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a b s t r a c t

While the lattice Boltzmann method (LBM) has become a powerful numerical approach
for solving complex flows, the standard lattice Boltzmann method typically uses a square
lattice grid in two spatial dimensions and cubic lattice grid in three dimensions. For
inhomogeneous and anisotropic flows, it is desirable to have a LBM model that utilizes
a rectangular grid. There were two previous attempts to extend the multiple-relaxation-
time (MRT) LBM to a rectangular lattice grid in 2D, however, the resulting hydrodynamic
momentum equation was not fully consistent with the Navier–Stokes equation, due to
anisotropy of the transport coefficients. In the present work, a new MRT model with an
additional degree of freedom is developed in order to match precisely the Navier–Stokes
equation when a rectangular lattice grid is used. We first revisit the previous attempts
to understand the origin and nature of anisotropic transport coefficients by conducting
an inverse design analysis within the Chapman–Enskog procedure. Then an additional
adjustable parameter that governs the relative orientation in the energy–normal stress
subspace is introduced. It is shown that this adjustable parameter can be used to fully
eliminate the anisotropy of transport coefficients, thus the exact Navier–Stokes equation
can be derived on a rectangular grid. Our theoretical findings are confirmed by numerical
solutions using three two-dimension benchmark problems, i.e. the channel flow, the cavity
flow, and the decaying Taylor–Green vortex flow. The numerical results demonstrate that
the proposed model shows remarkably good performance with appropriate choice of
model parameters.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As an alternative numerical method based on kinetic theory, the lattice Boltzmann method (LBM) has attracted a great
deal of attention since its inception about 25 years ago [1,2]. The basic idea is to design a fully discrete version of the
Boltzmann equation, with aminimum set of discretemicroscopic velocities, that can yield the exact Navier–Stokes equation
through the Chapman–Enskog analysis. From a computational viewpoint, the advantages of LBM include its algorithm
simplicity, intrinsic data locality (thus straightforward to perform parallel computation), and capability to conveniently
incorporate complex fluid–solid and fluid–fluid boundary conditions. Hence, LBM has been widely employed in simulations
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of complex fluid systems, such as multiphase flows [3,4], complex viscous flows with deformable boundary and complex
geometry such as porous media [5–7], and micro-scale flows [8,9].

Despite the success of LBM, the standard LBM is restricted to a square grid or hexagonal grid in two spatial dimensions
(2D) and a cubic grid in three spatial dimensions (3D). This restriction is aligned with the set of microscopic velocities used
and is desirable formodel isotropy. However, this could result in a low computational efficiencywhen the flow field is highly
nonuniform, inhomogeneous, and anisotropic, such as a boundary layer flow where the velocity gradients in one spatial
dimension is much stronger than the other directions. To alleviate this problem within LBM, different approaches have
been developed to allow the use of a nonuniform grid. One approach is to employ an interpolation method to decouple the
grid associated with lattice Boltzmann microscopic velocities, from the numerical mesh. Pioneering work in this direction
includes the studies of Filippova and Hänel [10,11] who reconstructed distribution functions at arbitrary locations using
spatial and temporal interpolations. Another approach is to introduce local grid refinement or use different mesh densities
for different regions of the flow (i.e., multi-blockmethods) [12]. Methods to communicate distribution functions, defined on
coarse and fine grids, at the block interfaces have been developed. Other methods to use a non-uniform grid typically utilize
a local interpolation scheme [13,14].While these approaches have been actively extended and applied inmany applications,
their accuracy is limited by the interpolation scheme which may also introduce additional artificial dissipation. Therefore,
it is desirable to construct a lattice Boltzmann method with a more flexible grid that is free of interpolation.

Inspired by the work of Koelman [15], Bouzidi et al. [16] made the first attempt to construct a multiple-relaxation-
time (MRT) LBM on a two-dimensional rectangular grid. The model showed good performance with appropriate choice
of model parameters, but the resulting hydrodynamic momentum equation is not fully consistent with the Navier–Stokes
equations. Another attempt was made by Zhou [17] who redefined the moments so that the transformation matrix for
a rectangular grid was identical to that for a standard MRT on a square grid. However, the modifications suggested in
Zhou [17] led to anisotropic fluid viscosity. Hegele et al. [18] indicated some extra degrees of freedom should be employed
to satisfy the isotropy conditions for rectangular lattice Boltzmann scheme. There are three possible approaches: decoupling
the discretizations of the velocity space from spatial and temporal discretization, modification of a collision operator
with additional parameter, and adoption of more discrete microscopic velocities. They introduced two extra microscopic
velocities to extend the D2Q9model with BGK collision operator andwere able to restore, on a rectangular grid, the isotropy
condition required for the Navier–Stokes equation. They also suggested that four new velocities are needed in order to
correctly extend the D3Q19 model onto a noncubic 3D grid.

In the present work, we explore the possibility to restore the isotropy condition on a 2D rectangular grid without
introducing any additional microscopic velocity. We take advantage of some of the flexibility within the MRT LBM
scheme [19,20]. For this purpose, wewill introduce an additional parameter in the energy–normal stress moment subspace.
Before presenting our novel MRT LBM scheme on a rectangular grid, previous MRT schemes on a rectangular grid are firstly
reviewed in Section 2. An inverse design analysis will be used to derive the equilibriummoments and the anisotropy of the
transport coefficients for a rectangular grid is revealed. In Section 3, our new scheme with an additional free parameter is
constructed in order to restore the isotropy for a rectangular grid, namely, the usual Navier–Stokes hydrodynamic equations
are derived using a rectangular grid. Also, the coupling relationships between relaxations times and determination of
computational parameters are re-interpreted, which enables the flexibility to choose computational parameters according
to different flow problems. In Section 4, numerical validation of our new scheme is provided using a 2D channel flow, a 2D
lid-driven cavity flow and 2D Taylor–Green vortex flow. Concluding remarks are provided in Section 5.

2. An analysis of previous MRT LBM schemes on a rectangular grid

2.1. The model of Bouzidi et al. [16]

We begin with the MRT LBM scheme [19] in 2D, which has been shown to provide more flexibility in relaxing different
moments and to significantly improve computational stability and accuracy, while simplicity and computational efficiency
of LBM are retained. However, we consider a rectangular grid as shown in Fig. 1, where the non-zero lattice velocity in the x
direction is one, and in the y direction is a (a < 1). Following the spirit of the D2Q9 model but with the different velocities
in x and y directions, the discrete velocities are defined as

ei =


(0, 0) i = 0
(±1, 0), (0, ±a) i = 1 − 4
(±1, ±a) i = 5 − 8.

(1)

The distribution functions in MRT LBM evolve as

fi (x + eiδt) − fi (x, t) = Ωi (2)

where fi is the distribution function associated with the molecular velocity ei at position x and time t, Ωi is the collision
operator.

In MRT LBM, the streaming process takes place in the physical space while the collision process is performed in the mo-
ment space. The nine distribution functions define nine degrees of freedom, which implies that nine independent moments
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Fig. 1. Discrete velocities of the D2Q9 MRT model on a rectangular grid. The aspect ratio of the grid is δy/δx = a.

can be constructed. We first adopt the moments introduced in Bouzidi et al. [16] through a transformation matrixM

m = Mf (3)

where f = (f0, f1, f2, f3, f4, f5, f6, f7, f8)T . The transformation matrix M specifies the nature of the moments and is given
as [16]

M =



1 1 1 1 1 1 1 1 1
−2r1 r2 r3 r2 r3 r1 r1 r1 r1

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 a 0 −a a a −a −a
0 0 −2a 0 2a a a −a −a

−2r4 r5 r6 r5 r6 r4 r4 r4 r4
0 0 0 0 0 1 −1 1 −1


(4)

where r1 = 1+ a2, r2 = 1− 2a2, r3 = −2+ a2, r4 = −1+ a2, r5 = 2+ a2, r6 = −1− 2a2. The row vectors are orthogonal
and they define the following nine moments

m =

ρ, e, ε, jx, qx, jy, qy, pxx, pxy

T
, (5)

where ρ is the density, e is the kinetic energy, ε is the kinetic energy squared, jx and jy are the momentum density in the x
and y directions, respectively. qx and qy are the x and y components of the energy flux, pxx and pxy are related to the diagonal
and off-diagonal components of the viscous stress tensor.

