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a b s t r a c t

In the present study, a compact and fast MATLAB program coupled with the Taylor-

series expansion method of moments (TEMOM) was developed to simulate the effect of

coherent structures on the particle Brownian coagulation in the temporal mixing layer.

The distributions of number concentration, mass concentration and particle average

volume driven by coagulation, advection and diffusion are obtained. The developed

TEMOM method has no prior requirement for the particle size distribution (PSD), and it

is a promising method to approximate the aerosol general dynamics equation (GDE).

The fluid and particle fields are coupled together and are presented with three non-

dimensional parameters (i.e., Reynolds number, Re; Schmidt number based on particle

moment, ScM, and Damkohler number, Da) in the governing equations. The temporal

evolutions of the first three moments are discussed for different Damkohler numbers

(Da¼0.5, 1.0, 2.0). As the fluid flow evolves in time, the number concentration of

nanoparticles decreases gradually, while the particle average volume increase. The

distribution of number concentration, mass concentration, and average volume of

nanoparticles are spatially inhomogeneous due to the mixing of coherent vortex

structures. Far away from the eddy structure, the effect of the fluid advection on

particle coagulation is small; however, the particle coagulation within the eddy core has

an obvious wave-like distribution because of the large-scale eddy. The results reveal

that the coherent structures play a significant role in the particle Brownian coagulation

in the mixing layer. The particle coagulation affects quantitatively the distribution of

particle number concentration, volume concentration and average diameter, but the

qualitative characteristics of these distributions remain unchanged.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Aerosol particles are increasingly recognized as one of the most common unhealthy components of air pollution
(Davidson et al., 2005). Particle size and concentration affect not only the environment but also the health of human
beings. Researchers have already shown that there is a strong correlation between mortality and particle size, with specific
reference from nano-particles (o50 nm) to fine particles (o2.5 mm) (Kittelson, 1998; Stone & Donaldson, 1998; Jacobson
et al., 2005).
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Nomenclature

A1 the amplitude of the fundamental
disturbances

A2 the amplitude of the sub-harmonic
disturbances

Da the Damkohler number
Dn the diffusion coefficient
Kb the Boltzmann’s constant
L the characteristic length (¼y)
Mk the kth order moment of particle size

distribution
Mk0 the initial value of kth order particle size

distribution moment
M0 the 0th moment that is the total particle

number concentration
M00 the initial value of 0th order particle size

distribution moment
M1 the 1st moment that is proportional to the

total particle mass
M10 the initial value of 1st order particle size

distribution moment
M2 the 2nd moment that is proportional to the

total light scattered
M10 the initial value of 2nd order particle size

distribution moment
Mc the dimensionless moment
Mc0 the initial value of dimensionless moment
N the parameter for the log-normal distribution
Re the Reynolds number
ScM the Schmidt number based on the particle

moment
T the fluid temperature

U the velocity difference across the mixing layer
U1 the velocity of upper stream in the mixing

layer
U2 the velocity of upper stream in the mixing

layer
V the mean particle volume
V0 the initial value of mean particle volume
c the mean thermal speed
k the order of Taylor series expansion
n the number density of particles
t the time variant
u the velocity component in the coordinate

x direction.
v the velocity component in the coordinate

y direction.
x the horizontal coordinate
y the vertical coordinate
a the wave number of disturbances
ap the accommodation coefficient
b the collision frequency function
f1 the eigenfunction of fundamental

