerical simulations (DNS). In the

absence of air turbulence, the probability distributions, calculated at the beginning of

the time steps used for collision detection, nontrivially depend on the time step size.

Next, a novel theory is developed to quantify the effect of turbulence on the angle-

of-approach � and radial relative velocity � ��� � � � for colliding pairs. A logical decom-

position is used to construct extended collision volumes for a specific level of radial

motion caused by air turbulence. It is shown that the inward relative motion due to

turbulent fluctuations dominates the effect of turbulence in modifying the probability

distributions of � amd � ��� � � � . Two key dimensionless parameters are identified in the

theory, one measures the effect of finite time step size in numerical collision detection

and the second measures the relative magnitude of air turbulence. The theory is com-

pared with 11 numerical experiments from DNS. It is shown that the theory captures

the essential physics of the effect of air turbulence and provides a quantitatively good

representation of the statistics for � . For most numerical experiments, the theory pre-

dicts ���
	 to within �
� . The probability distribution of � ��� � � � is more sensitive to the

influence of air turbulence and shows larger intermittency at large � ��� � � � than what is

assumed in the theory. The theoretical framework developed here may be of value to

other problems involving gravitational settling and weak turbulence, such as parame-

terization of collision kernel and hydrodynamic interactions of droplets in warm rain

processes.
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1. Introduction

Collision-induced coalescences of particles and droplets in a turbulent fluid is of importance to a

wide variety of applications in engineering and a host of phenomena in nature. Examples include

motion of cloud droplets in the atmosphere (Pruppacher and Klett 1997), sedimentation in rivers

(Tory 1996), transport of dust and pollutants in air (Seinfeld and Pandis 1997), and deposition of

pulp fibers in paper manufacturing (Smook 1982). The motivation here is to understand and quan-

tify the effect of turbulence on the collision rates of droplets in atmospheric warm clouds. Cloud

droplets of radii larger than 10 to 15 ��� grow primarily by collision-coalescence leading to the

formation of warm rain (Pruppacher and Klett 1997). For this specific application, the collision-

coalescence process is driven mainly by the gravitational effect but air turbulence has been shown

to have a significant impact on the collision rate when either droplets are small or collisions be-

tween droplets of similar sizes are considered (Franklin et al. 2005; Wang et al. 2005a). It has

been recognized that air turbulence broadens the distributions of relative velocity and angle-of-

approach of colliding pairs (Arenberg 1939; Manton 1974; Reuter et al. 1988; Khain and Pinsky

1997; Franklin et al. 2005).

In a stagnant air, collision-coalescences are caused by the difference in terminal velocities if the

system contains droplets of different sizes. The average rate of collision per unit volume between

droplets of two distinct radii � � and � � ( � � ��� � ) can be written as

� �� � � 	��
	��
��
��

��� �
����� � ��� ��� ��� (1)

where ����� ��� � � is the geometric collision radius,
�

� and
�

� denote the terminal velocities for

the two sizes, � � and � � are the average number concentrations, and � � � is the collision efficiency

measuring the effect of local hydrodynamic interactions. The above expression implies a geometric

collision kernel � of 	�� � 
 �
��� �

�!� or the geometric capture volume swept by a droplet of radius

� � due to the differential settling velocity "
�

�
�

�#� �
� , as shown in figure 1(a). Such a
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geometric-kinematic description is known as the cylindrical formulation and is applicable to simple

gravitational collision-coalescence without background air turbulence, but becomes inaccurate for

turbulent collision (Wang et al. 1998b, 2005c).

The more general approach to geometric collision is the spherical formulation originally devel-

oped by Saffman and Turner (1956), which states

� � � 	��
� � � � � 
�� � � � � 	 � (2)

where the radial relative velocity is defined in terms of the center-to-center separation vector �
(pointing from a droplet of radius � � to a droplet of radius � � ), the velocity � � of the � � droplet,

and the velocity � � of the � � droplet as � � ����� 
 � � � � �!�
	 � with
�

� � � � . In the spherical

formulation, the geometric collision kernel is viewed as the rate of volume influx through the

geometric-collision spherical surface of radius � (figure 1(b)). In equation (2), the area

 � 	�� � �

represents the area of the spherical collision surface where the relative motion is towards each other

( � ����� ).
Within this spherical formulation, ��� 
�� � � � depends on the polar angle � measured with

respect to the vertical direction (figure 1(b)), namely, for the gravitational collision,

� � 
�� � � � � � "
��
���� ��� (3)

Therefore, � � is negative for exactly half of the surface defined by ��� ��� 	 	 � . The rate of

volume influx through the same portion of the surface can be calculated as

����� �
� � 	 


�
�
��� � � �! � � � � � � � 	 �

�
"

� �"�#� �
� �
��� � 
���� �$ �

� 	��
�
"

� � (4)
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giving the expected geometric collision kernel and

� � � � 
�� � � � � 	���� � � "
� 	 � � (5)

where the superscript

�� � denotes contribution due to the gravitational collision mechanism only

(hereafter referred to as the base case). Therefore, � ��� � for any droplet pair separated by a distance

� varies from 0 to "
�

with a mean of "
� 	 � .

It has long been recognized that air turbulence can increase the geometric capture volume or

the relative velocity such that � � � � 
 � � � � ��	 are usually larger than � � � � 
 � � � � ��	 ��� �

leading to a geometric collision kernel larger than that of the base case (Arenberg 1939; Saffman

and Turner 1956; Manton 1974; Reuter et al. 1988; Khain and Pinsky 1997; Franklin et al. 2005;

Wang et al. 2005a).

The above formulations assume that droplets are uniformly distributed in space. When droplets

have finite relative inertia, namely, the inertial response time of the droplets �	� � ��
 ��� � 	 

� � � is

comparable to the Kolmogorov time scale, ��� , of the air turbulence, droplets are known to accumu-

late in regions of high strain and low vorticity (Maxey 1987). This preferential concentration effect

can significantly increase the average collision kernel since the local collision rate is proportional

to the second-order moment of local concentrations. Here

 � is the density of a droplet, � is the

fluid dynamic viscosity. The spherical formulation has been extended to include the preferential

concentration effect by Sundaram and Collins (1997) and Wang et al. (1998b, 2000) and becomes

� � � 	 �
� � � � � 
 � � � � � 	 �

� �

��

� � � � (6)

The additional factor
�
� � is the radial distribution function and measures the effect of preferential

concentration on the pair number density at separation
�

� � . In direct numerical simulations
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(DNS),
�
� � can be computed, at any given time, as

�
� �


 � � �
��������� 	
	��

 � 
 � 	���� � (7)

where

��������

is the total number of pairs detected with separation distance falling within a thin

spherical shell of average radius
�
, ��� is the volume of the spherical shell,


 � is the total number

of � � droplets used in the simulation, and

 � is the total number of � � droplets. ��� is the volume

of the computational domain. The interpretation of � � ��� 
�� � � � � 	 remains the same. In the

presence of gravity, the kinematic properties are no longer spherically symmetric, but the above

formulation should still apply since the kinematic properties are understood as being averaged

over all orientations (Wang et al. 1998b, 2005c). In this paper, we consider statistics related to the

relative velocity only; the effect of particle clustering can be treated separately through
�
� � but will

not be discussed any further in this paper.

It is important to point out that the relative velocities and the radial distribution function that

appeared in the above formulations are kinematic properties of the particle pairs, namely, they are

calculated, using field data at a single time instant, by making use of all pairs at a given separation.

Of course, averaging over a multiple of uncorrelated time instants can be taken to reduce statistical

uncertainties. We also use the term “kinematic at-contact pairs” to represent all kinematic pairs

having a center-to-center separation equal to � . On the other hand, dynamically colliding pairs re-

fer to the subset of particle pairs that actually collide; the term “dynamic” implies that the distance

between a pair must be followed over time in order to determine whether the pair will collide. In

this paper, we will focus mainly on dynamic pair statistics. We will demonstrate that the dynamic

pair statistics are very different from the kinematic pair statistics, as noted previously by Mei and

Hu (1999) and Wang et al. (2000, 2005c) for the mean relative velocity.