The MRT collision operator Ωi is expressed as

� = −M−1SM

f (x, t) − f eq(x, t)


(6)

where S is a non-negative diagonal relaxation matrix,

S = diag

sρ, se, sε, sj, sq, sj, sq, sn, sc


(7)

where sn and sc are the relaxation times for pxx and pxy, respectively. When all the relaxation times are set to be equal, the
usual BGK model is recovered.

We shall now perform the Chapman–Enskog multiscaling analysis in order to derive the macroscopic hydrodynamic
equations. To this end, we first expand the distribution function fi, the derivatives in time and space as [1,21]

m = m(0)
+ ϵm(1)

+ ϵ2m(2)
+ · · · , (8a)

∂

∂t
= ϵ∂t1 + ϵ2∂t2 , (8b)

∂

∂xα

= ϵ∂1α, (8c)

where ϵ is a small parameter which is proportional to the ratio of the lattice spacing to a characteristic macroscopic length.
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Performing Taylor expansion for Eq. (2) and substituting the above expansions, the following equations at zeroth-, first-
and second-order in ϵ can be obtained

O(ϵ0) : m(0)
= m(eq), (9a)

O(ϵ1) :


I∂t1 + Ĉα∂1α


m(0)

= −
S

1t
m(1), (9b)

O(ϵ2) : ∂t2m
(0)

+


I∂t1 + Ĉα∂1α


I −

S
2


m(1)

= −
S

1t
m(2), (9c)

where Ĉα = Mdiag(e0α, e1α, . . . , e8α)M−1. Eq. (9c) has already been simplified by making use of Eq. (9b).
The first, fourth and sixth components of Eq. (9b) are

∂t1ρ + ∂1xj(eq)x + ∂1yj(eq)y = 0 (10a)

∂t1 j
(eq)
x + ∂1x


2
3
ρ +

e(eq)

3(a4 + 1)
+

a2

3(a4 + 1)
p(eq)
xx


+ ∂1y


ap(eq)

xy


= 0 (10b)

∂t1 j
(eq)
y + ∂1x


ap(eq)

xy


+ ∂1y


2a2

3
ρ +

a4e(eq)

3(a4 + 1)
−

a2

3(a4 + 1)
p(eq)
xx


= 0. (10c)

The design target at O(ϵ) is the Euler equations

∂t1ρ + ∂1x (ρux) + ∂1y

ρuy


= 0, (11a)

∂t1 (ρux) + ∂1x

ρc2s + ρu2

x


+ ∂1y


ρuxuy


= 0, (11b)

∂t1

ρuy


+ ∂1x


ρuxuy


+ ∂1y


ρc2s + ρu2

y


= 0, (11c)

where the pressure has been written as p = ρc2s . Comparing Eq. (10) to Eq. (11), we obtain

j(eq)x = ρux, j(eq)y = ρuy, (12a)

2
3
ρ +

e(eq)

3(a4 + 1)
+

a2

3(a4 + 1)
p(eq)
xx = ρ(c2s + u2

x), (12b)

2a2

3
ρ +

a4e(eq)

3(a4 + 1)
−

a2

3(a4 + 1)
p(eq)
xx = ρ(c2s + u2

y), (12c)

ap(eq)
xy = ρuxuy. (12d)

These can be solved to yield three equilibrium moments in addition to j(eq)x and j(eq)y as

e(eq)
= ρ


2

3c2s − r1


+ 3u2 , (13a)

p(eq)
xx = ρ


r4
a2

3r1c2s − 2a2


+ 3


a2u2

x −
u2
y

a2


, (13b)

p(eq)
xy = ρ

uxuy

a
. (13c)

At this point, the remaining three equilibrium moments, i.e, ε(eq), q(eq)
x and q(eq)

y , are to be determined. As we will realize
soon that ε(eq) does not affect the Navier–Stokes equations, it can be defined somewhat arbitrarily. q(eq)

x and q(eq)
y will be

determined by the hydrodynamic equation at O(ϵ2).
At O


ϵ2

, the first, fourth, and sixth components of Eq. (9c) yield

∂t2ρ = 0, (14a)

∂t2(ρux) = −
a2 (1 − 0.5sn)
3

a4 + 1

 ∂1xp(1)
xx − a (1 − 0.5sc) ∂1yp(1)

xy −
1 − 0.5se
3

a4 + 1

∂1xe(1), (14b)

∂t2(ρuy) =
a2 (1 − 0.5sn)
3

a4 + 1

 ∂1yp(1)
xx − a (1 − 0.5sc) ∂1xp(1)

xy −
a4 (1 − 0.5se)
3

a4 + 1

 ∂1ye(1). (14c)
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The design target at O(ϵ2) is to potentially match the Navier–Stokes equation which may be stated in a more general form
as:

∂t2(ρux) = ∂1x

ρζx


∂1xux + ∂1yuy


+ ρνx


∂1xux − ∂1yuy


+ ∂1y


ρν

∂1yux + ∂1xuy


, (15a)

∂t2(ρuy) = ∂1x

ρν

∂1yux + ∂1xuy


+ ∂1y


ρζy


∂1xux + ∂1yuy


+ ρνy


∂1yuy − ∂1xux


, (15b)

where ζx and ζy are bulk viscosities in x and y directions, respectively; νx and νy are two viscosities associated with normal
viscous stress components, and ν is the shear viscosity.

At this point, we need the explicit expressions for e(1), p(1)
xx , and p(1)

xy which can be obtained from Eq. (9b). They are

−s′ee
(1)

= ∂t1

2ρ

3c2s − r1


+ 3ρu2

+ ∂1x

j(eq)x + a2q(eq)

x


+ ∂1y


a2j(eq)y + q(eq)

y


, (16a)

−s′np
(1)
xx = ∂t1


ρr4
a2


3r1c2s − 2a2


+ 3ρ


a2u2

x −
u2
y

a2


+ ∂1x


a2j(eq)x − q(eq)

x


+ ∂1y


−j(eq)y + a2q(eq)

y


, (16b)

−s′cp
(1)
xy = ∂t1

ρuxuy

a


+ ∂1x


2
3a

j(eq)y +
1
3a

q(eq)
y


+ ∂1y


2a
3
j(eq)x +

a
3
q(eq)
x


, (16c)

where s′i = si/δt . It is noted that the ∂t1 [. . .] terms in the above equations involve ∂t1(ρuαuβ), which can be converted to
spatial derivatives using the Euler equations as

∂t1

ρuαuβ


= −uα∂1βp − uβ∂1αp + O(u3). (17)

Since, at low Mach number, p = O(Ma2), we conclude that ∂t1(ρuαuβ) = O(u3) and thus can be neglected.
Comparing Eq. (15) with Eq. (16), it is obvious that only p(1)

xy contributes to the cross shear stress term. To match the
form of


∂1yux + ∂1xuy


required by the Navier–Stokes equations, we must demand that q(eq)

x = γ1j
(eq)
x /2 = γ1ρux/2 and

q(eq)
y = γ2j

(eq)
y /2 = γ2ρuy/2, where γ1 and γ2 are constants to be determined. Furthermore, the net coefficients for the ∂1yux

term and ∂1xuy term must be made identical, namely,

2
3a

+
1
6a

γ2 =
2a
3

+
a
6
γ1. (18)

This implies that γ1 can be determined in terms of γ2 as

γ1 =
γ2 + 4(1 − a2)

a2
. (19)

This is identical to Eq. (3.6) in Bouzidi et al. [16] since ourγ1 andγ2 are denoted by c1 and c2 in their paper. In the following,we
denote γ2 by γ . At this point, we have determined all necessary equilibriummoments which could affect the hydrodynamic
equations.