disturbances
f2 the eigenfunction of sub-harmonic

disturbances
c the stream function of disturbances
r the fluid density
rp the particle density
n the kinetic viscosity
y the initial vorticity thickness of mixing layer
u the particle volume
ug the geometric mean volume
k the size-independent diffusivity
s the standard deviation
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The evolution of nano-particles is controlled by the general dynamic equation (GDE), which is a nonlinear partial
differential equation (Friedlander, 2000). The GDE is capable of describing the particle evolution under all kinds of
processes (i.e., advection, diffusion, coagulation, nucleation, surface growth and other physical or chemical phenomena,
etc.). However, it is computationally demanding to directly solve the GDE mainly because of its dependence on the particle
volume. As efficient alternatives, several scientific methods have been developed to address this shortcoming. Among
these methods, the sectional method and nodal method (Prakash et al., 2003; Miller & Garrick, 2004; Garrick et al., 2006;
Wang et al., 2007) divide the particle volume space into several discrete sections or bins. At each section or bin, the particle
volume is considered as a constant or linearly distributed and the GDE can be solved. An even more efficient technique is
the method of moment (MOM) (Pratsinis, 1988; Pratsinis & Kim, 1989; Settumba & Garrick, 2003; Chan et al., 2006;
Lin et al., 2003; Lin and Liu, 2010). It considers the moments of the particle size distribution over the entire particle volume
space. The GDE can be transformed into a set of independent moment equations. A closure problem arises when solving a
finite number of moments, which requires the modeling of unsolved higher order moments in terms of solved lower order
moments. These models can yield a close set of equations governing the solved lower order moments. The classical
moment method usually addresses the closure problem by assuming that the particle size distribution is mono-dispersed
or log-normally distributed. McGraw (1997) proposed a new method known as the quadrature method of moment
(QMOM) to make the moment equations closed. Based on the theory of McGraw (1997), Fox (2003) further developed a
new method named the direct quadrature method of moment (DQMOM), which has proved to be compatible with QMOM
in case of mono-variant functions. DQMOM also offers a powerful numerical approach for describing the poly-disperse
solids, which have undergone the segregation, growth, aggregation and breakage processes in the context of computa-
tional fluid dynamics (CFD) simulations. So far as the closure problem is concerned, the QMOM and DQMOM are more
suitable for engineering applications because of not only the accuracy but also more importantly the higher computational
efficiency. For the QMOM, the major problem is that it needs to additionally solve an eigenvalues and eigenvector problem.
For the DQMOM, it amounts to solving a set of linear algebraic equations, and is more stable than the QMOM. Yu et al.
(2008a) have recently presented a new numerical approach termed as the Taylor-series expansion method of moment
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(TEMOM) to solve the coagulation equation. In the TEMOM, the closure of the moment equations is approached using the
Taylor-series expansion technique. Through constructing a system of the three first-order ordinary differential equations,
the most important moments for describing the aerosol dynamics, including the particle number density, particle mass
and geometric standard deviation, are obtained. This approach has no prior requirement for the particle size spectrum, and
the limitation inherent in the lognormal distribution theory automatically disappears.

In the present study, the nanoparticle-laden flow in the temporal mixing layer was investigated. There are two
scientific problems to be solved, namely, the flow structure and particle evolution. Since the particles considered are very
small (around nanometer in size), which means the Stokes number of particles St)1, the particles are assumed to follow
the gas flow precisely. As a first step it is reasonable to consider the flow and the particle fields separately and neglect the
effect of particles on the gas flow (Xie et al., 2007, 2009a, 2009b). The aim of this paper is to simulate the two-dimensional
flow structures and particle evolution in the mixing layer. An compact and efficient direct numerical simulation scheme
coupled with the Taylor-series expansion method of moments (TEMOM) will be developed to simulate the effect of
coherent structures on the particle coagulation and growth in the flow field.

2. Mathematical modeling

2.1. Flow fields

The flow is considered to be the constant density two-dimensional temporal mixing layer containing the nano-scale
particles. This temporal mixing layer can be thought of as an approximation to spatially developing mixing layer (Rogers &
Moser, 1992; Moser & Rogers, 1993) and the simulation of time-developing mixing layer allows a much higher resolution
for computation. For the temporal mixing layer, we can impose periodic boundary conditions in the stream-wise
(x) direction. Considering that all the perturbations vanish rapidly as y-N, where y is the coordinate in the transverse
direction, periodic conditions can be also imposed in the transverse direction by introducing the image flows far enough
from the mixing layer center. Thus, the standard Fourier pseudo-spectral method can be applied directly. A schematic of
the temporal mixing layer is shown in Fig. 1. The primary transport variables for the flow field are the fluid velocity and
pressure. These variables are governed by the Navier–Stokes equations:
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where r is the fluid density; p is the pressure; n is the kinematic viscosity; u, v are the velocity component in the x and y

directions, respectively. The initial velocity for the time-developing mixing layer consists of the following two parts: the
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Fig. 1. The initial configuration of temporal mixing layer.
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base flow and the corresponding disturbances. The transverse velocity v of base flow is set to zero and the streamwise
velocity u is specified using a hyperbolic tangent profile:

uðx,y,0Þ ¼
U1þU2

2
þ

U1�U2

2
tan

y

2y

� �
ð2Þ

where U1 and U2 (¼�U1) are the far field velocities of two parallel streams on each side of the shear layer, and y is the
initial momentum thickness, and the upper and lower boundaries are slip walls. Using slip walls allows us to concentrate
on the shear region without having to resolve the boundary layer on the lower and upper walls.

