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c The asymptotic solution for particle moment for PBE has been proposed.
c The asymptotic solution is an explicit exponential function of time.
c The asymptotic solution has been compared with numerical results.
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In the present study, asymptotic solutions for particle moment and standard deviation due to Brownian

coagulation have been obtained analytically, using a specific moment-based formulation known as the

Taylor-series expansion method of moment (TEMOM). The derivation is rigorous, and the accuracy of

the asymptotic solution is fully dependent on underlying approximations in an expanded Taylor series.

The accuracy has been validated by a comparison with numerical results. The asymptotic solutions

reveal that the long-time particle moments are an explicit exponential function of time and first

particle moment.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

It has been widely recognized that aerosol particles could be
one of the most common unhealthy components of air pollution
(Davidson et al., 2005). These particles may be generated by many
natural and industrial sources. For example, aerosol particles are
produced in a diffusion flame reactor by gas to particle conversion
(Hulburt and Katz, 1964; Akhtar et al., 1991;Briesen et al., 1998;
Giesen et al., 2004; Yu et al., 2008a, 2008b). The similar phenom-
enon occurs when manufacturing white pigment (Xiong and
Pratsinis, 1991). Smoke ageing in wildfires is also a source of
aerosols (Delichatsios, 1980). Particle size and concentration
affect not only the environment and quality of a product but also
the health of human beings. Researches have already shown that
there is a strong correlation between mortality and particle size,
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with specific reference from nanoparticles (o50 nm) to fine
particles (o2500 nm) (Kittelson, 1998; Jacobson et al., 2005).

Population balance equations (PBE) form a general mathema-
tical framework for modeling of particulate systems (Friedlander,
2000) in a wide range of physical, technological and environ-
mental applications. In the framework, a multi-dimensional
vector of internal coordinates and time characterizes each parti-
cle. The general form of the population balance equation reads:

@nðx,tÞ

@t
¼ B nðx,tÞ½ ��D nðx,tÞ½ � ð1Þ

where n(x,t) is the number density of the particles, B[n(x,t)] and
D[n(x,t)] are birth and death rates of the particles due to
coagulation and breakage, respectively. For a mono-variants
(x¼u) Smoluchowski equation, the formula for B[n(u, t)] and
D[n(u, t)] are given as (Friedlander, 2000):

B¼
1

2

Z v

0
bðu1,u�u1Þnðu1,tÞnðu�u1,tÞdu1

D¼

Z 1
0

bðu1,uÞnðu,tÞnðu1,tÞdu1 ð2Þ
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in which n(u,t)du is the number of particles per unit spatial
volume with particle volume from u to uþdu at time t; and b is
the collision frequency function of coagulation. In free molecule
regime, the collision frequency function is given by:

bFM ¼ B1
1

u1=3
þ

1

u1
1=3

� �1=2

ðu1=3þu1
1=3Þ

2
ð3aÞ

where the constant B1¼(3/4p)1/6(6kBT/rp)1/2; kB is the
Boltzmann0s constant; T is the temperature; and rp is the particle
density. In the continuum regime, the collision frequency function is:

bCR ¼ B2
1

u1=3
þ

1

u1
1=3

� �
ðu1=3þu1

1=3Þ ð3bÞ

where the constant B2¼3kBT/2m, and m is the gas viscosity.
The PBE can be viewed in form as the Boltzmann0s transport

equation. Unfortunately, only a limited number of known analy-
tical solutions exist due to its own non-linear integro-differential
structure (Yu et al., 2008c, 2009). Lage (2002) and Patil and
Madras (1998) have derived a particular solution for PBE with
simultaneous aggregation (coalescence) and fragmentation
(breakage), but for the special case where the total number of
particles is constant. The more general reversible case, when
either fragmentation or coalescence can dominate, has numerous
applications, and thus is of considerable importance (McCoy and
Madras, 1998, 2001; McCoy, 2001). McCoy and Madras, 2003
have derived an analytical solution of PBE by Laplace transforma-
tion when both coalescence and breakage occur. For an initial
exponential distribution, the solution is always exponential and
has a similarity form. This solution is applicable for the general
case when the number of particles is not constant, and thus when
breakage and coalescence rates are not equal. For other initial
conditions, they have presented the asymptotic solution.

