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The fundamental hypotheses underlying Kolmogorov-Oboukhov (1962) turbulence 
theory (K62) are examined directly and quantitutivezy by using high-resolution nu- 
merical turbulence fields. With the use of massively parallel Connection Machine-5, 
we have performed direct Navier-Stokes simulations (DNS) at 5123 resolution with 
Taylor microscale Reynolds number up to 195. Three very different types of flow 
are considered : free-decaying turbulence, stationary turbulence forced at a few large 
scales, and a 2563 large-eddy simulation (LES) flow field. Both the forced DNS and 
LES flow fields show realistic inertial-subrange dynamics. The Kolmogorov constant 
for the k-5/3 energy spectrum obtained from the 5123 DNS flow is 1.68 kO.15. The 
probability distribution of the locally averaged disspation rate E ,  over a length scale r 
is nearly log-normal in the inertial subrange, but significant departures are observed 
for high-order moments. The intermittency parameter p, appearing in Kolmogorov's 
third hypothesis for the variance of the logarithmic dissipation, is found to be in 
the range of 0.20 to 0.28. The scaling exponents over both E ,  and r for the condi- 
tionally averaged velocity increments ~,u(E, are quantified, and the direction of their 
variations conforms with the refined similarity theory. The dimensionless averaged 
velocity increments ( & . P I ~ , ) / ( E , ~ ) " / ~  are found to depend on the local Reynolds num- 
ber Recr = ~ f / ~ r ~ / ~ / v  in a manner consistent with the refined similarity hypotheses. 
In the inertial subrange, the probability distribution of ~ 5 , u / ( e , r ) ' / ~  is found to be 
universal. Because the local Reynolds number of K62, I&, = ~ : ' ~ r ~ / ~ / v ,  spans a finite 
range at a given scale r as compared to a single value for the local Reynolds number 
R,. = Z1/3r4/3/v in Kolmogorov's (1941a,b) original theory (K41), the inertial range 
in the K62 context can be better realized than that in K41 for a given turbulence 
field at moderate Taylor microscale (global) Reynolds number RA. Consequently uni- 
versal constants in the second refined similarity hypothesis can be determined quite 
accurately, showing a faster-than-exponential growth of the constants with order n. 
Finally, some consideration is given to the use of pseudo-dissipation in the context of 
the K62 theory where it is found that the probability distribution of locally averaged 
pseudo-dissipation ei deviates more from a log-normal model than the full dissipation 
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e,. The velocity increments conditioned on e i  do not follow the refined similarity 
hypotheses to the same degree as those conditioned on 6,. 

1. Introduction 
In 1941, Kolmogorov published a statistical theory, known as the local similarity 

or universal equilibrium theory, of small-scale velocity fluctuations in high Reynolds 
number, incompressible, stationary turbulence (Kolmogorov 1941 a,b referred to herein 
as K41). In this theory two fundamental hypotheses concerning fine-scale structure 
were made. The first hypothesis states that the small-scale motions (at scale r 
much less than the integral scale L) are statistically isotropic and the distribution of 
the velocity difference [u(x + r, t )  - u(x ,  t ) ]  between two points in space is uniquely 
determined by a local length scale r = (1-1, the kinematic viscosity v ,  and the mean 
energy dissipation rate per unit mass 

where a bar above a quantity denotes an ensemble average. In particular, moments of 
longitudinal velocity increment, 6,u = lu(x + r, y, z ,  t )  - u(x, y, z ,  t)l, can be expressed 
as 

where R, = F'/3r4/3/v = ( r / ~ ) ~ / ~  is a local Reynolds number at scale r with local 
velocity scale @ ) ' I 3 ,  q = (v3/T)'I4 being the Kolmogorov dissipation length scale. 
The functions f,(&) are universal functions for flows at high Reynolds numbers, 
RA = Au'/v, I I  and u' being the Taylor microscale and r.m.s. component velocity, 
respectively. Here RA can be viewed as a global Reynolds number for a given flow. 
More generally, the probability distribution of 6ru/(Fr)1/3 should only depend upon 
the local Reynolds number R,. When n = 2, (1.1) implies that a universal energy 
spectrum E ( k )  exists at high wavenumbers under Kolmogorov scaling such that 

E ( k )  = @(kq)  = (kq)-5/3+(kq) .  
(Zv5)'/4 

Kolmogorov's second similarity hypothesis states that when R+l  (i.e. r%q or 
k 4 q - I )  the distribution of the normalized velocity increments h , ~ / ( Z r ) ~ ' ~  becomes 
independent of v. It follows that in this inertid subrange,? 

where B, are universal constants. When n = 2, (1.3) implies the well-known inertial- 

t Note, following Kraichnan (1974), we use the velocity increment 6,u, i.e. the magnitude of the 
velocity difference A,u = u(x  + r ,  y,  z ,  t )  - u(x, y ,  z ,  t )  in stating Kolmogorov's theory. We feel that the 
velocity increment 6,u is a better quantity than the difference A,u as a measure of velocity scale since 
the latter can take both positive and negative values. The moments of even orders of 6,u are the 
same as those of A+, but those of the odd orders differ. Traditionally the difference A,u has been 
used in stating K41 and there is an exact relation at the third order, i.e. = --:?r. Recently, 
Stolovitzky & Sreenivasan (1993) have pointed out some similarity and differences between moments 
of the unconditioned 6,u and those of A,u. However we will show in $4 that the velocity increment 
6,u rather than A,u should be used when studying Kolmogorov (1962) refined turbulence theory. 
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subrange energy spectrum, 

where C, is the Kolmogorov constant, and C, = 0.76B2 (Monin & Yaglom 1975, 
p. 355). 

While the k-5/3 spectrum is supported by numerous experimental measurements 
(e.g. Monin & Yaglom 1975, pp. 462494), significant departures from the predicted 
scaling exponents of higher order moments of velocity differences (n > 2) have been 
consistently observed (e.g. Kuo & Corrsin 1971; Anselmet et al. 1984). Furthermore, 
K41 predicts skewness and flatness of velocity derivatives to be universal constants at 
high global Reynolds number Ra. Measurements indicate that skewness and flatness 
are a strong function of RL and, based on this observation, Wyngaard & Tennekes 
(1970) suggested that the normalized energy spectrum at high wavenumbers is not 
universal. This non-universality at dissipation-range k was later demonstrated by 
Champagne (1978) for Ra in the range 40 to 13000. (Recently She et al. 1993 
found that the energy spectra at various Reynolds numbers collapse when scaled by 
the wavenumber k, of peak dissipation and by the spectrum level at k,, suggesting 
a different, universal scaling may exist.) These departures from K41 have been 
attributed mostly to the existence of intermittent structure at small scales. 

With ideas from Landau (see Landau & Lifshitz 1963) and Oboukhov (1962), 
Kolmogorov (1962) refined his original theory to take into account the spatial fluc- 
tuations in the turbulent energy dissipation rate E at scale r (referred to herein as 
K62). There are two aspects to the K62 refined theory. First, Kolmogorov assumed 
a log-normal distribution function for the dissipation rate volume-averaged over a 
sphere of diameter r ,  

E ( k )  = CKF2/3k-5/3, (1.4) 

and the variance of In€, given by 

where p is a universal constant, A is a constant depending on flow geometry, and L 
is an integral scale. Potential non-universality is introduced through A and L. 

The second, more general, aspect of K62 is the refinement of the similarity hypothe- 
ses introduced in K41 by relating the moments of 6,u conditioned on E ,  (Oboukhov 
1962) to E,,  I, and v, in a manner analogous to K41: 

(1.7) 

where the ensemble average (6,u)”le, is computed using those spatial points where 
E,  is at a given value, and gfl(K7) are hypothesized to be universal functions of a 
new local Reynolds number &, = e:’3r4/3/v, with a velocity scale that varies 
at a fixed I with the volume-averaged dissipation rate e,. A more general statement 
of this refined similarity hypothesis (RSH) is that the probability distribution of the 
normalized velocity difference 

is a universal function of &,. 
The second similarity hypothesis of K41 is refined in K62 to state that when &, 9 1, 



116 L.-P. Wang, S. Chen, J .  G .  Brasseur and J .  C .  Wyngaard 

where D, are universal constants, and the probability distribution of p takes a 
universal form independent of &, . 

Kolmogorov showed that, in the inertial range, the log-normal model for c, leads 
to 

(6,~)"  = F,(A, ~ ) ~ " / ~ r l n ,  (1.10) 

4, -1 - 3 n  - &pn(n - 3) (1.11) 
where 

and potential effects of the outer scales are confined to the coefficients F,. The 
second term in (1.11) indicates a departure from K41 of the scaling exponent of r. 
In particular, the k-5/3 inertial subrange of the energy spectrum becomes k-5/3-p'9. 

Assuming p - 0(1), only a small correction is predicted in the scaling of the second 
moment. The correction can be quite large, however, for higher-order moments. 

Many experimental measurements have been carried out to examine the validity 
of the log-normal model for the volume-averaged dissipation-rate fluctuations and 
to estimate the universal constant p in (1.6) (Gurvich & Yaglom 1967; Gibson, 
Stegun & McConnell 1970; Wyngaard & Pa0 1972; Van Atta & Park 1972; Antonia, 
Statyaprakash & Hussain 1982; Anselmet et al. 1984; Praskovsky & Oncley 1994, 
to mention a few). In all these experiments, however, only the surrogate E' = 
15v(du/ax)* is measured, with Taylor's frozen-field hypothesis, assuming that the 
local instantaneous dissipation rate is well approximated by an isotropic form which 
is strictly valid only in an ensemble-averaged sense. We shall return to this point 
later. The general finding from experiments is that the probability distribution of E' 

is close to log-normal except for the tails. Wyngaard & Tennekes (1970) showed that 
the skewness S and flatness K of the velocity derivatives are related by S - K 3 f g  if the 
log-normal model for E, still applies as r --.) 0. Their measurements appear to support 
this 3/8 scaling, suggesting that the log-normal model is reasonable for moments up 
to order 4. Experimentally, the measured values of p are in the range of 0.2 to 0.85, 
with a mean of about 0.5 in earlier measurements (Gurvich & Yaglom 1967; Gibson 
et al. 1970; Wyngaard & Pa0 1972) and 0.2 in more recent measurements (Anselmet 
et al. 1984; Sreenivasan & Kailasnath 1993; Praskovsky & Oncley 1994). 

On theoretical grounds, Gurvich & Yaglom (1967) showed that the log-normal 
distribution can be justified at very high Reynolds number under a scale-similarity 
hypothesis. Novikov (1970) and Mandelbrot (1974), however, have pointed out that 
the log-normal assumption cannot be strictly valid, especially for high-order moments. 
Kraichnan ( 1974) also pointed out that nonlinear cascade processes need not yield 
asymptotic log-normality. More recently, Liu (1993) developed an analysis for the 
probability distribution of the dissipation rate based on a nonlinear random differ- 
ential equation for vorticity magnitude. He showed that the probability distribution 
can differ from log-normal in both asymptotic limits of very large and very small E .  

Other forms of probability distributions for E,,  such as log-stable (Kida 1991) and 
log-Poisson (She & Waymire 1995), have also been proposed. In the first part of 
the present paper we will examine the probability distributions of E and E,  for our 
numerically generated turbulence fields at various Reynolds numbers. 

Experimental measurements of the scaling exponents 4,, in (1.10) have also been 
made (see Anselmet et al. 1984 and references therein) and the results agree reasonably 
well with the prediction (1.11) for n < 10. However, measurement of 5,  does not 
directly verify the refined similarity hypotheses, equations (1.7) and (1.9). 