2.2. Particle fields

The transport of the nano-scale particles dispersed through the fluid is governed by the aerosol general dynamics
equations (GDE). The GDE describes the particle dynamics under the effect of different physical and chemical processes:
advection, diffusion, coagulation, surface growth, nucleation and the other internal/external forces (Friedlander, 2000). In
the present study, only the Brownian coagulation in the free molecule regime is considered, and the GDE can be written as:
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the source term, [dn/dt]coag is given by
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which represents the effects of particle-particle interactions resulting in coagulation, and n(u,t)du is the number of particles
with volume from u to uþdu at time t; b is the collision frequency function for coagulation in free molecule regime, which
is given by:
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where Kb is the Boltzmann’s constant; rp is the particle density; and Dn is the diffusion coefficient in the free molecule
regime, which is given by:

Dn ¼
ð3=4pÞ1=3KbT

u2=3rpcð1þpap=8Þ
ð6Þ

where c is the mean thermal speed; ap is the accommodation coefficient; T is the fluid temperature, and the fluid in this
study is the air at room temperature. From a practical point of view (Garrick et al., 2006; Settumba & Garrick, 2003), it is
computationally unfeasible to directly solve the GDE except for the small range of discrete particle sizes. In order to
overcome this problem, a moment method is utilized to describe the particle field in time and space. The kth order
moment Mk of the particle distribution is defined as:

Mk ¼

Z v

0
uknðuÞdu ð7Þ

By multiplying both sides of the GDE with uk and integrating over all particle sizes, a system of transport equations for
Mk are obtained (Pratsinis, 1988). The transport equations for the kth order moment Mk is expressed as:
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where the size-independent diffusivity is k¼Dn� u2/3; [dMk/dt]coag is the source term due to the Brownian coagulation and
can be expressed as (Upadhyay & Ezekoye, 2003):
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The minimum number of moments required to close the moment equations is the first three, M0, M1 and M2. The 0th
moment M0 is the total particle number concentration; the first moment M1 is the total volume fraction and is
proportional to the total particle mass concentration; the second moment M2 is proportional to the total light scattered
(Friedlander, 2000). According to the prior developed Taylor-series expansion method of moment (TEMOM) (Yu et al.,
2008a, b, c), the source term in the first three moments can be written as:
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where the constant B1¼(3/4p)1/6(6KbT/rp)1/2, and the three fractional moments M�2/3, M1/3 and M4/3 appeared in the first
three moment equations can be expressed as:

M�2=3 ¼
ð4þ5MCÞM0V�2=3

9
; M1=3 ¼

ð10�MCÞM0V1=3

9
;

M4=3 ¼
ð7þ2MCÞM0V4=3

9
ð11Þ

in which V¼M1/M0 is the mean particle size, and the dimensionless moment MC is defined as:

MC ¼
M2M0

M1
2

ð12Þ

2.3. Non-dimensionalization

The governing equations are non-dimensionalized to simplify the treatment and analysis of the interactions between
the hydrodynamic and particle fields. It can be accomplished using the following relations:
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in which the characteristic length L is the initial momentum thickness of the mixing layer (y); the characteristic velocity
U is the velocity difference across the mixing layer (2U1); Mk0 is the initial value of the kth moment. Substituting the
relations given in Eq. (13) into Eq. (1) yields the familiar mass and momentum conservation equations (for brevity, the star
symbol ‘n’ is omitted thereafter):
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where Re¼U� L/n is the Reynolds number. Similarly, for the particle field, the non-dimensionalized equations for the first
three moment equations are given by:
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in which the two dimensional Laplace operator is defined as
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and the Schmidt number based on the particle moment is given as

ScM ¼ n=ðk=V0
2=3
Þ ð17Þ

The initial mean particle volume V0 is determined by the reference moment Mk0 (i.e., V0¼M10/M00) and
Mc0¼M20�M00/M10

