
PHYSICAL REVIEW E 96, 033102 (2017)

Effects of particle-fluid density ratio on the interactions between the turbulent channel flow
and finite-size particles

Zhaosheng Yu,1,* Zhaowu Lin,1 Xueming Shao,1 and Lian-Ping Wang2

1State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
2Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, USA
(Received 12 April 2017; revised manuscript received 20 July 2017; published 5 September 2017)

A parallel direct-forcing fictitious domain method is employed to perform fully resolved numerical simulations
of turbulent channel flow laden with finite-size particles. The effects of the particle-fluid density ratio on the
turbulence modulation in the channel flow are investigated at the friction Reynolds number of 180, the particle
volume fraction of 0.84%, and the particle-fluid density ratio ranging from 1 to 104.2. The results show that
the variation of the flow drag with the particle-fluid density ratio is not monotonic, with a larger flow drag for
the density ratio of 10.42, compared to those of unity and 104.2. A significant drag reduction by the particles is
observed for large particle-fluid density ratios during the transient stage, but not at the statistically stationary stage.
The intensity of particle velocity fluctuations generally decreases with increasing particle inertia, except that the
particle streamwise root-mean-square velocity and streamwise-transverse velocity correlation in the near-wall
region are largest at the density ratio of the order of 10. The averaged momentum equations are derived with
the spatial averaging theorem and are used to analyze the mechanisms for the effects of the particles on the flow
drag. The results indicate that the drag-reduction effect due to the decrease in the fluid Reynolds shear stress is
counteracted by the drag-enhancement effect due to the increase in the total particle stress or the interphase drag
force for the large particle-inertia case. The sum of the total Reynolds stress and particle inner stress contributions
to the flow drag is largest at the density ratio of the order of 10, which is the reason for the largest flow drag at
this density ratio. The interphase drag force obtained from the averaged momentum equation (the balance theory)
is significantly smaller than (but agrees qualitatively with) that from the empirical drag formula based on the
phase-averaged slip velocity for large density ratios. For the neutrally buoyant case, the balance theory predicts
a positive interphase force on the particles arising from the negative gradient of the particle inner stress, which
cannot be predicted by the drag formula based on the phase-averaged slip velocity. In addition, our results show
that both particle collision and particle-turbulence interaction play roles in the formation of the inhomogeneous
distribution of the particles at the density ratio of the order of 10.
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I. INTRODUCTION

Particle-laden turbulent flows are commonly encountered
in natural and industrial settings, such as sediment transport,
the paper industry, pipeline transport, and fluidized beds. It
is important to understand the particle-turbulence interaction
mechanisms in order to improve the macroscopic models
for the multiphase flows and the design of the related de-
vice. The point-particle-approximation based direct numerical
simulations have provided much insight into the particle-
turbulence interactions; for example, such simulations showed
that the particles could affect the fluid-phase turbulence
even at small particle volume fractions (e.g., Squires and
Eaton [1]; Ferrante and Elghobashi [2]; Vance et al. [3]),
and the turbulence could significantly affect the motion and
distribution of the particles (e.g., Wang and Maxey [4]). In
principle, the point-particle model is suited to the case where
the particle size is smaller than the turbulence Kolmogorov
length scale. In recent years, the interface-resolved direct
numerical simulation (DNS) methods have been developed
to deal with the case where the particle size is comparable
to or larger than the Kolmogorov length scale (Balachandar
and Eaton [5]). The essential features of the interface-resolved
methods are that the interfaces between the particles and the
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fluid are resolved and the hydrodynamic forces on the particles
are determined from the solution of the flow fields outside
the particle boundaries. Such methods have been applied to
simulations of particle-laden isotropic homogeneous flows
(e.g., Ten Cate et al. [6]; Lucci et al. [7]; Homann and Bec
[8]; Gao et al. [9]; Cisse et al. [10]; Chouippe and Uhlmann
[11]; Fornari et al. [12]; de Motta et al. [13]), pipe flow (Wu
et al. [14]), vertical channel flows (Kajishima et al. [15];
Uhlmann 2008 [16]; García-Villalba et al. [17]), horizontal
channel flows (e.g., Pan and Banerjee [18]; Shao et al. [19];
Kidanemariam et al. [20]; Do-Quang et al. [21]; Picano et al.
[22]; Wang et al. [23]; Yu et al. [24,25]), as well as the
interactions between the turbulence and a fixed particle (e.g.,
Bagchi and Balachandar [26]; Burton and Eaton [27]; Naso
and Prosperetti [28]).

Regarding the interface-resolved DNS of the horizontal
particle-laden channel flows, Shao et al. [19], Picano et al. [22],
and Wang et al. [23] investigated the effects of the neutrally
buoyant spherical particles on the turbulence, and observed
that in the near-wall region the particles enhance the transverse
and spanwise root-mean-square (RMS) velocity fluctuations,
but reduce the maximum streamwise RMS velocity. In the
center region, the particle effects are opposite to those in the
near-wall region. In addition, the flow drag was found to be
enhanced for the particle volume fraction of order 1% and
10% in all simulations. Loisel et al. [29] examined the effect of
neutrally buoyant finite-size particles on the channel flow in the
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laminar-turbulent transition regime, and observed that particles
increased the transverse RMS flow velocity fluctuations and
broke down the flow coherent structures into smaller and
sustained eddies, preventing the flow to relaminarize at the
single-phase critical Reynolds number. Lashgari et al. [30]
investigated numerically a channel flow laden with solid
spherical particles for a wide range of Reynolds numbers,
and identified three different regimes (laminar, turbulent, and
inertial shear thickening) for different values of solid volume
fraction and flow Reynolds number.

For most interface-resolved DNS of particle-laden channel
flows in the literature, the particle-fluid density ratio was set
according to the liquid-solid system, namely, of the order of
unity, except in a very recent work of Fornari et al. [31] who
studied the effect of the particle density in turbulent channel
flow laden with finite-size particles in semidilute conditions
with the particle-fluid density ratio up to 1000. Their results
indicated that the flow drag was enhanced slightly as the
density ratio was increased from unity to 10, and the effect
was smaller than that of the particle volume fraction. The
authors observed significant lateral migration of the particles
toward the centerline of the channel at density ratios of
the order of 10 due to the particle-inertia and shear flow
effects. In addition, a preliminary work on the effects of the
particle-fluid density ratio on the turbulent channel flow has
been done in our recent work [32]. The aim of the present
study is to report the significantly expanded results of the
work [32]. Compared to [32], results such as the particle
RMS (root-mean-square) velocities, the particle concentration
distribution, and the interphase drag behavior are presented,
and the effects of the density ratio on the flow drag are analyzed
with the averaged momentum equation, which was derived by
Picano et al. [22] using the phase indicator function for spatial
averaging and is derived here with an alternative approach: the
spatial averaging theorem. The main differences between the
work of Fornari et al. [31] and our work are (1) the flow rate was
fixed in their study, whereas the pressure gradient is fixed in
our study; (2) regarding the parameter settings, the ratio of the
particle diameter to the channel width is 1/18, and the volume
fraction is typically 5% in their study, whereas we consider two
size ratios, 0.1 and 0.05, and a relatively low volume fraction
0.84%; (3) we examine the effects of the density ratio on the
flow drag more systematically with the averaged equation and
additional simulation data; and (4) the interphase drag and a
different explanation of the particle migration are reported.