The second RSH, equation (1.9), relates purely inertial-range quantities (6,~)" If, to 
the dissipation rate averaged over an inertial-range scale, which allows one to link the 
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scaling property of the velocity increment directly to that of the dissipation rate. Thus 
the RSH, while never having been derived from first principles, has often been taken 
as a basis for developing theoretical models of high Reynolds number turbulence 
(Meneveau et al. 1990; Hosokawa 1991; She & Leveque 1994). 

There has been a renewed interest in the validity of the RSH instigated by the 
work of Hosokawa & Yamamoto (1992), who found almost no correlation between 
the velocity increment 6,u and 6, in simulations of decaying isotropic turbulence at 
moderate Reynolds numbers, in direct conflict with the RSH. Later, Hosokawa & 
Yamamoto found their that their calculation was in error (see Chen et al. 1993). 
On the other hand, Praskovsky (1992) and Thoroddsen & Van Atta (1992) examined 
experimental data at high Reynolds numbers and found a significant correlation 
between 6,u and ei. In addition, Praskovsky (1992) showed that the conditionally 
averaged velocity increments, 6,ul,;, depend on ck, although he did not quantify 
the relationship. Stolovitzky, Kailasnath & Sreenivasan (1992) also found a strong 
correlation between 6,u and c;, particularly for large cr regions, in the atmospheric 
surface layer. Furthermore, they measured the probability distribution of the random 
variable 6 , ~ I ~ ; / ( c i r ) ~ / ~ .  Stolovitzky & Sreenivasan (1994) noted that the velocity 
increment and c, are both functionals of velocity gradient and thus they should be 
correlated in general. Stolovitzky & Sreenivasan also showed that a universal variable 
such as f l  in (1.8) exists for a fractional Brownian motion, implying that the RSH 
may apply to more general stochastic processes than Navier-Stokes turbulence. 

A more detailed numerical analysis of druIc; in forced stationary and decaying 
isotropic turbulence over RA from 17 to 202 was carried out by Chen et al. (1993), 
using high-resolution direct numerical simulations. Chen et al. pointed out that a 
correlation between 6rule; and E; must exist, independently of the Reynolds number, 
even in the absence of an inertial subrange. Specifically, as r / q  -+ 0, a Taylor 
expansion of the velocity leads to 

where the second relation cannot be rigorously derived but its validity will be shown 
numerically. Equation (1.12) is consistent with the first RSH, equation (1.7), with 
g2 = %,/15. More generally, 

(1.13) 

Chen et al. (1993) focused on the scaling exponent of e: and showed, qualitatively, 
that the exponent changes from the prediction of (1.12) to that of the RSH (1.9) (with 
er replaced by e:) as r increases. 

The main focus of this study is the quantitative examination of the RSH by mea- 
suring the scaling exponents directly for various turbulence fields obtained from 
high-resolution (up to 5123 grid points) simulations of isotropic turbulence. Because 
the direct numerical simulations resolve down to the Kolmogorov scale, their range 
of effective Reynolds numbers is necessarily limited. Whereas early direct simulations 
were restricted to lower resolutions that do not allow for a study of inertial-subrange 
dynamics, the current supercomputer architectures make it feasible to perform simu- 
lations for up to 5123 grid points (Chen & Shan 1992; She et al. 1993). By forcing 
the lowest wavenumbers with a kW5l3 energy spectrum, it is possible to approximate 
an inertial subrange over a range of unforced scales spanning roughly a half a decade 
with 5123 collocation points (Chen & Shan 1992; She et al. 1993). 

r 

q 
8rU"I,, (:)n'2 r n  for - + 0. 
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We apply high-resolution (5123) direct simulations in the current study. In addition, 
we use one field in which the inertial range is extended through large-eddy simulation. 
Although the extent of the inertial subrange is still not large enough for a definitive 
study of the K62 theory, we shall show that the scaling exponents of the RSH proposed 
for very high Reynolds number can be partly realized in our high-resolution DNS 
flow fields by providing rather precise K62 inertial-subrange universal constants. 
Furthermore, we demonstrate that for a given global flow Reynolds number RA, the 
inertial subrange in the K62 context can be better resolved than the inertial subrange 
in the K41 context. This is because, at a given r, the local Reynolds number Rr 
spans a finite range as compared to a single value for the local Reynolds number R, 
in the K41 context. In fact, we show that whle the universal constant such as C, in 
(1.4) can only be approximately estimated from our high-resolution DNS turbulence 
fields, the universal constants in the K62 context, such as D, in (1.9), can be very 
accurately determined from the same flow fields. 

A major advantage of DNS over experiments is the easy access to the local 
dissipation rate in its exact form which, experimentally, requires very sophisticated 
measurement techniques (Wallace & Foss 1994; Tsinober, Kit & Dracos 1992). As 
mentioned earlier, all previous experimental studies approximate E ,  in the K62 theory 
with the local one-dimensional surrogate E:. Tsinober et al. (1992) pointed out that, 
because the dissipation rate e is a quantity independent of the system of reference, it 
is best suited to describing physical processes. Both the instantaneous structure and 
the probability distribution of E are very different from E’ (Narasimha 1990; Tsinober 
et al. 1992). An additional aim of this paper is to compare the statistics between 4 
and E, in the context of the K62 theory ($5).  

The paper is organized as follows. The general features of the isotropic, homoge- 
neous turbulent flows from high-resolution simulations are presented and compared 
with experimental observations in 92. In $3 we examine the probability distribution 
of dissipation-rate fluctuations, as a function of both the spatial scale r and the local 
Reynolds number. We then study in $4 the RSH directly by quantifying the scaling 
exponents over both e, and r,  and we analyse the universal constants D, in (1.9) and 
the probability distribution of p. Finally, the use of the pseudo-dissipation E: as a 
surrogate of the true dissipation is examined in 55 in the context of K62 theory. In 
addition, we consider throughout the paper the potential use of large-eddy simulation, 
in which the dissipation scales have been removed, to analyse the K62 theory in the 
inertial range of scales. 

2. Analysis of the high-resolution simulations 
In this section, we describe the various flow fields we use for the study of the K62 

theory and their general features. The turbulence fields were generated by numerical 
simulation of the three-dimensional unsteady incompressible Navier-Stokes equations 
using a spectral code originally developed by Chen & Shan (1992) for the Connection 
Machine-2 (CM-2) but applied in this study on the more powerful, massively parallel 
CM-5 at Los Alamos National Laboratory. The large memory and built-in parallel 
algorithms of the CM-5 allowed for a 5123 mesh resolution. 

2.1. Flow simulation 
The Navier-Stokes equations are solved on a cube of side L g  = 2n using a standard 
pseudospectral algorithm, with periodic boundary conditions in the three coordinate 
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Simulation d512 d256cl d256c2 f128 f256 f512 les256 Experiment? 
Grid 5123 2563 2563 12S3 2563 5123 2563 - 

Symbol A 0 V 0 0 

U' 0.121 0.676 0.256 0.856 0.855 0.889 0.856 17.5 .--) 8.5 
- 0.005264 0.1795 0.01381 0.2013 0.1768 0.2460 0.18563 - 

V 0.001377 0.001 0.001 0.004 0.002 0.001 0.000434 7 - 
E 

72 20.9 132 68.1 100 151 195 - 
- - 

RA 
kmoxq 6.38 1.04 1.98 1.44 1.76 1.92 

-0.521 -0.509 -0.529 -0.504 -0.498 -0.545 - -0.50 
(au/ax)3 

(au/axy3" 

( a U / a X ) 4  4.00 5.79 4.98 5.25 5.40 6.70 - 

( a U / a X ) 2 2  

- 

A 0.0122 0.0245 0.0245 0.0490 0.0245 0.0122 0.0245 - 
0.0265 0.00864 0.0164 0.0237 0.0146 0.00798 0.0045817 - 

1 " 0.239 0.196 0.266 0.468 0.352 0.220 - 0.66 + 1.13 
rl 

0.610 1.072 1.049 1.53 1.514 1.412 1.470 - Lf 
ZLf /u'3 1.81 0.623 0.863 0.491 0.428 0.494 0.435 

0.512 0.0746 0.269 0.141 0.106 0.0638 - - 
7, 
Te 5.05 1.59 4.10 1.79 1.77 1.59 1.72 

1.2 1.26 2.68 8.4 6.8 1.81 4.65 - 
0.262 0.165 0.251 0.349 0.286 0.150 - - t /  Te 

J.D 
1.05 3.14 3.14 3.14 3.14 3.14 3.14 - J.E 
- - - 1.26 1.26 1.26 1.26 - J.F 

-"' - t'! 0.914 1.300 1.14 1.21 1.25 1.46 - 1.37 
2.67 5.22 4.31 4.12 4.76 5.97 - 2.41 

1= / F  

Fr 15.8 63.7 44.3 34.4 50.3 83.2 - 9.63 
s, 

0.213 0.215 0.222 0.221 0.222 0.236 - 0.15 
OiWjSjj 

o*sii,ij)'/2 

t From Tsinober et al. (1992). The values listed here are an average over four locations in 
their wind tunnel, x / M  = 30,38,64,90 - where self-similar decay is believed to be established 
and streamwise velocity-derivative skewness is constant. For quantities varying definitely with the 
downstream location, the range is shown. The units are: [L]=cm; [Tj=s. 

8 This value is computed as the total energy flux across the filter cut-off. 
7 These effective viscosity and Kolmogorov scales are discussed in $4. 
11 Computed based on the dissipation, 1 = ( ~ ~ v u ' ~ / E ) ' / ~  = f i u ' q .  

- 

- 

- 

5 E F - E, S, and Fc are the skewness and flatness factors of {, respectively. 

TABLE 1. Flow characteristics from the high-resolution simulations. Note that the symbols are used 
consistently throughout the paper. 

directions. The flow cube is discretized uniformly into N 3  grid points, which defines 
the wavenumber components in Fourier space as 

(2.1) k j  = +nj(2n/LB)  = fn,, 

where ni = O , l ,  ... N / 2  - 1 for j = 1,2,3. A small portion of the energy at higher 
wavenumbers, k > k,,, with k,,, = N&3, is truncated at each time step to reduce 
aliasing errors. 

Table 1 lists all the different fields used in this study. Both freely decaying and 
forced stationary isotropic turbulence fields are simulated. The freely decaying flow 
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is generated either from an initial random field with a prescribed spectrum (d512) or 
from a previously developed forced stationary turbulence (d256cl and 6256~2). These 
field data were extracted after the flows reached an asymptotic decay, characterized 
by power law decreases in kinetic energy and dissipation rate. For the case d512, the 
initial energy spectrum is proportional to k2 for k < 6.5 and to k-5/3 for k > 6.5; 
the power-law energy decay exponent was found to be -1.47, in good agreement 
with values previously obtained by Lee & Reynolds (1985) and Yeung & Brasseur 
(1991) for similar conditions but at lower ( 1283) mesh resolution. The fields d256cl 
and d256c2 are from the same simulation at two different times, based on an initially 
stationary field with a extensive forced k-5/3  energy spectrum. A relatively high flow 
Reynolds number was obtained in this way, with a power-law energy decay exponent 
of about -1.81. 