2
. It should be noted that Mc0 is the polydispersity index and is unity for monodisperse aerosols

(Pratsinis, 1988). The Damkohler number, Da, represents the ratio of the convective time scale to the coagulation time
scale and is given by
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where M10 is the initial volume fraction and is defined as the ratio of the volume of the particles to the volume of the fluid–
particle mixture. In the temporal mixing layer under consideration, the characteristic length and velocity scales, as well as
the volume fraction, are the primary means of controlling the rate of coagulation. These quantities affect directly the
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Damkohler number. This non-dimensional number therefore serves as a single parameter to characterize the coagulation
growth in the hydrodynamic flow. Damkohler numbers of zero and infinity represent the two limiting flow conditions
where zero indicates that the particles do not collide while infinity implies that collisions occur instantaneously, and all
particles are instantaneously converted to the largest particle (Settumba & Garrick, 2003; Garrick et al., 2006).

It is obvious that Eq. (15) is the system of partial differential equations and all terms are denoted by the first three
moments M0, M1 and M2, and thus the system presents no closure problem. Under these conditions, the first three
moments for describing aerosol dynamics are obtained through solving the systems of partial differential equations. Here,
the derivation of Eq. (15) for the particle fields does not involve any assumptions for the particle size distribution (PSD),
and the final mathematical form is much simpler than the method of moment (MOM) (Garrick et al., 2006; Pratsinis, 1988;
Settumba & Garrick, 2003; Yu et al., 2008a, b, c).

2.4. The initial conditions for particles

Initially, the lower stream (stream 2) is free of particles, while the upper stream (stream 1) is populated by nano-
particles. The initial particle distribution of the present cases is assumed to be the lognormal distribution; and the size
distribution function is defined as (Pratsinis, 1988):
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in which N is the parameter for the log-normal distribution, and the geometric mean volume and standard deviation are
expressed as the functions of the first three moments:
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The initial kth moments Mk0 are expressed as:

Mk0 ¼Nug
kexp ð9k2ln2s=2Þ ð21Þ

It should be noted that different researchers use different forms for the width parameter of standard deviation in the
lognormal distribution. Under the case of the initial log-normal distribution with N¼1, vg¼31/2/2 and ln s¼(ln4/3)1/2/3
which is consistent with the initial condition used by Barrret & Jheeta (1996), then the initial kth moments for k¼0, 1, 2
are M00¼1, M10¼1 and M20¼4/3, respectively, in the particle laden stream.

3. Results and discussions

3.1. Numerical methods

The length of the computational domain is chosen as 4p by 4p in the stream-wise and cross-stream directions such that
it accommodates exactly two wavelengths of the fundamental perturbation. Throughout the investigation, the value of Re

is taken as 200, and the Schmidt number based on the particle moment is set to unity for discussion the particle
coagulation conveniently in this study. Slip conditions are applied at the upper and lower boundaries of the control
volume, that means the zero gradient boundary condition are applied to the y boundaries. The simulations typically
employ a discretization mesh consisting of 129 by 129 points in the computational domain. The time advancement is
accomplished by means of a fourth-order Runge–Kutta method, and the size of the time step strongly depends on the
magnitude of the dimensionless parameters, as they effectively control the range of advection velocities and diffusive or
dispersive effects, and each calculation simulated up to a non-dimensional time of t¼45. The time is long enough for the
development of second vortex pairing and rolling up. At the beginning of the simulation, the particle velocities are set
equal to the local fluid velocity.

In order to avoid the high costs of performing a simulation, the formation of large-scale structures is expedited through
the addition of the disturbances based on the base flow field. The perturbations are introduced in the form of a traveling
wave, which is a combination of linear eigenfunctions with fundamental and sub-harmonic disturbances obtained from
the linear stability calculations. These perturbations are specified as part of the initial condition superposed on Eq. (2). In
other words, the perturbations correspond to the most amplified mode of the two-dimensional Orr–Sommerfeld equation
for fundamental and sub-harmonic wave numbers. The stream function of the disturbances flow is given as follows:

c¼ Real A1½f1ðyÞ � eiax�þA2½f2ðyÞ � eiax=2�

n o
ð22Þ

in which A1 and A2 are the amplitude of the disturbances, a and a/2 represent the dimensionless wave numbers for
fundamental and sub-harmonic disturbances, and f1 and f2 denote the normalized eigenfunctions for the corresponding
perturbations, which can be approximately derived from the in viscid linear instability theory in the case of high Reynolds
numbers (Michalke, 1964, 1965). For convenience, the value for a in this study is set to be unit; the criteria for the choice of
the perturbation magnitudes were small initially compared to the mean flow, and the fundamental and the sub-harmonic
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perturbations initially have amplitude of A1¼8.12e�3 and A2¼2.03e�3, respectively. These values are very similar to
those used in Tong & Wang (1999).