Our study is focused on the effects of the particles on the
flow drag. It is well known that the addition of the polymer or
the fiber can bring about drag reduction in the turbulent pipe or
channel flows [33,34], but it remains an open question whether
the addition of spherical particles has a similar drag-reduction
effect. Radin et al. [35] summarized the previous experimental
works, and observed that the data on the two-phase flow were
conflicting: Some works showed a significant drag reduction
but others showed no drag reduction. Radin et al. [35] provided
some possible reasons for the inconsistency such as the
incorrect definition of the friction factor for the suspension,
the defects in the experimental setup (e.g., downward slope
of the pipe, insufficient entrance length), and the effects of
the electrostatic force. Radin et al. [35] conjectured that the
drag reduction in gas-solid suspensions was due to a delayed

and extended laminar-to-turbulent transition region probably
caused by interparticle electrostatic forces which had the effect
of inhibiting particle and fluid motion and hence stabilizing
the viscous behavior and yielding a larger apparent viscosity.
On the other hand, the charged particles adhering to the
tube wall could increase the wall roughness and thereby the
flow resistance. Radin et al. [35] concluded that the spherical
particles in the liquid-solid suspension had no drag-reduction
effect, whereas the experiments of Bari and Yunus [36] showed
pronounced drag reduction due to the addition of the particles
in the liquid. In numerical simulations, Zhao et al. [37]
observed more than 10% drag reduction by the spherical
particles in their simulations based on the point-particle model,
and the reason was attributed to the attenuation in the fluid
Reynolds stress.

The rest of the paper is organized as follows: The numerical
method is outlined in Sec. II, and the method is validated in
Sec. III. In Sec. IV, the results on the fluid-phase statistics, the
solid-phase statistics, and the discussion on the particle effects
on the flow drag are presented. The concluding remarks are
given in Sec. V.

II. NUMERICAL METHOD

A. Flow simulation

A schematic diagram of the channel flow is shown in Fig. 1.
The no-slip velocity boundary condition is imposed on the
channel walls (i.e., the boundaries normal to the y axis) and
the periodic boundary condition is imposed in both streamwise
(x axis) and spanwise (z axis) directions. The corresponding
velocity components in the (x,y,z) direction are u = (u,v,w),
respectively. We denote the half width of the channel as H .

We take H as the characteristic length and the friction
velocity uτ as the characteristic velocity for the nondimen-
sionalization scheme. The friction velocity is defined as
uτ = √

τw/ρf , with τw being the mean shear stress on the
walls, and ρf the fluid density. Thus, the Reynolds number
is defined as Reτ = uτH/ν, where ν is the fluid kinematic
viscosity. The pressure gradient is kept constant in our
simulations, implying − dpe

dx
= τw

H
from the force balance for

FIG. 1. Geometry model of channel. Schematic diagram of the
channel flow, with x, y, and z representing the streamwise, transverse
and spanwise coordinates, respectively.
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the suspension flow at the statistically stationary state, and it
follows that the dimensionless pressure gradient is 1. We note
that the pressure gradient is applied to both fluid and solid
domains.

B. Direct-forcing fictitious domain method

A parallel direct-forcing fictitious domain method (DF-FD)
is employed for the simulation of the particle-laden turbulent
channel flow. The fictitious domain (FD) method for the
particulate flows was originally proposed by Glowinski et al.
[38]. The key idea of this method is that the interior of
the particles is filled with the fluids and the inner fictitious
fluids are constrained to satisfy the rigid body motion through
a pseudo body force, which is introduced as a distributed
Lagrange multiplier in the FD formulation (Glowinski et al.
[38]). In the following, we describe the DF-FD method briefly,
and the reader is referred to Yu and Shao [39] for further
details.

For simplicity of description, we will consider only one
spherical particle in the following exposition. The particle
density, volume and moment of inertia, translational velocity,
and angular velocity and position are denoted by ρs , Vp, J , U,
ωp, and Xp, respectively. Let P (t) represent the solid domain
and � the entire domain including interior and exterior of
the solid body. By introducing the following scales for the
nondimensionalization, H for length, uτ for velocity, H/uτ

for time, ρf u2
τ for the pressure, and ρf u2

τ /H for the pseudo
body force per unit volume, the dimensionless FD formulation
for the incompressible fluids and the spherical particles can be
written as follows:

∂u
∂t

+ u · ∇u = ∇2u
Reτ

− ∇p + 1 + λ in �, (1)

u = U + ωp × r in P (t), (2)

∇ · u = 0 in �, (3)

(ρr − 1)V ∗
p

(
dU
dt

− Fr
g
g

)
= −

∫
P

λdx, (4)

(ρr − 1)J ∗ dωp

dt
= −

∫
P

r × λdx. (5)

In the above equations, u represents the fluid velocity, p

the fluid pressure after excluding the mean pressure gradient,
the term “1” the mean pressure gradient, λ the pseudo body
force that is defined in the solid domain P (t), r the position
vector with respect to the mass center of the particle, ρr

the particle-fluid density ratio defined by ρr = ρs/ρf , Fr
the Froude number defined here by Fr = gH/u2

τ , V ∗
p the

dimensionless particle volume defined by V ∗
p = Vp/H 3, and

J ∗ the dimensionless moment of inertia defined by J ∗ =
J/ρsH

5.
A fractional-step time scheme is used to decouple the

system (1)–(5) into the following two subproblems.

Fluid subproblem for u∗ and p:

u∗ − un

	t
− 1

2

∇2u∗

Reτ

= −∇p + 1 − 1

2
[3(u · ∇u)n

− (u · ∇u)n−1] + 1

2

∇2u
Reτ

+ λn, (6)

∇ · u∗ = 0. (7)

A finite-difference-based projection method on a homoge-
neous half-staggered grid is used for the solution of the above
fluid subproblem. All spatial derivatives are discretized with
the second-order central difference scheme.

Particle subproblem for Un+1, ωn+1
p , λn+1, and un+1:

ρrV
∗
p

Un+1

	t
= (ρr−1)V ∗

p

(
Un

	t
− Fr

g
g

)
+

∫
P

(
u∗

	t
− λn

)
dx,

(8)

ρr

J ∗ωn+1
p

	t
= (ρr − 1)

J ∗ωn
p

	t
+

∫
P

r ×
(

u∗

	t
− λn

)
dx. (9)

Note that the above equations have been reformulated so
that all the right-hand-side terms are known quantities and con-
sequently the particle velocities Un+1 and ωn+1

p are obtained
without iteration. Then λn+1 defined at the Lagrangian nodes
are determined from

λn+1 = Un+1 + ωn+1
p × r − u∗

	t
+ λn. (10)

Finally, the fluid velocities un+1 at the Eulerian nodes are
corrected from

un+1 = u∗ + 	t(λn+1 − λn). (11)

In the above manipulations, the trilinear function is used
to transfer the fluid velocity from the Eulerian nodes to
the Lagrangian nodes, and the pseudo body force from the
Lagrangian nodes to the Eulerian nodes.