In an attempt to understand how turbulence modifies the relative motion of colliding pairs

relative to the base case driven only by gravity, Franklin et al. (2005) investigated the probability

distributions of � � � � and geometric configuration for colliding pairs. At any instant, the relative
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position configuration of a colliding pair can be represented by the polar angle � (see figure 1(b)) as

the relative motion is statistically independent of the azimuthal angle even in turbulent air flow. The

distribution of � for colliding droplets in a turbulent flow was previously discussed qualitatively

in Pinsky et al. (2000). Following Pinsky et al. (2000), Franklin et al. (2005) termed � “the angle

of approach” and studied numerically the probability distribution of � at several different levels

of air flow dissipation rate � . They found that both the mean and variance of � increase with � .

While � can only vary from 0 to 90 degrees for the base case, they showed that � could take any

value from 0 to 180 degrees so that an � � droplet may approach an � � droplet from below due to

turbulent fluid motion. Their DNS data also indicated that the mean and variance of � � � � � � , i.e.,

� � � � based on numerical detected colliding pairs, vary with � . These probability distributions and

average statistics provide insightful details of the effect of air turbulence on the geometric collision

process.

In this paper, we will provide a rigorous and thorough theoretical treatment of these statistics.

In Section 2, we first consider the base case of gravitational collisions without air turbulence, for

two purposes: (1) to illustrate the notion of geometric interpretations using this simple setting and

(2) to reveal the influence of the time step size used in the collision detection, in terms of a dimen-

sionless parameter
�� � "

�  �� 	 � .1 We then extend the theory in Section 3 to include the effect

of turbulent motion, which will express the probability distributions in terms of
��

and a second

dimensionless parameter closely related to the dimensionless kinematic radial relative velocity.

These theoretical predictions will be compared to results from DNS in Section 4. Finally conclu-

sions are summarized in Section 5. Although in this paper the discussion is limited to statistics

for geometrically colliding pairs, it is believed that the theoretical understanding developed here is

relevant to the previously observed enhancement of collision efficiency by air turbulence (Almeida

1979; Koziol and Leighton 1996; Pinsky et al. 1999; Wang et al. 2005b).

1Throughout this paper, a tilde ( � ) over a quantity implies that the quantity is normalized by the collision radius �
if the quantity has the dimension of length, or by the average kinematic radial relative velocity �	��

� of the base case
if the quantity has the dimension of velocity.
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2. Theory for the base case without air turbulence

a. Infinitesimal time step

We shall first consider gravitational collision without air turbulence. We have seen in the Introduc-

tion that, even for this base case, � ��� � varies with � and takes a value ranging from 0 to "
�

. It is

instructive to inquire about the probability distribution of � ��� � , which, by definition, satisfies

�����
� � 
 � � � � �  � � � � � �$� � � (8)

�����
� � � � � � 
 � � � � �  � � � � � � � � � � 	 � "

� 	 � � (9)

Using Eq. (4) and Eq. (9), we can show that the probability distribution of the kinematic at-contact

relative velocity is

� 
 � � � � � �

�������	 ������

� 	 " � � if ��� � � � � �
"

���

� � otherwise �
(10)

This result is also consistent with equation (8). Therefore, the probability distribution of � � � � is
uniform over the range of � ��� � from 0 to "

�
.

In terms of the normalized variable
���� � � � � � 	 � � � � � 	 � � � � � � � � 	 
 � � � " � � , we have

� 
 �� � � �

�������	 ������

� � � � if �"� �� � � � �

� � otherwise �
(11)

with a mean and standard deviation for
���� of 1.0 and 0.5774, respectively.

Next we derive the probability distribution of � based on pairs that actually collide in an in-

finitesimal time interval  � . This is equal to the ratio of the volume influx over a differential surface
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defined by  � to the total volume influx:

� 
 � �  � �

 � 	��

�
� � � � 
 �! � � � � � �  �
	�� � "

�  � �
�
��� 
 � � �  ��� (12)

Namely,

� 
 � � �

�������	 ������

�
��� 
 � � ��� if �"� �"� 	 	 � �

� � otherwise �
(13)

An alternative derivation of the same result with a better physical intuition is to take a plane per-

pendicular to the vertical axis and recognize that the flux is uniform over a circle of radius � (so

again the total flux is 	�� � "
�

). To convert to the polar angle representation, one may ask what

is the projected area of a differential spherical surface onto the plane surface (figure 2). Since the

projected area is � � � 	�� ��� � ��� � 
 � �  � ��� � ��� � 
 � ����� � 	�� � �
� � � 
 ��� �  � , and � 
 � �  � ��� �
	 	�� �
,

we again obtain � 
 � � �
� ����
 � � � for �	� �
��	 	 � .

It follows that the mean and standard deviation for the angle of approach in the limit of  ��� � ,
are

� � 	 �
� ��� �
� � � ����
 � � �  � � 	 
������ � � 
 ��� (14)�

� 
 � � � � 	 � � 	 � � � �#� �� � � �
��� 
 � � �  � ��� 	 
�� ��� � � �
� � ��� 
 �� !� 
 ����� � � � � � � � � (15)

Next we focus our attention on just these pairs that collide dynamically within the infinitesimal

time  � . These are a total of 	�� � "
�  �� � ��� � pairs per unit volume. We shall inquire about the

probability density of finding � � � � � � at a particular value. Since � � � � � ��� "
� 
���� � and  � � � � � ���
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� "
� �
� � �$ � , we have

� ��� �
� � 
 � �  � �

� ���
�

� ����
 � � �  � � � � � �
"

���
� � �
�

� ���
�

�
"

� � � � � � �
"

�  � � � � � � � (16)

Therefore

� 
 � � � � � � � �

�������	 ������

� � � � � � � 	 
 " � � � � if �"� � � � � � � �
"

���

� � otherwise �
(17)

In terms of the normalized variable � ���� � � � � � � � � � � 	 
 � � � " � � we have

� 
 � �� � � � � � �

�������	 ������

� � � � �� � � � � � if ��� � �� � � � � � � �

� � otherwise �
(18)

The mean and standard deviation for � ���� � � � are

� � �� � � � � 	 �

 	 � ����������
	 � � �

�
� � �� � � � � � 	 � 
 � � �� � � � � 	 � � �

� � 	 � � � �

�

�


� (19)

Therefore, we obtain

� � �� � � � � 	 �


� � �� ��	 � (20)

namely, the mean relative velocity based on dynamic colliding pairs is �!� � larger than the mean

relative velocity based on kinematic at-contact pairs.
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b. Finite time step

In direct numerical simulations (Sundaram and Collins 1997; Wang et al. 2000, 2005b; Franklin et

al. 2005), the trajectories of droplets are followed by solving their equations of motion. Collision

events are detected dynamically by examining the separation distance of all nearby pairs. A colli-

sion is registered if the distance
�

changes from
� 	 � to

� ��� . In actual code implementation, a

finite time step size  � must be used and the details of the collision event detection may differ from

one implementation to another.

Consider any time step from time � ��� � to � ��� � � � � � ��� � �  � . In the study of Franklin et al.