In this paper, the numerical method for modeling fluid flow is based on the MATLAB program mit18086_navierstokes.m
(Seibold, 2008), which is used for teaching and learning about incompressible, viscous flows. It is an example of a simple
numerical method for solving the Navier–Stokes equations. It contains fundamental components, such as discretization on a
staggered grid, an implicit viscosity step, a projection step, as well as the visualization of the solution over time. In the two-
dimensional mixing layer and within the parameter ranges studied, the effect of the nano-particle on the formation of the
coherent structures such as the ribs and the cups is found to be negligible. The vorticity contours at different time are shown in
Fig. 2 to visualize the formation of vortical structure by roll-up and subsequent pairing. Fig. 3 shows the evolution of local
vorticity along the centerlines x¼0 and y¼0, respectively. The cost of the direct numerical simulation for the vortex evolution
of fluid flow from zero to total time t¼40 with time step Dt¼0.01 is only about 138 s on a personal computer (MacBook Pro
with 2.4 GHz CPU). So the numerical method is compact and fast. Based on the MATLAB program, simulations for various
Damkohler numbers (Da¼0.5, 1.0, 2.0) were performed for particle field, which correspond to various initial volume fractions.
3.2. Validations of present particle moment method

In the application of the method of moments, there are two key issues: one issue is to find a suitable method to close
the moment equations and another is to reconstruct the particle size distribution using the known moments. In fact,
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Fig. 2. The evolution of the mixing layer visualized by the vorticity contours, (a) t¼5.5; (b) t¼11; (c) t¼22; (d) t¼44.
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since the method of moments was proposed by Hulbert & Katz (1964), many variants have been used, including the first
three moment methods proposed by Lee et al. (1984) which is also called by Pratsinis method due to the fact that it was
used in his work in 1988, the QMOM proposed by McGraw (1997), the DQMOM (Fox, 2003), and the TEMOM (Yu et al.,
2008a). Usually, Lee’s method was considered as a method with a prior assumption because in the transformation from
particle size space to moment space there is a physical assumption, i.e., the particle size distribution always follow the
log-normal distribution with the time. In the QMOM, DQMOM and TEMOM methods, however, there is no requirement
for the particle size distribution, and the mathematical form for the fractal and integer moments is completely
dependent on the mathematical formulation rather than the physical assumption. For the TEMOM method, the
mathematical form of the kth moments is fully dependent on the expanded Taylor-series. Therefore, here we have
written, the TEMOM is viewed as a method without any prior assumption on the shape of particle size distribution. In
fact, the same observations have been made in McGraw’s work for the QMOM method (1997) and Yu’s work for TEMOM
method (2008). Nowadays, for all the methods of moments, the reconstruction based on the known moments (i.e., the
inversion problem) is still not yet well resolved. The reason is that, for some aerosols, they do not usually follow the log-
normal distributions. However, if an aerosol follows the log-normal distribution, the reconstruction based on the first
three moments can be exactly achieved. The existing studies have shown that it is reasonable to consider that an aerosol
follow the log-normal distribution if there is no other internal or external process except coagulation. For the TEMOM
method, Yu et al., (2008a, b, c) have provided a validation study of the lognormal distribution for the pure coagulation
process using the same collision frequency. In this study, the same coagulation process is involved and thus the validity
of TEMOM method is therefore ensured.