Substituting Eq. (16) into Eq. (14) with the forms of the equilibrium moments already determined, we can derive the
explicit expression of each transport coefficient that appears in Eq. (15). The results are

νx =
1t

2(a4 + 1)
(1 − a2)


1
se

− 0.5


+
a21t

6(a4 + 1)


a2 −

γ

2a2
−

2
a2

−
a2γ
2

+ 3


1
sn

− 0.5


, (20a)

ζx =
1t

6(a4 + 1)


7 + γ + 3a2 − 12c2s

  1
se

− 0.5


+
a21t

6

a4 + 1

 5a2 −
2
a2

−
γ

2a2
− 6a2c2s + 6

c2s
a2

+
a2γ
2

− 3


1
sn

− 0.5


, (20b)

νy =
a41t

2(a4 + 1)
(a2 − 1)


1
se

− 0.5


+
a21t

6(a4 + 1)


a2 −

γ

2a2
−

2
a2

−
a2γ
2

+ 3


1
sn

− 0.5


, (20c)

ζy =
a41t

6(a4 + 1)


7 + γ + 3a2 − 12c2s

  1
se

− 0.5


−
a21t

6(a4 + 1)


5a2 −

2
a2

−
γ

2a2
− 6a2c2s + 6

c2s
a2

+
a2γ
2

− 3


1
sn

− 0.5


, (20d)

ν =
γ + 4

6


1
sc

− 0.5


1t. (20e)

It can be seen from Eq. (20), the hydrodynamic transport coefficients on a rectangular grid depend on parameters
cs, γ , se, sn, sc and the grid parameter a. The question here is whether we can achieve the isotropy conditions required
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by the Navier–Stokes equations: ν = νx = νy and ζx = ζy (together they represent three conditions). Since the relaxation
parameters are directly related to the various transport coefficients, Bouzidi et al. [16] attempted to approach the isotropy
conditions by relating se and sn to sc , using a linearized dispersion analysis. Here we shall derive the same relationships from
a very different perspective.

First, we define an average bulk viscosity as

ζ ≡
ζx + ζy

2
=


7 + γ + 3a2 − 12c2s


12


1
se

− 0.5


1t (21)

which is identical to the expression of bulk viscosity in Bouzidi et al. [16]. In order to construct the coupling relationships
between the relaxation parameters, we impose the following two conditions

ν =
νx + νy

2
, (22a)

ζx − ζy

2
+

νx − νy

2
= 0. (22b)

The first condition states that the average normal shear viscosity should be the same as the cross shear viscosity, which
represents one step toward the isotropy conditions. The second condition amounts to νx + ζx = νy + ζy, namely, the net
normal viscosities in the x and y directions are the same. Herein, we can build two coupling relationships between se, sn and
sc . The true isotropy involves three conditions, here we impose two conditions first.

Substituting the expressions of the transport coefficients in Eq. (20) into Eq. (22), we can express se and sn in terms of sc
as follows

1
se

−
1
2

=
2 (4 + γ )


12c2s − γ

 
1 + a2


− 2


5a2 + 2


1 + a2

 
1 + γ − 3a2

 
γ + 10 − 12c2s


+ 6


a4 (γ − 2) − 3


a2 − 1

  1
sc

−
1
2


, (23)

1
sn

−
1
2

=
2 (4 + γ )


12c2s − γ

 
1 + a2


− 2


3a4 + 5a2 + 5


1 + a2

 
1 + γ − 3a2

 
γ + 10 − 12c2s


+ 6


a4 (γ − 2) − 3


a2 − 1

  1
sc

−
1
2


, (24)

which are precisely the two relationships proposed in Bouzidi et al. [16] based on the linearized dispersion analysis.
An important detail should be noted. In the above derivation the limit of a → 1 is a singular limit. In this limit, the first

condition, Eq. (22a), will yield

(2 − γ ) 1t
12


1
sn

− 0.5


=
(4 + γ ) 1t

6


1
sc

− 0.5


. (25)

The second condition, Eq. (22b), leads to a condition
1 − a2

 
12c2s − γ − 4

 
1 − a4


− 6a2

  1
sn

− 0.5


+

7 + γ + 3a2 − 12c2s

 
1 + a2


+ 3


1 + a2

  1
se

− 0.5


= 0 (26)

which is automatically satisfied when a = 1. Further deriving the relationships, Eqs. (23) and (24), however, we did not use
the condition of a = 1 but instead set

12c2s − γ − 4
 

1 − a4

− 6a2

  1
sn

− 0.5


+

7 + γ + 3a2 − 12c2s

 
1 + a2


+ 3


1 + a2

  1
se

− 0.5


= 0. (27)

Therefore, we could have two possible routes to satisfy the Navier–Stokes equations in the limit of a = 1. The first possibility
is to use the condition Eq. (25) only. This condition implies that γ can be left as a free parameter so that Eq. (25) becomes a
required condition between sn and sc . A special case is to set sn = sc , then we have

2 − γ

12
=

4 + γ

6
, (28)

which leads to a specific requirement that γ must to be set to −2. The second possibility to achieve the Navier–Stokes
equations in the limit of a = 1 is to use the conditions Eqs. (23) and (24), which with a = 1 become

1
se

−
1
2

=
2(4 + γ )

(2 − γ )


γ + 7 − 12c2s


γ + 13 − 12c2s

  1
sc

−
1
2


(29)

1
sn

−
1
2

=
2(4 + γ )

(2 − γ )


1
sc

−
1
2


. (30)
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Eq. (30) is identical to Eq. (25), but Eq. (29) imposes a condition between se and sc that depends on both γ and cs, which
is really unnecessary for a = 1. Still, Eq. (29) indicates the limiting relationship between se and sc when a is close to one,
namely, on a rectangular grid, the relaxation of energy must be linked to the relaxation of cross shear stress moment. With
Eqs. (23) and (24), we can show that the transport coefficients can now be simply written as

νx = ν + ∆B, (31a)

νy = ν − ∆B, (31b)

ζx = ζ − ∆B, (31c)

ζy = ζ + ∆B, (31d)

where the only remaining deviation ∆B from isotropy is

∆B
=

1 − a2

4


1
se

− 0.5


1t. (32)

Several observations can be made. First, when a = 1 or when the square grid is used, the isotropy conditions are
automatically satisfied and the Navier–Stokes equation is recovered. Second, when a < 1 and 0 < se < 2, it is not possible
to rigorously satisfy the Navier–Stokes equations or restore the isotropy. The bulk viscosity in the x direction is always less
than that in the y direction, and the normal shear viscosity in the x direction is always larger than that in the y direction.
Therefore, we have shown that Bouzidi et al.’s model does not satisfy the Navier–Stokes equations. Third, if a is close to one
or if se is close to 2, the deviation from the Navier–Stokes equations is not significant.

2.2. The model of Zhou [17]

Next, we briefly re-visit the model proposed by Zhou [17] also intended for a rectangular grid. He simply used the
transformation matrix that is identical to what is used for a square grid, namely,

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


. (33)

This amounts to a different set of definitions for the moments. Compared with the model of Bouzidi et al. [16], energy and
normal shear stress moments were defined differently in Zhou [17], while the remaining 7 moments are essentially the
same up to a constant factor. In these two-dimensional moment subspace, the energy and normal stress moments between
the two models can be related to each other as

eB =
a2 + 1

2
eZ +

1 − a2

2
· 3pZxx, (34a)

3pBxx =
a2 − 1

2
eZ +

1 + a2

2
· 3pZxx, (34b)

where eB, pBxx and eZ , pZxx refer to the energy and shear stress moments in Bouzidi’s model and Zhou’s model, respectively.
Without the consideration of the external forcing term, the leading-order multiscaling expansion of Zhou’s model leads to
the following hydrodynamic equations

∂t1ρ + ∂1x(ρux) + ∂1y(ρuy) = 0, (35a)

∂t1(ρux) + ∂1x


2
3
ρ +

1
6
eZ,(eq)

+
1
2
pZ,(eq)
xx


+ ∂1y(ρuxuy) = 0, (35b)

∂t1(ρuy) + ∂1y


2a2

3
ρ +

a2

6
eZ,(eq)

