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a b s t r a c t 

We investigate three-dimensional natural convection flow in an air-filled, differentially heated cubical 

cavity. The vertical wall on the left is heated and the vertical wall on the right is cooled, with the re- 

maining four walls being adiabatic. We performed direct numerical simulations of the natural convection 

flow using discrete unified gas-kinetic scheme (DUGKS), with an improved implementation of boundary 

conditions. Thin boundary layers are developed along the two isothermal walls. The laminar to turbulent 

flow transition inside the boundary layers is studied in this paper. The simulations are conducted at three 

Rayleigh numbers of 1 . 5 × 10 9 , 1 . 0 × 10 10 , 1 . 0 × 10 11 using nonuniform grids with resolution up to 320 3 . 

The Prandtl number is fixed at 0.71. We provide a detailed analysis of the transition from laminar to tur- 

bulent flow inside the vertical boundary layers and its influence on the rate of heat transfer. Time traces 

of temperature and velocity, time-averaged flow field, statistics of fluctuation fields are presented to il- 

lustrate distinct behaviors in the laminar and turbulent thermal boundary layer, as well as to determine 

the transition location at different Ra numbers. The average Nusselt numbers for different Ra numbers 

are compiled and compared to previous results. A guideline of the resolution requirement is suggested 

based on the Ra scaling of laminar thermal boundary layer. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Natural convection in an enclosure is a classical configuration 

n heat transfer research due to many applications such as such as 

ooling of the electronic device, energy storage system and climate 

onditioning of rooms [1] . Using convection to enhance heat trans- 

er in a compact space is a highly effective approach. Based on the 

irection of the applied temperature gradient, it can be classified 

nto two categories: cavity heated from below (Rayleigh-Bénard) 
∗ Corresponding author at: Guangdong Provincial Key Laboratory of Turbulence 

esearch and Applications, Center for Complex Flows and Soft Matter Research and 

epartment of Mechanics and Aerospace Engineering, Southern University of Sci- 

nce and Technology, Shenzhen 518055, Guangdong, China. 
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nd these differentially heated from the sides. The Rayleigh-Bénard 

onvection has been widely studied [2,3] , while the latter case is 

elatively less studied and is considered in this paper. Namely, here 

he left vertical wall of the cavity is heated and the right vertical 

all is cooled, with the remaining four walls being kept adiabatic. 

Researchers have studied this latter configuration for several 

ecades, focusing on different aspects such as the instability mech- 

nism of the convection and the Nusselt - Rayleigh number cor- 

elation, where the Rayleigh number is the key input parameter 

nd the Nusselt number measures the dimensionless heat trans- 

er rate, both will be defined in Section 2 . Despite its simple con- 

guration, this problem is extremely complex due to the strong 

oupling between velocity field and temperature field and a large 

ange of system parameters such as the cavity aspect ratio, Prandtl 

umber, temperature difference, etc. When the temperature differ- 

https://doi.org/10.1016/j.ijheatmasstransfer.2020.120822
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2020.120822&domain=pdf
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nce is small, the density change is negligible except in the buoy- 

ncy term. And under the Boussinesq assumption the fluid prop- 

rties such as viscosity ν, heat conductivity k, are treated as con- 

tants. The viscous dissipation in the energy equation is typically 

eglected. Led by the pioneering work of de Vahl Davis and co- 

orkers [4,5] , researchers used different methods to study this 

roblem numerically and provided benchmark solutions for both 

wo- and three-dimensional cavities; and the simulation results 

ere compared to earlier experimental results [6–8] . A summary 

f previous direct numerical simulations of natural convection in a 

ifferentially heated cavity related to our study is presented below. 

Due to the restriction of the computational resource, the early 

umerical studies focused on steady laminar convection flow. For 

ow in a two-dimensional square cavity, de Vahl Davis and Jones 

5] provided a set of benchmark solutions for the laminar regime 

 10 3 ≤ Ra ≤ 10 6 ) using the finite-difference method. Later, Quéré

9] used the pseudo-spectral method to solve the problem with 

ner meshes up to 128 × 128 . He provided solutions for the full 

ange of two-dimensional steady-state flow ( Ra ≤ 10 8 ). Beyond a 

ritical Ra, the two-dimensional natural convection flow becomes 

ime-dependent, the onset of the unsteadiness is affected by sev- 

ral controlling parameters. Using the finite-difference method, 

aolucci and Chenoweth [10] studied two-dimensional natural con- 

ection with Rayleigh number up to 10 10 in cavities of aspect 

atio near unity. They claimed that for cavity with aspect ratio 

 A = height/length) less than 

1 
2 or larger than 3, the primary in- 

tability takes place insides the boundary layer along the isother- 

al wall. However, for 1 
2 < A < 3 the instability first happens near 

he departing corners. Janssen and Henkes [11] performed two- 

imensional simulations in a differentially heated square cavity 

ith Prandtl number between 0.25 and 7.0. They found that for 

randtl number between 0.25 and 2.0, the flow exhibits peri- 

dic, quasi-periodic behaviors before becoming turbulent eventu- 

lly. While for larger Prandtl number, flow goes from steady to tur- 

ulent without intermediate transition. 

For an air-filled differentially heated square cavity with adia- 

atic horizontal walls, Quéré and Behnia [12] concluded that the 

ritical Rayleigh number for transition from steady to unsteady 

ow is Ra cr = 1 . 82 ± 0 . 01 × 10 8 , using a relatively coarse mesh res-

lution at 72 × 72 . They studied time-dependent flow up to Ra = 

 . 0 × 10 10 in 2D, based on the pseudo-spectral Chebyshev algo- 

ithm. Two-dimensional natural convection flow in a square cav- 

ty can be a good approximation of the flow at the mid-plane 

f the three-dimensional cubical cavity. As stated by Janssen and 

enkes [11] , the boundary layer along the heated wall of the cav- 

ty resembles those along the isothermal vertical plate. However, 

he introduction of the top wall of the cavity changes the flow 

tructure. The vertical boundary layer is turned horizontal and cre- 

tes a jet-like fluid layer which induces the first instability. When 

he Rayleigh number is further increased, the second instability 

akes place insides the boundary layer. Although there are numer- 

us studies about the boundary layer adjacent to an isothermally 

eated vertical surface [13,14] , the introduction of the horizontal 

alls restrains the free development of the vertical boundary layer. 

s the heat transfer is highly affected by the flow regime of the 

hermal boundary layer, in this study we will focus on absolute in- 

tability of thermal boundary layer, specifically, the flow transition 

nsides the boundary layers and its influence on the heat trans- 

er. In passing we note that Janssen and Armfield [15] studied con- 

ective instability due to externally imposed perturbations within 

he thermal boundary layer. The convective instability occurs at a 

uch smaller Rayleigh number than those at which the absolute 

nstability happens. 

As the turbulent convection flow must be essentially three- 

imensional in nature, researchers extended DNS to the three- 

imensional cavities based on previous two-dimensional studies. 
2 
allinson and de Vahl Davis [4] performed an early simulation 

f three-dimensional natural convection using the finite-difference 

ethod with relatively coarse meshes for the Rayleigh number 

ange 10 4 ≤ Ra ≤ 10 6 . Fusegi et al. [16] reported a finite-difference 

umerical study of three-dimensional natural convection in a cubi- 

al cavity for Rayleigh number range of 10 3 ≤ Ra ≤ 10 6 . Tric et al.

17] provided a set of benchmark solutions for 10 3 ≤ Ra ≤ 10 7 us- 

ng pseudo-spectral Chebyshev algorithm based on the projection- 

iffusion method. Fusegi et al. [18] reported benchmark results 

or Ra = 10 10 using 62 × 122 × 62 meshes. With the introduction 

f the lateral walls in the third direction, we expect the critical 

ayleigh number for the onset of unsteady convection will be af- 

ected by these lateral walls. Janssen and Henkes [19] studied the 

ransition to unsteady flow in the three-dimensional cavity with 

diabatic horizontal walls, and obtained the critical Ra between 

 . 5 × 10 8 and 3 × 10 8 by assuming symmetry so that they only 

erformed simulation on a quarter of the cavity. However, Labrosse 

t al. [20] claimed that transition happens at Ra = 3 . 19 × 10 7 with-

ut assuming symmetry. 

In the current study, we perform three-dimensional simula- 

ions in a cubical cavity with a Rayleigh number range far be- 

ond the critical Rayleigh number. This allows us to investigate 

he flow transition insides the boundary layer which is the sec- 

nd type of instability for this specific configuration. Another im- 

ortant research goal for natural convection is to predict the Nus- 

elt number of the heated wall which is desired for engineering 

pplications. Utilizing the numerical results for a large range of 

ayleigh number, researchers proposed Rayleigh - Nusselt corre- 

ations for the three-dimensional cubical enclosure. Fusegi et al. 

18] proposed an empirical correlation for the overall Nusselt 

umber Nu overall = 0 . 163 Ra 0 . 282 for 10 3 ≤ Ra ≤ 10 10 with relatively 

oarse mesh. Wang [21] , Wang et al. [22] reported the correlation 

u overall = 0 . 127 Ra 0 . 3052 for steady flow regime 10 3 ≤ Ra < 10 7 and 

u overall = 0 . 3408 Ra 0 . 241 for unsteady flow regime 10 7 ≤ Ra ≤ 10 10 . 

hile for the steady flow regime, the average Nusselt number re- 

ults are in good agreement, the results have noticeable differences 

n the unsteady flow regime. One reason for this disagreement is 

hat the high Rayleigh number convection requires fine mesh, and 

usegi used a relatively coarse mesh. For unsteady flow regime, the 

usselt - Rayleigh correlation still needs to be improved. 