In order to validate the TEMOM method in the present study, it is necessary to compare the model with other known
methods over long evolution times. Yu et al. (2008a, b, c) have compared the TEMOM model with MOM (Pratsinis, 1988),
QMOM (McGraw, 1997) etc., their results showed that the TEMOM model produces the same precision as QMOM with six
nodes and MOM models. In addition, the consumed CPU time for the TEMOM is the shortest among all the investigated
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models. Therefore, if the present result is consistent with that of Yu et al., then the numerical method is validated. The
evolutions of the particle moments and mean particle volume without advection and diffusion are shown in Fig. 4, all the
curves overlap with those of Yu et al., and it is difficult to distinguish one from the other. There exists an asymptotic
solution for the distribution of reduced particle number in Fig. 4a, and the increased dimensionless particle moment in
Fig. 4c. Moments (MC) along x¼0 at t¼45 without disturbance in fluid flow, (a) the distribution of mean particle volume,
V; (b) the distribution of dimensionless particle moment, MC under the conditions Re¼200, ScM¼1 and Da¼1, (a) M0;
(b) M1; (c) M2; (d) Mc.

An analysis of coagulating aerosols suggests that regardless of the initial size distribution, a self-preserving size
distribution is attained in the absence of particle formation or depletion. The so-called self-preserving size distribution has
become an important tool to explore the aerosol coagulation mechanisms. The self-preserving form is usually approximated
by a lognormal distribution with a geometric standard deviation s, which can be obtained by solving the dimensionless
particle moment in Eq. 20. The asymptotic value of s for QMOM with six nodes is about 1.346; the asymptotic value of
TEMOM is 1.345 (Yu et al., 2008a, b,c); in addition, the asymptotic value for MOM is 1.355 (Pratsinis, 1988), which is close to
the value given by Lee et al. (1984) who used log-normal functions for particle size distribution. Fig. 4c shows the variations
of dimensionless particle moment MC with time in the free molecular regime. We can see that the self-preserving size
distribution attains for all methods at about t¼5, and the asymptotic value of MC is 1.6494, which is different from the value
2.1633 give by Yu et al. (2008a, b, c) calculated with Eq. 20. The reason is that the value of moments in the present study has
been non-dimensionalized, if the particle second moments multiplied with its initial value M20¼4/3, then both results will
be consistent with each other.

The effect of grid resolution on the accuracy of particle moments is shown in Fig. 5. For a convenient comparison, the
disturbance flow is set to zero, the other parameters remains unchanged. The figure shows that the mean particle volumes
remain consistent with one another at various grids; but the dimensionless particle moment is somewhat sensitive to the
Fig. 4. Comparison for time evolution of particle moments without diffusion and convection.



Fig. 5. The effect of resolution on the accuracy of mean particle volume (V) and dimensionless particle moment (MC).
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grid resolution. Generally, the higher the resolution, the more accurate of the numerical results are, but for the higher
resolution, the computation cost also increases dramatically. Because the diffusion coefficient is the function of time and
position, to obtain the correct result, the time step will also need to be refined than that determined by the normal CFL
conditions to avoid numerical diffusion or dispersion, and the computing cost will increase rapidly, so the resolution at
129�129 represents a good balance between accuracy and computing cost. At the same time, the value of MC in the
neighborhood of the interface between the particle laden and particle free domain is greater than that in other places,
which is brought out by the combination of coagulation and diffusion, it reveals that the change rate for coagulation is
much larger than that due to diffusion under the given conditions. The reason is that the maximum value of M0 occurs in
the neighborhood of the interface due to the greater changing rate for coagulation, the particles will be transported from
higher to lower particle number concentration zones due to diffusion. The similar distribution occurs for the other particle
moments, M1 and M2. If the particles near the interface were transported to the particles laden zones, the particle volume
concentration in some places will increase and exceeds unit slightly, but the change rate for mass distribution is small due
to the smaller diffusion mechanism, then the peak of MC occurs near the interfaces.

3.3. Evolution of vortical structure and particle moments

Outside the large-scale eddies in the flow domain, the behavior of the coagulation is similar to that for the zero-
dimensional case, i.e., the 0th order moment decreases exponentially with time, and the first order moment remains
invariant, and the second order moment increases with time approximate linearly. The effect of advection and diffusion or
the flow coherent structure on the particle coagulation is small. However, the role of the advection in the large-scale
vortex motion area is significant, and the distribution of the first three moments reflects the distortion and mixing induced
by the vortex structure in the mixing layer as shown in Fig. 7. The effect of the advection on the evolution of particle
coagulation can also be found in Fig. 6.



