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ABSTRACT
A parallel direct-forcing (DF) fictitious domain (FD) method for the simulation of particulate flows is
reported in this paper. The parallel computing strategies for the solution of flow fields and particu-
larly the distributed Lagrangemultiplier are presented, and the high efficiency of the parallel code is
demonstrated. The new code is then applied to study the effects of particle density (or particle iner-
tia) on the turbulent channel flow. The results show that the large-scale vortices are weakenedmore
severely, and the flow friction drag increases first and then reduces, as particle inertia is increased.
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1. Introduction

Particle-laden flows are ubiquitous in nature and indus-
trial settings such as fluidized bed reactors and slurry
transportation. The two-fluid model and discrete parti-
cle model (DPM) based on the point-particle approxi-
mation are two traditional methods commonly used to
treat the particle-laden flows in engineering applications,
whereas the interface-resolved simulation method has
been developed to advance mechanistic understanding
in multiphase flows in the past two decades (Balachan-
dar & Eaton, 2010; Tryggvason, 2010). In the interface-
resolved simulation method, the no-slip boundary con-
dition on the particle-fluid interface is considered and
the hydrodynamic force on the particles is determined
via the solution of the flow fields outside the particle
boundaries. Unlike the two-fluid and discrete particle
models, the interface-resolvedmethod directly computes
the hydrodynamic force on the particles, and therefore is
also called a direct numerical simulation method for the
particle-laden flows (Hu, Patankar, & Zhu, 2001).

There are a range of different interface-resolved
solvers, including the arbitrary Lagrangian-Eulerian
method (Hu et al., 2001), the lattice Boltzmann method
(Ladd, 1994), the fictitious domain (FD)method (Glowin-
ski, Pan, Hesla, & Joseph, 1999) and the immersed
boundary method (Uhlmann, 2005). The FD method
for particulate flows was proposed by Glowinski et al.
(1999), and the key idea in this method is that the inte-
rior domains of the particles are filledwith the samefluids
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as the surroundings, and the distributed Lagrange multi-
plier (i.e., a pseudo body-force) is introduced to enforce
the interior (fictitious) fluids to satisfy the constraint of
rigid-body motion. Yu and colleagues have made new
implementations of the FDmethod and conducted many
successful applications with a serial code (Shao, Wu, &
Yu, 2012; Shao, Yu, & Sun, 2008; Yu, Phan-Thien, & Tan-
ner, 2004; Yu & Shao, 2007, 2010; Yu, Shao, & Wachs,
2006). The primary aim of the present study is to develop
an efficient parallel code of the FD method. We note
that the parallelizations of the immersed boundarymeth-
ods or the FD methods for the immersed objects were
reported previously (Blasco, Calzada, & Marin, 2009;
Borazjani, Ge, Le, & Sotiropoulos, 2013; Clausen, Reasor,
& Aidun, 2010; Tai, Zhao, & Liew, 2005; Uhlmann, 2003;
S. Wang, He, & Zhang, 2013; Z. Wang, Fan, & Luo, 2008;
Yildirim, Lin,Mathur, &Murthy, 2013).Nevertheless, the
time and spatial discretization schemes of our FDmethod
are different from those reported and, in particular, our
key parallelization strategy for the particle-related prob-
lem (i.e., the introduction of main and subordinate parti-
cle lists) have not been mentioned in previous studies. In
addition, our new parallel code is used to investigate the
effects of particle inertia on the turbulent channel flow.

The rest of paper is organized as follows. The paral-
lelization algorithms of our FD method are presented in
section 2. The scalability of the parallel code is tested
in section 3. In section 4, the new code is applied to
the simulation of particle-laden turbulent channel flows
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with different particle-to-fluid density ratios. Concluding
remarks are given in the final section.