(2005) developed at McGill University (MU), the separation distance
� 

� � for � ��� � � � � � ��� � � �

was represented by a linear interpolation using the information at � � � ��� � only (i.e., using
� 

� ��� � �

and � � 
�� �
� 

� ��� � � � . While in the studies conducted at the University of Delaware (UD) (Wang

et al. 1998a, 2000; Zhou et al. 2001; Wang et al. 2005b), the velocities and positions at � � � ��� � � �

were obtained first, and a third-order polynomial representation was used to describe
� 

� � during

the time step interval using the information of
�

and ��� at both � � � ��� � to � � � ��� � � �
. The UD

implementation allows for three possible types of collision events (Wang et al. 1998a) due to the

nonlinear representation of
� 

� � : namely, i) Type I collisions with

� 

� ��� � � 	 � and

� 

� ��� � � � � � � ;

(ii) Type II collisions with
� 

� ��� � � 	 � and

� 

� ��� � � � � 	 � but

� 

� � � � during part of the time

interval; (iii) Type III collisions with
� 

� ��� � � � � and

� 

� ��� � � � � � � but

� 

� � 	 � during part of

the time interval. For the base case without air turbulence, the two implementations are identical.

For the general case of turbulent collision, the UD implementation is more accurate for large time

steps. When the time step size is properly controlled such that Type I collisions dominate, and

Type II and III collisions are very unlikely to occur, the two implementations should yield the

same result for collision counts.

In both implementations, when a pair were found to collide during the time interval � ��� � � � �
� ��� � � �

, the positions and velocities of the pair at the beginning of the time step ( � � � ��� � ) were saved

in order to later process the probability distributions for � and � ��� � � . As will be shown below, it is

very important to distinguish the information saved at � � � ��� � from the information at the instant
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of the collision when
� 

� � � � .

For the base case, two droplets separated at a center-to-center distance of as much as � � "
�  �

may collide during the time interval. Therefore, if
� � "

�  �� is comparable to � , the probability

distributions of � and � � � � � � obtained with information at � � � ��� � will differ from the theoretical

results obtained in Section 2.a.

In principle, the actual geometric configuration and relative velocity at the instant of collision

contact can be interpolated or extrapolated in DNS to remove the effect of time step size. How-

ever, we shall extend our theory for infinitesimal time step, presented in the last section, to finite

time-step size for several reasons. First, the implementation of highly accurate interpolations or ex-

trapolations of the relative motion for all colliding pairs in a system consisting of 100,000 droplets

can be tedious and time-consuming. Second, previous theoretical formulations such as Reuter

et al. (1988); Sundaram and Collins (1997) often considered finite-time delays in their derivations,

for the reason that a collision event is a dynamic process in which the inter-particle separation
� 

� �

is dynamically changed from
� 

� � 	 � to

� 

� � � �



� � . Third, efforts have begun to be made to

experimentally measure collision-related statistics such as relative velocities and local pair clus-

tering (Meng et al. 2004; Yang et al. 2005); in these experiments, only positions of particles at

discrete times are available. Finally, in computing kinematic relative velocities and pair concen-

trations, pairs at a range of finite separations, instead of only at-contact pairs, are routinely used

to increase the available number of samples such that statistical uncertainties can be better con-

trolled (Wang et al. 2000; Zhou et al. 2001). For these various reasons, pair statistics during a

finite time or within a finite separation right before the actual collisions are central to the under-

standing and quantification of collision interactions. Therefore, studying the statistics at finite time

steps are broadly motivated, in particular we expect that the theoretical results developed here can

help others better interpret experimental observations, in addition to clarifying our own DNS re-

sults. Having theories for both infinitesimal time step and finite time step allows us to separate

out the time-step effect from other physical effects. Alternatively, by understanding the time step

effect, we can offer more flexibility to DNS and experimental observations.
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We shall now show that these probability distributions based on the simulation data can be

rigorously derived for the base case. Since the relative motion is constant and is pointing in the

vertical direction, the volume that contributes to the influx or geometric collision, as illustrated in

figure 3, is a region bounded at bottom by the original half geometric-collision spherical surface

of � � 	 	 � , at top by a half spherical surface created by simply shifting the original spherical

surface vertically upward by
�
, and on the sides by a cylindrical surface of height

�
and radius � .

This volumetric region will be referred to as the collision volume. If the center of any � � droplet

is located in this volume, this droplet will collide with an � ��� droplet during � ��� � � � � � ��� � � �
. It

is important to note that the total volume of this bounded region is 	�� � �
, therefore, the net rate

of geometric collisions, which is proportional to 	�� � � 	  �� or 	�� � "
�

, does not depend on the

time step size and all the kinematic formulations discussed in the Introduction remain valid when

compared to DNS results (Wang et al. 2000; Zhou et al. 2001).

Assuming dynamic colliding droplets are distributed uniformly in this bounded region, the

probability for the angle of approach, � 
 � � , is then the differential overlap volume of the conical

shell of polar angle from � to � �  � and the above bounded region, divided by the total volume

	�� � �
. For �"� � � � ��� 
�� � ��


� 	 � � , we then have

� 
 � �  � �
� 	�� �����	��
���

� �  � � ��� �$ �
	�� � � �

� � ��� � � � �� � � � �� � � �  � � (21)

where � � is the radial distance of the top surface of the bounded volume at polar angle � . With the

help of the triangle graph on the right in figure 3, � � can be related to � ,
�
, and � as

� � � � 
���� � �
�

� � � � � �
� � � � (22)
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While for �
	 � � ,

� 
 � �  � �
� 	�� �
��� � �

�����
�
��� � �  � �
� � �$ �

	�� � � �

�
�� � �

� ��
� � � � � �
��� ���  � � (23)

Putting this altogether and introducing
�� � � 	 � � "

�  � 	 � , we obtain the probability distribu-

tion of � as

� 
 � � �� � �

�������������	 ������������


� �
��� ��� � �� 
 ��� � �
� � � �� � � ��� � ��� � � �
	�� 
 � �� ��� if ��� ��� 
�� � � � 	 �� �

� � 
 �
� � � ��
 � � �
� � � � 	 
 � �� ��� if
��� 
 � � ��
 � 	 �� � � � � 	 	 � �

� � otherwise �
(24)

It can be shown that the above probability distribution reduces to Eq. (13) as
�� � � . For finite  ��

or
��
, however, the probability distribution of � depends on

��
.

By the similar reasoning as used in deriving Eq. (16), we can relate the probability distribution

of � � � � � � to � 
 � � �� � ,
� 
 � � � � � � � �� � �

� 
 � � �� �
"

��� ��� � � (25)

Therefore, we obtain the following result,

� 
 � �� � � � � � �� � �

�������������	 ������������


� 
 � � � � � � � �� � � � � � � 
 ��� � � ��� � 
 � �� ��� if � �� � � � � � � �� 	 � � � �� � �

� �
� � � �� � �� � � � � � � � � �� � 
 � � � � � � � �� � � � � � � � � � � 	 � 
 � �� ��� if

� �� 	 � � � �� � � � �� � � � ��� � � � �

� � otherwise �
(26)
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This general result can recover Eq. (18) if we let
�� � � or  � � � . Note that the two nonzero

regions in Eq. (24) are inter-switched when converted to Eq. (26).

3. Theory for turbulent collision

The theory and geometric interpretation developed in the previous section for the base case shall

now be extended to include the effect of turbulent air motion or the turbulent collision case. The

collision volume shown in figure 3 needs to be properly expanded to account for the added relative

motion due to turbulent air motion.

a. Decomposition of radial relative motion

The strategy is to include turbulence effects in two steps. First, it is assumed that the air turbulence

alone introduces a radial relative motion � � . In the first step, � � is assumed to be a constant and

spherically symmetric. In the second step, the result from the first step is integrated with the

probability distribution of � � . This two-step procedure makes it possible to formulate a theory for

the probability distribution of the angle-of-approach using geometric interpretations. Furthermore,

as will be shown later, it facilitates the conversion of this probability distribution to the probability

distribution of radial relative velocity for colliding pairs.