In general, three-dimensional differentially-heated natural con- 

ection flow in a cavity has a unique flow structure rather differ- 

nt from the Rayleigh-Bénard problem. Driven by the buoyancy 

orce βg(T − T 0 ) along the vertical direction, thin boundary lay- 

rs develop along the isothermal walls, outside the boundary layer, 

he core region is quiescent and there is a vertical temperature 

tratification in the cavity center. In the previous studies, most re- 

earchers focused on general flow feature of the natural convection 

nd provided a set of time-averaged statistics [6,17,18] . Only a few 

f them paid attention to the transition from laminar to turbulent 

ow insides the boundary layer. Trias et al. [ 23–25 ] performed di- 

ect numerical simulations to a differentially heated cavity of as- 

ect ratio 4 up to Ra = 10 11 and provided a comparison between 

wo- and three-dimensional results for this problem. They claimed 

hat the thermal boundary layers of the three-dimensional flow 

emain laminar or quasi-laminar in the upstream parts, up to a 

oint where the eddies are ejected. This transition location moves 

urther upstream for 3D simulations, compared to 2D simulations. 

owever, for the cubical cavity, the influence of the top and bot- 

om wall is more significant. And based on the analysis of Paolucci 

nd Chenoweth [10] , the aspect ratio plays an important role in 

he development of flow instability, the instability mechanism of 

he cubic cavity is different from the tall cavity. 

The primary goal of the current work is to improve our un- 

erstanding of the transition from laminar to turbulent flow in- 

ide the vertical boundary layer in a differentially heated cubi- 
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Fig. 1. The geometry under consideration. 
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al cavity with adiabatic horizontal and lateral walls. In recent 

ears, the kinetic method (or mesoscopic CFD method based on the 

odel Boltzmann equation) has been developed and become a re- 

iable tool for thermal flow simulations [26–28] . The discrete uni- 

ed gas-kinetic scheme [29] is used for the current study. Compar- 

sons of performance in terms of accuracy, stability, and efficiency 

ave been done previously in Wang et al. [30,31] and Bo et al. 

32] . Wang et al. [30] compared DUGKS and LBM in the simula- 

ion of lid-driven cavity flow, laminar flow past a square cylinder. 

ang et al. [31] compared DUGKS, LBM, and spectral method in 

he simulation of decaying turbulent flows, Bo et al. [32] compared 

UGKS, LBM, and spectral method in the simulation of 3D Taylor- 

reen vortex flow and wall-bounded channel flows. In these stud- 

es, the second-order accuracy has been demonstrated. In terms of 

fficiency, DUGKS is slower than LBE in terms of updating the dis- 

ribution functions at the lattice nodes due to its additional evalua- 

ion of interface fluxes. However, as a finite volume scheme DUGKS 

an use a non-uniform mesh. As a result, if the non-uniform mesh 

an be clustered in the region with a large flow gradient, the ef- 

ciency of DUGKS can be better than LBM. The relative efficiency 

f DUGKS over LBM was discussed for the simulation of the flow 

assing the square cylinder in Wang et al. [30] and for turbulent 

hannel flow in Bo et al. [32] . Non-uniform meshes can be easily 

mplemented in this scheme and the boundary condition can be 

pplied right at the cell interface on the wall. However, accurate 

mplementation of temperature and velocity boundary conditions 

n the kinetic method remains a research topic, and here we will 

ropose an improved implementation that is consistent with the 

hapman-Enskog analysis. Different statistics will be used to spec- 

fy the transition location, and study the influence of flow transi- 

ion on the rate of heat transfer. 

The present paper is organized as follows. The physical problem 

escription and numerical method (DUGKS) are first presented in 

ection 2 . Numerical results are presented to address several physi- 

al aspects. In Section 3.3 we discuss the time evolution of velocity 

nd temperature of a set of selected monitoring points and their 

ower spectra. Averaged flow fields are presented in Section 3.4 , 

ollowed by secondary statistics in Section 3.5 . The effect of flow 

ransition on heat transfer is presented in Section 3.6 . Finally, a 

ummary is given in Section 4 . 

. Governing equations and numerical methods 

.1. Problem description and governing equations 

We consider an air-filled cubical cavity of height h, with an 

sothermal vertical hot wall at temperature T h = T 0 + 0 . 5�T on the

eft, and a cold wall at temperature T c = T 0 − 0 . 5�T on the right;

here the temperature difference �T = T h − T c and the mean tem- 

erature T 0 = (T h + T c ) / 2 . The other four walls ( i.e. , two other ver-

ical walls and two horizontal walls) are assumed to be adiabatic. 

o-slip velocity boundary conditions are imposed on all walls. Un- 

er the Boussinesq assumption, the fluid density is treated as a 

onstant except with two considerations: (1) the buoyancy force 

s retained due to density variation caused by temperature change 

nd (2) the volume expansion work in the thermal energy equation 

s retained under the ideal gas assumption Kundu et al. [33] . Fur- 

hermore, the viscous dissipation in the thermal energy equation 

s neglected as it is typically very small for the case of air under 

atural convection. The governing equations can then be written 

s 

 · u = 0 , (1a) 

∂ u + ρ( u · ∇ ) u = −∇p + ρν∇ 

2 u − ρβ(T − T 0 ) g , (1b) 

∂t 

3 
∂T 

∂t 
+ ( u · ∇ ) T = α∇ 

2 T , (1c) 

here u is the flow velocity, T is the temperature, ρ is the density 

t the mean temperature T 0 , g is the gravitational acceleration, p is 

 modified pressure including the effect of mean body force ρg , ν
s the kinematic viscosity, β is the thermal expansion coefficient, 

nd α is the thermal diffusivity. Under the above Boussinesq as- 

umption, the temperature field is treated as a scalar field which 

s advected by the macroscopic flow with a constant diffusion co- 

fficient. Nevertheless, the velocity field and the temperature field 

re closely coupled: the flow is driven by the temperature field 

hrough the buoyancy force, and at the same time the temperature 

eld is advected by the flow velocity. This coupling introduces an- 

ther level of nonlinearity in addition to the inertial term in the 

omentum equation. The coordinate system used is: x is the ver- 

ical direction, y is the horizontal direction perpendicular to the 

eated wall, and z is the spanwise direction. 

With the above setup and the simplified governing equations, 

he system is governed by the geometrical parameters (cavity 

eight h, cavity length l, cavity depth w, see Fig. 1 ), fluid properties

 ν, (βg) , α), the reference temperature T 0 , and driving temperature 

ifference �T . Note that the mean density can be absorbed into 

he pressure term thus it is not listed. Also (βg) is viewed as a sin-

le parameter as they appear together in the momentum equation. 

y dimensional analysis, it follows that the system is governed by 

he following five independent dimensional parameters 

a ≡ gβ�T h 

3 

να
, P r ≡ ν

α
, 

�T 

T 0 
, 

h 

l 
, 

h 

w 

(2) 

urthermore, it is assumed that �T /T 0 << 1 . With the two aspect 

atios h/l and h/w fixed to one here and the Prandtl number for 

ir given as P r = 0 . 71 , the only governing parameter remaining is

he Rayleigh number Ra, which can be interpreted as Ra = Re 2 
eff 

P r, 

here the effective Reynolds number is defined as Re eff ≡ u 0 h/ν, 

ith the buoyancy velocity defined as u 0 = 

√ 

β�T gh . 

We can now nondimensionalize all quantities in the governing 

quations by the length scale h, velocity scale u 0 , time scale h/u 0 ,

ressure scale ρu 2 
0 

and temperature scale �T . Since the tempera- 

ure equation is linear, a reference value can be subtracted, so we 

efine the normalized temperature as θ = (T − T 0 ) / �T . The gov- 

rning equations in the nondimensional form can then be written 

s 

 · ˆ u = 0 , (3a) 

∂ ̂  u 

∂ ̂  t 
+ 

(
ˆ u · ∇ 

)
ˆ u = −∇ ̂

 p + 

P r 1 / 2 

Ra 1 / 2 
∇ 

2 ˆ u + θe x , (3b) 

∂θ

ˆ 
+ 

(
ˆ u · ∇ 

)
θ = 

1 

P r 1 / 2 Ra 1 / 2 
∇ 

2 θ, (3c) 

∂ t 
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here ˆ u , ˆ p and 

ˆ t denote the normalized velocity, pressure and 

ime, respectively, e x is the unit vector pointing vertically upward. 

The initial state of the flow is set to be quiescent ˆ u = 0 and

sothermal θ = 0 . The velocity boundary condition is ˆ u = 0 on all 

alls, the thermal boundary conditions are: θ (y = 0) = 0 . 5 , θ (y =
) = −0 . 5 , and zero normal temperature gradient on the other four

alls. 

.2. Numerical method 

In the present work, we perform numerical simulations us- 

ng discrete unified gas-kinetic scheme (DUGKS), which is a re- 

ently developed finite-volume formulation of the model Boltz- 

ann equation by Guo et al. [29] , Wang et al. [34] . In this section,

e introduce the gas-kinetic model based on the Bhatnagar-Gross- 

rook (BGK) collision model in the incompressible limit and pro- 

ide a brief description of DUGKS algorithm. Corresponding to the 

overning equations, the gas-kinetic equations can be constructed 

s [35] : 

∂ f 

∂t 
+ ξ · ∇ x f + a · ∇ ξ f = 	 f ≡

f eq − f 

τν
, (4a) 

∂g 

∂t 
+ ξ · ∇ x g = 	g ≡ g eq − g 

τc 
, (4b) 

here f = f ( x , ξ, t) and g = g( x , ξ, t) are the distribution functions

or velocity and temperature, respectively. Both functions are for 

articles moving with velocity ξ at position x and time t . The 

wo equilibrium distributions f eq and g eq take the form of the 

axwellian equilibrium: 

f eq = 

ρ

( 2 πRT 1 ) 
D/ 2 

exp 

(
− ( ξ − u ) 2 

2 RT 1 

)
, (5a) 

 

eq = 

T 

( 2 πRT 2 ) 
D/ 2 

exp 

(
− ( ξ − u ) 2 

2 RT 2 

)
, (5b) 

here R is gas constant, D is the spatial dimension, T 1 and T 2 are

onstants determining the effective speed of the sound. The two 

elaxation times τν and τc are related to the viscosity ν = τνRT 1 
nd thermal conductivity κ = τc RT 2 . By modifying these two re- 

axation times, the Prandtl number P r = ν/κ can be adjusted. Un- 

er the Boussinesq approximation, the external force is given as 

 = gβ[ T − T 0 ] e x . 