For our parallel algorithm, the domain decomposition is
chosen as the parallel-computation strategy and Message
Passing Interface (MPI) is used to transfer data among
subdomains. The reader is referred to Yu et al. [32] for the
details on the parallel-computation algorithm.

C. Collision model

A particle-particle collision model is required to prevent the
mutual penetration of particles. We adopt the following simple
soft-sphere collision model:

Fij = F0(1 − dij /dc)nij , (12)

where Fij , dij , and nij are the repulsive force acting on particle
j from particle i, the gap distance and the unit normal vector
pointing from the center of particle i to that of particle j ,
respectively. dc represents a cutoff distance and the repulsive
force is activated when dij < dc. F0 is the magnitude of the
force at contact. We set dc = h (h being the fluid mesh size),
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TABLE I. Parameter settings for the simulations of particle-laden turbulent channel flows.

Case a/H ρr Reτ Np φ0 Domain size Grid number 	t

Particle-free 180 8H × 2H × 4H 512 × 128 × 256 0.0002
Particle-laden A 0.05 1.0 180 1024 0.84% 8H × 2H × 4H 512 × 128 × 256 0.0002
Particle-laden B 0.05 10.42 180 1024 0.84% 8H × 2H × 4H 512 × 128 × 256 0.0002
Particle-laden C 0.05 104.2 180 1024 0.84% 8H × 2H × 4H 512 × 128 × 256 0.0001
Particle-laden D 0.1 1.0 180 128 0.84% 8H × 2H × 4H 512 × 128 × 256 0.0002
Particle-laden E 0.1 10.42 180 128 0.84% 8H × 2H × 4H 512 × 128 × 256 0.0002
Particle-laden F 0.1 104.2 180 128 0.84% 8H × 2H × 4H 512 × 128 × 256 0.0001
Particle-laden G 0.05 10.42 180 5 0.0041% 8H × 2H × 4H 512 × 128 × 256 0.0002
Particle-laden H 0.05 10.42 180 100 0.082% 8H × 2H × 4H 512 × 128 × 256 0.0002

and F0 = 103. The motions of the particles due to the collision
force (12) and due to the hydrodynamic force [(8) and (9)]
are handled separately with a fractional-step scheme. The
time step for the collision model is set to be one-tenth of
the latter (i.e., 	t/10) to circumvent the stiffness problem
arising from the explicit integration scheme with a large value
of F0, as suggested by Glowinski et al. [38]). The collision
between a particle and a wall is treated similarly as two
particles with the coefficient F0 in (12) doubled. This collision
model (12) has been used widely in the interface-resolved
numerical simulations of particle-laden flows [19,38] due to
its simplicity. We note that more sophisticated collision models
have been proposed by Kempe and Fröhlich [40] and de Motta
et al. [41]. The particle volume fraction in the present study
is low (0.84%), and the collision model is expected not to
affect the results qualitatively, as shown in our recent work
on the particle-laden duct flow at the particle volume fraction
of 2.36% [42]. In one sense, one may think that there exist
physically short-range repulsive forces between the particles
(and between the particles and the wall) in our fluid-solid
system.

D. Parameter settings

Throughout this study the friction Reynolds number Reτ is
set to 180. The average particle volume fraction is φ0 = 0.84%,
unless otherwise specified. Two particle sizes are considered:
a/H = 0.05 and 0.1, here a being the particle radius. Three
particle-fluid density ratios are chosen: ρr = 1.0, 10.42, and
104.2, in order to examine the density ratio effects. The
variation of the particle density could change both the particle-
inertia and the particle-settling effects. But for simplicity, we
decouple the two effects and do not consider the settling effect
(or gravity effect), so that the density ratio is assumed to
only reflect the particle inertia. The Froude number (Fr) is
zero, since the gravity effect is not considered. The particles
are randomly distributed into the fully developed single-phase
flow at the initial time with initial velocities equal to the local
fluid velocities at the center of the particles.

In the present study, the computational domain is [0,8H ] ×
[−H,H ] × [0,4H ], and the grid resolution is 512 × 128 ×
256, corresponding to the mesh size h = H/64. The time step
is 0.0002 H/uτ for ρr � 10.42 and 0.0001 H/uτ for ρr =
104.2. A smaller time step for a larger density ratio is required
due to numerical stability. The parameter settings are presented
in Table I.

The flow statistics are obtained from the averaging of the
data in the real fluid domain outside the particle boundaries
over typically 50 nondimensional time units after the statisti-
cally stationary stage is reached. The particle-phase statistics
are obtained from the data at the fictitious fluid points inside
the particle boundaries.

III. VALIDATION

The accuracy of our code for the single-phase turbulent
channel flow was validated in the previous studies [23,32] by
comparing the results to the highly accurate pseudospectral
simulations. For the turbulent particle-laden channel flows,
no benchmark data are available to validate the accuracy.
In a recent study [23], we have compared our results to
lattice-Boltzmann simulations using interpolated bounce back
at the fluid-solid interfaces, for neutrally buoyant particles. The
comparisons show that the two completely different numerical
approaches (one conventional and the second mesoscopic)
yield quantitatively similar results in general.

For our simulation case of a/H = 0.05, there are only 3.2
meshes per particle radius, and one may question whether such
mesh resolution is high enough to ensure acceptable accuracy.
With the parallel code, a mesh-convergence test has been
conducted for a/H = 0.05 and ρr = 104.2 [32], in which case
the RMS (root-mean-square) velocities deviate significantly
from those for the particle-free case. It was shown that the
results on the RMS velocities for two meshes h = a/3.2 and
h = a/6.4 agreed well with each other, with the maximum
relative error at the peaks of the streamwise RMS velocities
being around 3% [32].