2. Numerical method

2.1. Formulation of the FDmethod

In the FD method, the interior of each solid particle is
filled with the fluid and a pseudo body-force is intro-
duced over the particle inner domain to enforce the fic-
titious fluid to satisfy the rigid-body motion constraint.
For simplicity of description, only one particle is con-
sidered. Let ρs, Vp, J, U , and us represent the particle
density, volume, moment of inertia tensor, translational
velocity, and angular velocity, respectively. Fluid viscos-
ity and density are denoted byμ and ρf, respectively. P(t)
represents the solid domain, and � the entire domain
comprising both the interior and exterior of the body.
The governing equations can be non-dimensionalized
by introducing the following scales: Lc for length, Uc
for velocity, Lc/Uc for time, ρf U2

c for pressure, and
ρf U2

c /Lcfor the pseudo body-force. The dimensionless
governing equations in strong form for the FD method
are (Yu & Shao, 2007):

∂u
∂t

+ u · ∇u = ∇2u
Re

− ∇p + l, in �,

(1)

u = U + us × r, in P(t),
(2)

∇ · u = 0, (3)

(ρr − 1)Vp
∗
(
dU
dt

− Fr
g
g

)
= −

∫
P

ldx, (4)

(ρr − 1)
d(J∗ · us)

dt
= −

∫
P
r × ldx. (5)

In the above equations, u represents the fluid velocity,
p the fluid pressure, l the pseudo body-force (Lagrange
multiplier) defined in the solid particle domain, r the
position vector with respect to the particle mass center,
ρr the solid-fluid density ratio defined by ρr =ρs/ρf,
g the gravitational acceleration, Re the Reynolds num-
ber defined by Re = ρfUcLc/μ, Fr the Froude number
defined by Fr = gLc/U2

c , Vp
∗ the dimensionless particle

volumedefined byV∗
p = Vp/L3c , and J* the dimensionless

moment of inertia tensor defined by J∗ = J/ρsL5c .

2.2. Discretization schemes

A fractional-step time integration scheme is used to
decouple the combined system (1–5) into two sub-
problems.

(1) Fluid sub-problem for u* and pn+1:

u# − un

�t
− 1

2
∇2u#

Re

= −∇pn+1 − 1
2

[
3(u · ∇u)n−(u · ∇u)n−1]

+ 1
2

∇2un

Re
+ ln, (6)

∇ · u∗ = 0. (7)

The fluid sub-problem (6–7) is a Navier-Stokes prob-
lem. The projection scheme is used to further decompose
Equations (6–7) into three sub-problems:

(a) Helmholtz equation for velocity:

u# − un

�t
− 1

2
∇2u#

Re

= −∇pn − 1
2

[
3(u · ∇u)n−(u · ∇u)n−1]

+ 1
2

∇2un

Re
+ ln. (8)

(b) Poisson equation for pressure:

∇2φ = ∇ · u#
�t

(
∂φ

∂n
= 0 on wall boundaries

)
.

(9)
(c) Correction of velocity and pressure:

u∗ = u# − �t∇φ; pn+1 = pn + φ. (10)

The finite-difference scheme on half-staggered grids is
employed for spatial discretization. All spatial derivatives
are discretized with the second-order central difference
scheme.

(1) Particle sub-problem for Un+1, un+1
s , l±1

n , un+1:

ρrVp
∗Un+1

�t
= (ρr − 1)Vp

∗
(
Un

�t
+ Fr

g
g

)

+
∫
P

(
u∗

�t
− λn

)
dx, (11)

ρr
J∗ · un+1

s
�t

= (ρr − 1)
[
J∗ · un

s
�t

− u

n

s
× (J∗ · un

s )

]

+
∫
P
r ×

(
u∗

�t
− ln

)
dx. (12)

In Equations (11–12), all the right-hand-side terms are
known quantities, soUn+1 andun+1

s are obtained explic-
itly. Then, l±1

n defined at the Lagrangian nodes can be
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162 Z. YU ET AL.

determined as follows:

ln+1 = Un+1 + u
n+1
s × r − u∗

�t
+ ln. (13)

Finally, the fluid velocities un+1 at the Eulerian nodes
are corrected:

un+1 = u∗ + �t(ln+1 − ln) (14)

In above equations, the quantities with the superscript
‘n’ mean their values at the time of n�t, i.e., at the nth
time-level, whereas u* and u# represent the fluid veloci-
ties at the fractional time-steps from the nth to (n+ 1)th
time-levels.