In our simulation, in lattice units we set RT 1 = RT 2 = 10 and

 0 = 

√ 

βg�T h = 

√ 

0 . 1 so that the Mach number Ma = u 0 / 
√ 

RT is 

mall enough to satisfy the incompressible limit. The maximum lo- 

al Mach number in the simulation is around Ma max = u max / 
√ 

RT ≈
 . 25 for the high Rayleigh number cases. The time step in DUGKS 

s determined by the Courant-Friedrichs-Lewy (CFL) condition: 

t = CF L 
�x min 

ξmax 
(6) 

here CFL number is set to be 0.5 for all simulations, �x min is 

he minimal grid spacing and ξmax is the maximal discrete particle 

elocity. The hydrodynamic variables are computed by: 

= 

∫ 
f d ξ, ρu = 

∫ 
ξ f d ξ, T = 

∫ 
gd ξ. (7) 

One way to include the external force term is to merge the 

orce term into the collision term. The DUGKS can be constructed 

ased on two kinetic equations, we rewrite Eq. (4) as: 

∂φ + ξ · ∇ x φ = 	m 

≡ 	φ + F ext , (8) 

∂t 

4 
here φ = g or h, F ext = 0 for h distribution function. For the con- 

inuum flow regime, the Chapman-Enskog analysis implies that the 

xternal body force term F ext for f can be approximated as [26] : 

 ext = −a · ∇ ξ f ≈ −a · ∇ ξ f eq = 

a ·
(
ξ − u 

)
RT 1 

f eq . (9) 

As the DUGKS is a finite-volume scheme, the computational 

omain is divided into a set of control volumes. Integrating 

q. (8) over a control volume V j centered at x j from time t n to 

 n +1 . The divergence theorem is applied to the convection term to 

onvert the cell-volume integral to the cell-surface integral, then 

he midpoint rule is used to integrate the surface flux. 

1 

V j 

∫ ∫ t n +1 

t n 

ξ · ∇ x φ( x j , ξ, t n ) d td V 

= 

1 

V j 

∫ t n +1 

t n 

∫ 
∂V j 

( ξ · n ) φ( x j , ξ, t n ) d sd t 

= 

�t 

V j 

∫ 
∂V j 

( ξ · n ) φ( x j , ξ, t n +1 / 2 ) ds (10) 

he collision term is treated by the trapezoidal rule. The evolution 

quation for the velocity distribution can be written as: 

˜ ( x j , ξ, t n +1 ) = 

˜ φ+ ( x j , ξ, t n ) − �t 

| V j | F φ( x b , ξ, t n +1 / 2 ) , (11)

here ˜ φ( x j , ξ, t n +1 ) and 

˜ φ+ ( x j , ξ, t n ) are auxiliary distribution

unctions introduced to remove implicity: 

˜ = φ − �t 

2 

	m 

, ˜ φ+ = φ + 

�t 

2 

	m 

. (12) 

The microscopic flux F φ( x b , ξ, t n +1 / 2 ) across the cell interface x b 
t the half time step t n +1 / 2 is defined as: 

 φ( x b , ξ, t n +1 / 2 ) = 

∑ 

( ξ · n ) φ( x b , ξ, t n +1 / 2 ) d S , (13)

here φ( x b , ξ, t n +1 / 2 ) is distribution function at cell interface x b 
nd half time step t n +1 / 2 . Since the auxiliary distributions are re- 

ated to the original distribution function φ and equilibrium φeq , 

he conservative flow variables can be computed from 

˜ φ directly. 

hus we can track the evolution of the distribution function 

˜ φ in- 

tead of original distribution function φ. 

The key point of updating evolution equation Eq. (11) is to eval- 

ate the net flux F φ( x b , ξ, t n +1 / 2 ) properly, which requires the re-

onstruction of the original distribution function φ( x b , ξ, t n +1 / 2 ) . 

q. (8) is integrated along characteristic line with the end point 

 x b ) from t n to t n + h (h = �t/ 2) , and the trapezoidal rule is ap-

lied to the collision term, 

( x b , ξ, t n + h ) − φ( x b − ξh, ξ, t n ) 

= 

h 

2 

[
	m 

( x b , ξ, t n + h ) + 	m 

( x b − ξh, ξ, t n ) 
]
. (14) 

In order to remove the implicity of Eq. (14) , a second set of 

uxiliary distribution functions are defined as: 

¯ = φ − h 

2 

	m 

, φ̄+ = φ + 

h 

2 

	m 

. (15) 

With these two auxiliary distribution functions φ̄ and φ̄+ , we 

pply Taylor expansion around the cell interface x b and at time t n , 

he Eq. (14) can be rewritten as: 

¯ ( x b , ξ, t n + h ) = φ̄+ ( x b , ξ, t n ) − h ξ · ∇ x φ̄
+ ( x b , ξ, t n ) . (16)

Eq. (16) is totally explicit, φ̄+ ( x b , ξ, t n ) and ∇ x φ̄+ ( x , ξ, t n ) can

e expressed in terms of the values at the cell center by appro- 

riate reconstruction method. The density and velocity at cell in- 

erface at half time step can be obtained from φ̄( x b , ξ, t n + h ) , then

he equilibrium function φeq ( x , ξ, t n + h ) can be evaluated. Finally,
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m  
ased on Eqs. (15) and (16) , the original distribution function at 

ell interface x b at time t n + h ca be obtained by: 

( x b , ξ, t n + h ) = 

2 τφ

2 τφ + h 

φ̄( x b , ξ, t n + h ) 

+ 

h 

2 τφ + h 

φeq ( x b , ξ, t n + h ) + 

τφh 

2 τφ + h 

F ext . (17) 

This original distribution function at half time step φ( x b , ξ, t n + 

 ) can be used to evaluate the net flux F φ( x b , ξ, t n +1 / 2 ) in Eq. (13) .

hen the net flux can be used in Eq. (11) to update ˜ φ. In the

ormulations above, we have one original distribution function φ
nd four auxiliary distribution functions ˜ φ, ˜ φ+ , φ̄ and φ̄+ . Con- 

ervative flow variables can be computed from any one of them, 

he most convenient way is to track the evolution of ˜ φ. The hy- 

rodynamic variable can be obtained as ρ = 

∫ 
˜ f d ξ, ρu = 

∫ 
ξ ˜ f d ξ + 

�t 
2 ρa , T = 

∫ 
˜ g d ξ. 

It is worth noting that, as pointed out by Wang et al. [34] , for

UGKS the non-uniform meshes can be easily employed without 

dditional effort. Non-unif orm meshes allow us to use finer mesh 

ear the boundary to resolve the steep gradients of temperature 

nd velocity especially near the cavity walls. Our 3D flow code has 

een parallelized using 2D domain decomposition in the y and z

irections and MPI (Message Passing Interface) [32] . In the present 

tudy, the D3Q19 model is employed for the discretization of the 

article velocity space, 

α = 

⎧ ⎨ 

⎩ 

(0 , 0 , 0) c, α = 0 , 

(±1 , 0 , 0) c, (0 , ±1 , 0) c, (0 , 0 , ±1) c, α = 1 − 6 , 

(±1 , ±1 , 0) c, (±1 , 0 ± 1) c, (0 ± 1 , ±1) c, α = 7 − 18 , 

(18) 

here c = 

√ 

3 RT , and the corresponding weighting coefficient are 

 0 = 1 / 3 , W 1 −6 = 1 / 18 and W 7 −18 = 1 / 36 . 

.3. Boundary treatment 

For a wall-bounded thermal flow, it is crucial to implement the 

ppropriate kinetic boundary conditions for the discrete distribu- 

ion functions at the solid wall. One advantage of DUGKS is that 

e can apply boundary treatment right at the wall interface nodes 

hich lie exactly on the solid wall. In DUGKS, the microscopic flux 

s calculated at the cell interface x b at the half time step t n + h .

e need to apply the boundary condition for the distribution func- 

ion f̄ 
(
x w 

, ξ, t n + h 
)
, where x w 

is the location of the solid wall. It 

s important to point out that the boundary treatment should be 

onsistent with the Chapman-Enskog approximation which is the 

asis for deriving the hydrodynamic equations. The incompressible 

avier-Stokes equation can be recovered with the Chapman-Enskog 

xpansion of the distribution function to the order of O (τν ) . To be 

onsistent with the Navier-Stokes equations, the boundary treat- 

ent should also retain the terms of the order O(τν ) . For the fixed

o-slip wall, we apply the bounce-back rule which assuming that 

he particle just reverses its velocity after hitting the wall: 

f 
(
x w 

, ξα, t n + h 

)
= f 

(
x w 

, −ξα, t n + h 

)
+ O(τ 2 

ν , Ma 3 ) , ξα · n > 0 ,

(19) 

here n is the unit vector normal to the wall pointing to the fluid 

ell. The corresponding boundary condition for f̄ 
(
x w 

, ξ, t n + h 
)

can 

e derived through Eq. (15) . The ‘bounce-back’ expression above is 

idely used for the fixed no-slip wall, and it can be shown that it 

s fully consistent with the Chapman-Enskog analysis, namely, all 

erms of the order O(τν ) disappear due to the zero velocity on the 

all. 

However, the situation for the thermal boundary conditions is 

omewhat more complicated. There are two types of boundary 
5 
onditions in our problem: adiabatic walls with zero heat flux and 

sothermal walls with a fixed temperature. For adiabatic walls, the 

eumann boundary condition can be achieved by: 

 

(
x w 

, ξα, t n + h 

)
= g 

(
x w 

, −ξα, t n + h 

)
+ 2 τc W αξa,i 

(
T 1 
T 2 

T w 

ρw 

∂ρw 

∂x i 
− a i T w 

RT 2 
− ∂T w 

∂x i 

)

+ O(τ 2 
c , Ma 3 ) , ξα · n > 0 . (20) 

here ρ, T , and temperature gradients in the tangential directions 

an be approximated by their respective values from the last time 

tep and the temperature gradient in the wall normal direction is 

et to zero. The error introduced by the approximation is of the 

rder O(τc �t) , which is typically less than O(�t 2 ) and thus is 

cceptable. 