IV. RESULTS AND DISCUSSION

A. Fluid-phase statistics

The results on the fluid-phase mean and RMS velocities for
a/H = 0.05 and φ0 = 0.84% were reported in our previous
work [32], and consequently are not presented here. Figure 2
shows the mean fluid velocity profiles for a/H = 0.1. One can
observe that the flow rate does not change monotonically as
the density ratio increases from unity to 104.2. For both cases
of a/H = 0.05 and a/H = 0.1, the flow rates are lowest at
ρr = 10.42, and show the trend of returning back toward that of
the single-phase flow for ρr = 104.2. The drag coefficient can
be defined as the ratio of the flow rate of the fluid-solid mixture
to the pressure gradient. It will be shown that the solid-phase
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FIG. 2. Mean fluid velocity profiles for a/H = 0.1 at different
density ratios.

contribution to the mixture flow rate is almost independent of
the density ratio (Table II), and therefore the two-phase flow
rate and the fluid-phase flow rate change with the density ratio
in qualitatively the same way. Since the pressure gradient is
fixed, our results indicate that the flow drag is largest for the
density ratio of the order of 10. Our results are consistent with
those of Fornari et al. [31] who observed that the flow drag was
enhanced slightly as the density ratio was increased from unity
to 10. Significant drag reduction by the addition of the spherical
particle was observed in the point-particle simulations [37], but
not in our interfaced-resolved direct simulations. Whether the
point particles can cause drag reduction is still in debate, as
pointed out by one anonymous referee of the present paper. For
the classic point-particle model in which the particle resultant
force acts back on the fluids via spreading of the force on
the closest Eulerian grid points, the method is sensitive to
the grid resolution and lack of numerical convergence to
grid refinements [43]. A number of different approaches have
been developed for two- and four-way coupling simulations
that are shown to be grid independent and accurate at a
moderate computational cost [44–46]. Further studies based
on the simulations with these more accurate methods or the
interface-resolved direct simulations for small particles are
required to confirm whether the significant drag reduction can
be produced by the spherical particles, since the experimental
results in the literature were inconsistent, as mentioned in the
Introduction.

FIG. 3. Evolutions of the fluid-phase flow rate (average velocity)
for different density ratios.

The mean velocity profiles in Fig. 2 are obtained for the
statistically stationary stage. Figure 3 shows the evolutions of
the fluid-phase flow rate for different density ratios. For all
cases, the initial flow field is the fully developed single-phase
turbulence, and the particles are initially distributed uniformly
in the channel with the velocity being equal to the local
fluid velocity at the particle center. As shown in Fig. 3, for
ρr = 1 and 10.42, the flow rates decrease with time until the
stationary stages are reached, whereas for ρr = 104.2 the flow
rate increases rapidly after the particles are added, and then
decreases slowly to a statistically stationary value. Thus we
observe a significant drag reduction at the transient state for
considerably large particle inertia, which may indicate that the
drag reduction in some previous experiments might be caused
by the unsteady effect such as the delay in the turbulence
transition due to the particles.

The root-mean-square (RMS) values of the fluid velocity
fluctuations in all three directions for a/H = 0.1 and the fluid
Reynolds shear stresses for both a/H = 0.05 and a/H = 0.1
are plotted in Fig. 4. For ρr = 1.0 and 10.42, the particle
addition enhances the transverse and spanwise RMS velocities
near the wall and attenuates the peak streamwise RMS velocity,
as observed in the previous simulations for the neutrally
buoyant case [19,22,23]. When the density ratio reaches
the order of 100, all RMS velocity components and the
Reynolds shear stress are attenuated roughly at any transverse
position, particularly for a/H = 0.05, as a result of significant

TABLE II. Contributions of the individual stresses in Eq. (20) to the flow drag. The relative differences between the bulk velocities for the
particle-laden and particle-free cases are provided in the column of the bulk velocity.

u+
b ( 2√

f
) CT Cf R CpR CpI Cpu Cf R + CpR

Particle-free 15.96 60.0 44.04
a/H = 0.05, ρr = 1.0 15.53 (−2.69%) 59.93 43.97 0.32 0.27 0.14 44.29
a/H = 0.05, ρr = 10.42 15.25 (−4.45%) 59.83 40.89 2.76 1.08 0.14 43.65
a/H = 0.05, ρr = 104.2 15.77 (−1.19%) 59.87 28.09 13.82 2.33 0.13 41.91
a/H = 0.1, ρr = 1.0 15.79 (−1.07%) 59.91 43.28 0.23 0.77 0.14 43.51
a/H = 0.1, ρr = 10.42 15.65 (−1.94%) 59.80 41.54 1.69 1.06 0.14 43.23
a/H = 0.1, ρr = 104.2 15.91 (−0.31%) 59.82 38.40 4.16 1.48 0.14 42.56

033102-5



YU, LIN, SHAO, AND WANG PHYSICAL REVIEW E 96, 033102 (2017)

FIG. 4. Fluid RMS velocity components: (a) streamwise, (b) transverse, (c) spanwise; and (d) the fluid Reynolds shear stress.

suppression of the large-scale vortices by the particles with
large inertia (i.e., large density ratio) [32].

B. Solid-phase statistics

The solid-phase mean velocity profiles for both a/H =
0.05 and a/H = 0.1 are plotted in Fig. 5, and the fluid mean
velocities are also plotted for comparison. The solid-phase
statistics are computed with the data on the grids covered by
the particles. For ρr = 1.0, the fluid and solid mean velocities
are close to each other except at the near-wall region where
the solid velocities are larger; the slip at the wall region was
observed previously [22,23]. For ρr � 10.42, there exists a
critical distance from the wall, below which the solid mean
velocity is larger, and above which the fluid mean velocity is
larger. This means that the particle inertia makes the particles
lag the high-speed fluid and lead the low-speed fluid on
average. For ρr = 104.2, the particle inertia is so large that the
particles are not sensitive to the local fluid velocity and their
velocities are roughly constant across the channel. Generally,
the slip velocity increases with increasing density ratio and
particle size.

The solid-phase RMS velocities and kinematic Reynolds
shear stresses (here meaning 〈−u′

pv′
p〉 without the density)

for all cases are plotted in Fig. 6. For the same particle
volume fraction, the effects of the smaller particles are more

significant because the number of the particles (and total
particle-fluid interface area) is much higher. The intensity
of solid-phase velocity fluctuations generally decreases with
increasing particle density, except that the streamwise RMS
velocity and 〈−u′

pv′
p〉 in the near-wall region are largest at the

particle density ratio of the order of 10. The solid-phase RMS
velocities are larger than those of the fluid in the near-wall
region due to the collision between the particles and the
wall. Our results on the streamwise particle RMS velocity
are consistent with those of Fornari et al. [31] for ρr = 104.2,
a/H = 1/18, and φ = 5%, but the results on the transverse
(wall-normal) RMS velocity are inconsistent: Our results show
that the transverse RMS velocity for ρr = 10.42 is smaller
than that for ρr = 1 over the entire domain, whereas their
results showed that at around y = 0.15H (i.e., y+ = 27), the
transverse RMS velocity for ρr = 10.42 is larger than that
for ρr = 1. A possible reason for the discrepancy is that the
particle collision interactions are strongest at the density ratio
of order 10, and stronger particle collision interactions at a
higher particle volume fraction increase the transverse RMS
velocity for ρr = 10.42 more significantly in the simulations
of Fornari et al. [31].