The forced isotropic fields (f128, f256, and f512) are generated by maintaining 
constant total energy in each of the first two wavenumber shells (0.5 < k < 1.5 
and 1.5 < k < 2.5), with the energy ratio between the two shells consistent with 
k-5/3 .  Forcing at the lowest wavenumbers generates a statistically stationary flow 
usually with a more extensive nominal k-5/3 inertial range and higher Reynolds 
number, than freely decaying turbulence. The forcing, however, introduces artifacts 
at the large-scale fluid motions which may affect the structure and internal similarity 
scaling near the forcing scales. Thus only wavenumber bands larger than these forced 
bands are used for the study of K62 theory later in this paper. Nevertheless, at this 
moment we cannot be completely sure of the extent to which the ~lose-to-k-~’~ region 
approximates true inertial-range structure. 

The spatial resolution of a spectral simulation is often monitored by the value of 
k,,,q, which should be greater than one for the smallest scales of the flow to be 
resolved (Eswaran & Pope 1988), where yj = (v3/F)’l4 is the Kolmogorov microscale. 
This condition is satisfied for all the fields. The isotropic-decay d512 field was designed 
to be over-resolved at the small scales, with k,,,q = 6.4, to study the K62 scaling at 
small r/q.  

The Fourier coefficients of the flow velocity were advanced in time using a second- 
order Adams-Bashforth method for the nonlinear term and an exact integration for 
the viscous term (Chen & Shan 1992). The time step was chosen to ensure that the 
Courant number was 0.4 or less for numerical stability and accuracy (Eswaran & 
Pope 1988). 

The inertial range in the DNS fields is necessarily very narrow because the maximum 
scale separation is limited by the grid resolution. To extend the inertial subrange, 
we also make use of a flow field (les256) generated by moving the smallest inertial 
scales to higher wavenumbers through large-eddy simulation (LES). We model the 
flow scales below the grid spacing (filter scale), using the subgrid scale (SGS) closure 
scheme of Mktais & Lesier (1992). We also apply the same forcing method used for 
our DNSs to the first two wavenumber shells to maintain the energy in the resolved 
field of the LES, thus moving the large-scale side of the inertial range to the lowest 
possible wavenumbers. 

2.2. Dependence of flow characteristics on Reynolds number 
In table 1 we list statistical flow characteristics of the DNS and LES fields. The first 
15 quantities shown in the table (from top to bottom) are, in arbitrary units: the r.m.s. 
component fluctuating velocity u’, the spatially averaged energy dissipation rate F, 
kinematic viscosity v, Taylor microscale Reynolds number RA = u’,l/v, the resolution 
parameter kmaXq, longitudinal velocity-derivative skewness and flatness averaged over 
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three directions, grid spacing A ,  Kolmogorov length scale q ,  the transverse Taylor 
microscale A, the longitudinal integral length scale Lf ,  the dimensionless energy 
dissipation rate T L ~ / u ’ ~ ,  Kolmogorov time scale T~ = (v/T)’/~, the large-scale eddy 
turnover time T, = Lf/u‘, and the total integration time relative to eddy turnover 
time t/T,. The Reynolds number Rl in our simulations varies from 21 to 195. 
Note that the velocity-derivative skewness is around -0.5 and almost independent of 
flow Reynolds number while derivative flatness increases with the Reynolds number. 
Both observations agree with previous DNS studies (Kerr 1985) and experimental 
measurements (Van Atta & Antonia 1980; Tsinober et al. 1992). The integral length 
scale is computed from the three-dimensional energy spectrum E ( k )  : 

where the energy spectrum E ( k )  is defined in the standard manner such that 
+I2 = co E(k)dk. 

(2.3) 

The spectrum was calculated by dividing wavenumber space into N/2 shells centred 
on radius k and with unit bin width Ak = 1, and then summing the modal kinetic 
energy in each shell. The spatially averaged dissipation rate F is related to the energy 
spectrum E ( k )  by 

00 

(2.4) 

where Sij = q ( a u i / d X j  + aUj/axi) is the local rate of stain and E = 2vsijsji. 
The dimensionless energy dissipation T L ~ / u ’ ~  should be independent of Ri at 

sufficiently high &. Consistent with the grid turbulence data given in Sreenivasan 
(1984), table 1 shows that decreases with Rl for the three free-decaying 
fields and has a value of 0.62 for the largest Reynolds number field d256cl. This 
asymptotic value is in good quantitative agreement with a recent study by JimCnez et 
al. (1993), who find T L ~ / u ’ ~  - 0.7 for R~2‘90 in DNS turbulence forced by negative 
viscosity at lowest wavenumbers. Sreenivasan (1984) found an asymptotic value of 
approximately one for RL 2‘ 60 in grid-turbulence measurements. The approach of 
F L ~ / u ’ ~  to an asymptotic value of order 1 at high RA is based on the premise that no 
direct energy transfer takes place between the largest inertial scales and the dissipative 
scales in equilibrium turbulence (K41). Consequently the rate of dissipation depends 
on the energy-dominated length and time scales. Although the premise of no direct 
large-small-scale energy transfer is supported by the equations of motion (Brasseur 
& Corrsin 1987), it is possible that the large-scale velocity and time scales are 
influenced by large-scale structure, including the shape of the energy spectrum at low 
wavenumbers. There is some evidence for this possibility from comparing T L ~ / U ’ ~  in 
the three forced DNS fields (f128, f256, and f512) with the higher-& freely decaying 
case (d256cl), where the energy spectra at low wavenumbers are quite different. In 
all the forced simulations i?Lf /~’~  - 0.42 - 0.49, whereas in the decaying simulation 
TLf/ul3 - 0.62. Furthermore, if T is replaced by energy flux in the LES, we obtain a 
value of 0.435 for TLf /d3 ,  about the same as the forced DNS fields. 

Figure l(a) shows log-log plots of Kolmogorov scaled three-dimensional energy 
spectra for the various DNS fields pre-multiplied by k5/3  so that an inertial range 
would appear as region of zero slope at the Kolmogorov constant C,. Also shown 
with crosses are grid-turbulence data from table 3 of Comte-Bellot & Corrsin (1971) 

- 
E = 2vsiisji = 2v k2E(k)  dk, 
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FIGURE 1. ( a )  The three-dimensional energy spectrum function E ( k )  and ( b )  the one-dimensional 
longitudinal energy spectrum El 1 ( k l )  for the simulated flows at various Taylor microscale Reynolds 
numbers using Kolmogorov scaling. For the forced turbulence fields, only the spectra for the 
unforced region k > 2 or k l  > 2 are shown. The data taken from Comte-Bellot & Corrsin (1971) for 
a flow behind a 2-in grid at the location x / M  = 98 are plotted in (a) for comparison. The horizontal 
chain-dotted line marks the level of 1.6 in (a )  and 0.53 in (b), the average Kolmogorov constant 
observed in experiments. A, 5123, free-decaying flow at Red = 20.9; Q 2563, free-decaying flow at 
Re2 = 132; m ,  2563, free-decaying flow at Re2 = 68.1; V, 1283, forced stationary flow at Rei = 104; 
0, 2563, forced stationary flow at Re1 = 151; 0, 5123, forced stationary flow at Re2 = 195; x, 
Comte-Bellot & Corrsin (1971), Re1 = 65. These symbols are used consistently throughout the 
paper and are shown in table 1. 
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(obtained by converting one-dimensional energy spectra) at Uot/M = 98, where 
U is the mean velocity and M = 2 inches is the grid width. Several observa- 
tions can be made from this figure. First, with the exception of the very low-R:, 
d512 field, the energy spectra for different Ri show a reasonably good collapse 
for kmaxq > 0.1 (roughly the peak in the dissipation-rate spectrum) under the Kol- 
mogorov scaling, indicating self-similarity in the dissipation-range scales, consistent 
with the first K41 hypothesis, as described by equation (1.2). Second, the spec- 
trum for the field d256c2 at R:, = 68 compares very well with the grid-turbulence 
data at Ri x: 65 over all the wavenumber ranges. Third, as Reynolds number 
increases, the spectrum in the range 0.01 < k,,,q < 0.1 gradually approaches the 
kk513 inertial range, with a Kolmogorov constant between 1.5 and 2 (as measured 
from the two forced DNS fields at 2563 and 5123 resolutions). This value for C, is 
in good agreement with the experimental value (Monin & Yaglom 1975, pp. 467- 
485). 

To date it has been possible to experimentally measure only the one-dimensional 
energy spectra (e.g. Comte-Bellot & Corrsin 1971; Champagne 1978). In figure l(b) 
we show the normalized one-dimensional energy spectra from the simulations, which 
are smoother than figure l(a) due to the increased sampling at low wavenumbers 
and the averaging over the three directions. The collapse of data is even better 
than in figure l(a), especially in the inertial range 0.01 < km,,q < 0.1. This result 
is consistent with the observation of Monin & Yaglom (1975, pp. 356358) that 
the inertial ranges for one-dimensional spectra extend to lower wavenumbers than 
for a three-dimensional spectrum. On the other hand, the viscous cut-off for the 
one-dimensional spectrum appears earlier than the three-dimensional spectrum. A 
more accurate estimate of the Kolmogorov constant can be made based on the One- 
dimensional spectra for the highest Rl runs, f256 and f512; these give C,(lD) = 
0.55 & 0.05, close to the average value of 0.53 obtained by Champagne (1978) by 
compiling various high Reynolds number experimental flows with Ri - 138 to 13000. 
Because C, = 55CX(1D)/18 for an infinite inertial range (Monin & Yaglom 1975, 
p. 355), C,(lD) = 0.55 f 0.05 corresponds to C, = 1.68 & 0.15. The observation that 
the Kolmogorov constant from our simulations agrees well with the experimental 
value obtained at much higher Reynolds numbers suggests that our numerically 
simulated inertial ranges, although very narrow, are representative of a true inertial 
range and we feel that C, NN 1.68 is an improvement over previous DNS values 
by Kerr (1990), Vincent & Meneguzzi (1991), and Jimhez et al. (1993). Recent 
measurements by Praskovsky & Oncley (1994) suggest that, at very high Rl, C, 
can depend on Ri as C, - where the parameter p is introduced in equation 
(1.6). 

Linear-linear plots for the normalized dissipation-rate spectra are shown in figure 2 
for k q  < 1. The data collapse well for the four fields with RA > 100, indicating that 
the Kolmogorov scaling (1.2) works well for moderately high Reynolds numbers. The 
normalized dissipation rate spectrum has a peak value of about 1.2 at kq = 0.16, 
in agreement with She et al. (1993) who found k q  = 0.17 at peak dissipation. As 
Ri decreases below 100, the normalized spectrum shifts to higher k q  and the peak 
magnitude decreases. The shift in peak dissipation rate to higher kq with decreasing 
RA can be understood in the following way. Let < E kq and @(() = E(k)/(Zv5)'I4; 
according to (2.4) we have 
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FIGURE 2. Linear-linear plots of the second moment of the three-dimensional energy spectrum. 

so that the area under each curve in figure 2 is 0.5. In addition, equation (2.3) gives 

where uk = (FV)''~ is the Kolmogorov velocity scale. Because the separation in velocity 
scales, u' /uk,  decreases with decreasing Reynolds number, so does the integral of the 
normalized spectrum @(t) according to (2.6). Because this integral is mainly deter- 
mined by the 1ow-C region, the function t2@(t) at low 5 also decreases with decreasing 
Reynolds number. Consequently, equation (2.5) implies that t2@(4) increases at the 
high-5 region as Rl decreases. It should be emphasized that this Reynolds-number de- 
pendence only applies to flows at low Reynolds numbers where the energy-containing 
scales contributing significantly to the integral (2.6) are not well separated from the 
dissipative scales contributing significantly to the integral (2.5). At high Reynolds 
number, almost all the contribution to the integral (2.6) is from the region tQ1 only; 
thus, the Reynolds-number dependence implied by (2.6) is not noticeable on a plot 
of t2@(t) against t. 