While for the isothermal walls, the distribution function leaving 

he wall should be constructed as: 

 

(
x w 

, ξα, t n + h 

)
= −g 

(
x w 

, −ξα, t n + h 

)
+ 2 W αT w 

[
1 + τc 

(
∂u j 

∂x j 
− ξa,i ξa, j 

RT 2 

∂u i 

∂x j 

)]

+ O(τ 2 
c , Ma 3 ) , ξα · n > 0 . (21) 

here again the velocity at the last time step can be used to evalu- 

te the velocity gradient. Most previous works neglected all O(τc ) 

erms for the thermal boundary conditions, this could result in in- 

ccurate heat fluxes at the wall, especially in view of large vari- 

tions of velocity and temperature near the wall and around the 

orners in our problem. The above Chapman-Enskog approxima- 

ions of the thermal boundary conditions are derived in detail in 

ection Appendix A . 

. Results and discussions 

This section will be divided into six parts. We first verify the 

ode and compare our results with results from the literature. In 

rder to elucidate the flow transition inside the vertical boundary 

ayer, we simulate the natural convection flow at three different 

ayleigh numbers: Ra = 1 . 5 × 10 9 , Ra = 1 . 0 × 10 10 , Ra = 1 . 0 × 10 11 .

hese Rayleigh numbers are beyond the critical Rayleigh number 

a cr = 3 . 19 × 10 7 for the current configuration [20] . Beyond the

ritical Rayleigh number, the flow becomes time-dependent and 

he first instability starts to appear in the detached regions (left 

pper corner and right bottom corner). The high Rayleigh num- 

ers we used allow us to observe the second instability inside 

he boundary layers along the isothermal walls. The time-averaged 

sotherms and instantaneous fluctuation velocity contours are used 

o display the overall flow structures. The time traces of velocity 

nd temperature inside the vertical boundary layer are used to il- 

ustrate the nature of fluctuations. Then we examine the averaged 

ow field at different vertical locations of the cavity. Statistics of 

uctuation fields are also presented. Finally, The heat transfer rates 

t upstream and downstream in the thermal boundary layer are 

nalyzed. 

.1. Code verification and computational cases 

Before considering high Rayleigh number cases, the three- 

imensional code is tested at Ra = 1 . 0 × 10 7 by comparing with

hree-dimensional spectral results of Tric et al. [17] . We apply non- 

niform grids in all three directions to guarantee that the steep 

radient near the wall can be resolved. Table 1 summarizes the re- 

ults of time-averaged overall Nusselt number Nu o at hot wall and 

aximum flow velocities in three directions at Ra = 1 . 0 × 10 7 . It
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Table 1 

Comparison of our simulation results with the reference results for a cubical cavity 

at Ra = 1 . 0 × 10 7 . 

Ra = 10 7 Spatial resolution Nu o ˆ u max ˆ v max ˆ w max 

Present 128 × 128 × 128 16.234 0.2863 0.1428 0.0308 

Tric et al. [17] 81 × 81 × 81 16.342 0.2882 0.1440 0.0313 

Rel. error (%) 0.661 0.601 0.379 0.158 

Fig. 2. Time-averaged overall Nusselt number at hot wall as a function of resolution 

for three Rayleigh numbers: Ra = 1 . 5 × 10 9 , Ra = 1 . 0 × 10 10 , Ra = 1 . 0 × 10 11 . 
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Fig. 4. Flow monitor for Ra = 1 . 5 × 10 9 . 
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an be observed that the present results agree well with the refer- 

nce results. The largest relative error | � ˆ u max | 
u 0 

is less than 1% . More 

ode verification simulation cases are shown in Appendix A . 

Regarding the numerical setup, the entire cubic cavity con- 

titutes the full computational domain, Table 2 tabulates the 

tretched meshes and the non-dimensional time step size of three 

ases. In order to resolve steep gradient of velocity and tempera- 

ure near the wall, non-uniform meshes are introduced in three di- 

ections. For a set of stretched meshes with N grid points in each 

irection, the location of the cell interface x b (i ) is given by: 

 b (i ) = 

1 

2 

[
1 + 

tanh [ S(i/N − 0 . 5)] 

tanh (S/ 2) 

]
, i = 0 , 1 , 2 , ..., N, (22)
ig. 3. The temperature θ and the vertical velocity ˆ u profiles at the mid-plane z = 0 . 5 h

 = 320 (II). 

6 
here S is the parameter used to alter the degree of non- 

niformity, S is set to be 3 for all simulation cases. Then the lo- 

ation of the cell center can be obtained by x (i ) = [ x b (i ) + x b (i +
)] / 2 . To guarantee the resolution is fine enough to resolve the 

teep gradient near the wall, we use two-dimensional convection 

ow to perform the convergence study. As claimed by Trias et al. 

23] , two-dimensional natural convection in a square cavity is a 

ood approximation of the flow at the mid-plane of the three- 

imensional cubical cavity. Fig. 2 displays the overall Nusselt num- 

er at the hot wall as a function of resolution. In each case, the 

ime-averaged overall Nusselt number converges to a certain value 

ith the increase of the resolution. As the three-dimensional sim- 

lations require large computational resources, the resolutions we 

mploy represent a reasonable compromise between accuracy and 

omputational cost. In particular, the convergence for the Ra = 

 . 0 × 10 11 case is not fully achieved. Besides, an increased spa- 

ial resolution will result in a smaller time step due to the CFL 

ondition �t = CF L 
�x min 
ξmax 

, this will further increase the computa- 

ional cost. Even though the resolution we used is a compromise, 

here are over 10 nodes insides the temperature and the velocity 

oundary layers. This satisfies the requirement of grid resolution 

or capturing the universal structure of the boundary layer accord- 

ng to Grötzbach [36] but not yet reaches the standard proposed 

y Shishkina et al. [37] , both for the Rayleigh-Bénard setting. Ac- 
 and mid height x = 0 . 5 h at Ra = 1 . 0 × 10 10 with the resolutions N = 200 (I) and 
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Fig. 5. Time-averaged temperature field θ̄ for: (a ) Ra = 1 . 5 × 10 9 ; (b) Ra = 1 . 0 × 10 10 . 

Fig. 6. Contour plot of instantaneous fluctuating vertical velocity ˆ u ′ = 

u −u 
u 0 

(top) and horizontal velocity ̂  v ′ = 

v −v 
u 0 

(bottom) for three Rayleigh numbers: (a )(b) Ra = 1 . 5 × 10 9 , 

(c)(d) Ra = 1 . 0 × 10 10 , (e )( f ) Ra = 1 . 0 × 10 11 . 

7 
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Fig. 7. Time traces of temperature at monitoring points in 9 vertical locations, x/h = 0 . 1 to 0.9 with increment of 0.1, at (a) Ra = 1 . 5 × 10 9 , (b) Ra = 1 . 0 × 10 10 , (c) Ra = 

1 . 0 × 10 11 . 
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c

ording to the scaling of laminar thermal boundary layer thickness, 

e propose that the value of ( Ra 1 / 4 · �x min /l) should be less than

 given threshold. Table 2 tabulates the value Ra 1 / 4 · �x min /l for 

ach case. Since the case of Ra = 1 . 5 × 10 9 is shown to be well

esolved, we could use the condition of Ra 1 / 4 · �x min /l ≤ 0 . 30 as

he resolution requirement for Ra = 1 . 0 × 10 10 and Ra = 1 . 0 × 10 11 

ases. Two resolutions ( N = 200 and N = 320 ) are used to simu-

ate the Ra = 1 . 0 × 10 10 case for some additional grid sensitivity

tudy. Fig. 3 shows the time-averaged temperature θ and vertical 

elocity ˆ u profiles for the case Ra = 1 . 0 × 10 10 with two resolutions

 = 200 and 320. The result shows that the boundary layer thick- 

ess is nicely captured by both resolutions. In the following sec- 

ions, the results of the case Ra = 1 . 0 × 10 10 are obtained with the

 = 200 resolution unless otherwise mentioned. The resolution of 

he highest Rayleigh number case ( Ra = 1 . 0 × 10 11 ) does not meet

he requirement, and as such the accuracy of results for this case 

hould be taken with caution. 

.2. Overall flow structures 

Before a detailed analysis of the boundary layer, we first 

resent the overall structures of the flow. All statistics used in 

he following analysis are obtained after the flow reaches the 

uasi-steady or statistically stationary stage. The development of 

he flow is tracked by a few spatially-averaged flow monitors 

 ̂  u 2 , ̂  v 2 , ˆ w 

2 , p , p rms , T , T rms ). For example, Fig. 4 shows the spatial-

veraged flow statistics for the case Ra = 1 . 5 × 10 9 , as a function

f time. This shows that different quantities took different times 
8 
o reach the stationary stage. After ˆ t = 300 , all the monitoring 

tatistics reach the stationary stage. The statistics used for analy- 

is are averaged over 75 eddy turn-over times after ˆ t = 300 . The 

ode was run on the National Center for Atmospheric Research’s 

NCAR-Wyoming) Supercomputer, known as Cheyenne, equipped 

ith 2.3-GHz Intel Xeon E5-2697V4 processors. The computational 

omain are decomposed in the y and z direction, 400 processors 

re employed for the case Ra = 1 . 5 × 10 9 . The wall clock time per

tep is 9 . 56 × 10 −2 s, and it takes 9 . 5 × 10 6 time steps to reach
ˆ 
 ≈ 300 . For the case Ra = 1 . 0 × 10 10 with N = 200 resolution, the

all clock time per step is the same with the case Ra = 1 . 5 × 10 9 .

or the case Ra = 1 . 0 × 10 11 , 1024 processors are used and the wall

lock time per step is 1 . 83 × 10 −1 s, and 1 . 5 × 10 7 time steps are

eeded to reach 

ˆ t ≈ 300 . Fig. 5 shows the time-averaged temper- 

ture field θ̄ at the mid-plane (z = 0 . 5) of the cavity, when the

ow reaches the statistically stationary stage. Generally speaking, 

he time-averaged isotherms is asymmetric about the cavity center, 

xtremely thin boundary layers are developed along the isother- 

al wall. With the increase of the Rayleigh number, the boundary 

hickness becomes smaller. 