Fornari et al. [31] observed the particle migration toward
the channel centerline at the density ratio of the order of 10, and
proposed a reasonable explanation: the particle collision leads
to the lateral motion of the particles and then a net particle
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FIG. 5. Fluid and solid-phase mean velocity profiles at different density ratios for (a) a/H = 0.05 and (b) a/H = 0.1.

diffusion toward the centerline due to wall confinement. There
is no migration for ρr = 1 because the particles response to
the fluid motion rapidly after the collision, and no migration
for ρr = 104.2 because the particle inertia is so strong that the
particles hardly respond to the fluid action and the velocity

difference for the particles in neighboring layers is small
(Fig. 5), which reduces the possibility of the particle collision.
Our results on the distribution of the local particle volume
fraction are presented in Fig. 7, and significant migration can
be observed for a/H = 0.05 and ρr = 10.42. For the same

FIG. 6. Solid-phase RMS velocity fluctuations: (a) streamwise, (b) transverse, and (c) spanwise; and (d) the solid-phase kinematic Reynolds
shear stress. The single-phase flow statistics are shown for comparison.
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FIG. 7. Distribution of the local particle volume fraction for (a) a/H = 0.05 and (b) a/H = 0.1.

particle volume fraction, the particle number for a/H = 0.05
is 8 times that for a/H = 0.1; consequently the collision
frequency is much lower for a/H = 0.1, which may explain
why the particle migration is less pronounced for a/H = 0.1,
compared to a/H = 0.05.

Although the particle collision can account for the particle
migration toward the channel centerline at the density ratio
of order 10, it is not clear whether the particle-turbulence
interactions would play a role. For the wall-bounded turbulent
flows, a sharp rise in the particle volume fraction near the
wall was commonly observed (e.g., Reeks [47]; Uhlmann
[16]; Marchioli and Soldati [48]; Sardina et al. [49]). The
main mechanism for this particle preferential accumulation
was recognized as turbophoresis, an average migration of
particles in the direction opposite to gradients in the turbulence
intensity. For an individual particle, this means that it is less
probable to receive the necessary momentum driving it from
a region of low turbulence intensity toward a high-intensity
region than vice versa (Uhlmann [16]). From Fig. 7, the
turbophoresis seems absent for the neutrally buoyant case.
To examine whether the turbophoresis (or turbulence-induced
particle migration) occurs for ρr = 10.42 and a/H = 0.05,
two cases of lower particle concentrations (φ0 = 0.0041%
and 0.082%, corresponding to the particle number Np = 5
and 100) are simulated for a long time (more than 500 time
units). The concentration distributions are shown in Fig. 8.
The collisions between the particles seldom take place for
Np = 5; however, similar migration can still be observed
in Fig. 8, indicating that the turbulence plays an important
role in the particle migration. The concentration distribution
is more inhomogeneous for Np = 1024 (i.e., φ0 = 0.84%),
implying that the particle collision promotes the particle
migration. Thus we can conclude that both particle collision
and particle-turbulence interactions are responsible for the
particle migration toward the channel center in a statistical
sense for a/H = 0.05 and ρr = 10.42.

C. Discussion on the flow drag

In this subsection, we will explore the mechanisms for the
particle effects on the flow drag. The friction coefficient for

the channel flow can be defined by

f =
(− dpe

dx

)
4H

ρf u2
b

= 4

(
uτ

ub

)2

, (13)

where ub represents the bulk velocity of the two-phase flow.
In Eq. (13), the following relationship is used:(

−dpe

dx

)
= τw

H
= ρf u2

τ

H
. (14)

The following energy balance equation holds for both
single-phase and particle-laden flows:(

−dpe

dx

)
ua = ρf ε̄, (15)

where ε̄ is the mean viscous dissipation rate, defined by

ε̄ = ν ∂ui

∂xj

∂ui

∂xj
. Equation (15) means that the energy input rate

is equal to the energy dissipation rate. From Eq. (15), for the
simulations with the constant flow rate, the increase in the
viscous dissipation rate implies the increase in the flow resis-
tance, whereas for the simulations with the constant pressure
gradient, the increase in the viscous dissipation rate implies

FIG. 8. Distribution of the local particle volume fraction normal-
ized by the average particle volume fraction for a/H = 0.05 and
ρr = 10.42.
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the decrease in the flow resistance. Thus, when we say we are
examining the relationship between the viscous dissipation
rate and the flow resistance, we mean the dissipation rate
normalized by the average velocity, which is proportional to
the friction coefficient. From the physical point of view, the
presence of particles causes additional viscous dissipation in
the near-surface region (Lucci et al. [7]), which has dual effects
on the flow drag. On the one hand, more viscous dissipation
means higher viscosity of the suspension mixture and thereby
larger flow drag. On the other hand, more viscous dissipation
leads to suppression of the large-scale quasistreamwise vor-
tices which are primarily responsible for the drag enhancement
of turbulence with respect to the laminar flow, and thereby a
lower flow resistance. The competition of these two effects
may give rise to the results observed earlier: The flow drag first
increases and then decreases with increasing density ratio.

The above argument based on the viscous dissipation
rate provides one perspective for understanding the particle
effects on the flow drag. In the following, we attempt to
provide alternative explanations from the averaged momentum
equation. In the Appendix, we derive three equations for the
fluid mean velocity, based on the spatial averaging theorem.

The first is related to the solid-phase Reynolds and inner
stresses [Eq. (A13)]:

ϕf μ
d〈uf 〉
dy︸ ︷︷ ︸

τ f V

+ϕs〈σ p〉
xy︸ ︷︷ ︸

τpI

+ϕf ρf 〈−u′
f v′

f 〉︸ ︷︷ ︸
τ f R

+ϕsρs〈−u′
pv′

p〉︸ ︷︷ ︸
τpR

= τw

(
1 − y

H

)
︸ ︷︷ ︸

τ T

, (16)

where u and v are the local velocity components in the x and
y directions, respectively, with the subscript “f ” meaning the
fluid phase and “p” or “s” meaning the solid phase, σp is the
solid inner stress, ϕf and ϕs are the fluid and solid volume
fractions at a given y position, and the brackets represent
the phase averaging, i.e., 〈Ai〉 = 1

Vi

∫
Vi

AidV , in which the
subscript “i” represents the fluid phase or the solid phase.
The five terms in Eq. (16) represent the fluid viscous stress
τf V , the particle inner stress τpI , the fluid Reynolds stress
τf R , the particle Reynolds stress τpR , and the total stress τT ,
respectively. Note that here the particle Reynolds stress means
the solid-phase Reynolds stress; namely, the velocities on the
Eulerian grids inside the particle boundaries rather than the
particle translational velocities are used for the computation
of the particle Reynolds stress.

Equation (16) was derived by Picano et al. [22] who used
the phase indicator function for spatial averaging, and in the
Appendix we derive it by using a different averaging technique,
i.e., the spatial averaging theorem. Equation (16) indicates that
the total shear stress of the two-phase system for the channel
flow decreases linearly from the wall to the centerline, as in
the case of single-phase flow. Since the pressure gradient
is kept constant in our simulations, the mean wall stress
τw is the same for all cases [Eq. (14)]. Then the reduction
in the particle inner stress, the fluid Reynolds shear stress,
or the solid Reynolds shear stress can lead to the increase in
the fluid shear rate and thereby the increase in the fluid velocity,

and thus the reduction in the flow drag. In the following, we
will examine the behavior of the individual stresses and their
contributions to the flow drag at different density ratios.