Similar Reynolds-number dependence is also found for the normalized one- 
dimensional spectrum (k1q)~@11(k1q),  with @ll(klq) = E 1 1 ( k l ) / ( Z v ~ ) ~ / ~ .  For RJ. > 100, 
the second moment ( k ~ q ) ~ @ l l ( k l q )  has a peak value of 0.25 at klq = 0.8, in very good 
agreement with the experimental data obtained by Champagne (1978) for a cylinder 
wake flow at R:, = 138. However, the Reynolds-number dependence shown here for 
very low Reynolds numbers is in contrast with the results of Champagne (1978) for 
relatively higher Reynolds numbers, i.e. Ri - 138 to 7000, which show that the tail of 
the fourth moment (klq)4@ll(klq) increases with increasing Reynolds-number. Cham- 
pagne (1978), following Wyngaard & Tennekes (1970), relates this different Reynolds- 
number dependence to the monotonic increase of velocity-derivative skewness with 
Reynolds number observed in their measurements. However, the velocity-derivative 
skewness in our simulations shows almost no Reynolds number dependence. There- 
fore, our observation of spectrum collapse for Ri > 100 does not contradict with the 
argument of Champagne (1978) and Wyngaard & Tennekes (1970). In view of the 
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FIGURE 3. (a )  The three-dimensional energy spectrum and (b)  the local Kolmogorov constant 
CK = E(k)k5/3/i?2/3 as a function of the wavenumber k for the large-eddy simulation flow field. 
The dashed line in (a) marks the -5/3 slope. The dashed line in (b)  marks the mean value of CK 
(CK = 1.532). 

experimental difficulties in constructing true isotropic flow fields and in measuring 
high-wavenumber spectra and high-order moments of velocity derivatives (Cham- 
pagne 1978), the question of whether a Reynolds-number dependence of the energy 
spectrum for isotropic turbulence exists at very high Reynolds numbers requires 
further investigation. 

To confirm the isotropy of the simulated flows, we computed an isotropy coefficient, 
defined as 

3 (2-7) 

where E22 and E33 are transverse one-dimensional spectra (Champagne 1978). This 
quantity should be equal to 1.0 for an isotropic field. We find that the isotropy 
coefficient fluctuates around 1 with less than 10% deviations for k l q  > 0.1 in all 
fields. Departures from 1 at lower klq are due to fewer samples at the largest scales. 
Similar behaviour was observed by JimCnez et al. (1993). 

The energy spectrum for the LES field is shown in figure 3. The spectrum oscillates 

Ell(k1) - kldEll(kl)/dkl 

E22(kl) + E33(kl) 



126 L.-P. Wang, S. Chen, J .  G. Brasseur and J.  C .  Wyngaard 

around a k-5/3  slope, as shown more clearly in figure 3 where the local Kolmogorov 
coefficient, defined as C,(k) = ~ ? ( k ) k ~ ’ ~ / ~ ~ / ~ ,  is plotted against k on a linear-linear 
plot. The mean dissipation F is again estimated as the energy flux from the resolved 
field to the subgrid scales, C,(k)  varies in the range from 1.0 to 2.2, with an average 
value of 1.532. 

Table 1 also shows estimated physical-space length scales corresponding to the 
wavenumber of the peak dissipation kD = n / r D ,  the peak energy kE = n/rE, and the 
minimum non-forced wavenumber kF = n/rF. The relation r = n/k  follows from 
relating the minimum length scale on the grid, 2n/N, to the maximum computed 
wavenumber, N/2. These length scales, to be used later, should only be taken as 
estimates owing to the arbitrariness in relating physical- and Fourier-space scales and 
to the possible oscillations in the spectra. Note that the scale separation as defined 
by rE/rD is about 21 for the forced 5123 forced DNS field. 

Recently, Tsinober et al. (1992) used a twelve-wire hot-wire probe to measure all 
nine velocity gradients in approximately isotropic grid turbulence at Ri m 72 and 
presented detailed direct experimental quantification of fine-scale statistics. Their 
experimental results are compared with our simulations in the four quantities, at the 
end of table 1. The first three are the normalized r.m.s., skewness, and flatness of the 
dissipation fluctuations 5 = E - T .  The last parameter is the normalized enstrophy 
production o i o j s i j /  G(m)1/2). The dissipation ‘intermittency parameter’ (P)’/’/F 
increases slowly with Rl for Rn > 100 in our simulations, with the experimental value 
lying within these values. The skewness and flatness of the dissipation-rate fluctuations 
increase much more rapidly with Reynolds number, and are much larger than the 
experimental value. Since both Sc and Fc are strongly influenced by dissipation-range 
scales, they are probably underestimated in the experiment owing to the finite probe 
resolution and other difficulties as noted in Tsinober et al. (1992). 

Particularly interesting is the result that the normalized enstrophy production is 
nearly independent of Rl, with an average value of 0.2220.1. Again the experimental 
value is likely to be an underestimate. The simulations suggest that the value of the 
normalized enstrophy production may be universal at higher Reynolds number with 
a value of about 0.22, providing a useful parameter for turbulence modelling. In 
isotropic turbulence, the normalized enstrophy production is directly related to the 
longitudinal velocity derivative skewness 

--( 

which follows from the relation (Champagne 1978) 

in isotropic turbulence. Potential universality in normalized enstrophy production is 
therefore directly related to potential universality in skewness. A value of S = -0.50 
gives the normalized enstrophy production of 0.21, in good agreement with the 
directly computed values. 

The structure of the enstrophy field is shown with enstrophy isosurfaces in figure 4 
in subdomains which are two integral length scales on a side. In the two DNS fields 
with RA of 21 and 195 (figures 4a and 4b), the regions of high vorticity appear as 
tubes, especially in the higher Reynolds number simulation. The tube-like structures 
become more elongated as Reynolds number increases, in agreement with the results 
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FIGURE 4. Isosurface of vorticity magnitude in a subdomain of side 2Lf for three different flow 
fields. (a) d256c2, Re2 = 68, threshold Iw1 = 40’, about 2% volume covered; ( b )  f512, Re2 = 195, 
threshold (w( = 4w’, about 3% volume covered; (c) large-eddy simulation les256, threshold is 
chosen such that about 1.5% volume is covered. w’ = [ (w.0) /3 ] ’ /~  is the r.m.s. component vorticity 
fluctuation. 

of JimCnez et al. (1993). A quantitative analysis shows that the high-enstrophy regions 
contain a higher percentage of total integrated enstrophy as Rl increases if the volume 
covered by the these regions is held fixed, indicating that the vorticity field becomes 
more intermittent as Rl increases. 

Although the LES removes most of the vorticity from an equivalent fully resolved 
simulation, it is interesting that tube-like structures still persist in the weakly resolved 
vorticity field, as shown visually in figure 4(c). Here the threshold was chosen such 
that the isosurfaces cover about 1.5% of the total volume. These high-intensity regions 
of the filtered vorticity appear as very thin, non-uniformly distributed tubes, with tube 
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size on the order of grid spacing. Figure 4(c) shows more clearly the existence of 
tube-like structures in LES than the visualization of Mktais & Lesieur (1992) for a 
similar 963 LES. 

The comparisons we have made in this section suggest that the higher Reynolds 
number forced direct numerical simulations have realistic flow features for both the 
dissipation and inertial subrange scales that are representative of high Reynolds 
number isotropic turbulence. The LES field, while not representing the fine scales 
below the grid spacing, provides a more extended inertial subrange than DNS with 
realistic structure in the resolved scales. 

3. Probablity distribution of dissipation fluctuations 
3.1. Methodology 

We focus in this section on the first aspect of the K62 theory as discussed in $1, 
the form of the probability distribution of the locally volume-averaged dissipation 
fluctuations e,. In general, the p.d.f. is function of both the flow Reynolds number 
RA and the local scale r.  

We analyse primarily fields d256cl for freely decaying turbulence at RA = 68, f256 
for forced turbulence at Rn = 151, and the LES given by les256 (see table 1). Because 
these flows are closely isotropic, we calculate velocity increments in the x-direction 
only, d,u(x, y, z ,  t )  = u(x + $ r , y ,  z ,  t )  - u(x - i r ,  y ,  z, t ) .  The local dissipation rate e is 
computed in physical space from E = 2vsijsij. Because e is defined on the grid, we use 
multiples of the grid spacing A as the averaging scale r ,  so that 

(3.1~) 
1 i=+(m-1)/2 

e,(x) = - C e ( x + i d )  for r =md,  m = 3,5,7, ..., m 
i=-(m- 1)/2 

i=m/2 

(3.lb) e,(x) = - e ( x + i A )  for r =mA, m= 2,4,6 ,..., 

where the dependence on y , z , t  is not shown and x is located at a grid point. At 
the minimum value for r ( r  = A )  we take E,(x) = e(x). Equation (3.1) defines 
a line averaging rather than a spherical-volume-averaging. We use line averaging 
throughout the paper as it is simpler to compute and more consistent with the way 
that the velocity increment is calculated. Test runs using cubic-volume averaged e, 
show qualitatively the same results as will be discussed here. 

The corresponding velocity increments are then given by 

1 
m 

i=l-m/2 

m m 
2 

6,u(x) = (u(x + -d) - u(x - ?A)l for r = md, m = 1,3,5,7,. . . , (3.2a) 

m f l  m - 1  
2 2 

6,u(x) = lu(x + - A )  - u(x - -A) l  for r = md, m = 2,4,6,. . . , (3.2b) 

where the velocity grid is shifted by 4/2 in the x-direction for the computation 
of A,u(x). The shifting is carried out in Fourier space by multiplying the Fourier 
coefficients by a factor of exp(iklA/2) before transforming the velocity field back to 
the physical space. 
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The above averaging is equivalent to a discretized version of the following one- 
dimensional box-filter averaging: 

r / 2  

er(x) = ' 1  E ( X  + h) dh, 
- r /2  

which can be carried out by filtering E ( X )  in Fourier space as 

(3.3) 

where B,(kl)  and 2(kl) are Fourier coefficients of 6, and E ,  respectively. Spatial 
averaging smooths spiky structures in the signal, reducing the level of dissipation 
fluctuations. Equation (3.4) shows that the averaging removes high-wavenumber 
contributions to the uariance of the dissipation fluctuations at a rate proportional 
to kF2. The box filter is often used in LES to define a resolved turbulent field (e.g. 
Piomelli et al. 1991). This alternative approach was also tested and was found to 
give nearly the same result as equation (3.1), but with the disadvantage that, when 
transforming back to the physical space, the positive-definite property of F, is not 
guaranteed due to the small aliasing error. Because E ,  was found to be negative at a 
few grid points, this alternative approach was not used. 

In addition to the fully resolved direct simulations, we found it useful to apply 
the large-eddy simulation data to the analysis of the K 6 2  theory in the inertial 
range. However, the dissipation-rate spectrum is not resolved in LES with a filter 
cut-off in the inertial range. We approximate volume-averaged dissipation E ,  with 
the volume-averaged energy flux from the resolved scales to the unresolved scales 
using an eddy-viscosity-based subgrid-scale model. This energy flux is converted to 
the viscous dissipation in the unresolved scales. Using the eddy viscosity model, the 
flux at the filter scale A is given by 

(3.5) F A  = 2v J .  .S.. 
t 1J I J ,  

where 5 ,  is the strain-rate tensor computed from the resolved velocity field iii(x). 
Mitais & Lesieur (1992) have shown that F A  well approximates the local energy flux 
from resolved to subgrid scales in homogeneous turbulence when the eddy viscosity 
is independent of position. 