The total instantaneous relative velocity is

� � � � 

"

��
���� � � � � ��� (27)

where � � is positive if turbulence induces inward relative motion. It is further assumed that � � has

a Gaussian probability distribution of zero mean and standard deviation ��� , namely,

� 
 � � � � �� � 	 ��� ����� 	
� � ��� � ���
 � (28)
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The true probability distribution of � � is likely to be non-Gaussian. It has been shown by Sundaram

and Collins (1997) and Wang et al. (2000) using DNS that the probability distributions of particle

relative velocity are better fitted by stretched exponential. Another good alternative is the log-

normal distribution (e.g., Falkovich et al. 2002). Here we chose Gaussian distribution to simplify

the derivation.

The polar angle � may also be viewed as a random variable. If the � �!� droplets are assumed to

be found with uniform probability on the surface of the collision sphere, the probability distribution

of the polar angle for kinematic at-contact droplet pairs is the percentage of collision-sphere surface

covered by differential polar angle  � , divided by  � , and is

� � 
 � � �
	 
 � 	��

� ��� � � �! �

	�� � 
 �

 � � � � � � ��� � � (29)

The average total radial velocity can then be calculated as

� � � � � 	 �
� �
� � � 
 � �  �

���
 � � 
 � � � � � � �  � �
�

� �
� � � � � ��� �  � �� � 	 ��� ����� 	

� � ��� � �� 
  � � � " � 
���� � � � � �
�

���
� � 	

����� 	
�



"

� � �� � �� 
 �


"

� � � � � ��� " � � ��� 	 "
�

� � ��� 
 � (30)

where the standard error function is defined as � ��� 
�� � � �� � �	���
 

���  �� . In the limit of "
� � � ,

the above result reduces to � � ��� � 	 � ��� � � 	 	 , as expected for turbulent relative motion without

gravity (Wang et al. 1998b). On the other hand, if the turbulence effect is very weak compared

to gravity or � � � � , we recover the expected result of � � ��� � 	 � � � � " �
. Equation (30)

implies a one-to-one relationship between the two nondimensional variables � � �� � � 	 �
� � � � � 	
	 
 � � � " � � and

���� � ��� 	 
 � � � " � � , which is shown in figure 4. We observe that
�� � increases

quickly with � � �� � � 	 when the air turbulence is weak or
�� � is small.

�� � can also be larger than

15



� � �� � � 	 since a very strong turbulence will result in
�� � �

�
	 	 � � � �� � � 	 � �$� � ���!� � � �� � � 	

due to the fact that most of � � � � are less than ��� in the Gaussian distribution.

To validate the theoretical predictions in this paper, we shall introduce five sets of DNS data

generated at MU and six sets of DNS data independently generated at UD. The relevant parameters

including grid resolution



in each direction, average flow dissipation rate � , and the normalized

time step
��

for the five DNS runs from MU are shown in Table 1. These runs are identified as

run1 through run5, with run1 corresponding to a base case ( � � � ), and the other four for turbulent

cases at � �
� � � �  �� ��� � � � � ���
����� � 	�� � , respectively. Table 1 also shows the number of colliding

pairs detected and used to process the probability distributions, and the flow Taylor-microscale

Reynolds number. The Reynolds numbers in DNS are about two orders of magnitude smaller than

those in atmospheric clouds. Since the droplets are much smaller than the Kolmogorov eddy in

air turbulence, and since terminal velocity is on the order of flow Kolmogorov velocity and the

Stokes response time on the order or less than the Kolmogorov time, the relative motion of cloud

droplets is determined mainly by turbulent eddies in the viscous subrange. For this reason, the

viscous dissipation rate is the key parameter in determining the droplet collision statistics. The

flow Reynolds number is assumed to be of secondary importance here. Run2 through run5 were

used in Franklin et al. (2005) to study effects of turbulence on geometric collision rate, and further

details of the runs can be found there. The droplet radii were fixed to � � � � � � � and � � � ��� � � ,

giving "
�

� � � � � �� ��!� 	�� . Five distinct time step sizes were used in run1 through run5, leading

to a range of
��

from 0.0616 to 0.985. The values of � � ���� � 	 obtained from DNS are also listed in

Tables 1, followed by the values of
�� � derived from equation (30). The magnitude of

�� � will be a

key input parameter for the theory to be developed next.

The six UD runs are listed in Table (2) and identified as run6 through run11. These represent

two levels of � and three levels of grid resolutions. The time steps are somewhat larger giving a

value of
��

from 0.576 to 1.425. The droplet size combination for these runs is � � � ��� � � and

� � � � � � � . The differential settling velocity "
�

is 6.412 ��� 	�� . The numbers of collision pairs

detected are roughly one order of magnitude larger than the MU runs. Again the key parameter
����
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has been derived from equation (30) and listed in the table.

b. Formulation for a given � �
We shall now examine the consequence of including � � in the radial relative motion, in particular,

its influence on the collision volume. For the moment � � is assumed to be a constant and positive,

and, therefore, will enhance the droplet-droplet radial relative motion towards each other. Within

the concept of a collision sphere, a positive � � enhances inward flux across the surface of the

collision sphere. This then will expand the collision volume shown in figure 3 to one of the three

geometric configurations shown in figure 5, depending on how � � � �  � is compared to
� �

"
�  �� . Because of the cylindrical symmetry of the collision volume, only the planar section

through the axis of symmetry is shown in figure 5. For convenience, let us introduce
�� � � 	 � .

The starting point is to realize that all � ��� droplets located in the spherical shell relative to

� � � droplets, � � � �
� � � would penetrate the collision-sphere surface within  � due to turbulent

motion should there be no differential gravitational settling. Adding the differential gravitational

settling is, to a first approximation, to shift the shell region upward by
�
. The region formed during

the shifting, but outside the original collision sphere, then constitutes the collision volume.

When
�� �

� � � �� � � � (case I(a)), the shifted outer surface of the shell with radius equal to


� � ��� intercepts the original collision surface of radius � above the � �
	 	 � surface, i.e., the line

O-a-b in figure 5(a). In this case, the effect of turbulence is to expand the collision volume from

the base case volume formed by revolving the area a-d-g-f-e-C-E-a, to the shaded area shown in

figure 5(a). However, the maximum angle-of-approach remains
� � � . There is a slight ambiguity

in defining the portion � � � �  � � since in reality the gravity effect and turbulent motion occur

simultaneously rather than in sequence as assumed here. As a simple yet reasonable choice we

take a straight line connecting point � to point � as the the boundary for that portion.

When
� � � �� � � � � �� � ��

(case I(b)), the collision volume is shown as the shaded region in

figure 5(b) and a portion of the collision volume has � greater than
� � � . This physically increases

the range of the angle-of-approach as the intensity of turbulence motion is increased or � 	 � �
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� � 	 " �
is increased.

Finally, when
�� � ��

(case I(c)), the outer surface of the shifted shell completely covers the

original collision sphere as shown in figure 5(c). In this case, the larger droplets can approach the

smaller droplets from any direction.

Having determined the collision volumes for � � 	 � , we now proceed to derive the probability

distribution � 
 � � �� � �� � of angle-of-approach for a given
��

and a given
�� . This probability can be

computed as

� 
 � � �� � �� �  � �
� 	 � �
��� ��
���

� �  � �
��� �  �
	 ���

� (31)

namely,

� 
 � � �� � �� � �
� 	 �
� � � � � �� � � � �� 	 ���

� (32)

where 	 ��� denotes the total volume of the collision volume, � � 
 � � is the distance from the origin
�

of a point on the outer boundary of the collision volume with polar angle equal to � . Both � �
and 	 ��� also depend on � ,

�
, and � . The formula for computing � � and 	 ��� may be derived for all

� for each case. The details are somewhat laborious, and it is sufficient to present the final results

in a readily usable form in Table 3. The correctness of the formula was checked by the following

consistency condition � � � �� � � � 
 � � �� � ����  � � � � (33)

for any
��

or
�� . The angle � � and ��� ��� in Table 3 for Cases I(a) and I(b) are shown in figure 5(a)

and 5(b), respectively.