For these high Rayleigh numbers, the flow is unsteady and fluc- 

uates in time. Fig. 6 shows the instantaneous velocity fluctuation 

eld 

ˆ u 

′ = 

u −ū 
u 0 

at three Rayleigh numbers after flow reaches the 

tationary stage. The cavity center is no longer steady and now 

uctuates in time. The vortices are generated at the downstream 

f the boundary layers and are shed from the upper corner on the 

eated wall. The size of the vortices becomes smaller with the in- 

rease of the Rayleigh numbers. 
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Fig. 8. Time trace of velocity at monitoring points x = 0 . 1 h ∼ x = 0 . 9 h at (a) Ra = 1 . 5 × 10 9 , (b) Ra = 1 . 0 × 10 10 , (c) Ra = 1 . 0 × 10 11 . 
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.3. Time traces of the temperature and velocity 

Driven by the buoyancy force, the flow gradually develops from 

aminar to turbulent flow along the vertical boundary layer adja- 

ent to two isothermal walls. The upstream part is usually lami- 

ar, and up to a point after which the flow becomes turbulent. As 

he velocity signals of laminar and turbulent flow are evidentially 

ifferent, we track the time traces of the temperature and veloc- 

ty inside the vertical boundary layer along the hot wall. Firstly, 

e need to ensure the monitoring points are located inside the 

oundary layer. Based on the time-averaged temperature and ve- 

ocity profile at nine different vertical locations ( x = 0 . 1 h − 0 . 9 h ),

or temperature evolution, a set of monitoring points are cho- 

en at the mid-plane ( z = 0 . 5 h ), as a y location where T (x, y, z =
 . 5 h ) = 

T h + T ∞ 

(x,z=0 . 5 h ) 
2 , T ∞ 

(x, z = 0 . 5 h ) is the temperature outside

he boundary layer at the given x level. Due to temperature strati- 

cation in the core region, T ∞ 

(x ) changes with the vertical location 

 . For the velocity trace, the monitoring points are at the location 

here u = u max at that height. In this way, we can guarantee that

ll the monitoring points are located inside the boundary layer. 

The time traces of temperature and velocity at 9 monitoring 

oints for each of the three different Rayleigh numbers are shown 

n Figs. 7 and 8 . All the time traces are obtained after the flow

eaches the stationary stage. From the plots, we can observe that 

he upstream region with time-independent behavior is from x = 0 

o x = 0 . 7 h for the cases Ra = 1 . 5 × 10 9 and 1 . 0 × 10 10 ; but for

a = 1 . 0 × 10 11 the upstream region is reduced to the region from

 = 0 to x = 0 . 6 h, roughly speaking. For the cases Ra = 1 . 5 × 10 9 

nd 1 . 0 × 10 10 the flow is laminar and steady in the upstream

egion, while for Ra = 1 . 0 × 10 11 it is laminar and unsteady. In

ontrast, the temperature and velocity of the downstream fluctu- 
o

9 
te over time, and the fluctuation amplitude and the frequency 

ange increase with Ra . Similar fluctuation behaviors of the ve- 

ocity and temperature in the downstream region are reported by 

in and Quéré [38] for vertical boundary layer at the hot wall of 

 two-dimensional differentially heated cavity of aspect ratio at 

. Based on the time traces of ˆ u velocity for Ra = 1 . 0 × 10 10 and

a = 1 . 0 × 10 11 , Table 3 tabulates the partition of energy in the

ean and in the fluctuating motion. The ratio is negligible in the 

pstream for both Rayleigh numbers, while in the downstream re- 

ion more kinetic energy participates in fluctuation. Especially for 

he Rayleigh number Ra = 1 . 0 × 10 11 , the relative partition of fluc-

uation energy at the height x = 0 . 9 h is more than 14% . 

To investigate the fluctuation frequency of the velocity and tem- 

erature insides boundary layer, we provide the spectra of velocity 

uctuation 

u ′ ( ̂ f ) 
u 0 

(u ′ = u − ū ) and temperature fluctuation θ ′ ( ̂  f ) in 

he Figs. 9 and 10 . The spectra are obtained from time trace signals

panning over a time duration of approximately 70 h/u 0 for the two 

ower Rayleigh number cases, and 100 h/u 0 for the Ra = 1 . 0 × 10 11 .

hree locations are selected to show the transition of the velocity: 

 = 0 . 2 h near the starting point of the upstream, x = 0 . 5 h at the

id-height, and x = 0 . 9 h at the downstream. As the temperature 

ime trace is similar to the velocity time trace, we only provide 

he spectra of temperature θ ′ ( ̂  f ) for the location x = 0 . 9 h . For two

ocations at the upstream, the spectral magnitudes are relatively 

mall and the velocity spectra are dominated by low-frequency os- 

illations. It is also noted that the magnitude of the spectra for 

he location x = 0 . 2 h is very small, especially for the cases Ra =
 . 5 × 10 9 and Ra = 1 . 0 × 10 10 , the oscillations in the upstream are

egligible. While for the upstream, energy concentrates near the 

ean mode ( ̂  f = 0 ), the downstream velocity fluctuation spreads 

ut into the high-frequency region. As pointed out by Janssen and 
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Fig. 9. Spectra of velocity fluctuation ˆ u ′ ( ̂ f ) at three monitoring points. From top to bottom: (a) (b) (c) for Ra = 1 . 5 × 10 9 ; (d) (e) (f) for Ra = 1 . 0 × 10 10 ; (g) (h) (i) for 

Ra = 1 . 0 × 10 11 . 

Table 2 

The non-uniform meshes used for the simulations. 

Ra Spatial resolution �x min 

l 
Ra 

1 
4 · �x min 

l 
�x max 

�x min 

u 0 �t 
h 

1 . 5 × 10 9 200 × 200 × 200 1 . 52 × 10 −3 0.299 5.4587 3 . 1623 × 10 −5 

1 . 0 × 10 10 [I] 200 × 200 × 200 1 . 52 × 10 −3 0.481 5.4587 3 . 1623 × 10 −5 

1 . 0 × 10 10 [II] 320 × 320 × 320 9 . 44 × 10 −4 0.299 5.4869 1 . 9764 × 10 −5 

1 . 0 × 10 11 320 × 320 × 320 9 . 44 × 10 −4 0.531 5.4869 1 . 9764 × 10 −5 

Table 3 

Relative partition of energy ˆ u ′ 2 
ˆ u 2 

in the mean and in the fluctuation (%). 

Ra 0 . 1 h 0 . 2 h 0 . 3 h 0 . 4 h 0 . 5 h 0 . 6 h 0 . 7 h 0 . 8 h 0 . 9 h 

1 . 0 × 10 10 1.1088e-4 2.0790e-4 8.6940e-4 7.2612e-4 5.0661e-4 7.1279e-4 0.0286 0.7535 0.9667 

1 . 0 × 10 11 0.0022 0.0053 0.0087 0.0123 0.0403 0.0689 0.6112 3.9789 14.1829 
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t
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s
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s

p

t  

F  
enkes [11] , the time-periodic flow is characterized by the phe- 

omenon that the power spectra of the velocity show a peak at 

 single frequency; and the quasi-periodic flow shows at lease 

wo spikes (two fundamental frequencies and the linear combina- 

ion of the fundamental spike) at two frequencies in their power 

pectra; while turbulent flow has a broadband power spectra. The 

eak frequency at the x = 0 . 9 h of the case Ra = 1 . 5 × 10 9 is around
10 
ˆ f = 0 . 8 , this agrees well with the two-dimensional results of the 

anssen and Henkes [11] . They obtain the peak frequency around 

ˆ f = 0 . 8 at Ra = 7 . 5 × 10 8 from the temperature time trace at the

ame height. This non-dimensional peak frequency of ˆ f = 0 . 8 com- 

ares well with the period of about 1.21 observed in time trace of 

he temperature and the velocity as shown in Figs. 7 (a ) and 8 (a ) .

rom the spectra at the location x = 0 . 9 h for three Rayleigh num-
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Fig. 10. Spectra of temperature fluctuation θ ′ ( ̂ f ) at monitoring points x = 0 . 9 h . For (a) Ra = 1 . 5 × 10 9 , (b) Ra = 1 . 0 × 10 10 , (c) Ra = 1 . 0 × 10 11 . 

Fig. 11. ( a ) Time-averaged temperature, ( b) Vertical velocity profiles in the mid-plane z = 0 . 5 h at x = 0 . 1 h ∼ x = 0 . 9 h, Ra = 1 . 5 × 10 9 (black line), Ra = 1 . 0 × 10 10 (red dash 

line), Ra = 1 . 0 × 10 11 (blue dash line). The purple squares in ( b) are experimental data of Salat et al. [6] at Ra = 1 . 5 × 10 9 . (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

11 
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Fig. 12. ( a ) Temperature profiles with abscissa scaled by Ra 1 / 4 , and ( b) vertical velocity profiles with abscissa scaled by Ra 1 / 4 in the mid-plane z = 0 . 5 h at x = 0 . 1 h ∼ x = 0 . 9 h, 

Ra = 1 . 5 × 10 9 (black line), Ra = 1 . 0 × 10 10 (red dash line), Ra = 1 . 0 × 10 11 (blue dash line). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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ers, we can observe that the two lower Ra cases are characterized 

y spectra with spikes at two fundamental frequencies plus spikes 

t linear combinations of the fundamental frequencies which in- 

icate the flow is quasi-periodic; and the case Ra = 1 . 0 × 10 11 has

roadband spectra instead of the specific peaks at a certain fre- 

uency. The spectra of the location x = 0 . 5 h for Ra = 1 . 0 × 10 11 

s characterized by a single spike at low-frequency and this phe- 

omenon shows the flow in this location is periodic. In the case 

f Ra = 1 . 0 × 10 11 , the frequency spectrum of the velocity fluctu-

tions Fig. 9 (i) appears to decay exponentially, similar to the dis- 

ipation range of high-Reynolds number turbulence, the frequency 

pectrum of the temperature fluctuations Fig. 10 (c) exhibits a more 

omplex shape implying perhaps different structures of tempera- 

ure fluctuations compared to the velocity fluctuations. From the 

nalysis above we can observe that insides the boundary layer, the 

pstream part remains laminar until when the local flow starts to 
g  

12 
hed vortices to produce quasi-periodic or turbulent flow down- 

tream. With the increase of the Rayleigh number, the downstream 

f the boundary layer becomes turbulent eventually. 