Figure 9 shows the profiles of the fluid viscous stress,
the fluid Reynolds stress, the particle Reynolds stress, and
the particle inner stress for ρr = 1, 10.42, and 104.2. The
stresses are normalized by ρf u2

τ . The particle inner stress is
determined from Eq. (16). As the density ratio increases, the
particle inner stress does not change significantly, while the
particle Reynolds stress increases substantially. The particle
inner stress has a peak near the wall, and decreases to zero
as the position approaches the wall due to the depletion of
the particle volume fraction in the near-wall region. Note that
the local volume fraction is included in the definition of the
stresses in Eq. (16). Since the particle volume fraction is low,
the particle Reynolds stresses are much smaller than the fluid
Reynolds stresses for ρr = 1, 10.42. However, for ρr = 104.2
and a/H = 0.05, the two Reynolds stresses are comparable,
because the fluid Reynolds stress is decreased, while the parti-
cle Reynolds stress is increased, as the density ratio increases.

From Eq. (13), the friction coefficient for the channel flow
is related to the ratio of the average velocity and the friction ve-
locity. The friction velocity is determined from the wall shear
force, which can be further determined from the pressure gra-
dient. There are two ways to examine the effect of the particles
on the flow drag: One is to keep the flow rate the same and com-
pare the wall shear force, and the other is to keep the pressure
gradient (i.e., wall shear force) the same and compare the flow
rate. Fornari et al. [31] used the former, and we used the latter
here. For the latter, one can derive the contributions of the
individual stresses to the friction coefficient, as shown below.

Equation (16) can be rewritten as follows:

d〈uf 〉
dy

= 1

ϕf μ
(τT − τf R − τpI − τpR), (17)

The average velocity at a y position is obtained by
integrating Eq. (17),

〈uf 〉 =
∫ y

0

1

ϕf μ
(τT − τf R − τpI − τpR)dξ. (18)

The bulk (or average) velocity of the fluid-solid mixture
can be calculated from

ub = 1

H

∫ H

0
[ϕf 〈uf 〉 + ϕs〈us〉]dy

= 1

H

∫ H

0
ϕf

∫ y

0

1

μϕf

(τT − τf R − τpI − τpR)dξdy

+ 1

H

∫ H

0
[ϕs〈up〉]dy. (19)

The friction coefficient is related to the dimensionless
stresses:

2√
f

= ub

uτ

= 1

Reτ

∫ Reτ

0
ϕf

∫ y+

0

1

ϕf

(τ+
T − τ+

f R − τ+
pI − τ+

pR)

× dξ+dy+ + 1

Reτ

∫ Reτ

0
[ϕs〈us〉+]dy+, (20)
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FIG. 9. Profiles of the fluid viscous stress τf V , the fluid Reynolds stress τf R , the particle Reynolds stress τpR , and the particle inner stress
τpI defined in Eqs. (16) and (21) for (a),(b) ρr = 1, (c),(d) ρr = 10.42, and (e),(f) ρr = 104.2.

where the stresses are normalized by ρf u2
τ . Specifically, the

normalized stresses have the following forms:

τ+
f V = ϕf

d〈u+
f 〉

dy+ , τ+
f R = ϕf 〈−u′

f v′
f 〉+,

τ+
pR = ϕsρr〈−u′

pv′
p〉+, and τ+

T =
(

1 − y+

Reτ

)
. (21)

We define the terms of the total stress, the fluid Reynolds
stress, the particle inner stress, the particle Reynolds stress, and

the particle average velocity in Eq. (20) as CT , Cf R , CpI
, CpR ,

and Cpu, respectively, and their values and the dimensionless
bulk velocity (i.e., 2/

√
f ) are presented in Table II. For the

particle-free case, the total stress term is Reτ /3 and is thus 60
for Reτ = 180. For the particle-laden case, its value becomes
slightly smaller due to the effect of the fluid volume fraction.
The fluid Reynolds stress term decreases, while both particle
Reynolds and inner stress terms increase, as the density ratio
increases for the same particle size. The fluid and particle
Reynolds stress terms change significantly, as the density
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ratio changes from unity to 104.2, but interestingly, their
sum (i.e., the total Reynolds stress of the fluid-solid mixture)
does not change much, and actually decreases slightly with
increasing density ratio. The particle velocity contribution is
almost independent of the density ratio. Further, since the
total Reynolds stress and particle inner stress terms are not
sensitive to the density ratio, the flow drag is not sensitive
to the density ratio. The results in Table II indicate that the
increase in the flow drag (i.e., decrease in the flow rate) from
ρr = 1 to ρr = 10.42 is mainly due to a larger amount of the
increase in the particle total stress (sum of the particle Reynolds
stress and inner stress) than the decrease in the fluid Reynolds
stress. A smaller amount of the increase in the total particle
stress than the decrease in the fluid Reynolds stress explains
the decrease in the flow drag from ρr = 10.42 to ρr = 104.2.
In other words, the flow drag reaches maximum at the density
ratio of order 10 because the sum of the fluid Reynolds stress,
the particle Reynolds stress, and the particle inner stress terms
reaches maximum. We note that the contribution of the particle
inner stress is important for the nonmonotonic change of the
drag coefficient.

The second equation for the fluid mean velocity is related
to the interphase hydrodynamic force [Eq. (A6)],

d

dy

(
ϕf μ

d〈uf 〉
dy

)
+ ϕf

(
−dpe

dx

)
+ d

dy
(ϕf ρf 〈−u′

f v′
f 〉)

− Fx

V
= 0, (22)

where Fx is the interphase average drag force on the particles.
From Eq. (A7), the interphase hydrodynamic force is related
to the particle total stress:

d(τpR + τpI )

dy
+ ϕs

(
−dpe

dx

)
+ Fx

V
= 0. (23)

Since the pressure gradient is constant in our simulations,
the gradient of the particle total stress reflects the interphase
drag force. As discussed earlier, the drag-reduction effect due
to the decrease in the Reynolds shear stress is counteracted
by the drag-enhancement effect due to the increase in the
particle total stress, as the density ratio increases. Equations
(22) and (23) imply that the drag-enhancement effect can also
be attributed to the increase in the interphase drag force.

The drag formula modeling the interphase drag force is
most important for the engineering multiphase flow models
such as the point-particle model and the two-fluid model. In
the following, we attempt to calculate the interphase drag force
from Eq. (22) (referred to as the balance theory since it is a
force balance equation for the fluid at the statistically stationary
state), and examine whether the empirical drag formula can
qualitatively predict the interphase drag for the turbulent
particle-laden channel flow. The slip velocity is required in the
drag formula. For the point-particle model, the slip velocity
between the individual particle and the fluid is employed, and
for the two-fluid model, the slip velocity between the phase-
averaged velocities is adopted. For the freely moving finite-size
particle, the slip velocity between the individual particle and
the fluid cannot be defined unambiguously; consequently, we
here take the difference between the phase-averaged velocities
as the slip velocity.