In general, PBE must be solved numerically either by direct bin
methods or moment-based methods. In bin based methods, the
number density n(u,t) is solved directly by introducing discrete
bins (Wang et al., 2007), while in moment-based method, the
equations for the moments of n(u,t) are numerically solved (e.g.,
see Xie et al., 2012). It is well known that the moment equations
derived from PBE depend on unsolved higher-order moments, and
approximations of one kind or another are introduced in each
moment-based method to close the moment equation. These
include, for example, lognormal distribution (Lee et al., 1984), bin-
wise quasi-linear distribution (Wang et al., 2007), Gauss Quadrature
approximations (McGraw, 1997; Fox, 2003), moment-conservative
fixed pivot technique (Kumar and Ramkrishna, 1996), the cell
average technique (Kumar et al., 2006), and direct quadrature
spanning tree method (Vikhansky, 2013).

Recently, Yu et al. (2008c) have presented a new, moment-
based numerical approach termed as the Taylor-series expansion
method of moment (TEMOM) to solve the coagulation equation.
In the TEMOM, the moment equations are closed using a Taylor-
series expansion technique. Through constructing a system of the
first three order ordinary differential equations, the most impor-
tant moments for describing the aerosol dynamics, namely, the
particle number density, particle mass and geometric standard
deviation, are obtained. This approach makes no prior assumption
on the shape of the particle size spectrum, therefore, the limita-
tion inherent in the lognormal distribution theory automatically
disappears, several studies have demonstrated that it is a promis-
ing method to approximate the aerosol PBE, with high degrees of
physical accuracy and computational efficiency (Yu and Lin,
2010a, 2010b). Xie et al. (2012) applied this method to study
the evolution of particle coagulation in a temporal mixing layer
obtained from direct numerical simulation, their results reveal
that the relative growth rate is slow at long times, and the system
bottleneck is the advection and diffusion, this explains why the
distributions in space are self-similar as the coherent vortex
structure of temporal mixing layer develops. The self-similarity
also implies that the effect of coagulation and effect of mixing by
advection and diffusion on particle growth could be modeled
separately.

In this study, we will show that the TEMOM model provides an
elegant analytical framework to examine analytically the asymp-
totic solution of PBE for Brownian coagulation, and the asympto-
tic results show that all moments at long times depend explicitly
on time and particle first moment (i.e., particle mass concentra-
tion). Because no additional physical assumption is introduced in
the derivation, and the accuracy of the asymptotic solution is only
depends on the underlying approximations in the expanded
Taylor series. The asymptotic results can be used to model
particle coagulation coupled with time-dependent non-uniform
fluid flow, as only the first particle moment needs to be numeri-
cally solved and all other particle moments can be calculated
through the asymptotic solutions. This could significantly reduce
the overall computation cost.
2. The TEMOM model for particle coagulation

The TEMOM is designed to solve the moment s of the size
distribution, which could be a function of time and space. The
k-th order moment Mk of the particle distribution is defined as:

Mk ¼

Z 1
0

uknðuÞdu ð4Þ

By multiplying both sides of the PBE, Eq. (1), with uk and
integrating over all particle sizes, a system of transport equations
for Mk are obtained (Pratsinis, 1988). In a spatially homogeneous
system, the particle moments evolve in time due to the Brownian
coagulation and can be expressed as:

dMk

dt
¼

1

2

Z 1
0

Z 1
0
½ðuþu1Þ

k
�uk�u1

k�bðu,u1Þnðu,tÞnðu1,tÞdudu1, ðk¼ 0,1,2, � � �Þ

ð5Þ

In the TEMOM, the minimum set of moments required to close
the particle moment equations is the first three, M0, M1 and M2.
The zeroth order moment M0 represents the total particle number
concentration; the first order moment M1 is proportional to the
total particle mass concentration; the second order moment M2

determines the total light scattered by the particle system
(Friedlander, 2000). Based on the detailed derivations of TEMOM
in Yu et al. (2008c, 2009, 2011) and Xie et al. (2012), the resulting
closed-form equations for the first three moments equations for
the collision frequency function in free molecule regime can be
rearranged as:

dM0

dt
¼

ffiffiffi
2
p

B1ð65MC
2
�1210MC�9223ÞM1

1=6

5184
M0

11=6

dM1

dt
¼ 0

dM2

dt
¼�

ffiffiffi
2
p

B1ð701MC
2
�4210MC�6859ÞM1

11=6

2592MC
1=6

M2
1=6

ð6aÞ

On the other hand, for collision frequency in the continuum
regime, the first three moments equations are governed by:

dM0

dt
¼

B2ð2MC
2
�13MC�151ÞM0

2

81
dM1

dt
¼ 0

dM2

dt
¼�

2B2ð2MC
2
�13MC�151ÞM1

2

81
ð6bÞ
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where the dimensionless moment MC is defined as:

MC ¼
M0M2

M1
2

ð7Þ

It is important to note that the derivation of particle moment
equations does not involve any assumptions concerning the shape
of the particle size distribution (PSD) (Yu et al., 2008c, 2009,
2011). If the particle size distribution assumed to be lognormal,
then the mean particle volume and standard deviation of the
lognormal distribution can be expressed as (Pratsinis, 1988)

V ¼M1=M0; ln2s¼ 1

9
lnðMCÞ ð8Þ

Clearly, these moment equations represent a system of
coupled nonlinear differential equations. Since all terms are
dependent on the first three moments M0, M1 and M2, and thus
the system can be automatically closed. In general, these equa-
tions can be solved numerically to determine the time evolution
of the first three moments, which may be then used to further
determine approximately higher order moments under the
assumption of lognormal distribution.
3. Asymptotic behavior of the TEMOM model for collision
frequency in free molecule regime

Here we shall show that, under certain conditions, the TEMOM
moment equations lead to an explicit long time solution. The
starting point is to assume that the shape of the size distribution
becomes self-similar at long times. This shape preservation
(Friedlander and Wang, 1966) implies that the standard deviation
or dimensionless moment tends to a constant as time advances,
this has indeed been observed in several numerical studies
(Pratsinis, 1988; McGraw, 1997; Fox, 2003; Yu et al., 2008c,
2009, 2011; Xie al., 2012). Therefore, our key assumption is that
the dimensionless moment tends to a constant denoted by MCN.
Furthermore, we note that M1 remains constant due to the
rigorous mass conservation requirement. Under these conditions,
we seek a long time solution of the system Eq. (6a), using the
form:

M0- �
5

6
�

ffiffiffi
2
p
ð65MC1

2
�1210MC1�9223Þ

5184

 !�6=5
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�1=5t�6=5
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5

6
�
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2
p
ð701MC1

2
�4210MC1�6859Þ

2592MC1
1=6

 !6=5

B1
6=5M1

11=5t6=5

ð9Þ

several immediate predictions follow from this specific asympto-
tic solution. First, the asymptotic solution reveals an important
long time growth time scale

1

M0

dM0

dt

����
����¼ 1

M2

dM2

dt

����
����-1:2

t
ð10Þ

Namely, the growth is rather slow at long times. Second, the
self-consistency requirement that MC tends to a constant MCN,
yields a nonlinear algebraic equation for MCN

MC1 ¼
2ð701MC1

2
�4210MC1�6859Þ

ð65MC1
2
�1210MC1�9223ÞMC1

1=6

" #6=5

ð11Þ

so the asymptotic value of the dimensionless particle moment
MCN can be analytically determined. By trial and error, we found
that MCN¼2.200126847, and the corresponding standard devia-
tion is s¼1.344462843 according to Eq. (8). This prediction is in
excellent agreement with the asymptotic values obtained
numerically in the literature: McGraw (1997) of s¼1.346 using
the QMOM method with 6 nodes; Yu et al. (2008c, 2009, 2011)
found s¼1.345 by solving TEMOM numerically; and Pratsinis
(1988) obtained s¼1.355 using MOM, which is close to the value
given by Lee et al. (1984) who assumed that particle size
distribution to be lognormal. It should be noted that the accuracy
of the k-th moments and standard deviation only depends on the
approximation in the expanded Taylor-series.