.4. Averaged flow field 

The time-averaged temperature and vertical velocity profiles at 

he mid-plane are displayed in Fig. 11 . As shown in Fig. 11 (a ) and

b) , both the thicknesses of velocity and thermal boundary in- 

rease with increasing distance from the starting location of the 

oundary layer. At the same height, with the increase of Ra, the 

hickness of boundary layer becomes smaller and the vertical ve- 

ocity peak moves towards the wall. And at mid-height x = 0 . 5 h,

ur results agree well with the experimental results of Salat et al. 

6] . Corresponding to the thinner boundary layer, the temperature 

radient near the boundary becomes larger at higher Ra . Fig. 12 ( a )
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Fig. 13. Averaged turbulent fluctuation statistics from top to bottom: ˆ u rms , ˆ v rms , − ˆ u ′ ˆ v ′ × 10 4 . Left: Ra = 1 . 5 × 10 9 , middle: Ra = 1 . 0 × 10 10 , right: Ra = 1 . 0 × 10 11 . 
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nd ( b) show the time averaged temperature and velocity profiles 

ith the abscissa scaled by the laminar scaling factor Ra 1 / 4 [1] . For 

he upstream part ( x = 0 to x = 0 . 7 h ), almost identical temperature

nd velocity profiles are obtained after the scaling. Similar results 

re reported by Trias et al. [23] . Discrepancies occur only in down- 

tream part, and the differences start to appear at the point where 

emperature and velocity start to fluctuate and reach its maximum 

round x = 0 . 8 h . This observation again confirms that for the Ra

ange being studied, the major part ( x = 0 − 0 . 7 h ) of the vertical

oundary layer is still laminar, and the transition from the lami- 

ar to time-dependent turbulent flow happens around the height 

 = 0 . 7 h . 

.5. Turbulent fluctuation statistics 

Turbulent fluctuation statistics ( ̂  u rms , ˆ v rms , − ˆ u ′ ˆ v ′ ) of the mid- 

lane z = 0 . 5 h are displayed in Fig. 13 . As the flow is dominated
13 
y vertical velocity ˆ u and horizontal velocity ˆ v , we measure the 

eynolds stress − ˆ u ′ ˆ v ′ . It should be noted that the velocity ˆ w in the 

ateral direction is almost one order of magnitude lower than ˆ u , ˆ v . 
or Ra = 1 . 5 × 10 9 and 1 . 0 × 10 10 , the active turbulence is located

t left top and bottom right corners indicating regions for the first 

ccurrence of turbulence. For these two Rayleigh numbers, the tur- 

ulent fluctuation statistics start to be significant at the height x = 

 . 7 h . Outside the boundary layer, all turbulent statistics are almost 

ero. For Ra = 1 . 0 × 10 11 , the distribution of turbulent fluctuation 

tatistics are more complex than the lower Ra cases. Small fluctu- 

tions exist in the core region, the high value region of turbulent 

uctuation statistics still concentrates in the downstream corners. 

nd the transition point moves upstream, the significant turbulent 

uctuations appear around the height x = 0 . 65 h . From this local

istribution of the turbulence statistics, we can clearly observe that 

or the lower two Ra cases, the core region and upstream of the 

ertical boundary are still laminar, the turbulent fluctuations are 
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Table 4 

Time-averaged mean Nusselt number and Nu − Ra correlations. 

Ra Nu o 
Nu o 

Ra 1 / 4 
Nu o 

Ra 1 / 3 
Nu up 

Nu up 

Ra 1 / 4 
Nu down 

Nu down 

Ra 1 / 4 
Nu down 

Ra 1 / 3 

1 . 5 × 10 9 58.08 0.2953 0.0508 73.30 0.3725 22.65 0.1151 0.0198 

Fusegi et al. [18] 63.07 0.3205 0.0551 

Wang et al. [22] ( 1 . 0 × 10 9 ) 52.08 0.2929 0.0521 

1 . 0 × 10 10 [I] 89.29 0.2824 0.0414 112.1 0.3545 36.05 0.1140 0.0167 

1 . 0 × 10 10 [II] 94.21 0.2979 0.0437 134.1 0.4240 35.91 0.1135 0.0167 

Fusegi et al. [18] 107.7 0.3406 0.0500 

Wang et al. [22] 89.2 0.2821 0.0414 

1 . 0 × 10 11 154.6 0.2750 0.0333 217.6 0.3870 62.59 0.1113 0.0135 
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Fig. 14. Time averaged overall Nusselt number for the Rayleigh number range: 

10 3 ≤ Ra ≤ 10 11 . The two data points at Ra = 1 . 0 × 10 10 case represent results from 

two resolutions, as shown in Table 2 , with the higher resolution giving a higher Nu 

value. 
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nly significant in the downstream corners. It is suggested that for 

a = 1 . 5 × 10 9 and 1 . 0 × 10 10 , the flow is only weakly turbulent as

ointed out by Salat et al. [6] . For Ra = 1 . 0 × 10 11 , the fluctuations

xist in the whole domain, but the high value of turbulent statis- 

ics concentrate in the downstream corners, and the flow becomes 

urbulent. To the authors’ knowledge, Ra = 1 . 0 × 10 11 is the highest

a reported for three dimensional natural convection in a differen- 

ially heated cubical cavity with adiabatic horizontal walls. 

.6. Heat transfer 

From the averaged flow field we can clearly observe that the 

hickness of the boundary layer becomes smaller with the increase 

f Ra, and thinner boundary layer leads to larger temperature gra- 

ient near the boundary. Steep temperature gradient intensifies the 

eat transfer near the boundary. Mean Nusselt number Nu o at hot 

all is defined as: 

u o = 

1 

h �T 

∫ h 

0 

∫ h 

0 

∂T (x, z) 

∂y 

∣∣∣
y =0 

d xd z = 

∫ 1 

0 

∫ 1 

0 

∂θ ( ̂  x , ̂  z ) 

∂ ̂  y 

∣∣∣
ˆ y =0 

d ̂  x d ̂  z 

(23) 

Table 4 shows time-averaged mean Nusselt number Nu o at the 

ot wall for three different Rayleigh numbers. Our results are in 

xcellent agreement with Wang et al. [22] . It should be noted 

hat the Nu − Ra correlation reported by Wang et al. [22] was 

iven in two Ra ranges respectively ( Nu o = 0 . 127 Ra 0 . 3052 for 10 3 ≤
a ≤ 10 7 ; Nu o = 0 . 3408 Ra 0 . 241 for 10 7 ≤ Ra ≤ 10 10 ), while Fusegi

t al. [18] proposed Rayleigh-Nusselt dependence in one correla- 

ion ( Nu o = 0 . 163 Ra 0 . 282 for 10 3 ≤ Ra ≤ 10 10 ). And the resolution

sed by Wang et al. [22] is relatively finer than Fusegi et al. [18] .

n the current study, we evaluate the time-averaged overall Nus- 

elt number for the Rayleigh range 10 3 ≤ Ra ≤ 10 11 as shown in 

ig. 14 . In the steady regime, our results agree well with both ref-

rence fitting. In the unsteady flow regime, the thermal bound- 

ry layer becomes thinner with the increase of the Rayleigh num- 

er. The maximum number of grid points used by Fusegi et al. 

18] is 122 × 62 × 62 . Wang et al. [22] employed 200 3 non-uniform 

eshes for Ra = 10 10 . In the current study, the resolution we used

or the highest Rayleigh number ( Ra = 1 . 0 × 10 11 ) may not be ad-

quate, as such the average Nu number for this case is not shown 

n the figure. 

From Table 4 , we can observe that the Nu − Ra correlation for 

ean Nusselt number at the hot wall is much closer to laminar 

caling factor Ra 1 / 4 than turbulent scaling Ra 1 / 3 expected from nat- 

ral convection over an unbounded flat plate [1] . When the con- 

ection flow reaches the stationary stage, due to temperature strat- 

fication, the cold fluid is distributed in the bottom while hot fluid 

n the top, thus the temperature gradient in the upstream of the 

ertical boundary would be larger than in the downstream. The 

eason for Nu − Ra correlation closer to laminar scaling factor is 

hat most heat transfer happens in the upstream of the vertical 

oundary layer where it is almost a laminar flow. 
14 
As pointed out in the previous sections, the flow insides the 

ertical boundary layer transitions from steady to time-dependent 

ows at the height x = 0 . 7 h for Ra = 1 . 5 × 10 9 and Ra = 1 . 0 × 10 10 .

or Ra = 1 . 0 × 10 11 the transition point is moved to x = 0 . 65 h .

o distinguish the heat transfer behavior of upstream and down- 

tream, we compute the mean Nusselt number for upstream and 

ownstream respectively. Table 4 shows Nusselt number for up- 

tream Nu up which is integrate from x = 0 to x = 0 . 7 h for two

ower Rayleigh numbers, and integrate from x = 0 to x = 0 . 65 h for

a = 1 . 0 × 10 11 . Even with this domain separation, both Nu up and

u down are close to classical laminar scaling of Ra 1 / 4 . This implies 

hat the local transition to turbulent flow here has a negligible ef- 

ect on the heat transfer rate, due to a very limited domain and 

he constraint of the top and bottom walls. 

. Conclusion 

A set of direct numerical simulations for natural convection 

ow in a differentially heated cubical cavity are performed, with 

he goal to improve our understanding of flow transition insides 

he vertical boundary layer adjacent to isothermal walls and its 

nfluence on heat transfer rate. The Rayleigh number range con- 

idered ( Ra = 1 . 5 × 10 9 to Ra = 1 . 0 × 10 11 ) extends these studied

n the literature. A three dimensional DUGKS code using domain 

ecomposition and MPI is created and verified by comparing re- 

ults with reference works at Ra = 10 7 . Specifically, an improved 

reatment of temperature and velocity boundary conditions is pro- 

osed, based on a consistency consideration with the Chapman- 

nskog approximation. 
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To specify the transition location, several statistics are mea- 

ured. Discernible different behaviors of the upstream flow and 

he downstream flow are observed in the time traces of temper- 

ture and velocity. While the temperature and velocity remain es- 

entially constant in the upstream, fluctuations are observed in the 

ownstream region. The spectra of velocity time traces also show 

hat the velocity fluctuations spread out to high frequencies in the 

ownstream region. The upstream insides the boundary layer re- 

ains laminar until a transition location, and the vortices start to 

ject in the downstream yielding quasi-periodic or turbulent flows. 

ith the increase of the Rayleigh number, the downstream of the 

hermal boundary layer becomes turbulent eventually. 