Equation (22) normalized by the friction velocity uτ and
half channel width H becomes

F+
x

V + =
[

Reτ

d

dy+

(
ϕf

d〈uf 〉+
dy+

)
+ ϕf

+ Reτ

d(ϕf 〈−u′
f v′

f 〉+)

dy+

]
. (24)

Since our particle volume fraction is low, we construct
the drag formula without considering the hydrodynamic
interactions between the particles. The force on one particle is

Fp = Cd

2
πa2ρf |〈uf 〉 − 〈up〉|(〈uf 〉 − 〈up〉). (25)

In Eq. (25), Cd represents the standard drag coefficient and
is calculated with

Cd = 24

Rep

(
1 + 0.15Re0.687

p

)
, (26)

where Rep is the particle Reynolds number defined and
computed by

Rep = 2a|〈uf 〉 − 〈up〉|
ν

= Reτ

2a

H
|〈uf 〉+ − 〈up〉+|. (27)

Then the dimensionless interphase force can be calculated
from

F+
x

V + =
(

Fx

V

)
H

ρf u2
τ

= φsFp

4
3πa3

H

ρf u2
τ

= 3φsCd |〈uf 〉+ − 〈up〉+|(〈uf 〉+ − 〈up〉+)

8(a/H )
, (28)

in which φs is the local solid volume fraction at a given y

position, as shown in Fig. 7.
The interphase drag forces obtained from the balance theory

[Eq. (24)] for ρr = 1, 10.42, and 104.2 are plotted in Fig. 10.
The drag forces from the drag formula [Eq. (28)] for ρr = 1
and 104.2 are also plotted for comparison, and the case of
ρr = 10.42 is not shown for the clarity of the figure. For
ρr = 104.2, the balance theory and the drag formula predict
the same behavior of the drag force: The drag on the particles
is positive in the center region where the fluid average velocity
is larger than the particle average velocity, and negative in the
near-wall region where the particle average velocity is larger.
Nevertheless, the drag formula underestimates the interphase
force, which is understandable due to the following factors.
First, the particle Reynolds number is not low so the drag
force is not linearly proportional to the slip velocity. Therefore,
the total drag obtained from the sum of the drags on the
individual particles with different slip velocities is larger
than that obtained with the average slip velocity. Second, the
hydrodynamic interactions between the particles may increase
the drag. Third, the particle finite-size effect, the wall effect,
and the shear effect may affect the drag.

For ρr = 1, it is not surprising that the drag forces predicted
from both methods are negative near the wall and almost vanish
in the center region, since the particle average velocity is larger
than the fluid average velocity near the wall and roughly equal
to the fluid average velocity in the bulk region (see Fig. 5).
However, it is interesting that the balance theory predicts
a positive drag force on the particles in the region between
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FIG. 10. The interphase forces obtained from the balance theory [Eq. (24)] and the drag formula [Eq. (28)] for (a) a/H = 0.05 and
(b) a/H = 0.1. The red dash-dot lines represent zero force for reference.

the near-wall negative-force region and the center zero-force
region, which cannot be predicted by the drag formula based
on the interphase average slip velocity. From Eq. (23), the
positive drag force is caused by the negative gradient of the
particle total stress. Further, Fig. 9(b) shows that the particle
inner stress is much larger than the particle Reynolds stress at
y+ = 20−40, and the decay of the particle inner stress with
increasing y in this region is obviously responsible for the
positive drag force on the particles.

The third equation for the fluid mean velocity is related to
the pseudo body force (or Lagrange multiplier) λ introduced
in the fictitious domain method for the rigid-body motion con-
straint on the fictitious fluids inside the particles [Eq. (A16)].

μ
du

dy
+

∫ y

0
λdξ + ρf (−u′v′) = τw

(
1 − y

H

)
, (29)

where the overline represents the spatial averaging over a
domain comprising both fluid and solid phases, i.e., A =
1
V

∫
V

AdV . The role of the pseudo body force is similar to
the interphase force. Equation (A17) gives the relationship
between them, which provides a simpler approach to compute
the interphase force by using the pseudo body force than
integrating the stress on the particle surface.

V. CONCLUSIONS

We have investigated the effects of finite-size particles with
different density ratios on the turbulent channel flow by using
a parallel direct-forcing fictitious domain method. The main
findings are as follows:

(1) The variation of the flow drag with increasing particle-
fluid density ratio is nonmonotonic and the flow drag is largest
at the density ratio of the order of 10, as compared to the
cases of the order of unity and 100. The drag reduction by
the particles is observed during the transient stage for large
particle density ratios, but not at the statistically stationary
stage. It is not possible to judge whether the spherical particles
can cause drag reduction for the fully developed turbulent
flows without quantitative computations, since the presence
of particles causes additional viscous dissipation which has

dual effects on the friction drag of the turbulent flow: On
the one hand, more viscous dissipation brings about directly
larger flow drag, for the laminar flow case, while on the
other hand, more viscous dissipation leads to suppression of
the large-scale quasistreamwise vortices and thereby a lower
flow resistance. Accurate simulations of the particle-fluid
(turbulence) interactions with the improved discrete particle
methods [44–46] or the interface-resolved direct simulations
for small particles are required to confirm whether the
significant drag reduction can be produced by the spherical
particles.

(2) The particle fluctuation velocity generally decreases
with increasing particle inertia, except that the particle stream-
wise fluctuation velocity and 〈−u′

pv′
p〉 in the near-wall region

are largest when the particle density ratio is of the order of 10.
(3) Both particle collision and particle-turbulence inter-

actions are responsible for the particle migration toward the
channel center in a statistical sense for a/H = 0.05 and
ρr = 10.42.

(4) The equations for the fluid mean velocity in terms of the
solid stress and the interphase force are derived, respectively,
from the spatial averaging theorem.

(5) The fluid Reynolds stress term decreases, while both
particle Reynolds and inner stress terms increase, as the density
ratio increases for the same particle size. The sum of the
fluid Reynolds stress, the particle Reynolds stress and the
particle inner stress terms does not change significantly with
increasing density ratio, rendering the flow drag insensitive to
the variation of the density ratio. The drag-reduction effect due
to the decrease in the Reynolds shear stress is counteracted by
the drag-enhancement effect due to the increase in the particle
total stress or the interphase drag force, particularly for the
case of large particle inertia. The contribution of the particle
inner stress on the drag force is not sensitive to the density
ratio, but is important for the nonmonotonic change of the
drag coefficient.

(6) The interphase drag force obtained from the averaged
momentum equation (the balance theory) agrees qualitatively
with that from the empirical drag formula based on the phase-
averaged slip velocity for large density ratios. For the neutrally
buoyant case, the balance theory predicts a positive interphase
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force on the particles arising from the negative gradient of the
particle inner stress, which cannot be predicted by the drag
formula based on the phase-averaged slip velocity. The drag
formula based on the conditionally averaged slip velocity is a
relevant subject for future study.
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APPENDIX

In this Appendix, we will derive the equations for the fluid
mean velocity (or the flow drag) of the particle-laden turbulent
channel flow under constant pressure gradient by using the
spatial averaging theorem [50,51].