Fig. 6. The evolution of the particle moments with time at t¼5.5, 11, 22, 44 along the line x¼0.
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Evolution of the 0th moment M0 in the cross-stream direction at x¼0 is shown in Fig. 6a, in which the Damkohler
number is unity. The result shows that the total particle number concentration, which is represented by M0 decreases as
the particles collide and coagulate. Fig. 6a also reveals the M0 is reduced exponentially as the time is advanced, which
corresponds to the nonlinear growth rate due to coagulation. At t¼44, the value of M0 in the upper stream of the flow
domain has decreased from 1.0 to 0.0058. At the same time, the value of M0 in certain region near the neighborhood of the
interface between the particle-laden and particle-free streams is smaller than that of other place in the upper fluid, which
is brought out by the combination of coagulation, diffusion and advection. It should be noted that near the lower boundary
of the flow domain, the particle number concentration increases with time. This represents the advection and diffusion of
particles towards to the lower stream that is free of particles initially.

The evolution of M1 under the same conditions is shown in Fig. 6b. The particle mass outside of fluid vortex remains
unchanged in the time period from t¼5.5 to 44. The value of M1 develops an anti-symmetric profile relative to the mean
value, in the cross-stream direction inside of the fluid vortex. Mass increase of particles in the lower stream zones is equal
to the mass decrease in the upper stream regime at the same distance to the core of vortex, and the total particle mass over
the entire flow field is conserved.

In an initially mono-disperse aerosol, the coagulation creates new particles of different sizes and increases the size of
each particle. These processes are indicated by the evolution of the second particle moment, which is shown in Fig. 6c.
Generally, the second moment increases throughout the flow field contained with particles, except that some decreasing
area caused by advection and diffusion in the upper stream. However, the changes along the cross-stream are different,
which is similar with the changes of the 0th particle moment, but the rate of changes is different, i.e., in general the
number concentration is decreasing exponentially, while the second moment of particles is increasing approximate
linearly with time without advection and diffusion.
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Fig. 7. The contour of the particle moments at time t¼45 under the conditions Re¼200, ScM¼1 and Da¼1, (a) M0; (b) M1; (c) M2; (d) Mc.
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The evolution and distribution of dimensionless particle moment are shown in Figs. 6 and 7d. The figures demonstrate
that the dimensionless particle moment under the advection of vortex retains the similar characteristic with the results
without disturbances as shown in Fig. 5b, i.e., the maximum value of M0 occurs in the neighborhood of the interface.
Because that the standard deviation is highly sensitive to resolution, the present results contain some effect of numerical
diffusion; nevertheless the distribution shape is consistent with that of Settumba & Garrick (2003) at 1500�1500
resolution.

The particle volume increases at all locations in the flow field, which is shown in Fig. 8. The mean particle volume is also
sensitive to resolution, but its evolution and distribution is more accurately simulated than that of dimensionless particle
moment. Comparison with the evolution contours between mean particle volume and vortex, it can be found that the two
structures are similar with each other at different time from t¼5.5 to 44. The results also show that the particle volume
increases rapidly as time advances.

From the distribution of the first three particle moments in Fig. 6, it can be seen that the characteristic of distribution
curves for different moments are closely related to that of vortex structure in the mixing layer, which is shown in Fig. 3a. In
the upper stream, the concentration of particles is reduced due to the introduction of particle-free fresh fluid by the vortex,
and the three moments are decreased in the corresponding area; while in the lower stream, the situations is just the
opposite. In the core of the vortex, the distribution of three moments for a long time at t¼44 is smooth and uniform
relatively due to the combination of coagulation, advection and diffusion.
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3.4. Effect of Damkohler number