−
a2

2
pZ,(eq)
xx


+ ∂1x(ρuxuy) = 0. (35c)

The hydrodynamic equations at O

ϵ2

are

∂t2(ρux) + ∂1x


1
6
(1 − 0.5se)eZ,(1)

+
1
2
(1 − 0.5sn)pZ,(1)

xx


+ a∂1y


(1 − 0.5sc)pZ,(1)

xy


= 0, (36a)

1
a
∂t2(ρuy) + a∂1y


1
6
(1 − 0.5se)eZ,(1)

−
1
2
(1 − 0.5sn)pZ,(1)

xx


+ ∂1x


(1 − 0.5sc)pZ,(1)

xy


= 0. (36b)
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Applying the similar inverse design analysis as done in Section 2.1, the following equilibrium moments are obtained

jZ,(eq)
x = ρux, jZ,(eq)

y =
ρuy

a
, (37a)

eZ,(eq)
= ρ


−4 +


6ωa + 3u2

x + 6
ω

a
+ 3

u2
y

a2


, (37b)

pZ,(eq)
xx = ρ


2ωa + u2

x −
2ω
a

−
u2
y

a2


, (37c)

pZ,(eq)
xy =

ρuxuy

a
, (37d)

qZ,(eq)
x =

1 − 2a2

a2
ρux, (37e)

qZ,(eq)
y = −

ρuy

a
, (37f)

whereω is related to the speed of sound as 2ωa = c2s . It is noted that our inverse design analysis provides the best scenario of
themodel toward satisfying the correct hydrodynamics. However, the definition of q(eq)

x in Zhou’swork is incorrect according
to the requirements of self-consistency, which was set as −ρux. While, the remaining equilibrium moments in Eq. (37) are
identical to those in Zhou [17]. Substituting the above derived equilibrium moments into Eqs. (36), we obtain

∂t2(ρux) = ∂1x

ρζ Z

x


∂1xux + ∂1yuy


+ ρνZ

x


∂1xux − ∂1yuy


+ ∂1y


ρνZ ∂1yux + ∂1xuy


, (38a)

∂t2(ρuy) = ∂1x

ρνZ ∂1yux + ∂1xuy


+ ∂1y


ρζ Z

y


∂1xux + ∂1yuy


+ ρνZ

y


∂1yuy − ∂1xux


, (38b)

where ζ Z
x , ζ Z

y , νZ
x and νZ

y are bulk and shear viscosities for x and ymoment equation, respectively. Their explicit expressions
are

ζ Z
x =


1
se

− 0.5


1
12a2

+
7
12

− ωa −
ω

a


1t +


1
sn

− 0.5


ω

a
− ωa +

3a2 − 1
12a2


1t, (39a)

ζ Z
y =


1
se

− 0.5


1
12a2

+
7
12

− ωa −
ω

a


1t −


1
sn

− 0.5


ω

a
− ωa +

3a2 − 1
12a2


1t, (39b)

νZ
x =

1
12a2


1
se

− 0.5
 

1 − a2

1t +

1
12a2


1
sn

− 0.5
 

7a2 − 1

1t, (39c)

νZ
y = −

1
12a2


1
se

− 0.5
 

1 − a2

1t +

1
12a2


1
sn

− 0.5
 

7a2 − 1

1t, (39d)

νZ
=

1
3a


1
sc

− 0.5


1t. (39e)

Since the shear and bulk transfer coefficients in x and y moment are not identical, it is impossible to achieve isotropy
when a < 1. The assumptions Zhou proposed in Eqs. (61) and (62) of his paper for the relaxation parameters also fail to
satisfy the Navier–Stokes equations when a < 1.

If the same conditions, Eqs. (22a) and (22b), are imposed, we can obtain the following coupling relationships between
the relaxation parameters

1
se

− 0.5 =
4a

12ωa − 12ωa3 + 3a2 − 1


1 − a2

 
1 − 7a2

 
1
sc

− 0.5


, (40a)

1
sn

− 0.5 =
4a

7a2 − 1


1
sc

− 0.5


. (40b)

With these relationships, we can then express the transport coefficients

νZ
x = ν + ∆Z , (41a)

νZ
y = ν − ∆Z , (41b)

ζ Z
x = ζ − ∆Z , (41c)

ζ Z
y = ζ + ∆Z , (41d)
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Fig. 2. Sketch of the establishing of novel MRT LBM on rectangular grid.

where the deviation from isotropy is

∆Z
=

1 − a2

12a2


1
se

− 0.5


1t (42)

and the bulk viscosity is

ζ =
ζx + ζy

2
=


7
12

+
1

12a2
− ωa −

ω

a


1
se

− 0.5


1t. (43)

The presence of the extra term ∆Z indicates again that it is impossible to satisfy the full isotropy conditions as required
by the Navier–Stokes equations with Zhou’s definitions of moments.

In summary, without introducing a new degree of freedom, it is impossible for MRT LBM to satisfy the Navier–Stokes
equations when a rectangular grid is used.

3. A new MRT LBMmodel for a rectangular lattice grid

From the above analysis, it becomes clear that both the values and the anisotropy of the hydrodynamic transport
coefficients result mainly from their dependence on the definition and relaxation parameters of energy and stressmoments.
Inspired by the above inverse analysis, our new rectangular MRT scheme introduces a more flexible coupling between the
energy moment and normal stress moment. Specifically, we modify the definitions of these two moments by a coordinate
rotation of Bouzidi et al.’s definitions, as illustrated in Fig. 2. Such rotation will not change the orthogonality property of the
nine moments. The relative orientation angle becomes a new adjustable parameter.

The new energy and normal stress moments are defined in terms of Bouzidi et al.’s definitions as

e = eB + θpBxx (44a)

pxx = pBxx − θeB (44b)

where θ ∼ − tanφ with φ is the angle of rotation, e and pxx refer to the new energy and normal viscous stress moments,
respectively, while eB and pBxx represent the corresponding moments defined in Bouzidi et al. [16] for a rectangular grid, as
indicated by the transformationmatrix, Eq. (4). The other 7moments are kept the same as that defined by Bouzidi et al. [16].

With these new definitions, the second and eighth rows of the transformation matrix will be modified accordingly

M =



⟨ρ|

⟨e|
⟨ε|
⟨jx|
⟨qx|
⟨jy|
⟨qy|
⟨3pn|
⟨pc |


=



1 1 1 1 1 1 1 1 1
−2R1 R2 R3 R2 R3 R1 R1 R1 R1

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 a 0 −a a a −a −a
0 0 −2a 0 2a a a −a −a

−2R4 R5 R6 R5 R6 R4 R4 R4 R4
0 0 0 0 0 1 −1 1 −1


(45)

where R1 = r1 + θr4, R2 = r2 + θr5, R3 = r3 + θr6, R4 = r4 − θr1, R5 = r5 − θr2, R6 = r6 − θr3, and r1, r2, r3, r4, r5, r6 have
been defined previously in Section 2.
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By the same inverse design process using the Chapman–Enskog analysis presented in Section 2.1, it is found that two
equilibriummoments (i.e., energy and normal viscous stress) are modified and the others are the same as in Section 2.1. The
updated equilibrium moments are

m(eq)
= ρ



1

2

3c2s − r1


+ 3


u2
x + u2

y


+ θ


r4
a2

3r1c2s − 2a2


+ 3


a2u2

x −
u2
y

a2


α + βu2

ux

γ − 4r4
2a2

ux

uy
γ

2
uy

r4
a2

3r1c2s − 2a2


+ 3


a2u2

x −
u2
y

a2


− θ


2

3c2s − r1) + 3(u2

x + u2
y


uxuy

a



. (46)

Themacroscopic equations for the newMRT scheme are structurally identical to that of those given in Section 2.1. The Euler
equations are satisfied at O(ϵ). The explicit expressions at O(ϵ2) are as follows:

∂t2ρ = 0, (47a)

∂t2 (ρux) = −
(a2 − θ)(1 − 0.5sn)
3(a4 + 1)(θ2 + 1)