We shall next consider � � � � in which the collision volume is reduced by outward relative

motion caused by turbulence. It is necessary now to divide this into two categories. The first

category (II) applies to
� � � and the cases under this category are depicted in figure 6. Let us

define � � � � � �  � and
�� � � 	 � . In this category, the center of the shifted shell which now has an

inner radius


� � ��� and outer radius � is located inside the original collision sphere. The collision

volume is gradually reduced as � is increased. If � 	 �
, then there is no collision volume outside

18



the original collision sphere, and it is assumed 	 ��� � � and there is no need to obtain � 
 � � �� � �� � . The

difference between case II(a) and case II(b) is whether the interception point of the inner surface

of the shifted shell with the horizontal plane passing through
���

is outside the original collision

sphere or not. If the interception point is outside (case II(a)), there are two transition angles � � �
and � � � . The formula for 	 ��� and � � for the cases in category II are provided in Table 4.

The category III is concerned with � � � � and � � � � � � , and the cases are illustrated

in figure 7. In category III, the center of the shifted shell is located outside the original collision

sphere. A finite collision volume is permited for all values of � � � � � �  � . In case III(a), the inner

surface of the shell overlaps with the original collision sphere, while in case III(b), the inner surface

of the shell is completely outside the original collision sphere. When � 	 � (case III(c)), the inner

surface shrinks to a point, as shown in figure 7(c). Again, there are ambiguities in defining certain

portions of the outer boundary of the collision volume for category III cases. However, as will be

shown later, the effect of turbulence will be mainly contributed by � �
	 � due to a large relative

weighting in the final integration, these ambiguities for � � � � should have little impact on the

final result. The formula for 	 ��� and � � for the cases in category III are provided in Table 5.

All the category II and category III cases do not cause the maximum angle-of-approach to be

larger than
� � � . Therefore, only when � �  � 	 �

� � � � � � � (case I(b) and case I(c)) or there is

a sufficient radial inward motion due to turbulence, can the maximum angle-of-approach be made

larger than
� � � . There is no need to consider

� 	 � � , since all the DNS runs were performed with
� � � � .

As a summary of all the nine cases discussed above, the boundaries of all the cases are shown

in figure 8 with the horizontal axis being � �  � 	 � and the vertical axis being
��
. For a given DNS

run,
��

is given, so � 
 � � �� � �� � can be obtained for all � � from ��� to ��� using the relationship and

formula discussed above. As � � is increased from ��� to ��� , the calculation of � 
 � � �� � �� � can

involve going through cases II(c), II(b), II(a), I(a), I(b), and I(c) in order for
�� � � or through cases

III(c), III(b), III(a), I(a), I(b), and I(c) in order for
�� 	 � .
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c. Integration over � �
The final step for obtaining probability distribution of � is to integrate contributions from different

levels of � � . This is carried out by the following weighted integral

� 
 � � �� � ���� � �
� �
 � � 
 � � � � 
 � � �� � ����  � � � (34)

where the weighting function is defined as

� 
 � � � �
	 ���


 � � � � 
 � � �
� �
 � 	 ���


 � � � � 
 � � �  � � � (35)

The weighting function is proportional to the flux or collision counts at a given � � . Since the statis-

tics realized by dynamic colliding pairs are of concern, such a weighting procedure is necessary.

The weighting also ensures that the final distribution � 
 � � �� � ����!� is properly defined such that

� �
 � � 
 � � �� � ����!�  � � ��� (36)

This final distribution then depends on the two parameters
��

and
���� . The first parameter measures

the effect of finite time interval  � as discussed in Section 2. The second parameter measures the

effect of air turbulence in modifying the probability distribution.

While it is difficult to perform the above integrations analytically, it is rather straightforward

to integrate them numerically since all the components in the integral expressions are known an-

alytically. The results to be presented in Section 4 were based on numerical integrations using

equal � bins of width � � and equal � � bins of width � � � � � ��� . It was also checked to ensure that the

numerical results are unchanged when finer bins are used.
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d. The probability distribution for � ��� � � �

The probability distribution � 
 � � � � � � � �� � ���� � of the radial relative velocity � � � � � � for colliding pairs

is very different from that of the radial relative velocity � ��� � for kinematic at-contact pairs. The

method for obtaining � 
 � � � � � � � �� � ������ is described next.

At the level of a given � � , � � � � � � is directly related to � as

� � � � � � � � " ��
���� � � � � � (37)

In terms of the dimensionless variable � ���� � � � , we have

� �� � � � � �

�������	 ������

� � 
 ��� � � � �� 	 �� � � if � ��	 � �
� � 
 ��� � � � ���	 �� � � if � ��� � � (38)

The conversion procedure starts with a given � � or
�� , by mapping numerically the � -axis in � 
 � � �� � ����

to the � �� � � � � � axis in � 
 � �� � � � � � �� � ���� , according to the above relationship between � ���� � � � and � , and

that

� 
 � � �� � ����  � � � 
 � �� � � � � � �� � �� �  � �� � � � � � (39)

Numerically, the � -axis was divided into 180 equal bins of width equal to � � , and the � �� � � � � � axis

was divided into 200 equal bins from � � � ���� � � � � ��� � � �� � � 	 . The probability in each � -bin,

� 
 � � �� � �� �  � , is transfered to one, two, or more � ���� � � � � bins according to the � to � �� � � � � mapping.

The amount received by a � �� � � � � � bin is equal to the � -bin probability times the percentage of the

mapped � �� � � � � range that falls into the � �� � � � � � bin. The probability for each � ���� � � � � bin is being

accumulated as this procedure is applied to different � -bins in order. Finally, � 
 � �� � � � � � �� � �� � for a

bin is equal to the accumulated probability divided by the � �� � � � � bin width.
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Next, � 
 � �� � � � � � �� � ���� � is obtained by the same weighted integral

� 
 � �� � � � � � �� � ���� � �
� �
 � � 
 � � � � 
 � �� � � � � � �� � ����  � � � (40)

This completes the calculation of � 
 � ���� � � � � �� � ���� � . Again, tests were done to ensure that the bin size

has negligible effect on the final result.

4. Results and comparisons with DNS data

In this section, we compare the various theoretical expressions derived above with the 11 DNS

runs introduced in Section 3.a and shown in Tables 1 and 2.

a. Theoretical predictions for the base case

First, in figure 9 we show the theoretical prediction for � 
 � � �� � for the base case, given by Eq. (24),

for four
��

values corresponding to run2 through run5. The limiting case of  � � � as given by

Eq. (13) is also shown and it is symmetric with respect to � �


� � . For finite  �� or

��
, the distribution

is biased towards � �


� � with the peak location moving to smaller � with increasing

��
. When

�� � ��� �  
� , the peak occurs at � � �  � .
The theoretical prediction is compared directly with DNS data for run1 (

�� � ��� � � � ) in figure 10.

Other than the numerical uncertainties in DNS data due to the limited number of collision pairs

used, the data and the theory are in perfect agreement.

For the base case, run1, the statistical mean � � 	 and the standard deviation � � for the angle of

approach, calculated by discretizing the theoretical curves into bins of � � width, are compared with

DNS results in column 2 of Table 6. For this base case, the predicted mean value is essentially the

same as the DNS result, and the predicted standard deviation agrees with the DNS value to within

� � .