We choose the tri-linear function, as a discrete
delta function, to transfer the quantities between the
Lagrangian and Eulerian nodes (Yu & Shao, 2007). Only
spherical particles are considered in the present study.
The position of the particle mass center can be deter-
mined from the kinematic equation dX/dt = U. The
reader is referred to Yu and Shao (2007) for more details
on our FD method.

2.3. Parallel algorithms

Since the computational domain is rectangular or can be
extended to be rectangular with the FD technique, it is
natural to take the domain decomposition as the parallel
strategy: one process copes with one sub-domain. Ames-
sage passing interface (MPI) is adopted to transfer data
between sub-domains.

2.3.1. Parallelization strategy for the fluid
sub-problem

In the fluid sub-problem, the main tasks are to solve the
velocity Helmholtz equation (8) and the pressure Poisson
equation (9). In our serial code, the Helmholtz equation
is discretized into a tri-diagonal algebraic systemby using
the alternating direction implicit (ADI) scheme, and the
Poisson equation for the pressure is solved with a com-
bination of a fast cosine transformation (FCT) and a
tri-diagonal system solver (Yu & Shao, 2007). For our
parallel code, we employ the multi-grid iterative method
to solve these two equations, considering that it is more
convenient to parallelize the multi-grid solver than the
combination of FCT and the tri-diagonal system solver.
The multi-grid algorithm mainly includes (Wesseling,
1992):

(1) Gauss-Seidel relaxation with red-black ordering for
the smoothing of residuals;

(2) Full weighting of residuals for restriction from fine
to coarse grids, and linear interpolation of residuals
for prolongation from coarse to fine grids.

Note that the fluid velocity is defined on grid points,
whereas the pressure is defined on the cell center points,
therefore, the restriction and interpolation between fine
and coarse grids for the fluid velocity and pressure are
different (Wesseling, 1992). The reader is referred toWes-
seling (1992) for a detailed description of the multi-grid
method. For parallelization, the data of each sub-domain
are sent to its 26 neighboring sub-domains in terms of
point, line and face forms, respectively, depending on the
demand from the neighboring sub-domains.

2.3.2. Parallelization strategy for the particle
sub-problem

Since the pseudo body-force λ is defined on the
Lagrangian nodes and the fluid velocity u defined on
the Eulerian nodes, mutual interpolations between these
two types of nodes are required. In Equations (8) and
(14), we need to transfer (or distribute) the pseudo body-
force λ from the Lagrangian nodes to the Eulerian nodes,
and in Equations (11–13) we need to transfer the fluid
velocity u* from the Eulerian nodes to the Lagrangian
nodes. In the present work, we choose the tri-linear func-
tion to transfer the quantities between the Lagrangian
and Eulerian nodes. When a particle is crossing the
boundary of a sub-domain (e.g., particle B in Figures 1
and 2), its Lagrangian points are located in different sub-
domains. Therefore data communication between sub-
domains is needed for the mutual interpolation between
the Lagrangian and Eulerian points.

The key of our algorithm is to establish two particle
lists for each sub-domain: a main list (MP_LIST) and
a subordinate list (SP_LIST). The main list is used to
update the particle data in simulations and the subor-
dinate list for the data communication in mutual inter-
polations. The MP_LIST contains the data of particles
whose central positions are located in the sub-domain
considered, and the SP_LIST stores the information of
particles whose central positions are not located in the
current sub-domain but whose pseudo body-forces have
influence on (or are affected by) the velocities in the
sub-domain due to the mutual interpolations. For sub-
domain 5 in Figure 2, as an example, particles A and
B belong to MP_LIST because of their central posi-
tions located in sub-domain 5. The particles C, D, E,
and F belong to SP_LIST. Note that particle F belongs
to SP_LIST because we assume that the gap distance
between the particle and the boundary of sub-domain
5 is smaller than the size of one mesh (h), and thus its
pseudo body-force affects (or is affected by) the veloc-
ity in sub-domain 5 (or on the boundary of sub-domain
5) via the interpolation, although none of the particle
domain overlaps with sub-domain 5. The critical gap dis-
tance to determinewhether particle F belongs to SP_LIST
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Particle distribution MP_LIST SP_LIST 
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Figure 1. MP_LIST and SP_LIST for sub-domain 5 in two dimensions.