Time-averaged velocity and temperature profiles are obtained. 

hen scaled by laminar thermal boundary thickness scaling, al- 

ost identical profiles are obtained for the upstream region, and 

he discrepancies appear downstream of the transition location 

 x = 0 . 65 h to 0 . 7 h depending on Ra ). The turbulent fluctuation

tatistics in the mid-plane also confirm that the transition loca- 

ion for two lower Rayleigh numbers is at x = 0 . 7 h, while for

a = 1 . 0 × 10 11 the transition location is approximately x = 0 . 65 h .

he scalings of heat transfer rate in the upstream and the down- 

tream are also different. As the main part of the vertical boundary 

ayer is laminar, the time-average mean Nusselt number for the hot 

all is closer to laminar scaling Ra 1 / 4 . The local transition to tur- 

ulent flow observed at high Ra numbers observed in the simula- 

ion was found to have a negligible effect on the heat transfer rate, 

erhaps due to a very limited domain and the constraint of the top 

nd bottom walls. 

Despite the effort s we made here f or simulating natural convec- 

ion flows at high Rayleigh numbers in the three-dimensional cav- 

ty, three-dimensional flow structures are far from fully explored. 

specially for turbulent natural convection flow in a cavity, it re- 

uires the significant computational resources to obtain accurate 

tatistics. Further research is thus needed in this direction. 
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ppendix A. Chapman-Enskog analysis of boundary condition 

For the mesoscopic method used here, it is crucial to apply ap- 

ropriate boundary condition to the unknown distribution func- 

ions near a wall. For the current double distribution function 

odel, velocity and temperature boundary condition should be ap- 

lied to f ( x w 

, ξα, t) and g( x w 

, ξα, t) , respectively. It is important to

oint out that the boundary condition should be fully consistent 

ith the Chapman-Enskog approximation. Based on the Chapman- 

nskog expansion, the distribution functions can be written ap- 

roximately as: 

f = f eq − τν

[
∂ f eq 

∂t 
+ 

∂ 

∂x j 
(ξ j f 

eq ) 

]
+ τν

a j (ξ j − u j ) 

RT 1 
f eq + O(τ 2 

ν ) , 

(A.1a) 

 = g eq − τc 

[
∂g eq 

∂t 
+ 

∂ 

∂x j 
(ξ j g 

eq ) 

]
+ O(τ 2 

c ) . (A.1b) 

Based on the Chapman-Enskog analysis we realize that the 

hird-order moments of equilibrium 

∫ 
ξi ξ j ξk f 

eq d ξ is needed for 

omentum flux evaluation, which requires third-order Hermite 

xpansion of f eq,N=3 and Gauss-Hermite quadrature with sixth- 

egree of precision. For energy equation, the second-order mo- 

ents of equilibrium 

∫ 
ξi ξ j g 

eq d ξ is needed for the evaluation of 

nergy flux. As the Mach number is very small in the current work, 

he third-order terms can be neglected. The equilibrium distribu- 

ion is expanded to the second-order as: 

f eq,N=2 
α = W αρ

[
1 + 

ξα · u 

RT 1 
+ 

( ξα · u ) 2 

2(RT 1 ) 2 
− u 

2 

2 RT 1 

]
+ O(Ma 3 ) , 

(A.2a) 

 

eq,N=2 
α = W αT 

[
1 + 

ξα · u 

RT 2 
+ 

( ξα · u ) 2 

2(RT 2 ) 2 
− u 

2 

2 RT 2 

]
+ O(Ma 3 ) . 

(A.2b) 

For temperature and velocity boundary conditions, we can de- 

ive the following equations: 

f ( ξα) − f ( ξᾱ ) = (1 − τν
a j u j 

RT 1 
)( f eq + − f eq −) − τν

∂ 

∂t 
( f eq + − f eq −) 

− τνξa, j 

∂ 

∂x j 
( f eq + + f eq −) + τν

a j ξa, j 

RT 1 
( f eq + + f eq −) , (A.3a) 

( ξα) − g( ξᾱ ) = (g eq + − g eq −) − τc 
∂ 

∂t 
(g eq + − g eq −) 

− τc ξa, j 

∂ 

∂x j 
(g eq + + g eq −) , (A.3b) 

( ξα) + g( ξᾱ ) = (g eq + + g eq −) − τc 
∂ 

∂t 
(g eq + + g eq −) 

− τc ξa, j 

∂ 

∂x j 
(g eq + − g eq −) . (A.3c) 

For simplicity, we use superscript + to represent the particles ξα

ouncing back from the wall, while the superscript - represents the 

articles moving in the opposite direction to ξα . g eq + + g eq −, g eq + −
 

eq −, h eq + + h eq − and h eq + − h eq − can be derived from the equilib- 

ium distributions: 

f eq + + f eq − = 2 W αρ

[
1 + 

( ξα · u ) 2 

2(RT 1 ) 2 
− u 

2 

2 RT 1 

]
, (A.4a) 

https://doi.org/10.13039/100000001
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100004561
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f eq + − f eq − = 2 W αρ

[
ξα · u 

RT 1 

]
, (A.4b) 

 

eq + + g eq − = 2 W αT 

[
1 + 

( ξα · u ) 2 

2(RT 2 ) 2 
− u 

2 

2 RT 2 

]
, (A.4c) 

 

eq + − g eq − = 2 W αT 

[
ξα · u 

RT 2 

]
. (A.4d) 

It is important to point out that the ∂u 
∂t 

and 

∂u i 
∂x j 

operation will 

educe the Mach order by one order. To keep the error term to 

(τ 2 
ν , Ma 3 ) , the equilibriums need to be expanded to one-order 

igher, namely, to the fourth-order for f eq and the third-order 

or g eq . However, all the high order terms contain u 3 and u 4 ,

hich can be canceled under the no-slip boundary condition due 

o derivative by parts. Thus, we did not explicitly write out the 

igh order terms. 

Substituting these expressions into Eq. (A.3a) , as all walls are 

ssumed to be no-slip in velocity, we can set u = 0 to terms not 

elated to time- or spatial- derivatives. The u 2 and u 3 terms are 

lso eliminated due to derivative by parts, then the following re- 

ults can be obtained: 

f ( ξα) − f ( ξᾱ ) = −2 τνW α
ξa,i 

RT 1 

∂ρu i 

∂t 
− 2 τνW αξa, j 

∂ρ

∂x j 

+ 2 τνW αρ
a j ξa, j 

RT 1 
. (A.5) 

The Euler equations can be used to replace the time derivative 
∂u i 
∂t 

= −ρu j 
∂u i 
∂x j 

− ∂ p 
∂x i 

+ a i ρ + O(τ ) , therefore 

f ( ξα) − f ( ξᾱ ) = −2 τνW α
ξa,i 

RT 1 

(
−RT 1 

∂ρ

∂x i 
+ ρa i 

)

− 2 τνW αξa, j 

∂ρ

∂x j 
+ 2 τνW αρ

a j ξa, j 

RT 1 
+ O(τ 2 

ν , Ma 3 ) .

(A.6)

Finally, we have the mesoscopic representation of the no-slip 

oundary condition as 

f ( ξα) − f ( ξᾱ ) = 0 + O(τ 2 
ν , Ma 3 ) . (A.7) 

Substituting the g eq equilibrium into Eq. (A.3b) with u w 

= 0 , the 

diabatic boundary condition can be written as: 

( ξα) − g( ξᾱ ) = −τc 
∂ 

∂t 

(
2 W αT 

ξα · u 

RT 2 

)
− τc ξa, j 

∂ 

∂x j 
(2 W αT ) 

+ O(τ 2 
c , Ma 3 ) . (A.8) 

Again the Euler equations are used to replace the time deriva- 

ive ρ
∂u i 
∂t 

= −ρu j 
∂ u i 
∂ x j 

− ∂ p 
∂ x i 

+ a i ρ + O(τ ) , to obtain 

( ξα) − g( ξᾱ ) = −2 τc W α
ξa,i T 

RT 2 

(
− 1 

ρ

∂ρRT 1 
∂x i 

+ a i 

)

− 2 τc W αξa, j 

∂T 

∂x j 
+ O(τ 2 

c , Ma 3 ) . (A.9) 

The final result of mesoscopic representation of the adiabatic 

oundary condition becomes 

( ξα) − g( ξᾱ ) = 2 τc W αξa,i 

(
T 1 
T 2 

T 

ρ

∂ρ

∂x i 
− a i T 

RT 2 
− ∂T 

∂x i 

)

+ O(τ 2 
c , Ma 3 ) . (A.10) 

For isothermal boundary condition, we can derive the following 

xpression from Eq. (A.3c) : 

( ξα) + g( ξᾱ ) = 2 W αT − 2 W ατc 
∂T 

∂t 
− 2 W ατc T 

ξa,i ξa, j 

RT 2 

∂u i 

∂x j 
. (A.11)
16 
Leading order energy equation is used to replace the time 

erivatives ∂T 
∂t 

= − ∂T u j 
∂x j 

+ O(τ ) . Then, the final result for isother- 

al wall is 

( ξα) + g( ξᾱ ) = 2 W αT 

(
1 + τc 

∂u j 

∂x j 
− τc ξa,i ξa, j 

RT 2 

∂u i 

∂x j 

)

+ O(τ 2 
c , Ma 3 ) . (A.12) 

In summary, for no-slip boundary condition, the standard 

bounce-back” is consistent with the Chapman-Enskog analysis. 

owever, for temperature boundary conditions, most literature 

orks only keep the O (1) term. In fact, the O (τc ) terms have in-

uence on the heat flux at the boundary. In actual implementation, 

he derivatives of hydrodynamic variables can be evaluated approx- 

mately using the values from last time step. To show that the 

emperature boundary condition can be accurately implemented 

y the current kinetic boundary condition, we performed a sim- 

lation of natural convection in an air-filled cubical cavity with 

a = 1 . 0 × 10 3 . Fig. A.15 shows the mean Nusselt number distribu-

ion along the z-direction, where Nu m 

( ̂ z ) is defined as: 

u m 

( ̂ z ) = 

∫ 1 

0 

∂θ ( ̂  x , ̂  z ) 

∂ ̂  y 

∣∣∣
ˆ y =0 

d ̂  x . (A.13) 

We compared the mean Nusselt distribution of the current 

UGKS results and those from the literature [21,27,39] . Our re- 

ults agree well with the conventional CFD results of Wang et al. 