Before the presentation of theoretical predictions for turbulent collision in the next subsection,
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we would like to point out that a significant portion of the changes in � � 	 for run2 through

run5 is simply caused by the change in the time step size. To visually separate out the effect of air

turbulence from the effect of time step size, we display in figure 11(a) the value of � � 	 for all 11

DNS runs (symbols) along with the theoretical value (the curve) for the base case, as a function of
��
. The open square represents run1 and lies exactly on the theoretical curve for the base case, and

all other DNS data are located above the curve. The four stars from right to left denote the results

of run2 through run5. The vertical distance of each data point above the curve may be viewed

as representing the effect of turbulence after the effect of time step size being removed. Clearly,

the effect of turbulence increases with � . The three crossed circles represent the three UD runs at

� � ����� �!� � 	�� � and filled circles for the other three runs at �#�


��� ��� � 	�� � . One may conclude,

after removing the effect of time step, that the relative increase in � � 	 are about the same at a

given level of � . However, this effect of turbulence could also depend on other parameters such as

the inertial response times of the droplets.

A similar plot [figure 11(b)] is constructed for the standard deviation � � . Once again, part of

the increase in � � from run2 to run5 is caused by the decrease in  � . The change in � � at a given �

is largely explained by the use of different  �� .
The theory for � 
 � �� � � � � � �� � , given by Eq. (26), is compared directly with DNS data from run1

in figure 12. The data are well predicted by the theory clearly showing the parabolic dependence

from very small � �� � � � � and the related augmentation near � ���� � � � � �
due to finite

��
. This shift can be

intuitively explained by the reduced apparent angle of approach due to a finite time step, resulting

in an increase in probability density for higher radial relative velocity. The predicted mean value

for � �� � � � � is essentially the same as the DNS result, and the predicted standard deviation agrees

with the DNS value to within


� (see Table 6).

An interesting observation from the data shown in Table 6 is the non-monotonic behavior of

� � �� � � � ��	 from run1 through run5 when � is monotonically increased, as one would expect a

monotonic increase due to the effect of turbulence. This can be explained by the effect of time step

size. Unlike the case shown in figure 11 for � � 	 , here the decreasing time step reduces � � �� � � � � 	
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as shown clearly in figure 13. The monotonic increase can be restored if the vertical distance

between the data and the base curve in figure 13(a) is used to measure the effect of turbulence. The

competition between the effect of turbulence and the effect of time step size makes the statistics of

� �� � � � � particularly interesting. Overall, the effect of turbulence is similar for the mean and standard

deviation of � �� � � � � , if the base case curve is taken as the reference. Another important observation

is that the changes in the average relative velocity is mostly determined by the flow dissipation rate

(figure 13(a)), while the changes in the mean angle-of-approach is mostly due to the time step size

(see figure 11(a)).

b. Theoretical predictions for turbulent collisions

Let us first apply the theory for turbulent collision to run2 through run5. In figure 14, the weighting

function
�

given by Eq. (35) is plotted as a function of
�� � . Since the collision volume increases

with
�� � , the weighting function is biased towards positive

�� � . In fact, the location where
�

obtains

its maximum moves to larger
�� � as the level of air turbulence (i.e., the flow dissipation rate) is

increased. Furthermore, the width of the
�

distribution also increases with the dissipation rate, im-

plying that the probability distributions of � and � ���� � � � deviate more and more from their respective

base-case distribution. The weighting functions for run6 through run11 can be obtained to yield

similar results.

In figure 15, the probability distributions of the angle-of-approach for these runs are displayed.

For each run, DNS data are shown as symbols, the base-case theory is shown with a dash line, and

the theory for the turbulent case is denoted by a solid line. For the weak turbulence case (run2 in

figure 15(a)), the present theory deviates only slightly from the base case curve, and both show a

good agreement with the DNS data. The theory for the turbulent case is in excellent agreement

with the DNS data for the other dissipation rate cases, as shown in figures 15(b), (c), and (d). This

shows that the theory captures the effect of turbulence well and the geometric interpretations are

rather accurate. It is stressed that there is no adjustable parameter in the theory. We also note that, if

there is some numerical uncertainty in the value of � � ��� � 	 obtained from DNS, the performance
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of the theory will be affected as the input parameter � � may not be very accurate. No attempt is

made to adjust the value of � � here. Similar conclusions can be drawn when the theory for � 
 � � is

compared to the data from run6 through run11 (plots not shown).

Let us now compare the mean and standard deviation of � for colliding droplets obtained from

the theory with the values obtained from DNS in Table 6. The relative difference between the

theory and DNS for the mean is about � � or less for run2 and run5. For run3 and run4, the relative

difference is
� � � � and

� �


� , respectively. The standard deviation of � was also well predicted,

with slightly larger relative errors.

The statistics for � are compared in Table 7 for run6 through run11. Both the mean and standard

deviation are well predicted by the theory. The largest difference is seen for run9; and even for this

case, the relative error of the theory is less than � � .

Next, let us examine the probability distributions of � ���� � � � for run2 and run5 in figure 16. Again,

DNS data, base-case theory, and the theory for the turbulent case are all shown for each case.

Unlike � 
 � � where the deviation from the base case is small for the weak turbulence case, DNS data

show significant deviations even for run2. The present theory not only successfully predicts the

shape of this deviation, but is quantitatively very accurate for all � �� � � � � . For the strong turbulence

case, the probability distribution completely moves away from the base-case curve. The present

theory works well for � �� � � � � � ��� � and gives a satisfactory curve for � ���� � � � 	 ��� � . The DNS data

show more intermittency for � ���� � � � 	 � , perhaps due to non-Gaussian small-scale physics in DNS

turbulence. The noticeable quantitative difference between the theory and the DNS data for this

strong turbulence case indicates that the probability distributions of � ���� � � � are more sensitive to the

assumptions made in the theory such as the Gaussian probability distribution for � � and sequential

rather than simultaneous treatment of the gravity and turbulence effects.

The basic statistics for � �� � � � � are compared in Table 6 for run2 through run5. The relative error

in the predicted mean value of � ���� � � � increases with the flow dissipation rate, and is � � � � , � �


� ,

� � �
� , and �


� �
� for run2, run3, run4, and run5, respectively. The theory tends to underpredict

� � �� � � � � 	 and the standard deviation � � �� � 	 � � at higher levels of air turbulence. Both may be due to
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the inability of the theory to capture the high intermittency shown in DNS at large values of � �� � � � � .
The theory can still be considered very satisfactory given that no parameter is adjusted and that the

input parameter
�� � may not be very accurate.

The average statistics of � �� � � � � for run6 through run11 are listed in table 7 for comparison.

The maximum difference in � � ���� � � � 	 is less than


� here, perhaps due to better estimations of

� � � � � 	 and as such of � � due to much larger numbers of pairs detected (see Table 2 and Table 1

for information on the number of pairs detected). Larger dissipation rates for run4 and run5 may

also contribute to the larger difference between the theoretical predictions and the DNS data.

Finally, a brief discussion of the relative motion associated with turbulent collisions of equal-

size droplets is presented. Although such self-collisions are not possible in stagnant air, they can

occur when air turbulence is present. In figure 17, the probability distribution of angle-of-approach

for � ��� � � (i.e., ��� ��� � ��� � � ) self collisions in run11 is displayed, based on 7722 collision pairs

numerically detected with  � �

!
 � � � � � . Assuming the orientation for self-collision pairs is

isotropic, the probability distribution would be given by Eq. (29). While this is roughly the case,

the actual probability appears to be larger than the isotropic theory for � � �$� � and is smaller

than the isotropic theory for �$� � � � � � � � � . Note that average radial relative velocity � � ��� � 	
for ��� � � � ��� � � kinematic at-contact pairs is only 0.0823 cm/s according to DNS, while the

terminal velocity
�

� of ��� � � droplets is 11.542 cm/s, which is 140 times of � � ��� � 	 . The

Stokes number, the ratio of droplet inertial response time to the flow kolmogorov time, is 0.573 for

this case. Therefore, even a very weak coupling of turbulent motion and the gravitational settling

through the inertial effect of droplets will alter the isotropy of the angle-of-approach. Nevertheless,

the isotropic theory predicts a mean and standard deviation for � of
� � � and � � � � � (i.e.,

�
	 � 	 
 � �

rad), respectively, still a very decent prediction as DNS gives a mean of  � � � � and a standard

deviation of

 � � � � .