∂1xp(1)
xx − a(1 − 0.5sc)∂1yp(1)

xy −
(θa2 + 1)(1 − 0.5se)
3(a4 + 1)(θ2 + 1)

∂1xe(1), (47b)

∂t2

ρuy


=

a2(θa2 + 1)(1 − 0.5sn)
3(a4 + 1)(θ2 + 1)

∂1yp(1)
xx − a(1 − 0.5sc)∂1xp(1)

xy −
a2(a2 − θ)(1 − 0.5se)
3(a4 + 1)(θ2 + 1)

∂1ye(1). (47c)

It follows that the transport coefficients resulting from the O(ϵ2) analysis, as defined in Eqs. (15a) and (15b), are

νx =
1t

6

a4 + 1

 3 + a2 −
γ

2a2
−

a2γ
2

−
2
a2


1
sn

− 0.5


a2 − θ

θ2 + 1
+


1
se

− 0.5


θ(θa2 + 1)
θ2 + 1


+

1t
2(a4 + 1)

(1 − a2)


1
se

− 0.5


θa2 + 1
θ2 + 1

− θ


1
sn

− 0.5


a2 − θ

θ2 + 1


, (48a)

νy =
a21t

6(a4 + 1)


3 + a2 −

γ

2a2
−

a2γ
2

−
2
a2


1
sn

− 0.5


θa2 + 1
θ2 + 1

− θ


1
se

− 0.5


(a2 − θ)

θ2 + 1


+

a41t
2(a4 + 1)

(a2 − 1)


1
se

− 0.5


a2 − θ

a2

θ2 + 1

 + θ


1
sn

− 0.5


θa2 + 1
a2(θ2 + 1)


, (48b)

ζx =
1t

6(a4 + 1)


7 + γ + 3a2 − 12c2s

  1
se

− 0.5


θa2 + 1
θ2 + 1

− θ


1
sn

− 0.5


a2 − θ

θ2 + 1


+

1t
6(a4 + 1)


5a2 −

2
a2

− 3 −
γ

2a2
− 6a2c2s + 6

c2s
a2

+
a2γ
2


×


1
sn

− 0.5


a2 − θ

θ2 + 1
+ θ


1
se

− 0.5


θa2 + 1
θ2 + 1


, (48c)

ζy =
a41t

6(a4 + 1)
(7 + γ + 3a2 − 12c2s )


1
sn

− 0.5


θ(θa2 + 1)
a2(θ2 + 1)

+


1
se

− 0.5


a2 − θ

a2(θ2 + 1)


+

a21t
6(a4 + 1)


−5a2 +

2
a2

+ 3 +
γ

2a2
+ 6a2c2s − 6

c2s
a2

−
a2γ
2


×


1
sn

− 0.5


θa2 + 1
θ2 + 1

− θ


1
se

− 0.5


a2 − θ

θ2 + 1


, (48d)

ν =
γ + 4

6


1
sc

− 0.5


1t. (48e)
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At this moment, they look rather complicated. Clearly, when θ = 0, Eqs. 48(a–e) reduce to Eqs. 20(a–e) as expected. We
adopt the same procedure by first imposing part of the isotropy requirements, given by Eqs. (22a) and (22b). The following
coupling relationships can then be derived,

1
se

− 0.5


=
2(γ + 4)(a4 + 1)(1 + θ2)C22

C11C22 − C12C21


1
sc

− 0.5


(49a)
1
sn

− 0.5


= −
2(γ + 4)(a4 + 1)(1 + θ2)C21

C11C22 − C12C21


1
sc

− 0.5


(49b)

where

C11 =


3 + a2 −

γ

2a2
−

a2γ
2

−
2
a2


(2θ2a2 + θ − a4θ) + 3(1 − a2)(2θa2 + 1 − a4),

C12 =


3 + a2 −

γ

2a2
−

a2γ
2

−
2
a2


(2a2 − θ + a4θ) + 3(1 − a2)(θ2

− 2a2θ − a4θ2),

C21 = 2a2θ

7 + γ + 3a2 − 12c2s


+ (1 − a4)(7 + γ + 3a2 − 12c2s ) + (a4 + 1)


3 + a2 −

γ

2a2
−

a2γ
2

−
2
a2


θ

+ 3(a4 + 1)(1 − a2) + (1 − a4)(1 − a2)

−

2
a2

− 5 +


6c2s −

γ

2


1 +

1
a2


θ

+ (1 − a2)

12c2s − γ − 4

 
1 + a2


− 6a2


θ2,

C22 = −2a2θ

7 + γ + 3a2 − 12c2s


+ (1 − a4)(7 + γ + 3a2 − 12c2s )θ

2

− (a4 + 1)

3 + a2 −

γ

2a2
−

a2γ
2

−
2
a2


θ + 3(a4 + 1)(1 − a2)θ2

− (1 − a4)(1 − a2)

×


−

2
a2

− 5 +


6c2s −

γ

2


1 +

1
a2


θ + (1 − a2)


(12c2s − γ − 4)(1 + a2) − 6a2


.

It is important to note that the coefficients C11, C12, C21, and C22 are functions of a, cs, γ , θ only; they do not depend
on the relaxation parameters. When θ = 0, the coupling relationships in Eqs. 48(a–b) reduce precisely to the coupling
relationships Eqs. (23) and (24). Furthermore, with the above conditions, the transport coefficients can now be rewritten in
the similar way as in Eqs. (25) and (34) as

νx = ν +
νx − νy

2
(50a)

νy = ν −
νx − νy

2
(50b)

ζx = ζ −
νx − νy

2
(50c)

ζy = ζ +
νx − νy

2
(50d)

where

νx − νy

2
=

θ1t
12

1 + θ2

 3 + a2 −
γ

2a2
−

a2γ
2

−
2
a2


1
se

−
1
sn


+

(1 − a2)1t
4

1 + θ2

  1
se

− 0.5


+ θ2


1
sn

− 0.5


. (51)

Now the final condition for matching the Navier–Stokes equations is simply to require

νx − νy

2
= 0 (52)

which leads to
3 + a2 −

γ

2a2
−

a2γ
2

−
2
a2


θ


1
se

−
1
sn


+ 3(1 − a2)


1
se

− 0.5


+ θ2


1
sn

− 0.5


= 0. (53)

Now recall Eq. (49), which states the coupling relationship: (s−1
e − 0.5) ∼ (s−1

c − 0.5) and (s−1
n − 0.5) ∼ (s−1

c − 0.5).
This implied that all the relaxation parameters se, sn, sc can be removed from Eq. (53) if we substitute Eqs. (49) into it. The
relationship between a, cs, γ , θ is

3 + a2 −
γ

2a2
−

a2γ
2

−
2
a2


(C21 + C22)θ + 3(1 − θ2)(C22 − C21θ

2) = 0. (54)
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Substituting the expressions of C11, C12, C21, and C22, we can rewrite Eq. (53) in the following form

(1 − a2)

1 + θ2 (Aθ2

+ Bθ − A) = 0, (55)

where

A = 3(a2 − 1)

(γ − 12c2s )(1 + a2) + 2(5a2 + 2)


,

B = a2(12γ − 108c2s + 66) + 18a6(c2s − 1) + 18
c2s
a2

+ 18(a4 − 1).