In equilibrium turbulence, the energy flux into the subgrid volume d3 is dissipated 
within that volume on average. Consequently F A  is a good approximation for the 
average dissipation rate in the subgrid-scale volume and we may write 

Similar approaches have been used by Peltier & Wyngaard (1995) to approximate 
dissipation rates in a convective boundary layer obtained from LES. The eddy 
viscosity vt is very close to a constant for k/kc  < 0.3, and is approximately equal to 
(Kraichnan 1976; Mhtais & Lesieur 1992), 

vt m 0.267C:/2~'/3k;4/3,  (3.7) 

where k, is the filter cutoff wavenumber. Because e, = when r + d ,  e, for r%d 
may be approximated by averaging F A  over r .  We apply this approximation for 
r 2 1Od. 
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3.2. Distribution of volume-averaged dissipation fluctuations 

Figure 5 shows the local dissipation rate on a line of length 4Lf for three representative 
fields at different RA, where F A  in figure 5(c) can be viewed as local dissipation at a 
much higher eflectiue Reynolds number averaged over grid scale A .  Visually, the local 
dissipation becomes more spiky as RA increases, and the number of spikes in one 
integral length scale grows with RA. We often observe two dissipation peaks adjacent 
to one another, possibly a reflection of the local dissipation-rate field surrounding 
vortex tubes (see figure 4). 

Figure 6 gives the probability distribution of lne, at four different - r for forced 
turbulence at RA = 151. Here lne, is centred on its mean m, = h e ,  and normalized 
by its standard deviation 0, = [(lne, - m)2]1/2. For convenience, we define s, = 
(In er - m,)/a,. Also shown is the standard Gaussian distribution for comparison. 
Figure 6 shows that whereas In€, is nearly Gaussian for (sJ < 2, the tails deviate 
significantly from the Gaussian distribution. Furthermore, In E ,  is negatively skewed 
at all r, consistent with the findings of Vincent & Meneguzzi (1991) who showed 
similar p.d.f.s for In€. However, we find that these deviations from Gaussianity are 
greatest at small r,  and appear to reduce as r increases. The probability distributions 
of lne, for other DNS fields and the LES field are similar. We find that the skewness 
of h e ,  lies in the range -0.15 to -0.20 for small r and approaches zero as r + Lf, 
while the flatness of lne, is in the range 2.9 to 3.2, close to 3 for the Gaussian 
distribution. 
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FIGURE 6. Probability density function for the log-dissipation, In E, ,  at four different r of 1, 6, 20, 62 
grid spacings for the forced DNS field at Rel = 151. The curves are shifted by different amounts 
for r > A .  The dash lines represent the normal distribution. 

More detailed comparisons with the log-normal distribution can be made by 
For a log-normal computing moments of volume-averaged dissipation rate, $, 

distribution (Kolmogorov 1962), 

(3.8) 1 2 2  - 
c; = exp( nm, + Z n  a, ). 

Using 6 = F yields for n = 1, 

implying that the mean and standard deviation of lnc, are directly related if the 
distribution of c, is log-normal. Figure 7 shows Q as a function of r for the three 
fields used in figure 5. Overall, Q is within 1% of deviations from log-normality at all 
r ,  and improves with increasing r ,  suggesting that the log-normal model is accurate 
for the first-order moment n = 1. However, the departures from the log-normal 
distribution apparent in figure 6 become more important in higher-order moments. 
To see this, we plot the non-dimensional ratio 

(3.10) 

against n in figure 8 for fixed r ,  where R, = 1 when n > 2 if E ,  is precisely log-normal. 
Note that R2 is defined to be 1. Overall, Rn decreases continuously with increasing n, 
indicating that the log-normal model tends to overpredict the magnitude of high-order 
moments. The departure from log-normality decreases as r increases and approaches 
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inertial-range scales. Furthermore, the departure is less for higher flow Reynolds 
number RA. We also studied the p.d.f. of the ratio er2/e,, (rI > 12) and found that it 
is closer to a log-Poisson distribution in the narrow inertial subrange as suggested by 
She & Waymire (1995), than to a log-normal distribution, but the p.d.f. of e, is better 
approximated by a lognormal distribution. A detailed comparison of the log-normal 
model with the log-Poisson model will be presented in a future publication. 

The dependence of the variance of In e, on r is shown in figure 9 on a linear-log plot 
to determine the value of p in equation (1.6). Whereas the LES field does not display 
a well-defined linear region, it appears to have an average slope of approximately 
p = 0.2, very close to the measured value by Anselmet et al. (1984), Sreenivasan 
& Kailasnath (1993), and Praskovsky & Oncley (1994). The DNS fields, on the 
other hand, display short linear regions at intermediate r with an approximate slope 
p = 0.28. This p value is only an estimate, which is the best one can offer at the 
moment. 

In summary, whereas the probability distribution of e, is close to log-normal at 
small-to-moderate fluctuation levels and at large r,  significant departures from the 
log-normal distribution exist in the tails which increase with decreasing r.  These 
departures cause an overprediction of the higher-order moments of dissipation-rate 
fluctuations. Although the degree of departure appears to decrease as r moves into 
the inertial subrange and as flow Reynolds number Rn increases, the departures of 
high-order (n 3 5 )  moments from log-normality is significant even for the inertial 
subrange. 

4. Direct examination of the refined similarity hypotheses 
We are now in a position to analyse directly the K62 refined similarity hypotheses, 

specifically the relationship between the conditionally averaged velocity increment 
b,uIe, and the locally averaged dissipation rate 6,. To compute the averaged velocity 
increments, Brule,, the following procedure was used: (i) divide the dissipation value 
E ,  into bins of small width and (ii) for each e, bin, compute the average velocity 
increment 6,u1er based on those spatial points where the er value is located in the 
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FIGURE 9. The scaling for the variance of In E,. , 2563, free-decaying flow at Rel = 68.1 ; 
0, 2563, forced stationary flow at Ren = 151; +, 2563, large-eddy simulation. 



134 L.-P. Wang, S. Chen, J. G. Brasseur and J .  C. Wyngaard 

bin. Whereas Chen et al. (1993) used linear bins in E,,  here we divide lne, into bins 
of uniform width. We use logarithmic bins because E ,  is approximately log-normally 
distributed (§3), thus distributing the samples more uniformly among different bins. 
As importantly, because the power-law scaling exponents are extracted from log-log 
plots of &u(E,  against the use of logarithmic bins extends the range of In€, on 
the log-log plots and allows more accurate determination of the scaling exponents. - In 
this study, we divide the normalized, logarithmic dissipation rate s, = (In E ,  -In €,)/ar 
into 201 equally spaced bins from s, = -4 to +4, and compute drule, for each bin, for 
each fixed r .  The computation was repeated over roughly logarithmically distributed 
values of r ,  with ri+l = 1.25ri. 

4.1. Scaling exponent of 6, 

We first examine the scaling exponent of E ,  for the conditionally averaged velocity 
increments. For this purpose, log-log plots of 6,uler against e, are presented. In 
figure 10(a) we plot ln(G,ule,)/a, against sr on a log-log scale for the forced DNS 
field at Rn = 151. This normalization places the curves at different fixed r in a similar 
range along the abscissa. Only the bins with at least 1000 samples are plotted; 17 
curves with different r are shown, where r varies from r1 = A x 1 . 7 ~  (bottom curve) 

The first observation to be made from figure 10(a) is that B,u[E, increases with er 
and thus is positiziely correlated with E ,  at all r .  For small-to-intermediate values of r, 
the dependence is linear on this log-log plot, which implies 

to r17 = 784 NU 1.3Lf (top). 

6,uIe, cc E ; .  (4.1) 

For small r ,  the slope is very close to 1/2 for the whole range of e,, which is expected 
based on a Taylor series expansion around r = 0. As r increases, the range of the 
straight-line segment and its slope gradually decrease. The slope approaches the value 
of 1/3, the inertial-range value given by the second RSH, equation (1.9), in the range 
- 3 2 . ~ ~ 2  - 1 for r - 0.4Lf - 0.8Lf. At these larger values of r the slope seems to 
change when s, 2 - 1, indicating that the RSH prediction may be more accurate in 
the low-magnitude fluctuations of E,  (those below the mean). These observations are 
consistent with the recent work by Chen et al. (1993). 

In order to quantify the slopes of the curves in figure 10(a), curve segments were 
least-squared fit with a straight line. Figure 10(b) shows the scaling exponent obtained 
in this way as a function of r for the three different portions of the curves shown in 
figure lO(a): -3 < sr < -1 (dashed), -1 d s, < 1 (solid), and 1 d s, < 3 (dotted). 
In general the scaling exponent decreases with increasing r .  For s, < 1, the scaling 
exponent is very close to 0.5 for log,, r < -1.0 ( r / q  < 7) so the far-dissipation-range 
scaling is reached at a scale greater than the Kolmogorov scale. The scaling exponent 
for -3 < s, < -1 has a value very close to 1/3 as r -+ L f ,  in quantitative agreement 
with the second RSH.? We stress that only the direction of the scaling exponent 
variation seems to conform with K62 hypotheses. An extended cc = 1/3 range is not 
reached here due to a very limited scale separation. In the range 1 c s, < 3, the 

t In a natural turbulence, the RSH does not apply as r -+ L f .  In this numerical turbulence the 
lowest modes are forced to follow a kkSl3 energy spectrum, which might extend the applicability 
of RSH to r closer to L f .  Viewing it alternatively, the inertial-range fluid motions are shifted to 
an energy-containing range of scales, and thus effectively the computed Lf in the simulation is an 
underestimate compared to natural turbulence. 
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FIGURE 10. (a)  Velocity increment conditioned on the locally averaged dissipation, 6,ul~, ,  against 
E, on a log-log plot, for the 2563 forced DNS field f256 at Re1 = 151. Each curve corresponds to 
a fixed r ,  where from bottom to top, r varies from rl = A = 1.71 to 117 = 784 = 1.3Lf such that 
ri+l m 1 . 2 5 ~ ~ .  The upper and lower chained-dotted lines show slopes CI of f and i, respectively, 
where S U ~ E ,  cc c,". (b)  The power-law exponent CI obtained as the average slope in (a) for the three 
regions -3 < s, < -1 (dashed line), -1 < s, < 1 (solid line), and 1 < s, < 3 (dotted line) as a 
function of r .  Two horizontal lines mark the levels of 1/2 and 1/3, and the vertical lines mark the 
various characteristic length scales in the flow field. 

- 

scaling exponent approaches zero as r + Lf. In principle, the scaling exponent should 
go to zero if r e L f .  