The probability distribution for the radial relative velocity � ��� � � � of dynamic colliding pairs is

shown in figure 18. Also shown is a theory based on the Gaussian distribution, Eq. (28), weighted

26



according to the local flux as

� 
 � � � � � � � � � � � � � � � 
 � � � � � � � � � � � �
� �� � � � � � � � 
 � � � � � � � � � � � �  � � � � � � �

� � � � � �
� �� � � � 	

�

 � � � � � � � �� � �� 
 � (41)

with ��� � � � � � � 	
�

	 	 � . This simple theory, although giving a reasonable prediction of the peak

location, is far from satisfactory for the reason indicated above, namely that a weak secondary

coupling between the turbulent motion and settling due to finite droplet inertia may significantly

broaden the distribution of relative velocity since
�

� 	 	 � � � � � 	 .

5. Summary

This study was motivated by the need to understand recent DNS results of the probability distri-

bution of angle-of-approach � and relative velocity � ���� � � � for colliding droplet pairs in a turbulent

flow (Franklin et al. 2005). First we developed a rigorous and thorough theory to predict all rel-

evant probability distributions for gravitational collisions without air turbulence. In particular, it

was shown that the probability distributions, calculated at the beginning of the time steps used for

collision detection, can depend on the time step size. This effect of time step size can be quan-

tified theoretically in terms of the nondimensional parameter
�� � "

�  �� 	 � . The shape of these

distributions is nontrivial when
��

is not small. This finding is important in view of the facts that
��

may not be small in the DNS simulations and that
��

varies from one DNS run to another. Only by

understanding this effect of time step size, can we correctly determine the true effect of air turbu-

lence. We also illustrate that the statistical information for dynamic colliding pairs is very different

from that of kinematic at-contact pairs. This difference was previously noted for collisions due to

a simple shear or nonuniform shears in isotropic turbulence(Mei and Hu 1999; Wang et al. 2000,

2005c).

The base-case theory was shown to predict the DNS data well when the air turbulence is not

present. We also demonstrate how one can effectively remove the effect of time step size for the
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turbulent collision case by using the base case theory as the reference.

For turbulent collisions, a novel theory has been developed to quantify the effect of turbulence

on the statistics of the angle-of-approach and radial relative velocity for colliding pairs. When air

turbulence is considered, the collision volume is increased with more contributions from larger

inward relative motion caused by turbulent fluctuations. The theory employs a logical decompo-

sition which facilitates the development of the extended collision volumes and the derivations of

the probability distributions. The additive treatment of the radial relative motion worked well for

the cases we considered, perhaps due to the fact that the relative motion is largely governed by the

gravity. At this stage, we cannot be certain how general this conclusion would be.

It is shown that the theory captures the essential physics of air turbulence and provides a quan-

titatively acceptable prediction of the statistics for the angle-of-approach. For example, the theory

predicts � �
	 to within �
� for most numerical experiments. It is also shown that the probability

distribution of relative velocity for collision pairs is more sensitive to the presence of air turbulence

and also shows larger intermittency at large radial velocity. Even for the more difficult quantity

� �� � � � � , the theory represents a significant improvement over the base case theory and is considered

to be satisfactory as there is no adjustable parameter in the theory. Part of the success of the the-

ory may be attributed to the use of the average kinematic relative velocity obtained directly from

DNS. However, the derived probability distributions provide a thorough description of the angle of

approach and the relative velocity for dynamically colliding pairs. It should be noted that the aver-

age kinematic relative velocity may be expressed theoretically in terms of droplet inertial response

time, terminal velocity, flow dissipation rate and Reynolds number (Saffman and Turner 1956;

Kruis and Kusters 1997). Such a theoretical model can be incorporated into the current theory to

eliminate the need of using any DNS result in the theory.

It is believed that the theoretical framework developed here could be of value to other problems

involving gravitational settling and weak turbulence, such as parameterization of collision kernel

and hydrodynamic interactions of droplets. The theoretical results will also be useful for proper

interpretion of experimental results derived from observations at discrete times (Meng et al. 2004;
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Yang et al. 2005).
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Table 1: The parameter setting, � � ���� � 	 , and
���� for DNS runs conducted at MU.

( � � � � ��� � � � � � ������� � "
�

� � � � � �� �!� 	�� � )
run I.D. run1 run2 run3 run4 run5

N - 80 120 180 240

������� ���
	 ���
0 95 280 656 1535

��

( � 	 ) 100 800 200 80 50

��
0.123 0.985 0.246 0.0985 0.0616

# of pairs 2564 7980 3284 2315 2737

���
– 33 40 48 55

�� � , DNS 1.0 1.0093 1.074 1.150 1.489

�� � , Eqn (30) 0.0 0.192 0.544 0.775 1.443
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Table 2: The parameter setting, � � ���� � 	 , and
���� for DNS runs conducted at UD.

( � � � �$� � � � � � � � �#� � � "
�

� � �


� � �!� 	�� � )

run I.D. run6 run7 run8 run9 run10 run11

N 32 32 64 64 128 128

� ����� � �
	 ���
100 400 100 400 100 400

��

( � 	 ) 962.1 721.7 1110 555.1 898.2 449.1

��
1.235 0.926 1.425 0.712 1.153 0.576

# of pairs 39727 62676 22535 24008 18030 30722

���
23.4 23.4 43.0 43.0 72.4 72.4

�� � , DNS 1.016 1.123 1.038 1.128 1.032 1.122

�� � , Eqn(30) 0.253 0.702 0.390 0.716 0.358 0.699
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Table 3: Formula for 	 � � and � � in equation (32) for Category I cases ( � ��	 � ).
Case I(a) 	 ��� 	 
 	�� � � �

�� � � � 
 � � ���� � � � ��	 � � �� �� 
 � � �� 	 � �
�� �

� � � �� � � � � � 	 ���
�� 
 �$� � �

� 
 � � ���� � � 
 �� �
��� � � � � � � � � � � �
� � 	 ���

�� 	 � �� �
��� � � �� 
 ��� � ��� � � � � � � ��� 	 	 �

where � � � ��� 
�� � � � 
 � � �� � 	 �� �
note � 
 � � �� � ���� � � for �
	 	 	 � .

Case I(b) 	 ��� 	 
 	�� � � �
�� � � � 
 � � ���� � � � ��	 � � �� 
 � �� � �� � � �� � 	 � �

� 
 � �� � �� � � �� � � � 	 
 
 �� �� � � �� � � � � �� � ��

� � 	 ���
�� 
 �$� � � � 
 � � ���� � � 
 � �
��� � � � � � � � � � ��� ���

where ��� ��� � ��� 
 � ��� � 
 � �� � �� � � �� � �
	 
 � �� � � � 	 	 �

note � 
 � � �� � ���� � � for �
	���� ��� .

Case I(c) 	 ��� 	 
 	�� � � �
�� � � � 
 � � ���� � � � ��	 � � �� 
 � �� � �� � � �� � 	 � �

� � � �� � �� � � �� � � �� � � 
 � � ���� � 
 ��#� �� �
�� � �� � � 
 � � ���� � � 
 � � �� � � � 	 �

� � 	 ���
�� 
 �$� � �

� 
 � � ���� � � 
 �� �
��� � � �
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Table 4: Formula for 	 ��� and � � in equation (32) for Category II cases ( � ��� � and
�� � � ).