Several interesting observations are now in order. First, in the limit of a → 1, Eq. (55) is automatically satisfied for any
θ . Namely, the Navier–Stokes equations emerge. In this limit, any value of θ would work, with the formulation of Bouzidi
et al. [16] and Zhou [17] as two special examples. In this limit, the coupling relationships, Eqs. (49a–b), are not related with
θ and become se = sn = sc . Second, when a ≠ 1, then we must require

Aθ2
+ Bθ − A = 0, (56)

which is a surprising simple second-order equation for setting θ in terms of a, cs, and γ , so that the full isotropy can be
realized on a rectangular grid to yield the Navier–Stokes equations. This equation has two solutions θ1 and θ2 = −1/θ1. The
relationship θ2 = −1/θ1 stems from the fact that the last coefficient (−A) differs from the first coefficient (A) by a sign. The
second solution θ2 represents the result of rotating the direction of the e − pxx axes in the first solution by 90°. Therefore,
without the loss of generality, we may restrict our discussions below to only the solution of θ > 0, which is given as

θ1 = −
B
2A

+

√
4A2 + B2

2A
. (57)

The above analysis indicates that the free parameter θ provides the feasibility to eliminate the anisotropy in the transport
coefficients. Such feasibility does not exist in the models of Bouzidi et al. [16] and Zhou [17], which is the reason why
their models fail to rigorously satisfy the Navier–Stokes equations. We have derived the explicit requirement for setting
this parameter in terms of the model parameters cs, γ , a. Under this condition, Eq. (47) can be inverted to express the
macroscopic stress components in terms of the mesoscopic non-equilibrium moments as

1
ρ0

τxy ≡ ν


∂ux

∂y
+

∂uy

∂x


= −a (1 − 0.5sc) p(1)

xy (58a)

1
ρ0

τxx = −
1
ρ0

τyy ≡ ν


∂ux

∂x
−

∂uy

∂y


=

(−2a2 + θ − θa4)(1 − 0.5sn)
6(1 + a4)(1 + θ2)

p(1)
xx +

(−2θa2 − 1 + a4)(1 − 0.5se)
6(1 + a4)(1 + θ2)

e(1) (58b)

1
ρ0

τ V
xx =

1
ρ0

τ V
yy ≡ ζ


∂ux

∂x
−

∂uy

∂y


=

θ(1 − 0.5sn)
6(1 + θ2)

p(1)
xx −

(1 − 0.5se)
6(1 + θ2)

e(1). (58c)

We stress that, in principle, for a given lattice aspect ratio a, cs and γ are two free parameters in the model, which can
be tuned to achieve the best numerical stability of our proposed MRT LBMmodel on a rectangular grid.

4. Numerical validations

We shall now confirm our newMRT LBM scheme on a rectangular grid, by considering two flow problems: a 2D channel
flow and a 2D lid-driven cavity flow. For a given value of a ≠ 1, the values of the model parameters should be chosen to
keep the simulation numerically stable. The range of the relaxation parameters should be 0 < si < 2. Here we consider
steady-state flows. The simulation ends when the following condition

Err =



i,j

[ux(i, j, t + dt) − ux(i, j, t)]2 + [uy(i, j, t + dt) − uy(i, j, t)]2
i,j

[ux(i, j)2 + uy(i, j)2]
< 10−8 (59)

is reached.

4.1. The 2D channel flow

In these cases, the numerical simulations are conducted by the newMRT LBMmodel with several different values of the
grid aspect ratio a and the results are compared with the exact solution. The periodic boundary conditions are applied to
the flow inlet and outlet, the half-way bounce back conditions are imposed on the channel walls. The model parameters are
listed in Table 1. Note that the value of θ is determined from Eq. (56) after cs and γ are chosen. The relaxation parameter sc
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Fig. 3. The relative difference of the maximum velocity at x/L = 0.5 between two adjacent time steps.

Fig. 4. Velocity profiles obtained with different grid aspect ratios.

Table 1
Summary of the model parameters used for the 2D channel flow simulations.

a γ c2s Nx × Ny θ sc se sn Viscosity

0.80 −2.3 0.3333 4 × 125 0.0261 1.1724 1.8877 1.0665 0.10
0.65 −2.0 0.3333 4 × 154 0.4215 1.2500 1.2508 0.3652 0.10
0.50 −3.0 0.16 4 × 200 0.2977 0.9091 1.2859 0.3155 0.10
0.30 −3.8 0.04 4 × 334 0.0757 0.7143 1.8091 0.6504 0.03
0.20 −3.9 0.01 4 × 500 0.0494 0.4348 1.7394 0.3214 0.03

is chosen according to the set-up of the flow problem, and se and sn are obtained by Eqs. (49a–b). Besides, for all the cases
studied here, the relaxation times sρ, sj are set to be 0, the other two relaxation times are chosen to be sε = 1.4, sq = 1.5.

Fig. 3 shows the time evolution of the relative difference of the maximum velocity between two adjacent time steps
at x/L = 0.5, where L is the channel length. The relative difference decreases monotonically in time, showing that the
flow has reached the steady state. Only the simulated, steady-state velocity distribution is discussed next. Fig. 4 shows the
dimensionless velocity profiles (normalized by the channel center velocity) for 5 different values of the grid aspect ratio a,
as well as the theoretical velocity profile. We observe that the results from our new model are in excellent agreement with
the exact solution. It also should be noted here that extremely smaller grid ratio will lead to numerical instability.

Next, in Fig. 5, we compare the relative errors between the computed and exact results at different resolutions (Ny) in
the y direction for a = 0.8, 0.5, 0.3 and a = 0.2, in which the Reynolds number varies with the resolutions and viscosity
remains the same. The relative error is employed for comparison and defined as: (ux,simulated − ux,theory)/U at x/L = 0.5,
where ux,theory is the theoretical velocity of the Poiseuille flow. The two dash-dotted lines denote the slope of −2. Clearly, it
proves the new scheme is of second-order accuracy for a = 0.8 though the error seems to be larger if a smaller a is used. It
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Fig. 5. The relative error between the simulated results and the exact resolution at the steady state.

Fig. 6. A schematic of lid-driven cavity flow in a square cavity.

is well known that mid-way bounce back boundary results to the second-order accuracy for standard LBM models [22,23].
Here we confirm that the same is true on a rectangular grid.

4.2. The 2D lid-driven cavity flow

The 2D lid-driven cavity flow (Fig. 6) has been studied as a standard benchmark case to test many numerical methods, in
which D,H are the width and height of the cavity, respectively. Depending on the flow Reynolds number, the flow pattern
and the number of corner vortices are different. This flow has also been extensively used to study the performance of LBM
solutions [24–26]. We consider a square cavity of width H . At the top boundary, uy = 0 and ux = U . Since the equilibrium
distributions depend on a, we need to obtain f(eq) from m(eq) by f(eq) = M−1m(eq). The lattice node is placed half-way from
the top wall, and the bounce back on the top wall is implemented as

f4(xf , t + 1t) = f̃2(xf , t) −


f (eq)
2 − f (eq)

4


= f̃2(xf , t)

f7(xf , t + 1t) = f̃5(xf , t) −


f (eq)
5 − f (eq)

7


= f̃5(xf , t) − ρ

(γ + 4)
12a2

U

f8(xf , t + 1t) = f̃6(xf , t) −


f (eq)
6 − f (eq)

8


= f̃6(xf , t) + ρ

(γ + 4)
12a2

U

where the nearly incompressible formulation is used, with ρ = ρ0 + δρ and ρ0 = 1. Note that the above half-way bounce-
back relations for amovingwall reduce to the standard formswhen a = 1 and γ = −2. The value of ρ in the above is simply
set to ρ0. On the other three walls, the half-way bounce back scheme is applied. The governing parameter of the flow is the
Reynolds number defined as Re = UH/ν. The number of lattice nodes in x direction is fixed to 100 and that in y direction is
adjusted according to different grid aspect ratios a.
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a

b

Fig. 7. Comparison of ux at the mid-plane with Re = 100. (a) Our new model; (b) Bouzidi et al.’s scheme.

In Figs. 7 and 8, we show the steady-state velocity profiles at x/D = 0.5 and y/H = 0.5 respectively, using both our
new model and the model of Bouzidi et al., for the cavity flow at Re = 100. The computational parameters for the former
are listed in Table 2. For the latter case the parameters are listed in Table 3 which are taken from Table 4.1 in Bouzidi
et al. [16] and the coupled relaxation times are obtained from Eqs. (23) and (24). The other relaxation times are set as:
sρ = 0, sε = 1.4, sj = 0, sq = 1.5. The results from a previous study [27] are also shown for comparison which employed
the multigrid procedure and finite-difference solution.