The results for the 5123 forced DNS field (f512) at RA = 195 are shown in figure 11. 
20 different r values were used, with rl = 4 w 1 . 5 ~  and 120 = 1524 w 1.3Lf. Only 
the bins with at least 8000 samples are shown in figure ll(a). Because the number of 
samples per bin is about 8 times larger in figure 11 than in figure 10, the curves in 
figure ll(a) are somewhat smoother for large r.  However, the number of independent 
samples may not be much different for large r. Again for small-to-intermediate r 
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F~GURE 11. (a) Velocity increment conditioned on the locally averaged dissipation, 6,uler, against E ,  

on a log-log plot, for the 5123 forced DNS field at ReA = 195. Each curve corresponds to a fixed r, 
and from bottom to top, r changes from rl = A = 1 . 5 ~  to r20 = 1524 = 1.3Lf. (b) The power-law 
exponent t~ obtained as the average slope in (a) for the three regions -2 < sr < -1 (dashed line), 
-1 < s, < 1 (solid line), and 1 < s, < 2 (dotted line) as a function of r. 

values, the dependence of 6,ule, on e, is well defined by a power law. The average 
scaling exponents for the three regions, -2 < s, < -1, -1 < sr < 1, and 1 < s, < 2 
are shown in figure l l(b).  The scaling exponent for the central region , -1 < s, < 1, 
which accounts for about 70% of data set, exhibits a weak plateau near a = 1/3 
between r = 1 and r = Lf .  Although the inertial subrange in the flow is not very 
wide in this simulation, the results suggest that a more extended a = 1/3 range may 
exist with an extended inertial range at higher Reynolds numbers. 

The scaling exponents for the other two s, ranges in figure l l (b )  indicate a weak 
plateau in the region il < r < L f ,  but with levels different from 1/3. In all ranges 
of s,, the scaling exponents rapidly decrease as r increases beyond the integral scale 
Lf .  On the other hand, as r + q the scaling exponents all approach 0.5, even more 
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FIGURE 12. (a) Velocity increment conditioned on the locally averaged dissipation, 6,ule,, against E, 

on a log-log plot, for the 2563 large-eddy simulation field. Each curve corresponds to a fixed r, and 
from bottom to top, r changes from 11 = A to 117 = 784 = 1.3Lf. (b) The power-law exponent a 
obtained as the average slope in (a) for the three regions -2.5 < s, < -1 (dashed line), -1 < s, < 1 
(solid line), and 1 < s, < 2.5 (dotted line) as a function of r. 

consistently than in figure 10. Similar results were found for the 1283 forced DNS 
field, except there is no plateau region of a - 1/3 at all due to the low Reynolds 
numbers. 

Figure 12 shows similar results for the 2563 LES field, where e, is approximated 
using the flux to the subgrid scales, as described in $3. Interestingly, the scaling 
exponent is equal to 0.5 at r = A ,  indicating that the resolved field is sufficiently 
smooth at this scale for a Taylor series expansion to apply. Again we observe a 
positive correlation between the conditionally averaged velocity increment and the 
locally averaged dissipation rate. We also observe power-law dependence between 
b,uie, and E ,  at all r over broad sr regions. Even though a more extended inertial 
subrange is produced by LES, a more extended c1 = 1/3 plateau (compared to the 



138 L.-P. Wang, S .  Chen, J.  G. Brasseur and J. C.  Wyngaard 

5123 DNS field shown in figure 11, for example) is not observed. ( lhe  plateau for 
1 < s, < 2.5 at CI = 0.26 represents a small part of the flow and is significantly below 
1/3.) This lack of a well-defined plateau may be a consequence of approximating the 
locally averaged dissipation with the modelled energy flux from the resolved velocity 
field. A different approach will be discussed in $4.3 which reveals a ‘hidden’ inertial 
subrange in the context of the second RSH. 

Some general observations can be made from figures 10 to 12, relevant to all flow 
types. (Similar results for the decaying flows exist, although not shown here.) For 
a given T ,  the scaling exponent a tends to be largest for the smallest s, (or E, ) ,  and 
decreases with increasing s, (or 6,). Since R e ,  = ej/3r4/3/v, we might expect a plotted 
against r to cross 1/3 at larger e, before smaller E, .  Figures 10 to 12 indicate that this 
is the case (compare the dotted line with the dashed line in c1 versus r plots). With the 
same reasoning, one may also expect a more extended a = 1/3 plateau region for the 
largest e,; however, this is not observed. Instead the local scaling exponent for largest 
e, is generally very small in the range r > 1, suggesting that the second RSH may not 
apply for very high E, .  There is evidence, for example, that the local regions of highest 
dissipation rate are those kinematically related to regions of high vorticity gradient 
surrounding the strongest vortex tubes (Ashurst et al. 1987; Ruetsch & Maxey 1991; 
Lin 1993). If this is the case, the highest-e, regions would scale with the diameter 
of the vortex tubes, which themselves scale on the Kolmogorov scale q (Jimenez et 
al. 1993). Consequently, the characteristic scale for the highest-€, fluctuations (at 
any r )  would be the Kolmogorov scale, q, and an inertial-range scaling would be 
inappropriate. 

4.2. Scaling exponent over r 
Now we examine the scaling relationship between 6,ule, and the local length scale r,  
as indicated by equation (1.9). To illustrate, consider the log-log plot in figure 13(a) 
of 6,u(e, against r for the 2563 forced DNS field at RA = 151, where each curve is 
for a fixed e, value. Since we used 201 bins for e,, there can be 201 such curves 
possible. Of these we choose 41 bins with bin numbers 1, 6, 11, ..., 201 and plot the 
29 curves with at least 2000 samples per point in the conditionally averaged 6,ulq; 
6,  increases from the lower-most to the upper-most curves. The curves for very small 
and very large E ,  do not cover a broad range of r due to lack of samples, reflecting a 
decrease in the probability density of e, with r at both very large and very small e,. 
Figure 13(a) shows that the local slope 8, corresponding to the scaling exponent in 

(4.2) e 
&UIer cc r 

is very close to 1.0 for small r and decreases with increasing T .  

To examine better the scaling exponents, we average the 16 curves that extend over 
all r values, shown in figure 13(b). The local slope of this curve is plotted in 13(c). 
The expected value of the scaling exponent 8 based on a Taylor series expansion in 
the limit r / q  -, 0 is reached when r / q  NN 1. In general, 8 decreases with increasing r ,  
with a weak plateau developing near 8 = 1/3 for 1 < r < Lf. This tendency is not 

- 
FIGURE 13. (a )  Velocity increment conditioned on the locally averaged dissipation, hruler, against r 
on a log-log plot, for the 2563 forced DNS field at Re2 = 151. Each curve corresponds to a fixed 
e,. Dash lines indicate slope of 1 and 1/3, respectively. (6) The averaged curve of &ulcr against r 
from (a), dash lines indicate slope of 1 and 1/3, respectively. ( c )  The scaling exponent 8, obtained 
as the local slope in (b), as a function of r .  The horizontal lines mark the levels 1 and 1/3. 

- 
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FIGURE 13. For caption see facing page. 
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FIGURE 14. The scaling exponent 0 as a function of r / q  for all the DNS simulation fields. The 
results for large-eddy simulation field are shown by 0, where the effective Kolmogorov scale is 
defined by the effective viscosity as given by equation (4.6). 

strong because of the limited scale separation in the flow. When r 2  L f ,  8 decreases 
quickly towards zero. 

A similar procedure was applied to all other flow fields; the DNS results are 
compiled in figure 14. Note in figure 14 that when r is scaled by q the scaling 
exponents collapse for RA 100 in the transition region, 8 = 1 to 8 = 1/3. The 
level 6' = 1/3 is first reached near loglor/q k: 1.7 or r / q  = 50, and for the larger 
Reynolds numbers a weak plateau develops at 0 k: 0.3. The over-resolved simulation 
at Rk = 21 shows clearly that 0 -+ 1 for r + q. Also shown in figure 14 are the 
large-eddy simulation results. Although the plateau is marginal for the DNS fields 
at the highest Reynolds numbers owing to the limited scale separation, the LES field 
shows a plateau near 6' = 1/3 for 1.8 < logl,r/q, < 2.3 or 63 < r / q e  < 200, where 
the estimation of the effective Kolmogorov scale ye is discussed in w.3. 

4.3. Dependence on Kr and universal constants 

We end the discussions by analysing thejrst  RSH using the two forced DNS fields 
at the highest RA, and the LES field. In addition, we briefly examine the Kolmogorov 
scalings for (Sru)'lIc, with n = 1,2, 3, ..., 8 where, according to equation (1.7), the 
normalized moments 

are a function only of %, = In figure 15(a) we replot the curves of 
figure 10(a) (2563 forced DNS with RA = 151) based on the first RSH. Several 
interesting observations can be made. First, the curves in figure 10 collapse reasonably 
well in figure 15(a), indicating that the first RSH, equation (1.7), provides a reasonable 
description for the conditionally averaged velocity increments. Second, the local 
Reynolds number &, extends over about three and half decades, from 0.5 to over 
1000, much larger than the length-scale separation in r,  which is less than two decades 
(e.g. figure lob). Third, based on a Taylor series expansion for r + 0, for small &, 



Examination of Kolmogorov rejned turbulence theory 141 

10-1 

10-1 

100 10’ 102 103 

1.2 

104 

, ... , . . .  
. . . .  . . . .  .... ... 
. . . .  . . . .  . . . .  

100 10‘ 102 103 104 

FIGURE 15. The dimensionless velocity increments (6r~)”I~r/(~~r)”/3 against the local Reynolds 
number Re, for the 2563 DNS field at Re1 = 151. (a )  n = 1, this is essentially a replot of 
figure 10(a); (b )  n = 2, the relation ( & ~ ~ l e ~ ) / ( ~ ~ r ) ~ / ~  = Re,,/15 is shown as a dash line. 

the Reynolds number dependence should be 

gn(Re,,) ~ e : ? .  (4.4) 

For n = 1, the slope should be 0.5, which is the case from figure 15(a) for %, 2 10. 
Most interestingly, those portions of the curves in figure 10(a) where the slope 

o! = 1/3  are now connected together in figure 15(a) to give a plateau region for 
,> 100. This plateau region is expected if the second RSH, equation (1.9), applies. 

These results suggest that %, ? 100 is sufficient for application of the second RSH. 
Furthermore, the level of the plateau provides an estimate for the universal constant 
D1 in equation (1.9). Shown as a dashed line, D1 = 1.2 0.1. The results for 
n = 2, using the same flow field, are shown in figure 15(b), with the same overall 
characteristics as figure 15(a). The small-& limit can be derived analytically in the 
limit r + 0 to yield 

This dependence is shown in figure 15(b) and matches well the region of K ,  < 10. 
The universal constant in the second RSH is Dz = 2.3 f 0.2. 
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Figure 16 shows similar results for the 5123 forced DNS field at Rl = 195. The 
overall features are similar to figure 15, but with a slightly wider plateau yielding 
D1 = 1.2 f 0.1 and D2 = 2.2 f 0.2. These values compare well with the Rl = 151 
forced flow of figure 15. 

/v, spans 
a finite range at a given scale r as compared to a single value for the local Reynolds 
number R, = T ' / 3 r 4 / 3 / v  in K41, the inertial range in K62 context can be better 
realized than K41 for a given turbulence field at moderate Taylor microscale (global) 
Reynolds number Rl. In other words, even for r close to the Kolmogorov scale 
q, it is possible, according to K62, to find sub-regions in the flow field where the 
K62 local Reynolds number &, is large and K62 inertial behaviour is realized. To 
demonstrate this, we plot &$(Tr)1/3 against R, in figure 16(c) for the 5123 simulation. 
A K41 inertial subrange would give a plateau region in figure 16(c). A comparison 
of figure 16(b) with figure 16(c) shows that universal constants (Dn) in the second 
refined similarity hypothesis can be better determined than universal constants (B,) 
in K41. Further implications of the wider K62 inertial subrange for a given flow field 
will be discussed in a later paper. 