5 6 

B 

Figure 2. Schematic diagram of the Lagrangian points (marked
in yellow) onwhich the interpolated fluid velocities in the SP_LIST
of sub-domain 6 are sent to the MP_LIST of sub-domain 5.

depends on the type of interpolation function (or dis-
crete delta function), and is equal to the mesh size h
for the tri-linear function we employed. Particle F is
detected by the processor of sub-domain 1 as a member
of its MP_LIST and a member of the SP_LIST of sub-
domain 5, according to the particle position. Sub-domain
5 finds this particle by receiving the information from
sub-domain nbsp;1.

For both MP_LIST and SP_LIST, we establish a new
data structure to store the information of particles,
including the particle sequence number, position, trans-
lational and angular velocities, pseudo body-force and
fluid velocity defined on the Lagrangian nodes. For a
particle in SP_LIST of each sub-domain, the fluid veloc-
ities on the Lagrangian nodes are computed from the
interpolation of the velocities on the Eulerian points
in the local sub-domain, and thus only the values at
some of the Lagrangian points are obtained (e.g., the
yellow Lagrangian points of particle B in sub-domain

6 in Figure 2). For particle B in Figure 2, these fluid
velocities at the yellow Lagrangian points in the SP_LIST
of sub-domain 6 are just needed by the MP_LIST of
sub-domain 5 for a complete set of data. In order to
transfer the data in the SP_LIST in a sub-domain to
the MP_LIST in a neighboring sub-domain, we estab-
lish an index list for SP_LIST, whose contents include the
sequence number of the sub-domain in which the parti-
cle center is located (i.e., identifying the MP_LIST), the
index (sequence number) of the particle in the identified
MP_LIST, and the flags of Lagrangian nodes (being 1 if
the fluid velocity at this Lagrangian node is computed in
this sub-domain, otherwise 0).

The full algorithm of our parallel FD method is the
following:

(1) Code initialization, including the construction of
the MP_LIST for each sub-domain with a new data
structure.

(2) Establish the SP_LIST (as well as the index list) by
exchanging the particle data in theMP_LIST among
sub-domains. For a particle in the MP_LIST of one
sub-domain, the particle data will be sent to the
neighboring sub-domain if it is judged to belong to
the SP_LIST of the neighboring sub-domain from
the distance between the particle surface and the
boundary of the neighboring sub-domain for the
spherical particle considered.

(3) Distribute the pseudo body-force λ from the
Lagrangian points to the Eulerian nodes for both the
MP_LIST and SP_LIST for each local sub-domain.
No data communication is needed.

(4) Solve the fluid sub-problem Equation (8–10) with
the parallel multi-grid method mentioned earlier.
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164 Z. YU ET AL.

(5) Compute the fluid velocity u* on the Lagrangian
points in Equations (11–13) from the interpolation
of the fluid velocities on the Eulerian nodes for the
MP_LIST and SP_LIST of each sub-domain (as well
as the flags of the Lagrangian points in the index
list), and then send the data in the SP_LIST to the
MP_LIST of the neighboring sub-domains with the
index list, as described earlier.

(6) Calculate the translational velocity Un+1, angular
velocity un+1

s and pseudo body-force ln+1 of the
particle in the MP_LIST for each sub-domain from
Equations (11–13).

(7) Correct the fluid velocity un+1 from Equation (14).
The manipulation is the same as in step (3).

(8) Deal with the collision of the particles with the col-
lision model described below, if needed – other-
wise, directly update the particle positions in the
MP_LIST with the velocities obtained.