In Figs. 7(a) and 8(a), the steady-stateux anduy velocity profiles along the centerline fromour newmodel for four different
values of a are plotted. The smallest a is 0.3 and the newmodel is still numerically stable. These clearly demonstrate that the
results are not affected by a and are in excellent agreement with the work of Ghia et al. [27]. The corresponding results for
the model of Bouzidi et al. [16] are shown in Figs. 7(b) and 8(b). The code based on their model became unstable at a = 0.3,
so no results for a = 0.3 are shown. Interesting, for a ≥ 0.5, their results are also in good agreement with one another
and with those of Ghia et al. [27], although a closer inspection shows some minor differences in the uy profiles. The good
agreement for themodel of Bouzidi et al. [16] is somewhat coincidental, which can be explained by the deviation term of the
transport coefficients in Eq. (32).When a = 0.8 and Re = 100, this departure is around 0.015, which is significantly less than
the shear viscosity ν = 0.1. For a = 0.5, the departure term is 0.056, again is relatively small when compared to ν = 0.1.
It also found ∆B should be less than a certain value in order to keep the numerical stability and accuracy, otherwise the
computation by the Bouzidi et al. scheme will be unstable. Further study is needed to investigate the effect of the departure
term on the simulation.

Moreover, the computations based on Bouzidi’s scheme were found to be unstable when the Reynolds number is higher.
Our model, on the other hand, remains stable. Fig. 9 shows velocity profiles at x/H = 0.5 and a = 0.8 with different flow
Reynolds numbers. The parameters are listed in Table 2. In general, the agreement for the newmodel is good at most of the
flow Reynold numbers, except at Re = 3200, which may be due to the low resolution adopted in the simulation. For the
scheme of Bouzidi et al., the computation became unstable when Re > 1000. These tests show that the new model with
the additional parameter θ can improve numerical stability, in addition to rigorous consistency with the Navier–Stokes
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a

b

Fig. 8. Comparison of uy at the mid-plane with Re = 100. (a) Our new model; (b) Bouzidi et al.’s scheme.

Table 2
Summary of the computational parameters for the updated MRT scheme on rectangular grid.

a γ c2s θ Re sc se sn U Nx × Ny Viscosity

0.80 −2.3 0.3333 0.0261 100 1.1724 1.8878 1.0665 0.1 100 × 125 0.10
0.65 −2.0 0.3333 0.4215 100 1.2500 1.2508 0.3652 0.1 100 × 154 0.10
0.50 −3.0 0.16 0.2977 100 0.9091 1.2859 0.3155 0.1 100 × 200 0.10
0.30 −3.8 0.04 0.0757 100 0.7143 1.8091 0.6504 0.03 100 × 334 0.03

0.80 −2.3 0.16 1.5549 400 1.6749 1.6747 1.3063 0.11 100 × 125 0.02750
0.80 −2.3 0.16 1.5549 1000 1.8559 1.8558 1.6496 0.11 100 × 125 0.01100
0.80 −1.7 0.16 2.1351 3200 1.9870 1.9774 1.4218 0.04 100 × 125 0.00125

Table 3
Summary of the computational parameters for Bouzidi et al.’s scheme [16].

a γ c2s sc se sn ∆B

0.80 −0.90 0.3398 1.4419 1.4889 0.7572 0.015
0.65 −1.70 0.2267 1.3143 1.3278 0.5963 0.036
0.50 −2.55 0.1421 1.0943 1.2498 0.4132 0.056

equation. A full discussion of the optimization of the model parameters and their impact on numerical stability is beyond
the scope of the current paper, and will be reported in a separate paper.

In Fig. 10, we plot the velocity contours and streamlines for the cavity flows at four different Reynolds numbers by the
new model. The structure of the flow depends on the flow Reynolds number. With increasing flow Reynolds number, the
primary vortex moves toward the left and downward gradually and becomes increasing circular. The size, number, and
intensity of the corner vortices all increase with Re. The secondary corner eddies appear initially near the corners. Their
centers move slowly toward the cavity center with the increase of Reynolds number. Finally, in Fig. 11 we compare the
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a

b

Fig. 9. Comparison of ux at the mid-plane with different Reynolds number. (a) New model; (b) Bouzidi et al.’s scheme.

locations of the primary vortex center at different Reynolds numbers against the data from Ghia et al. [27]. The agreement
is satisfactory. These tests validate our new model on a rectangular grid, in terms of both accuracy and numerical stability.

4.3. 2D Taylor–Green vortex flow

In order to further probe the isotropy of the new MRT model, a two-dimensional (2D) decaying Taylor–Green vortex
flow is considered here, which was adopted to probe the anisotropy of Zhou’s model [17] by Chikatamarla [28]. This flow
has an analytical solution of the incompressible Navier–Stokes equation, residing in a domain of size Lx × Ly. The velocity
and pressure fields are

ux(x, y, t) = −U0 cos(kxx) sin(kyy)e−k2νt , (60a)

uy(x, y, t) =
kx
ky

U0 sin(kxx) cos(kyy)e−k2νt , (60b)

p(x, y, t) = −
1
4
ρU2

0


cos(2kxx) +


kx
ky

2

cos(2kyy)


e−2k2νt

+ P0 (60c)

where U0 is the initial velocity amplitude, ν is the shear viscosity, kx = 2π/Lx and ky = 2π/Ly are the wave numbers in x

and y directions, respectively, k =


k2x + k2y and P0 is the mean reference pressure.

The analytical solutions of the stress components can be obtained from Eq. (59), which are given here

τxx = ρν


∂ux

∂x
−

∂uy

∂y


= 4πρν

U0

Lx
sin

2πx
Lx


sin

2πy
Ly


e−k2νt ,
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Fig. 10. Velocity contour and streamlines for the flows with different Reynolds numbers. (a) Re = 100, (b) Re = 400, (c) Re = 1000, (d) Re = 3200.

Fig. 11. Comparison of the primary vortex location at different Reynolds numbers.

τxy = ρν


∂ux

∂y
+

∂uy

∂x


= 2πρν

U0

Lx

Ly
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
1 −


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2

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
2πx
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
cos


2πy
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
e−k2νt ,

τyy = ρν


∂uy
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−

∂ux

∂x


= −τxx.

Since the velocity field of the Taylor–Green vortex flow is divergence-free, it follows that the bulk stress τ V
xx = τ V

yy =

ρζ


∂ux
∂x +

∂uy
∂y


= 0.
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Fig. 12. The converged normal stress (τxx/ρ0U2
0 ) profiles at t = 0 by the iterative approach for the Taylor–Green vortex flow, obtained with different a

values, are compared to the analytical curve.

Table 4
Summary of the model parameters used for the 2D Taylor–Green vortex flow.

a γ c2s Nx × Ny θ sc se sn Re u0

0.80 −2.0 0.3333 200 × 250 0.6400 1.9084 1.9084 1.8110 100 0.100
0.65 −2.0 0.3333 200 × 308 0.4225 0.9091 0.9091 0.2006 100 0.100
0.50 −3.1 0.09 200 × 400 0.4070 1.5789 1.7567 0.9494 100 0.010
0.30 −3.7 0.04 200 × 666 0.1115 1.5151 1.9208 1.0890 100 0.004

Here we consider the special case of kx = ky = 2π/L and set P0 = 0. The Reynolds number is defined as Re = ρLu0/ν.
The flow is then isotropic and the average kinetic energy in the x-direction is identical to that in the y-direction, which is
given as

1
2


u2
x(x, y, t)


=

1
2


u2
y(x, y, t)


=

1
8
U2
0 e

−2k2νt . (61)

Here the angle brackets denote spatial average at a given time. We shall define the corresponding normalized quantities as
Kx = 4


u2
x(x, y, t)


/U2

0 and Ky = 4

u2
y(x, y, t)


/U2

0 , and theoretically they both vary in time as e−2k2νt . The computed ratio
of ⟨Kx⟩ /


Ky

from a LBMmodel may be compared to the analytical value of one, as a check whether the physical isotropy of

the flow is satisfied.
In our LBM simulations, the periodic boundary conditions are applied to both directions. The computational parameters

are given in Table 4. The initial condition for the distribution functions must be specified properly. There are two general
methods to specific the correct initial condition. The first method is to describe both equilibrium moments and non-
equilibriummoments according to the results from the Chapman–Enskog analysis, here only the non-equilibriummoments
for e, pxx, and pxy are relevant according to Eqs. (47) and (58). The moments are then inverted to obtain the distribution
functions fi at t = 0. Alternatively, we can use iterations to converge the initial non-equilibrium moments after the
equilibriummoments are constrained by the velocity and pressure fields. Clearly, the firstmethod is preferred. Fig. 12 shows
the results of converged normal stress by the iterative method for different a, along with the analytical solution. It shows
an excellent agreement between the LBM result and the analytical solution at all a values. The derivations of the computed
shear stress from the LBM simulations are in the range of 10−7–10−11 for different a values, again in excellent agreement
with the zero value according to the analytical solution.