To construct a similar K62 plot using the LES field, we introduce an effective 
viscosity v,. A first choice is to use equation (3.7). By using T = 0.1856 (table l), 
CK = 1.532 (see 92), k,  = 120.5, we obtain v, = 0.000317. However, this value 
underestimates the true average effective viscosity, since it is known that the eddy 
viscosity has a cusp near the filter cut-off (Kraichnan 1976). A better way is to use 
the ensemble-averaged form of equation (3.5), 

113 413 As noted in $1, because the local Reynolds number of K62, &, = fr r 

The average variance of the resolved strain rate is found to be ;Tii5ii = 214. It follows 
that v, = 0.000434. Using this effective viscosity and 

1/3r4/3  
fr 

cr = F,!; Rec, = -, 
Ve 

(4.7) 

where Fe is the flux F A  averaged over r ,  we obtain figure 17. Interestingly, plateau 
regions for both the first and second moments of the normalized, conditionally 
averaged velocity increments appear, giving D1 = 1.2f0.1 and 0 2  = 2.3 k0.2, exactly 
the same values as for the DNS flow fields. 

We have also examined the third and fourth moments using the 5 E 3  forced DNS 
field at RA = 195. The overall dependence is similar to the case of n = 1 but with a 
less well-defined plateau, giving D3 = 5.0 f 0.5 and Dq = 14.0 f 1.0. The same third 
and fourth moment universal constants are found for the 2563 DNS field at RA = 151, 
and for the LES field. We also computed the moments for n = 5,  6, 7, and 8 and 
estimated the corresponding universal constants. The results are: DS = 44.0 f 4.0, 
Dg = 150 & 15, D7 = 600 & 50, and D8 = 2500 200. Both the general shape of 
gn(Ree,)  at these orders and the constants D, are the same for these flows. Clearly the 
D, are no longer of order one for large n. 

There is an alternative, straightforward way to estimate the universal constants D,. 
According to the second RSH, the probability distribution of 
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FIGURE 16. The dimensionless velocity increments (6 ,u)nle , / (~,r)"/~ against the local Reynolds 
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FIGURE 17. The dimensionless velocity increments ( ~ , U ) . ~ E ~ / ( E J ) ” / ~  against the local Reynolds 
number Re,, for the 2563 LES field. (a) n = 1, this is essentially a replot of figure 12; ( b )  n = 2, the 
relation (&~~l~,)/(e~r)*/~ = Re,/lS is shown as a dashed line. 

f(P), is universal in the plateau regions of figures 15 to 17. The universal constants 
are then given as 

co 

Dn = P“ f (PI dP. (4.9) 

We computed f(P) based on a small selected (er ,r)  domain that forms a part of the 
plateau regions in figures 15 to 17. Figure 18 shows the probability distributions on 
logarithmic scales. The selected domain is r = 404 and -2 < sr < 0 for the 2563 
forced DNS flow, r = 50d and -1 < s, < 1 for the 5123 forced DNS flow, and 
r = 164 and -1 < sr < 1 for the LES flow field. Many other domains that form 
the plateau can be used if a more accurate f(P) is desired. Figure 18 indicates that 
the distribution is almost the same for the three cases, supporting the universality 
of the distribution. The discrepancy at large p may be due to statistical variability. 
Stolovitzky et al. (1992) recently measured the p.d.f. of P’ E drulE;/(eLr)1’3 in the 
inertial subrange, where d,u = u(x + r, y ,  z ,  t )  - u(x, y ,  z ,  t).  The p.d.f. of P’ should be 
closely related to the p.d.f. of P studied here. Stolovitzky et al. only showed the p.d.f. 
of /?’ for 18’1 < 4 and observed that it is close to Gaussian. The p.d.f. of f i  in figure 18 
compares reasonably well with the Gaussian distribution, in good agreement with the 
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FIGURE 18. The probability distribution of fi  normalized by its standard deviation in the inertial 
subrange in the context of K62 on a log scale for three different flow fields: the 2563 forced DNS 
flow (dashed line), the 5123 forced DNS flow (solid line), and the LES field (chain-dotted line). The 
dotted line shows the Gaussian distribution. 

results of Stolovitzky et al. The tail of the distribution shows some tendency of being 
exponential for the 5123 simulation where enough samples are available to obtain an 
accurate result in the tail. It is not clear to us at the moment whether the tail will in 
fact be exponential at very large Reynolds numbers. 

We now show that for the moments of P, the Gaussian distribution serves as a 
good model. In fact, if we assume that f(B) is given as 

(4.10) 

where o2 = P2f(P)dP = D2, we can obtain 

(4.11) for n = 2,4,6, ...; 
D n = {  (n - 1)!!(2/n)1/20" for n = 1,3,5,. . . . 

Based on the probability function, we obtain the value of D, through equation (4.9) 
for the three fields. The results by this alternative method are presented in figure 19. 

Also shown are the values and error bars obtained from the first method. They 
compare extremely well, indicating that the probability distribution in figure 18 is 
reasonably accurate. Of significance is the fact that D ,  increases with n at afaster- 
than-exponential rate, which is also seen by the Gaussian model (4.11). Also shown 
in the figure by the dotted line is the Gaussian model (4.11). Figure 19 indicates that 
the Gaussian model works well for all n. 

As a side note, figure 19 demonstrates that moments up to order 10 are reasonably 
well computed here. We have also checked this by plotting P'Of(P) against and 
found that the peak is outside (to the left of) the noisy region of the curve. 

To end this section we confirm that the RSH do not apply to the conditionally 
averaged velocity difference LI ,UIE,  without absolute sign, as noted in 91. Figure 20 
shows the magnitude of LI,uIE, against E,,  on a log-log plot similar to figure 10(a), 
for the 2563 forced DNS flow field. There are about 201 data points for each curve. 
The two curves are for r = A and r = 626 respectively. Since LI,uIE,  can take both 
positive and negative values, we denote by symbols those data points (out of 201) 

(n  - l)!!a" 
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FIGURE 19. The universal constants D, based on the probability distributions of B shown in 
figure 18 for the three different flow fields (line captions are the same as figure 18). Symbols are 
values determined from figures 15 to 17. The dotted line is the analytical expression based on the 
Gaussian model, equation (4.1 1). 
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FIGURE 20. The magnitude of average velocity difference conditioned on E,,  d,llE,I as a function 

of E ,  for the 256' forced DNS flow at r = A and r = - 624. The symbols (solid circles' for r = A and 
the open circles for r = 624) mark the regions where A , u ~ E ,  is positive, and the rest (unmarked) are 
the regions where d,ule, is negative. This plot should be compared with figure 10(a) for 6,ule,. 
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where drule, is positive. It is evident that A,ulc, fluctuates around zero and there is 
no indication of power-law scaling. 

To summarize, we have demonstrated in this section that the RSH provides a 
reasonable description for the conditionally averaged velocity increments when &, > 
100. The second RSH is supported quantitatively in terms of both the scaling 
exponents and universal constants in our high-resolution numerical turbulence fields. 
The universal constants are computed and are found to increase with the order n at 
a faster-than-exponential rate. Minor departures from the RSH for large-e, regions 
are noted, although more evidence is needed to confirm if such departures persist to 
higher Reynolds numbers. 

5. The use of pseudo-dissipation in the study of the K62 theory 
Most experimental studies of the K62 theory replace the actual dissipation rate 

e with the ‘pseudo’-dissipation rate E’ = 15v(au/ax)*, which gives dissipation rate 
in an ensemble-average sense but not locally. Experimentally E’ can be obtained 
by a single hot wire and Taylor’s frozen-field hypothesis while measurement of the 
full dissipation rate requires very sophisticated instrumentation (Champagne 1978 ; 
Tsinober et al. 1992; Wallace 2% Foss 1994). In this section, we analyse the similarities 
and differences of the two variables e and c’ in context with the K62 theory. 

5.1. Probability distribution 
Compare first the distribution of the local, pseudo-dissipation rate e’ given in figure 21 
with the actual dissipation rate given in figure 5 for the same three flow fields (where 
the actual flux F A  is replaced by the ‘pseudo-’flux FIA in the LES simulation). Although 
similarities between the signals are apparent, there are many differences as well. The 
distributions of e’ in figure 21 are clearly more intermittent than those in figure 5. 
Although the mean of e’ is equal to that of e, both the number of significant peaks 
and the peak magnitudes are larger in c’ and the background level of e’ is lower than 
e. These differences can be qualitatively explained by the full dissipation involving all 
nine different velocity derivatives in sij ,  while e’ involves only one. The full dissipation 
e can be viewed roughly as an average of nine intermittent structures, each of which 
is like e’; this averaging tends to reduce the degree of intermittency. Regions of 
extremely large E’ tend to correspond to regions of large e, but not vice versa. 

Figure 22 displays the probability distribution of lne; at four different I for the 
2563 forced DNS flow, for comparison with figure 6 for lne,. The local averaging 
of ci  is done in the same way as for E, (see §3), which gives EL = e‘ when r = A .  
The normalized logarithmic pseudo-dissipation is defined as si = (In c: - mi)/ai with 
mi and being the mean and standard deviation of ln<, respectively. Overall, 
there are significant differences between the p.d.f.s of lne, and Inel. Consider first 
the probability distribution of lne’ = lnei,,, given by the lowest curve in figure 22. 
This distribution is very different both from the Gaussian distribution and from the 
distribution of lne. It is strongly skewed, with a skewness of -1.34 for s‘ as compared 
with -0.15 for s. The probability distribution is linear for s’ < -1 on this log-scale 
plot. The linear variation between the logarithm of the p.d.f. and s‘ for $2 - 1 
corresponds to the square-root singularity in the probability distribution of c’ as 
noted by Narasimha (1990): 

as d + 0. 
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FIGURE 21. The local pseudo-dissipation rate (DNS) or modelled energy flux (LES) on a line 
y = z = L B / ~  of length 4 integral length scales in the simulation box. (a) f256, Ren = 151; 
( b )  les256. 

Combining (5.1) with (3.8) (where e is replaced by e‘), we obtain 

f(s;) cc exp(+’s’) as s’ -, -00, ( 5 4  

giving a slope 0’ log,, e /2 shown in figure 22 by the chain-dotted line and comparing 

very well to the actual slope. Because of this exponential tail, the flatness of s’ is 
a rather high 6.4, as compared with 3.1 for s. For r > A,  the departures from 
Gaussianity are less severe, but always noticeable. Although the relative degree of 
the departures from Gaussianity of s’ seems to reduce as r increases like s (figure 6) ,  
the p.d.f.s of s and s’ are significantly different at all r .  Note that the square-root 
singularity disappears as r increases and although the probability distributions for E, 

and 6; are very different for small r, both distributions tend to be closer to log-normal 
at large r values. Comparing figure 22 with figure 6 indicates that the distributions 
of E ,  fluctuations are much closer to log-normal than 6: at larger r.  

The dependence of the variance 0;’ on r is shown in figure 23 for three representative 
flow fields for comparison with of in figure 9. The maximum 0:’ is roughly five times 
larger than the maximum 0,” of about 1.1 in figure 9, consistent with the much 
higher level of intermittency in e’ (figure 21). The variance 0:’ drops very quickly 
with increasing r with a characteristic much different from 0,‘ (figure 9). At the 
largest r ,  the two variances, 0:’ and o;, are not much different, with a value around 
0.2 - 0.3. The two variances should both approach zero for rs-Lf.  Consequently the 
corresponding intermittency parameter p’ is larger than p in the inertial subrange for 
a finite Reynolds number flow. From figure 23, we obtain p’ - 0.34 for the DNS 
flows and p’ - 0.25 for the LES flow field. They are about 20% to 25% larger than 
the respective value for the full dissipation ($3). We note that the slope p’ for DNS 
flows is not as well defined as p; the value p’ here is based on the region where r is 
relatively large and lies in the narrow inertial subrange, while a much wider range of 
r is used for p. 