Suppose the volume V for averaging comprises the volume
occupied by the fluid Vf and that by the particles Vp, and
its surface, comprises the fluid part S

f
e and the solid part S

p
e ,

as shown in Fig. 11. The particle-fluid interface inside V is
denoted by SI . Note that the surface of Vf is S

f
e + SI , whose

outward unit normal is denoted by nf , and the surface of
Vp is S

p
e + SI , whose outward unit normal is denoted by n.

The spatial averaging of the fluid quantity Af is defined by
Af = 1

V

∫
V

Af dV and its intrinsic phase average is defined
by 〈Af 〉 = 1

Vf

∫
Vf

Af dV . Clearly, Af = ϕf 〈Af 〉, ϕf being
the local fluid volume fraction.

Vp

Vp
Vp

Vp

Vf

Vp

1
eS

p
eS

p
eS

IS
f
eS

f
eS

f
eS

n 

nf

nf

FIG. 11. Definitions of the volumes and interfaces for the spatial
averaging.

The spatial averaging theorem states that [50]

∇ · Af = 1

V

∫
S

f
e

Af · nf ds, (A1)

which implies that the spatial derivative of an averaged
quantity is related to the variation of this quantity on the surface
of the volume.

From the spatial averaging theorem and the Guass theorem,
one can obtain [50,51]

∇ · Af = ∇ · Af − 1

V

∫
SI

Af · nds. (A2)

In addition,

∂Af

∂t
= ∂

∂t
Af + 1

V

∫
SI

Af w · nds, (A3)

where w is the velocity of the interface which is equal to
the fluid velocity at the interface in the absence of the phase
change.

The fluid momentum equation can be written as follows:

∂(ρf uf )

∂t
+ ∇ · (ρf uf uf ) = ∇ · σf +

(
−dpe

dx

)
ex, (A4)

where ρf , uf , σf , and − dpe

dx
represent the fluid density,

velocity, stress, and extra pressure gradient in the x-axis
direction, respectively. Applying the spatial averaging theorem
to (A4) yields

∂(ϕf ρf 〈uf 〉)
∂t

+ ∇ · (ϕf ρf 〈uf uf 〉)

= ∇ · (ϕf 〈σf 〉) + ϕf

(
−dpe

dx

)
ex − 1

V

∫
SI

n · σf ds. (A5)

For the channel flow at the statistically stationary state,
Eq. (A5) for the x-axis direction is

d

dy
(ϕf 〈σf 〉

xy
) + ϕf

(
−dpe

dx

)

+ d

dy
(ϕf ρf 〈−u′

f v′
f 〉) − Fx

V
= 0, (A6)

where uf and vf are the velocity components in the x and
y directions, respectively, and Fx = [

∫
SI

n · σf ds]x , being
the total interphase drag force on the particles in the band
volume V (i.e., the volume between y and 	y for the case of
channel flow). Note that the pressure term d

dx
(ϕf 〈pf 〉) [i.e.,

d
dx

(ϕf 〈σf 〉
xx

) in (A5)] vanishes because pf is periodic in the
x-axis direction, and this term would exist and give identically
the extra pressure gradient term in (A6) if the extra pressure
gradient is not introduced in the momentum equation (A1) as
the body force.

Since the solid momentum equation has the same form
as the fluid one (A4), one can obtain the following solid
counterpart of (A6):

d

dy
(ϕs〈σp〉

xy
) + ϕs

(
−dpe

dx

)
+ d

dy
(ϕsρs〈−u′

pv′
p〉)

+ Fx

V
= 0, (A7)

where the subscripts s and p denote the solid phase.
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Adding (A6) to (A7) leads to

d

dy
(ϕf 〈σf 〉

xy
+ ϕs〈σp〉

xy
) +

(
−dpe

dx

)

+ d

dy
(ϕf ρf 〈−u′

f v′
f 〉 + ϕsρs〈−u′

pv′
p〉) = 0. (A8)

Equation (A8) is essentially the momentum equation for the
fluid-solid mixture (i.e., suspension). ϕf 〈σf 〉xy + ϕs〈σp〉xy is
the shear stress of the suspension, and its value at the wall is
the total wall stress τw. Integrating (A8) from the wall (y = 0)
to y and recalling that − dpe

dx
= τw

H
, one obtains

(ϕf 〈σf 〉
xy

+ ϕs〈σp〉
xy

) + (ϕf ρf 〈−u′
f v′

f 〉 + ϕsρs〈−u′
pv′

p〉)

= τw

(
1 − y

H

)
. (A9)

The average fluid shear stress is related to the average fluid
strain rate, which is

∇uf + (∇uf )T = ∇(ϕf 〈uf 〉) + [∇(ϕf 〈uf 〉)]T

−
[

1

V

∫
SI

(
nuf + uf n

)
ds

]
. (A10)

From the spatial averaging theorem, ∇ϕf ≈ 1
V

∫
SI

nds;

thus (∇ϕf )〈uf 〉) + 〈uf 〉∇ϕf ≈ 1
V

∫
SI

(n〈uf 〉 + 〈uf 〉n)ds.
Then (A10) reads

∇uf + (∇uf )T = ϕf ∇〈uf 〉 + ϕf (∇〈uf 〉)T

−
[

1

V

∫
SI

(nu′
f + u′

fn)ds

]
. (A11)

The last term in (A11) is probably not important, consider-
ing that

∫
∂P

(nuf + uf n)ds = 0 for the case of a rigid particle,
here ∂P being the surface of any rigid particle. Therefore, this

term is neglected here, and then

ϕf 〈σf 〉xy ≈ ϕf μ
d〈uf 〉
dy

. (A12)

Substituting (A12) into (A9), one obtains(
ϕf μ

d〈uf 〉
dy

+ϕs〈σp〉
xy

)
+(ϕf ρf 〈−u′

f v′
f 〉+ϕsρs〈−u′

pv′
p〉)

= τw

(
1 − y

H

)
. (A13)

The momentum equation for our fictitious domain method
is

∂(ρf u)

∂t
+ ∇ · (ρf uu) = −∇p + μ∇2u + λ +

(
−dpe

dx

)
ex,

(A14)

and its corresponding averaged equation in the x-axis direction
is

d

dy

(
μ

du

dy

)
+

(
−dpe

dx

)
+ d

dy
(ρf −u′v′) + λ = 0. (A15)

Integrating (A15) yields

μ
du

dy
+

∫ y

0
λdξ + ρf (−u′v′) = τw

(
1 − y

H

)
. (A16)

Because u = ϕf 〈uf 〉 + ϕp〈up〉 and −u′v′ =
ϕf 〈−u′

f v′
f 〉 + ϕs〈−u′

pv′
p〉, from (A6), (A12), and (A15),

we obtain

d

dy

(
ϕsμ

d〈up〉
dy

)
+ ϕs

(
−dpe

dx

)
+ d

dy
(ϕsρf 〈−u′

pv′
p〉)

+ λ + Fx

V
= 0. (A17)

Equation (A17) gives the relationship between the average
pseudo body force and the average interphase drag force on
the particles.
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