In addition to the velocity, pressure, the stress fields, Kx and Ky, we also compute the following normalized projection of
the pressure field [29]

P2(t) = −
8

ρ0U2
0

⟨p(x, y, t) cos [kL(x + y)] cos [kL(x − y)]⟩ . (62)

And P2(t) evolves as e−2k2νt for the analytic solution.
In Fig. 13, we show P2(t) obtained from the LBM simulations, as a function of dimensionless time, for different a values.

The curves contain low-level acoustic oscillations initially for some a values, similar in magnitude to what was observed
in [29]. In the cases with smaller a, the oscillations are relatively weaker, as seen in Fig. 13(a). The acoustic oscillations
gradually disappear at long times for all cases, leading to an excellent agreement of the simulated P2 valueswith its analytical
solution, as seen in Fig. 13(b).
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a b

Fig. 13. P2(t) as a function of dimensionless time, obtained from the LBM simulations using different a values. The analytical solution is also shown.
(a) Short time; (b) long time.

ba

Fig. 14. The component kinetic energy as a function of time, obtained from our LBM simulations with different a values: (a) Kx; (b) Ky . The analytical
solution is also shown.

On the other hand, the simulated Kx and Ky values are smooth at all times and are consistent with the analytic solution,
as shown in Fig. 14. These demonstrate that the non-equilibrium moments have been properly initialized.

Motivated by the discussions in [28], we next demonstrate the isotropy property of our new model by plotting the time
evolution of ⟨Kx⟩ /


Ky

in Fig. 15 for the case of a = 0.5 and Re = 100. Furthermore, the results from Bouzidi’s model

are also included. The parameters for Bouzidi’s model are: a = 0.50, Re = 100, U0 = 0.055, and the relaxation times
are se = 1.5195, sn = 0.4966, and sc = 0.9091. These parameters lead to ν = 0.1100, νx = 0.1396, and νy = 0.0804
in Bouzidi’s model. Clearly, Fig. 15 shows that ⟨Kx⟩ /


Ky

from Bouzidi’s model oscillates around 1.0, which is related to

the anisotropy of the transport coefficients. Since the flow is incompressible, any deviation from isotropy in the velocity
field leads to pressure redistribution, which restores isotropy. This interaction between the velocity field and pressure field
caused oscillations in both velocity and pressure fields, and therefore oscillations in the ⟨Kx⟩ /


Ky

ratio. The magnitude of

the oscillations increases with increasing time as the kinetic energy decays. The period of oscillations is about 377 LBM time
steps, which is roughly equal to L/

√
2cs = 375, where cs = 0.377. However, for our new θ model, ⟨Kx⟩ /


Ky

is always close

to one; the maximum relative deviation is around 2 × 10−4. This demonstrates convincingly that the isotropy property is
satisfied by our new θ model.

Fig. 16 shows the velocity and pressure profiles at x/L = 0.5 for the case of a = 0.5 at Re = 100. The simulated results
agree well with the analytical solution at all four selected times. Again, it illustrates that the velocity components in the x
and y directions decay at the same rate. The excellent agreement between the LBM and the analytical solution is further
shown for the normal stress field in Fig. 17.

5. Summary and concluding remarks

In this paper, we have shown, for the first time, that the D2Q9 MRT LBM model can be used on a rectangular grid to
produce viscous flows that are fully consistent with the Navier–Stokes equations. The basic idea is to introduce a new
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Fig. 15. The ratio ⟨Kx⟩ /

Ky

plotted as a function of time from our newmodel for the case of a = 0.5 and Re = 100. The corresponding result for Bouzidi’s

model is also shown.

a b

c

Fig. 16. The velocity and pressure profiles at x/L = 0.5 at several different dimensionless times (the time is normalized by νt/L2): (a) ux/U0; (b) uy/U0;
(c) p/ρ0U2

0 . The LBM results are shown by symbols and the analytical solutions are shown as lines. a = 0.5 and Re = 100.

adjustable parameter into the previous model of Bouzidi et al. [16]. This parameter amounts to a rotation in the 2D
energy–normal stress moment subspace. We first re-derived the hydrodynamic equations of the two previous models
[16,17] intended for a rectangular grid. By inverse design using the Chapman–Enskogmulti-scaling analysis, we showed that
these two previous models are unable to satisfy all isotropy conditions of the transport coefficients. At the Euler equation
level, the two previous models are equivalent. Zhou’s model could also be viewed as a rotation in the 2D energy–normal
stress moment subspace relative to Bouzidi et al. [16]. But such rotation was fixed by Zhou’s definition of the moments in
order to use the a-independent transformation matrix. In our model, this rotation does not fix the transformation matrix,
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Fig. 17. Profile of normalized normal stress at νt/L2 = 0.04 and x/L = 0.5. a = 0.5 and Re = 100.

which provides the necessary flexibility to restore the full isotropy of transport coefficients as required by the Navier–Stokes
equation. Clearly, the success of our new model rests in part on the flexibility of relaxation parameters in the MRT LBM
approach. Namely, the BGK LBM uses the same relaxation parameter for all moments, and is clearly unable to produce the
necessary isotropy on a rectangular grid.

We showed, by the inverse design, that all equilibrium moments can be determined, except that for the energy squared
moment which plays no role in the Navier–Stokes equation. Two conditions required to partially meet isotropy (the full
isotropy has three conditions) are identified, and are shown to yield the two coupling relationships derived previously in
Bouzidi et al. [16] using a very different approach. These partial conditions allow all departures from isotropy be expressed
in terms of a single quantity. The additional parameter θ in our model is then used to eliminate this term. We believe our
inverse design and the partial isotropy conditions provide new insights into previous models as well as to better explain
how our new model works from the theoretical perspective.

Our new model contains two adjustable parameters, the speed of sound cs, and a parameter γ defining the energy flux.
Their values can be optimized for the use of smaller aspect ratio a, the best numerical stability, or for achieving a higher
flow Reynolds number. In this paper, we have demonstrated that a = 0.2 may be used (see Section 4.1). However, we find
that, in general, the model tends to be unstable when a < 0.2. The smallest value of a that can be achieved also depends on
the nature of the flow and the flow Reynolds number, and the relaxation parameters for non-essential modes. A systematic
study of the numerical stability for the parameter space formed by cs, γ , and the relaxation parameters for non-essential
modes, for a given a, is beyond the scope of this paper, and will be reported in a future paper.

We have also validated our new model using the 2D channel flow, 2D lid-driven cavity flow, and 2D decaying
Taylor–Green vortex flow. We showed that the new model yields excellent results that are independent of the value of
the grid aspect ratio a. For the channel flow, the second-order accuracy is confirmed with mid-way bounce back boundary
conditions. For the cavity flow,we showed how to treat amovingwall within our newmodel. In the case of the Taylor–Green
vortex flow, the results show that our newMRTmodel can ensure the isotropy of the transport coefficients on a rectangular
lattice. Again our results are in excellent agreement with those reported in the literature. Numerical tests show that our
model is numerically stable for small a and for high flow Reynolds numbers.

Finally, we note that there are alternative methods to restore isotropy. For example, by using two more microscopic
velocities, Hegele et al. [18] were able to meet this goal in 2D. However, our model does not require any addition of
microscopic velocities. We also believe that our idea can be applied in 3D to allow the use of non-cubic grids, instead of
the cubic grid for standard models. This possibility will be reported in the near future.
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