39] and LBM results of Peng et al. [27] . The results provided by 

ang [21] is obtained using the DUGKS scheme with only O(1) 

oundary condition implementation. It is obvious that the bound- 

ry condition is improved using our current kinetic boundary con- 

ition including the O(τc ) terms. 

To further confirm the convergence order of the DUGKS, we 

erformed a series of two-dimensional simulations of natural con- 

ection in a square cavity at Ra = 1 . 0 × 10 3 with different meshes.

imulations are conducted with meshes 20 × 20 , 40 × 40 , 80 ×
0 , 160 × 160 , 320 × 320 and the CFL numbers are adjusted to keep

he time step constant accordingly. The L 2 erros in temperature 

nd velocity field are measured in Table A.5 , where the L 2 error 

s defined as: 

(φ) = 

√ ∑ 

x,y | φ(x, y, t) − φe (x, y, t) | 2 √ ∑ 

x,y | φe (x, y, t) | 2 (A.14) 
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Fig. A.16. Time trace of temperature θ at location ( ̂ x , ̂  y ) = (0 . 88 , 0 . 15) for: (a) Ra = 1 . 6 × 10 8 ;(b) Ra = 1 . 8 × 10 8 ; (c) Ra = 1 . 82 × 10 8 ; (d) Ra = 1 . 84 × 10 8 ; (e) Ra = 2 . 0 × 10 8 . 
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w  

S  
here φ = θ or ˆ u , and φe is the benchmark value with the mesh 

20 × 320 . At least second-order convergence of the DUGKS is con- 

rmed. 

Besides the steady natural convection simulation, we also vali- 

ate our code by calculating the critical Rayleigh number of tran- 

ition to unsteady flow regime for two-dimensional natural con- 

ection in a square cavity. A set of simulations of two-dimensional 

atural convection with non-uniform 500 × 500 meshes are per- 
17 
ormed. The non-uniformity parameter is set to be S = 3 , and the 

inimum grid spacing is �x min = 6 . 0219 × 10 −4 L . Fig. A.16 shows

ime trace of temperature at monitoring point for the simulation 

ith five different Rayleigh numbers. The red line represents the 

ime integration was started from the steady flow of the case 

a = 1 . 8 × 10 8 and the blue dash line represents the simulation

as started from the unsteady solution of the case Ra = 2 . 0 × 10 8 .

teady results are obtained for the cases Ra = 1 . 6 × 10 8 and Ra =
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Table A.5 

Error and convergence order in velocity and temperature. 

N 20 40 80 160 

E(θ ) 5 . 3583 × 10 −3 9 . 2810 × 10 −4 1 . 5528 × 10 −4 2 . 3295 × 10 −5 

order - 2.5294 2.5794 2.7368 

E( ̂ u ) 4 . 3024 × 10 −2 7 . 2083 × 10 −3 1 . 2445 × 10 −3 2 . 1210 × 10 −4 

order - 2.5774 2.5341 2.5527 

1

a  

d

t

b  

t

1

R

A

s

t

e

p

c

g

u

v

w

t

f

v

d

Table B.6 

L 2 Errors and convergence order in velocity and pressure with different 

mesh sizes ( dt = 1 . 0 × 10 −5 ). 

N 20 40 80 160 
U 0 dt 

dx 
2 × 10 −4 4 × 10 −4 8 × 10 −4 1 . 6 × 10 −3 

c s dt 
dx 

2 × 10 −3 4 × 10 −3 8 × 10 −3 1 . 6 × 10 −2 

E( u ) 9.343971E-3 2.187037E-3 5.718380E-4 1.371459E-4 

order - 2.0951 1.9353 2.0599 

E(p) 2.562765E-2 7.614341E-3 1.927406E-3 4.033651E-4 

order - 1.7509 1.9821 2.2565 

Table B.7 

L 2 Errors and convergence order in velocity and pressure with different time 

step sizes (fixed CFL number). 

dt 2 . 0 × 10 −3 1 . 0 × 10 −3 5 . 0 × 10 −4 2 . 5 × 10 −4 

N 20 40 80 160 
U 0 dt 

dx 
0.04 0.04 0.04 0.04 

c s dt 
dx 

0.4 0.4 0.4 0.4 

E( u ) 5.798385E-1 1.059667E-1 1.384611E-2 1.317480E-3 

order - 2.4520 2.9361 3.3936 

E(p) 8.176620E-1 1.914017E-1 2.716178E-2 2.573582E-3 

order - 2.0949 2.8170 3.3997 

( )

0  

fi

w

a

g

t

L

w

i

I

n  

s

t  

n

s

r  

i

t

g

t

R

 . 8 × 10 8 , for both initial conditions. For the cases Ra = 1 . 82 × 10 8 

nd Ra = 1 . 84 × 10 8 , it shows that the solution first experiences

amped oscillations and then reaches periodic oscillations. With 

hese high resolution results, the critical Rayleigh number would 

e between 1 . 80 × 10 8 and 1 . 82 × 10 8 , which is consistent with

he the Le Quéré and Behnia result for Ra c , Ra c = (1 . 82 ± 0 . 01) ×
0 8 . We also note that the amplitude of oscillations increases with 

a for Ra ≥ 1 . 82 × 10 8 . 

ppendix B. Order of accuracy test 

To validate the second-order accuracy of our scheme in both 

pace and time, we simulated the unsteady 2D Taylor-Green vor- 

ex flow in a square domain. The Taylor-Green vortex flow is an 

xact solution of the Navier-Stokes equation in a two-dimensional 

eriodic domain, representing the viscous decay process of a vorti- 

al flow. The velocity and pressure fields of this unsteady flow are 

iven as: 

 (x, y, t) = −U 0 cos 

(
2 πx 

L 

)
sin 

(
2 πy 

L 

)
e −

8 π2 νt 

L 2 , (B.1a) 

 (x, y, t) = U 0 cos 

(
2 πy 

L 

)
sin 

(
2 πx 

L 

)
e −

8 π2 νt 

L 2 , (B.1b) 

p(x, y, t) = −1 

2 

U 

2 
0 cos 

[ 
2 π

L 
(x − y ) 

] 
cos 

[ 
2 π

L 
(x + y ) 

] 
e −

16 π2 νt 

L 2 , 

(B.1c) 

here ν is the shear viscosity. In order to use the analytical solu- 

ion as the rigorous benchmark, we must initialize the distribution 

unctions carefully to be fully consistent with the hydrodynamic 

elocity and pressure fields. In the DUGKS simulation, the initial 

istributions are generated by iteration as follows: 

1. Begin with the initial distribution function defined as 

f ( x , ξα, 0) = f 
eq 
α [ ρ( x , 0) , u ( x , 0)] , where ρ( x , 0) = p( x , 0) /c 2 s . 

f eq,N=2 
α = W αρ

{
1 + 

ξα · u 

RT 1 
+ 

( ξα · u ) 2 

2(RT 1 ) 2 
− u 

2 

2 RT 1 

}
+ O (Ma 3 ) 

(B.2) 

2. Evolve the distribution function for one time step with DUGKS. 

Update the hydrodynamic variable and denote them as ρ( x , �t) 

and u ( x , �t) . 

3. Based on the Chapman-Enskog expansion, the distribution 

function can be written as follows: 

f α = f eq 
α − τν

[
∂ f eq 

α

∂t 
+ 

∂ 

∂x j 
(ξ j f 

eq 
α ) 

]
+ τν

a j (ξ j − u j ) 

RT 1 
f eq 
α + O(τ 2 

ν ) 

(B.3) 

With the unexpanded form of the equilibrium distribution and 

the Euler equation, the distribution function can be written 

as: 

f α = f eq 
α

[
1 + τν

(
∂u i 

∂x i 
− c i c j 

RT 1 

∂u i 

∂x j 

)]
+ O (τ 2 

ν ) 

= f eq 
α + τν f (1) 

α + O(τ 2 
ν ) . (B.4) 
18 
where f (1) 
α = f 

eq 
α

∂u i 
∂x i 

− c i c j 
RT 1 

∂u i 
∂x j 

. Then we can construct a new 

set of the initial distribution as: 

τν f (1) 
α ( x , 0) ≈ f α( x , �t) − f eq 

α [ ρ( x , �t) , u ( x , �t) ] + O(τ 2 
ν ) , 
(B.5a) 

f α( x , 0) = τν f (1) 
α ( x , 0) + f eq 

α [ ρ( x , �t) , u ( x , 0) ] . (B.5b) 

4. Repeat step 2 and 3 until the pressure and stress fields at the 

initial time converge. 

The parameters used in the simulations are: Re = 10 0 0 , ν = 

 . 001 , L = 1 . 0 , U 0 = 1 . 0 , RT = 100 . We compare the velocity pro-

les and pressure profiles at two dimensionless times (not shown) 

ith the analytical solution, and find that the numerical solution 

grees well with the theoretical solution. To confirm the conver- 

ence order of DUGKS, a set of simulations with different resolu- 

ions and time steps are performed. The L 2 errors 

 2 = 

√ ∑ 

i, j | V N (i, j) − V T (i, j) | 2 
N 

2 
(B.6) 

here V represents velocity or pressure. The L 2 errors are shown 

n Tables B.6 and B.7 , along with the resulting order of accuracy. 

n Table B.6 , time step size (as viewed by the conventional CFL 

umber and the kinetic CFL number c s d t/d x ) is kept very small

o the L 2 errors represent mainly the space discretization errors, 

he order of accuracy is around 2. In Table B.7 , we fixed the ki-

etic CFL number to 0.4 so both the time discretization error and 

pace discretization error are present, the realized order of accu- 

acy is between 2 to 3. Since the requirement that c s d t/d x < 1

mplies that we cannot isolate space discretization error from the 

ime discretization error in DUGKS. Overall, Tables B.6 and B.7 to- 

ether demonstrate the second-order accuracy in both space and 

ime. 
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