(9) Update the MP_LIST. When the particle’s central
position changes from one sub-domain to another
sub-domain, the particle is added to theMP_LIST of
the new sub-domain and deleted from theMP_LIST
of the old sub-domain.

(10) Delete the SP_LIST and the index list, and go back
to step (2) for the next time-step.

A flowchart for our parallel FD method, corresponding
to the above algorithms, is presented in Figure 3.

2.3.3. Parallel implementation strategy for collision
model

Next, we describe our parallel algorithm for particle col-
lision. The soft-sphere collision model is chosen, and the
artificial repulsive force is given as

F = F0(1 − d/dc)
⇀
n (15)

where F0 is a constant, d is the particle inter-distance, dc
is a cut-off distance, and

⇀
n is a unit vector of the particle

connector. The procedure for our collision model is as
follows:

(8a) Establish a particle list SP_LIST_C for each sub-
domain by gathering the particle data in the
MP_LIST of the neighboring sub-domains.

(8b) Seek the particle pairs satisfying the collision crite-
rion by considering the relative positions (or pos-
sibly velocities for the hard-sphere model) of the
particles in theMP_LIST with respect to other par-
ticles in the MP_LIST (same sub-domain), in the
SP_LIST_C (neighboring sub-domains) and the
wall boundaries.

Initialize data structure (including MP_LIST) and set parameters 

Distribute the pseudo body-force to the fluid grids in Eq. (8) 

Establish new SP_LIST 

Solve the fluid sub-problem Eqs. (8)-(10) 

Compute the fluid velocity u* in Eqs. (11)-(13) 

Calculate the particle velocities and the 

pseudo body force from Eqs. (11)-(13) 

Correct the fluid velocity un+1 from Eq. (14) 

Update the particle positions and MP_LIST, 

with the collision model if needed.

Delete SP_LIST 

Time > Tfinal 

Data output 

Stop

No 

Yes 

Figure 3. Flowchart for the parallel FD method.

(8c) Calculate the repulsive forces for the detected par-
ticle pairs and sum up to obtain the forces on the
particles in the MP_LIST.

(8d) Update the velocities and positions of the particles
in the MP_LIST in response to the repulsive forces.

In addition, we use a small time-step (normally one tenth
of that for the solution of flow fields) for the collision
model in order to improve the stability of the explicit
scheme for the repulsive force (Glowinski et al., 1999).

3. Scalability of the parallel code

We choose two cases of particle-laden flows with grid
numbers of 5123 and 10243 to test the parallel efficiency
of our FD code. The particle numbers are 1024, 10,240,
and 102,400, respectively, corresponding to the volume
fractions of 0.1%, 1% and 10%. One particle diameter
covers 6.4 grids for the 5123 grid case and 12.8 grids
for the 10243 grid case. The tests were performed on
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(a) (b)

Figure 4. Computational (wall-clock) times per one time-step for the particle-laden flows.

the Yellowstone supercomputer at the National Center
for Atmospheric Research. We ran one case for several
time-steps and a few times, and then calculated the mean
computational (wall-clock) time per one time-step. The
particle collision and data input/output (IO) were not
considered, since we focused on the parallel efficiency of
our FD scheme. The particles were initially distributed
randomly and homogeneously over the domain. Figure 4
shows the computational time for one time-step as a
function of core (or processor) number. In Figure 4(a),
we observe that for the case of 5123 the computational
time is roughly reduced by half when the core number
is doubled for the core number up to 1024, which cor-
responds to the grid number per core of 64× 64× 32.
In other words, the parallel efficiency of our FD code is
almost 100%, when the grid number per core does not
exceed 64× 64× 32, above which the efficiency drops
due to the increased data communication time relative
to the computation time. In addition, Figure 4 shows that
the effect of the particle number on the computational
time is insignificant for three cases of particle numbers
tested; the computational time caused by the presence of
the particles is around 10% of the total computational
time for the case of 102,400 particles. Figure 4(b) shows
that for the case of 10243 grid resolution, the speed-up of
our parallel code remains largely linear, as the core num-
ber is increased up to 8192 (64× 64× 32 grid number
per core).