The particle coagulation Damkohler number, Da, represents the ratio of advection to coagulation time scales in the
moments equations (Settumba & Garrick, 2003). The larger the Damkohler number; the smaller the characteristic
coagulation time scale; or the greater generation rate of large size particles. The effects of Damkohler number
(Da¼0.5, 1, 2) on the mean particle volume due to coagulations are shown in Fig. 9. Together with Fig. 8d, the figures
show that the distribution of mean particle volume at different Damkohler numbers is similar to the structure of the
vortex as shown in Fig. 2d. The evolutions of the particle 0th (and second) moments exhibit three distinct levels,
representing the effect of characteristic coagulation time scale as shown in Fig. 10 in the cross-stream direction at
x¼0. The figures in Fig. 10 also reveal that the values of moments change greatly as the Damkohler number increases.
The increase in the Damkohler number reduces the relative contribution of diffusion and advection, which
consequently affects the spatial distribution of particle moments, and produces a smoother distribution for 0th
particle moment or steeper distribution for second particle moment and mean particle volume distribution in space.
The mean particle volume increases at all locations in the flow field, the larger the Damkohler number, and the greater
generation rate of large-size particles. The distribution of particle average diameter can also be determined by the
relation [dpavg¼(6V/p)1/3]. The normalized distribution corresponding to Fig. 10 is shown in Fig. 11. The results show
that all the distributions are self-similarity. The asymptotic analysis reveals that the relative growth rate is slow at
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long times, and the local Damkohler number becomes smaller, showing the coagulation is slow, and the system
bottleneck is the advection and diffusion, this explains why the distributions are self-similar. This self-similarity
implies that the effect of coagulation and effect of mixing by advection and diffusion on particle growth could be
modeled separately.

In summary, the particle coagulation affects quantitatively the distribution of particle volume concentration and
average diameter, but the qualitative characteristics of these distributions remain unchanged. The Damkohler number has
little effect on the distribution of local mass, and the distribution profiles of particle first order moments is effected and
dominated by the advection due to vortex evolution in the temporal mixing layer.
4. Conclusions

In this study, numerical simulation of nanoparticle coagulation in the temporal mixing layer was performed without
the presence of a temperature gradient. The flow field was obtained by solving the incompressible Navier–Stokes
equations coupled with the Orr–Sommerfeld equation. The formation of large-scale structures is expedited through the
addition of fundamental and sub-harmonic perturbations based on the linear stability theory. Taylor series expansion
method of moments (TEMOM) was used to approximate the coagulation of particle in the general dynamic equations
(GDE). The flow and particle fields are coupled together, and there are three non-dimensional parameters in the
governing equations (i.e., Reynolds number, Re; Schmidt number based on particle moment, ScM, and Damkohler
number, Da).



Fig. 10. The distribution of particle moments and mean particle volume for different Damkohler numbers at t¼44, (a) M0; (b) M1; (c) M2; (d) V.
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Direct numerical simulation for three different Damkohler numbers (Da¼0.5, 1, 2) were performed under a given the
flow condition (Re¼200) and particle moment Schmidt number (ScM¼1). Generally, the total particle number concentra-
tion decreases, and total particle mass in the fluid remains unchanged, and the second particle moment increases as the
particles collide and coagulate far away from the interface in the particle-laden stream. The effect of the fluid advection on
particle coagulation is small outside of the eddy structure; however, the particle coagulation within the eddy core
resembles the vortices’ structure because of the large-scale eddy motion. The results reveal that the coherent structure
plays a significant role on the particle coagulation in a temporal mixing layer. The Damköhler number dominates the
structure of the particle volume in the neighborhood of the interface and the core of vortex. For a low Damköhler number
flow, the distribution of particle number concentration near the interface is non-uniform and exhibits the characteristics of
vorticity distribution inside the vortex structure. As the Damköhler number increases, the gradient decreases; while the
situation is opposite for the second particle moment. The particle volume increases at all locations in the flow field, the
larger the Damkohler number, and the greater generation rate of large-size particles. Nevertheless, we observe a self-
similar behavior when the moments are normalized by their respective value in the well-mixed region outside the vortical
structure. This indicates that the effect of coagulation and effect of mixing by advection and diffusion on particle growth
can be modeled separately.

This study represents a first effort to demonstrate how the efficient TEMOM method can be integrated into a flow solver to
model particle growth in an inhomogeneous flow system. The TEMOM method is as accurate as other state-of-the-art
moment-based methods but is computationally more efficient. There are several possible extensions of the study. We only
considered a specific collision frequency and other modified and more realistic collision frequency formulation should be
introduced as the particles grow in size. Other growth mechanisms including particle inertia must also be considered. Thermal
effects related to the flow and particle phase transformation in a reactive system could be incorporated as well. Experimental
observations of particle distributions in inhomogneous flow systems would be very helpful in validating our approach.



Fig. 11. The normalized distribution of particle moments and mean particle volume for different Damkohler numbers at t¼44, (a) M0; (b) M1; (c) M2; (d) V.
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