Case II(a) 	 ��� 	 
 	�� � � �

 � � ���� � 
 �� � ������ � 
 � � ���� � � 
 � � �� � � � 	 �

� 
 � � �� � � 
 � � ���� � � � � �� �
�� � � �

� � � �� � � �� 
 �� � � �
�
� �
	 �� � 
 � � �� � 	 �� � � 
 �� � � �

�
� �
	 �

� � 	 � �
�� 
���� � �

� 
 � � ���� � � 
 �� � ��� � � � � � � � � � � � �
� � 	 � �

�� 	 � �� �
��� � � �� 
���� � � � � � � � ��� � ��� � � �
where � � � � ��� 
�� � � � 
 � � ���� 	 �� � , � � � � � ��� 
�� � ��
 �� 	 �� ��� 	 	 � ,

� � �
�� 	 
 �� � �� � � � � � �!�

note � 
 � � �� � ���� � � for � 	 � � � .

Case II(b) 	 ��� 	 
 	�� � � �

 � � ���� � 
 �� � ������ � 
 � � ���� � � 
 � � �� � � � 	 �

� 
 � � �� � � ��� � 
 � � ���� � � � � �� � �
� �

� � � �� � � �� � �� � �� � 
 � � �� � � � �
�
� �

� � 	 � �
�� 
���� � �

� 
 � � ���� � � 
 �� � ��� � � � � � � � � � � �
where � � � ��� 
�
 ����
 �� � � ����� � � �


 � ��#� �� � � �� � �
	 
 � �� � .
note � 
 � � �� � ���� � � for � 	 � � .

Case II(c) 	 ��� � �
�� � ��

note � 
 � � �� � ���� � � for all � .
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Table 5: Formula for 	 ��� and � � in equation (32) for Category III cases ( � ��� � and � � �� � �
).

Case III(a) 	 ��� 	 
 	�� � � � � 
 � � ���� � 	 � � �� � 
 � � �� 	 �� � � � 
 � � ���� � � 	 
 � ����
� �� 
 � � �

�
� �
	 �� � 
 � � �� � 	 �� � � 
 � � �

�
� � 	 ��� � � � ��

� � 	 � �
�� 
���� � �

� 
 � � ���� � � 
 �� � ��� � � � � � � � � � � � �
� � 	 � �

�� 	 � �� �
��� � � �� 
���� � � � � � � � ��� � ��� � � �
where � � � � ��� 
�� � � � 
 � � ���� 	 �� � , � � � � � ��� 
�� � � 
 �� 	 ������ 	 	 � ,

� � �
�� 	 
 �� � �� � � � � � ���

note � 
 � � �� � �� � � � for � 	 � � � .

Case III(b) all the expressions are the same as in Case III(a)

� � �� � �� � ��� �

Case III(c) 	 ��� �

 �� � � � � 	 
 � �� � � � 
 � � � 	 �� � � 
 � � �

�
� � 	 � � 
 � � �

�
� � 	 �� �

�� 	 � � � 	 � �
�� 	 � �� �
��� � � 
 ��� � ��� � � � � � � �

where � � � � ��� 
�� � ��
 �� � � 	 	 � � � � �
�� 	 
 � � �� � � � � ���

note � 
 � � �� � �� � � � for � 	 � � .
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Table 6: Comparison of the theory with DNS data for run1–run5.

ID run1 run2 run3 run4 run5

DNS, ����� (deg) ���	��

����������
 ���	��������������� ���	����� ��������! �
����������������� ���	���"�#���������
DNS, �%$ (deg) ���	��!�
 ��!	����� �
����!�� �"�&����� �
�������

Theory, ����� (deg) 42.76 32.05 43.92 49.21 58.90

Theory, � $ (deg) 18.82 15.84 20.88 23.98 30.49

DNS, �(' �� � � � '�� �
�������)�����*����� �
��!���� �����*���
� �
��!"��� �����*�&��� �
�������)�����*����� �	��

!
� �����*����

DNS, � �
�� � 	 � � ���������"� ����������� ����!���

� �
�*��!�� �
�������

Theory, �+' �� � � � '�� 1.391 1.687 1.659 1.751 2.360

Theory, � �
�� � 	 � � 0.3998 0.3534 0.6076 0.7612 1.159
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Table 7: Comparison of the theory with DNS data for run6–run11.

ID run6 run7 run8 run9 run10 run11

DNS, ����� (deg) 30.94 35.92 29.74 37.98 31.68 39.90

DNS, �%$ (deg) 16.07 18.51 15.75 19.35 16.20 20.25

Theory, ����� (deg) 30.21 37.84 29.71 40.18 31.44 41.42

Theory, � $ (deg) 15.45 19.87 15.47 20.78 15.90 21.06

DNS, �(' �� � � � '�� 1.765 1.981 1.806 1.999 1.777 1.996

DNS, � �
�� � 	 � � 0.4021 0.7046 0.4095 0.7916 0.4316 0.8393

Theory, �+' �� � � � '�� 1.768 2.113 1.913 2.041 1.832 1.961

Theory, � �
�� � 	 � � 0.3659 0.6396 0.4365 0.6647 0.4236 0.6647
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Figure 1: Two kinematic formulations of geometric gravitational kernel. (a) the cylindrical formu-
lation based on swept volume; (b) the spherical formulation based on net volume influx.
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Figure 2: An alternative interpretation of � 
 � � for the gravitational case.
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Figure 3: The volume entering the geometric-collision spherical surface during a finite time inter-
val  � as used in direct numerical simulations.
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�� �

� � �� � ���

Figure 4: The relationship between
�� � and � � �� � � 	 according to equation (30).
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�����

Figure 5(a) & 5(b)

�����
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�����

Figure 5: The proposed regions that contribute to the geometric collisions when both gravity and

air turbulence are considered and � ��	 � (Category I): (a) � 	 � �
� � � �� � � � ; (b)

� � � �� � � � �
� 	 � � ��

; (c) � 	 � 	 ��
.
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�����

�����

Figure 6: The proposed regions that contribute to the geometric collisions when both gravity and
air turbulence are considered, � � � � , and

� � � (Category II): (a) � � � � � � �
� � � � �

; (b)
� � �

� � � � � � � � � � �
. Note if � � � 	 �

, the collision volume is zero.
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�����

Figure 7(a) & 7(b)

�����
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�����

Figure 7: The proposed regions that contribute to the geometric collisions when both gravity and
air turbulence are considered, � � � � and � � � � � � (Category III): (a) � � � � � � � �

; (b)� � � � � � � � �
� ; (c) � 	 � 	 .
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Figure 8: The map for different regions as shown in figures 5 to 7.
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�

��� ���

Figure 9: The probability distribution of angle-of-approach for geometric gravitational collisions
for 4 non-zero time step sizes used in Franklin et al. (2005) and for ���
	 � . Note that the PDFs
are defined with angle in rad unit (1 rad ��
���������� degrees).
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��� ���

Figure 10: The probability distribution of angle-of-approach for run1 compared with the theory.
The DNS data were computed using bin size of 5 degrees.
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Figure 11: Mean and standard deviation of � as a function of
��
. The curve represents the theory

for the base case.
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Figure 12: The probability distribution of �������� � � for run1 compared with the theory.
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Figure 13: Mean and standard deviation of � ���� � � � as a function of
��
. The curve represents the theory

for the base case.
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Figure 14: The theoretical weighting function for run2 through run5.
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Figure 15(a) and 15(b)
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� � � �

Figure 15: The probability distributions of angle-of-approach from DNS are compared to the the-
ory for the turbulent collision and the theory for the base case: (a) run2, (b) run3, (c) run4, (d)
run5.
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Figure 16: The probability distributions of radial relative velocity for colliding droplets: (a) run2
and (b) run5.
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��� � �

Figure 17: The probability distribution of angle-of-approach for ����������������� self collisions in
run11.
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Figure 18: The probability distribution of radial velocity for 30-30 self collisions in � �
��� DNS
with ����� ��� � ������� � . The air turbulence is the same as in run11.
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