4. Application example

As mentioned earlier, our parallel FD method differs
from our serial FD method only in the solvers for the
pressure Poisson equation and the velocity Helmholtz

equation. Some tests (such as particle sedimentation
and particle inertial migration) show that both versions
of our FD method produce almost the same results.
Since our serial FD code has been validated in previ-
ous studies (Yu & Shao, 2007, 2010), the validations of
our new parallel code are not shown here. We apply
the new code to the investigation of the particle inertial
effects on the turbulent channel flow. Our method is
characterized by using the direct numerical simulation
methods for both particle-laden and turbulent flows.
Such methods have been applied to the simulations of
particle-laden isotropic turbulent flows (Gao, Li, &Wang,
2013; Lucci, Ferrante, & Elghobashi, 2010; Ten Cate,
Derksen, Portela, & Van den Akker, 2004) and turbu-
lent channel flows (Do-Quang, Amberg, Brethouwer, &
Johansson, 2014; Kidanemariam, Chan-Braun, Doychev,
& Uhlmann, 2013; Pan & Banerjee, 1997; Shao et al.,
2012; Uhlmann, 2008), but not for the effects of the par-
ticle inertia (i.e., particle-fluid density ratio) on the tur-
bulent channel flow. In the following, we introduce the
numerical model for the problem of interest, validate the
accuracy for the single-phase case, conduct the mesh-
convergence test for the particle-laden case, and finally
report the main results.

4.1. Numerical model

Figure 5 shows the geometrical model of our particle-
laden channel flow. Periodic boundary conditions are
imposed in the streamwise and spanwise directions, and
a non-slip wall boundary condition in the transverse
direction. Let x, y and z represent respectively the stream-
wise, transverse and spanwise directions, a the particle
radius, and H half of channel height in the transverse
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Flow direction

Non-slip wall

Y

Z

X

2H

Suspended particle

L

Figure 5. Schematic diagram of the particle-laden channel flow.

direction. We choose H and wall friction velocity uτ

as the characteristic length and velocity for the non-
dimensionlization scheme. The wall friction velocity uτ

is defined by the wall shear stress τ and the fluid vis-
cosity ρf : uτ = √

τ/ρf . The friction Reynolds number
is defined by Reτ = ρf uτH/μ. Because of the periodic
boundary condition in the streamwise direction, a con-
stant pressure gradient ∇pe is needed to overcome the
wall friction drag and sustain the flow. The value of the
constant pressure gradient is ∇pe = −τ/H, correspond-
ing to the dimensionless value of ∇pe/(ρf u2τ /H) = −1.

The friction Reynolds number Reτ is 180. To study
the effects of the particle inertia on the turbulent chan-
nel flow, different particle-fluid density ratios of ρr =
1.0, 10.42, 104.2 are considered, and the gravity effect
is ignored. The particle radius is a/H = 0.05. The size
of our computational domain is 8H × 2H × 4H. A uni-
form grid is employed and the grid number is 512 ×
128 × 256. The particle volume fraction is 0.84%, cor-
responding to the particle number of NP = 1024. The

dimensionless time-step is 0.0001 for ρr = 104.2 and
0.0002 for the other cases.

4.2. Validation for the single-phase case

In Figure 6, our results on the mean and root-mean-
square (RMS) velocities of the particle-free turbulent
channel flow are compared to those ofHoyas and Jimenez
(2008), who employed the pseudo-spectral method. It
can be seen that our results for the case of L = 8H (i.e.,
the computational domain size being 8H × 2H × 4H)
agree well with those of Hoyas and Jimenez. For the low-
friction Reynolds number of 180 considered, the sizes of
4H × 2H × 2H and 2H × 2H × 2H appear too small to
produce size-independent results. This is the reason why
we chose the computational domain size of 8H × 2H ×
4H.

Figure 7. RMS velocities of the particle-laden turbulent channel
flowobtainedwith twomeshes of h = a/3.2 and h = a/6.4 in the
case of ρr = 104.2.