Finally, combining the above predictions, we obtain the
following fully explicit asymptotic solution for the particle
moments:

M0-0:313309932� B1
�6=5M1

�1=5t�6=5

M2-7:022205880� B1
6=5M1

11=5t6=5 ð12Þ
4. Asymptotic behavior of the TEMOM model for collision
frequency function in the continuum regime

Under the same conditions and using the similar reasoning,
the asymptotic solution can also be obtained in the continuum
regime. In this case, the long-time particle moments can be
written as:

M0-�
81

ð2MC1
2
�13MC1�151Þ

B2
�1t�1

M2-�
2ð2MC1

2
�13MC1�151Þ

81
B2M1

2t ð13Þ

it follows that the asymptotic growth rate is:

1

M0

dM0

dt

����
����¼ 1

M2

dM2

dt

����
����-1

t
ð14Þ

which is similar to that in the free molecule regime, but with
16.7% less in magnitude. The self-consistency requirement for
MCN leads to

MC1 ¼
M0M2

M1
2

����
t-1

¼ 2 ð15Þ

This implies that the corresponding standard deviation is
s¼1.319850145 according to Eq. (8). The asymptotic value can
be compared to published numerical asymptotic values: the
QMOM method predicts s¼1.325 with 2 nodes and s¼1.315
when 6 nodes are used (McGraw, 1997); the numerical asympto-
tic value from TEMOM is 1.319 (Yu et al., 2008c, 2009, 2011); in
addition, the asymptotic value for MOM (Pratsinis, 1988) is close
to the value of 1.32 reported by Lee et al. (1984) who assumed
log-normal functions for particle size distribution.

Finally, putting all predictions together, we obtain analytically
the following fully explicit asymptotic solution of the particle
moments in the continuum regime

M0-
81

169
B2
�1t�1

M2-
338

81
B2M1

2t ð16Þ

which is expected to be valid at long times.
5. Comparison with numerical results

To further illustrate the value and accuracy of the asymptotic
solution, we shall compare them to numerical solutions at
different times. Without loss of generality, three cases are
selected, the first one is the mono-disperse system (Pratsinis,
1988), and the other two are multi-disperse systems (Barret and
Jheeta, 1996). The numerical method used is the fourth-order
Runge–Kutta method, and its accuracy has been well established
by comparison with other methods, such as MOM (Pratsinis,
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1988), QMOM (McGraw, 1997), TEMOM (Yu et al., 2008c, 2009,
2011; Xie et al., 2012), etc.

Case I: For mono-disperse system, the initial conditions are
M0(0)¼1; M1(0)¼1; M2(0)¼1
Case II: For multi-disperse system with an initially lognormal
distribution, the initial conditions for moments are
M0(0)¼1; M1(0)¼1; M2(0)¼4/3
Case III: For multi-disperse system with an initially Gamma
distribution (i.e., the two parameter Gamma distribution with
a shape parameter 0.5 and a scale parameter 2), the initial
conditions for moments are
M0(0)¼1; M1(0)¼1; M2(0)¼3

These different initial value for M2 cover the different initial
particle size distribution. For convenience, the constant in the
collision frequency functions are set to B1¼1 and B2¼1. Figs. 1–3
show the time evolution of three particle moments, respectively,
obtained from asymptotic solutions and numerical integration.
Clearly, all the results are in excellent agreement at long times. The
asymptotic growth rate in the free molecule regime with a slope of
6/5 is larger than that in the continuum regime with a slope of unit in
the log–log coordinates. More importantly, the results reveal how for
different initial conditions, the particle moments evolve smoothly
from the initial condition to the asymptotic solution at about t¼10.
6. Conclusion

The shape preservation of particle size distribution during the
evolution of particle coagulation has been proposed by the research-
ers many years ago (Friedlander, 2000). In this paper, we combine
this observation and the moment equations derived from the Taylor
series expansion method of moments, to demonstrate that an
asymptotic solution can be derived analytically. This is done for
collision frequency functions in both the free molecular regime and
the continuum regime. Several important predictions are made and
are shown to be in excellent agreement with published numerical
asymptotic results. The asymptotic solutions have also been com-
pared to numerical solutions at different times for several initial
distributions. Since the TEMOM method has no prior requirement
for the shape of particle size distribution (PSD), it has been viewed
as a promising method to model the aerosol population balance
equation. The asymptotic solutions reveal that the long-time particle
moments are an explicit function of time and particle mass
concentration. The results can be used to model the long-time
evolution of particle coagulation, which could reduce the computa-
tional cost greatly for certain applications (e.g., Xie al., 2012).
Nomenclature

Mc the dimensionless moment
Mk the k-th order particle moment
T the fluid temperature
V the mean particle volume
k the order of Taylor series expansion
kB the Boltzmann0s constant
n(u,t) the number density of particles
t the time variant
x multi-dimensional vector

Greek letters

b the collision frequency function
m the gas viscosity
u the particle volume
ug the geometric mean volume
s the standard deviation
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