(a) (b)

Figure 6. Comparisons of mean and RMS velocities of the particle-free turbulent channel flow.
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ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 167

Figure 8. Mean velocity profiles for particle-free and particle-
laden turbulent channel flows.

4.3. Mesh-convergence test for the particle-laden
case

For the turbulent particle-laden channel flows, no bench-
mark data are available to validate the accuracy and, to
our knowledge, no mesh-convergence tests have been
performed, presumably due to high computational cost.
For our simulation case of a/H = 0.05, there are only
3.2 meshes per particle radius, and one may question
whether such mesh resolution is high enough to ensure
acceptable accuracy. With the parallel code, it is now
possible for us to conduct a mesh-convergence test. The
parameters for the test case are a/H = 0.05 and ρr =
104.2. The reason why we chose this density ratio is that
the RMS velocities for ρr = 104.2 deviate significantly
from those for the particle-free case. For mesh h = a/3.2,
the grid number is 512 × 128 × 256 and the time-step
is 0.0001, whereas for mesh h = a/6.2, the grid num-
ber is 1024 × 256 × 512 and the time-step is 0.00005,

(a) (b)

(c)

Figure 9. RMS velocities in the (a) streamwise, (b) transverse, and (c) spanwise directions for particle-free and particle-laden turbulent
channel flows.
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(a)

(b)

(c)

Figure 10. Vortex structures for (a) the single-phase case, (b) ρr = 10.42, and (c) ρr = 104.2.

which is required by the stability condition due to mesh
refinement. The results on the RMS velocities for two
meshes are plotted in Figure 7. We observe a good agree-
ment between the two results. The maximum relative
error at the peaks of the streamwise RMS velocities is
around 3% (2.35 vs 2.28) in Figure 7.

4.4. Results and discussion

Figure 8 shows the mean velocity profiles for all cases
studied. One can see that the flow flux first reduces and
then increases, as the density ratio increases. Since the
pressure gradient is fixed, a reduction in flow flux means
an increase in flow resistance.

Figure 9 shows the RMS velocities in three direc-
tions. Generally, the presence of particles enhances the
RMS velocities near the wall (very close to the wall
for the streamwise component and not clearly shown
in Figure 9) and attenuates the RMS velocities at the
region away from the wall. The suppression of the RMS

velocities at the bulk region becomes more pronounced
for larger density ratios.

Figure 10 shows the vortex structures for the single-
phase case and the density ratios of 10.42 and 104.2. The
presence of particles weakens the large-scale vortices, and
the effect is enhanced as the density ratio increases. A sig-
nificant suppression of the large-scale vortices is found
at ρr = 104.2, which is clearly responsible for the con-
siderable attenuation of the RMS velocities at ρr = 104.2
in Figure 9. The presence of particles causes additional
viscous dissipation (Lucci et al., 2010), which has dual
effects on the flow drag. On one hand, more viscous dis-
sipation means higher viscosity of the suspension and
thereby larger flow drag. On the other hand, more vis-
cous dissipation leads to suppression of the large-scale
quasi-streamwise vortices which are primarily responsi-
ble for the drag-enhancement of turbulence with respect
to laminar flow, and thereby lower flow resistance. The
competition of these two effects gives rise to the results
observed earlier: the flow drag first increases and then
decreases with increasing density ratio.
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5. Conclusions

We have presented a parallel direct-forcing fictitious
domain (DF/FD) method for the simulation of particu-
late flows and demonstrated its high parallel efficiency.
The new code has been applied to studying the effects
of particle inertia on the turbulent channel flow. The
results show that the large-scale vortices are weakened
more severely, and the flow friction drag increases first
and then reduces, as particle inertia increases. We con-
jecture that the competition of the dual effects of particle-
induced viscous dissipation on the flow drag is responsi-
ble for the variation of the flow drag with particle inertia.
Our results on the particle inertial effects in the present
study are preliminary, and we plan to conduct a more
extensive study in the future.
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