0 
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FIGURE 22. Probability density function of the logarithmic pseudo-dissipation, In e:, at four different 
T of 1, 6, 20, 62 grid spacings for the forced DNS field at Re2 = 151. The curves are shifted by 
different amounts for T > A .  The dashed lines represent the Gaussian distribution. 

-5 -4 -3 -2 -1 0 1 

In < r q  
FIGURE 23. The variance of lne: against lnr for the three flow fields: m ,  2563, free-decaying 
turbulence at Re1 = 68.1; 0, forced stationary turbulence at Re1 = 151; 0, 25ti3, large-eddy 
simulation. 
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RGURE 24. (a) Velocity increment conditioned on the locally averaged pseudo-dissipation, 6,ulf;, 
against ei on a log-log plot, for the 5123 forced DNS field at Re1 = 195. Each curve corresponds 
to a fixed r,  and from bottom to top, r changes from rl = A  = 1 . 5 ~  to r20 = 1524 = 1.3Lf. ( b )  The 
power-law exponent a' obtained as the average slope in (a) for the three regions -2 < s, < -1.0 
(dashed line), -1.0 < s, < 1.0 (solid line), and 1.0 < sr < 2 (dotted line) as a function of r .  

5.2. Refined similarity hypotheses 
We now briefly compare the scaling exponent for S,ul< with the scaling exponent 
for S,ule, discussed in $4. Figure 24(a) shows a log-log plot of 6,ule: against sl, for 
the 5123 forced DNS field to be compared with figure l l(a) for 6,ule, against s, at 
different fixed r .  The overall features of figures 24(a) and ll(a) are similar with three 
noticeable differences. The first difference is that the curves in figure 24(a) are shifted 
slightly to the left as a result of a much more strongly skewed distribution of ci 

compared with E,. Secondly the ei curves cover a much narrower range in 6,ule; than 
do the e, curves. Thirdly the ei curves at small-r are not as well approximated by 
straight lines as are the small r values for E, in figure ll(a). Indeed, this statement 
can be made about all curves in figure 24(a) as compared with ll(a). 
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FIGURE 25. The scaling exponent 8’ as a function of r / q  for all flow fields. 

Figure 24(b) displays the scaling exponent a’ for same three subregions of s: as 
those chosen for Sr in figure ll(b). Similar to figure l l (b) ,  there is a week plateau 
of a/ = 1/3 at scales between A and Lf but occurring for 1.0 d s: < 2.0, and the 
exponent decreases quickly as r increases beyond L f .  Although a’ approaches 0.5 as 
r .+ q like a, for A < r < 1, the scaling exponents are significantly larger than 0.5 
and depend more strongly on €1 as compared with figure l l ( b )  for 01. This indicates 
that the power-law dependence is less well satisfied for 6: than for 6,. Similar results 
are found for other flow fields. 

The same postprocessing procedure as discussed in w.2 for the scaling of ~,uJE, 
with r is applied here to obtain the scaling exponents of 6,uleL with r.  The final 
results for all the seven flow fields under Kolmogorov scaling are shown in figure 25 
for comparison with figure 14. As before, for the LES field we introduce an effective 
Kolmogorov scale q, = ( v , ~ / F ) ’ / ~  based on the effective viscosity v, defined by equation 
(4.6). The overall features of figure 25 are similar to figure 14. Interestingly, the data 
for the LES field also match those of the high Reynolds number DNS fields in the 
transition region. For the LES field, there is a well-defined 8’ = 1/3 region starting 
from r/qe = 50. Again the exponent becomes one as r/q + 1. 

e: is not 
severe, universality is not so well approximated using €1; this is shown in figure 26, 
where the first and second moments are plotted against the local Reynolds number 
FQ = e ’ ; ’3r4 /3 /~ .  Compared to figure 16, the curves in figure 26 show a lesser degree 
of collapse and little apparent plateau region for &; > 100. Indeed, without reference 
to figure 16, it would be difficult to extract the universal constants D1 and 0 2  from 
figure 26, although the levels based on figure 16 apply marginally in figure 26. 

The comparison between F:’ and FP for the LES field appears to be somewhat 
better figure 27). Although the plateau regions are much narrower than in figure 17, 
they are clear enough to allow for an estimate of the universal constants D1 and D2, 
which are the same as from figure 17 before. 

While the difference in scaling exponents obtained by using E,  us. 
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FIGURE 26. The dimensionless velocity increments (dru).le;/(e;r)”13 against the local Reynolds 
number Re,: for the 5123 DNS field at Ren = 195. (a) n = 1, this is a replot of figure 1 1  using 4 ;  
(b )  n = 2. Note that the deviation for the smallest r from the relation (&.~~1e;)/(~;r)~/~ = kr/15 is 
a numerical artifact of adding a very small number when taking the logarithm of E:.  

6. Concluding remarks 
High-resolution direct Navier-Stokes simulations make it possible to generate 

instantaneous turbulence fields at moderate to high Reynolds numbers, with realistic 
small-scale features in both the inertial and dissipation subranges. These allow us 
to examine directly the fundamental hypotheses underlying Kolmogorov-Obukhov 
(1962) turbulence theory. Our analyses were motivated by recent work (Hosokawa & 
Yamamoto 1992; Chen et al. 1993) concerning the validity of these hypotheses, but 
are carried out in great quantitative detail to obtain scaling exponents and universal 
constants. We have demonstrated that the probability distribution of locally averaged 
disspation rate .E~ over a length scale r is nearly log-normal in the inertial subrange, 
but with significant departures in the tails. These departures play an important role 
in high-order moments of dissipation fluctuations. The intermittency parameter p, 
appearing in the Kolmogorov’s third hypothesis for the variance of the logarithmic 
dissipation, is found to be in the range of 0.20 to 0.28, in good agreement with 
recent experimental measurements based on pseudo-dissipation rate (Anselmet et al. 
1984; Sreenivasan & Kailasnath 1993; Praskovsky & Oncley 1994) and numerical 
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FIGURE 27. The dimensionless velocity increments (&~)"(e;/(e;r)'/~ against the local Reynolds 
number Re,: for the LES field. (a) n = 1, this is essentially a replot of figure 12 using 6;; (b)  n = 2. 
Note that the deviation for the smallest r from the relation (6,~~1e;)/(c~r)~/~ = Qr/15 is a numerical 
artifact of adding a very small number when taking the logarithm of 4. 

simulations (Vincent & Meneguzzi 1991). The scaling exponents over both er and r 
for the conditionally averaged velocity increments d,ulc, are quantified, which provide 
direct evidence in support of the refined similarity hypotheses. Even more directly, 
the dimensionless averaged velocity increments ( d , ~ ~ l r , ) / ( c , r ) " / ~  are found to depend 
on the local Reynolds number R e ,  = e f / 3 r 4 / 3 / v  in a manner consistent with the 
refined similarity hypotheses. In the inertial subrange, the probability distribution 
of B , u / ( ~ , r ) ' / ~  is found to be nearly universal and is close to Gaussian distribution. 
Universal constants in the second RSH are determined quite accurately and found to 
increase with the order n at a faster-than-exponential rate. 

Just as the log-normal model for the distribution of the dissipation-rate fluctuations 
has its limitations, the evidence we gather here indicates that the refined similarity 
hypotheses may not apply to regions of very large e,. These departures are similar in 
the different simulated flows, and thus may persist to higher Reynolds number flows. 
Further studies are needed to clarify this observation. 

The use of pseudo-dissipation, often employed in experimental work, is critically 
examined in the context of the K62 theory. We found that the probability distribution 
of locally averaged pseudo-dissipation e: deviates more from a log-normal model 
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than the full dissipation e,, and the intermittency parameter p’ based on the pseudo- 
dissipation can be larger than p based on the full dissipation in finite Reynolds number 
turbulence. The velocity increments conditioned on 6; do not follow the refined 
similarity hypotheses to the same degree as those conditioned on e,. Consequently, 
we anticipate that consistency with the refined similarity hypotheses will require 
higher Reynolds numbers using pseudo-dissipation than the full dissipation rate. We 
conclude that the actual dissipation rate is preferred to the pseudo-dissipation rate in 
the study of the K62 theory, particularly at moderate Reynolds numbers. 

The results presented here are limited to moderate turbulence Reynolds numbers. 
One should not draw definitive conclusions based on existing DNS results. However, 
our results do give supportive evidence to the K62 theory. Direct numerical simula- 
tions at higher Reynolds numbers are needed to fully resolve the issues in K62. The 
large-eddy simulation flow field, in principle, provides a portion of the inertial sub- 
range at infinite Reynolds number, but does not resolve the dissipation field directly; 
thus, approximations have to be made in furnishing the locally averaged dissipation 
field. Most experimental studies involve turbulence fields at much higher Reynolds 
numbers; however, they do not examine the hypotheses embedded in the K62 theory 
directly. In view of the significance of the refined similarity hypotheses and possible 
minor departures for regions of very high dissipation rate as noted in this study, 
it would be desirable for experimentalists to examine these hypotheses directly in a 
manner similar to this study. Experimental determination of the universal constants 
D, in the second refined similarity hypothesis would also be useful. 

We thank Gary D. Doolen for his help in the numerical simulations and Robert 
H. Kraichnan, Andrew Siegel, Gustavo Stolovitzky, and L. J. Peltier for useful 
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Los Alamos National Laboratory. The numerical simulations were performed on the 
CM-5 at the Advanced Computing Laboratory at Los Alamos National Laboratory. 

REFERENCES 

ANSELMET, F., GAGNE, Y., HOPFINGER, E. & ANTONIA, R. A. 1984 High-order velocity structure 
functions in turbulent shear flows. J. Fluid Mech. 140, 63-89. 

ANTONIA, R. A., SATYAPRAKASH, B. R. AND HUSSAIN, A. K. M. F. 1982 Statistics of fine-scale velocity 
in turbulent plane and circular jets. J. Fluid Mech. 119, 55-89. 

ASHURST, W. T., KERSTEIN, A. R., KERR, R. M. & GIBSON, C. H. 1987 Alignment of vorticity and 
scalar gradient with strain in simulated Navier Stokes turbulence. Phys. Fluids 30, 3243-3253. 

BRASSEUR, J. G. & COUSIN, S. 1987 Spectral evolution of the Navier-Stokes equations for low order 
coulpings of Fourier modes. In Advances in Turbulence (ed. G. Comte-Bellot & J. Mathieu), 
pp. 152-1 62. Springer. 

CHAMPAGNE, F. H. 1978 The fine-scale structure of turbulent velocity field. J. Fluid Mech. 86, 67-108. 
CHEN, S., DOOLEN, G. D., KRAICHNAN, R. H. & SHE, Z.-S. 1993 On statistical correlations between 

velocity increments and locally averaged dissipation in homogeneous turbulence. Phys. Fluids 
A 5, 458463. 

CHEN, S. & SHAN X. 1992 High resolution turbulence simulations using the Connection Machine-2. 
Comput. Phys. 6, 643. 



Examination of Kolmogorov refined turbulence theory 155 

COMTE-BELLQT, G. & CORRSIN, S. 1971 Simple Eulerian time correlation of full- and narrow-band 

ESWARAN, V. & POPE, S. B. 1988 An examination of forcing in direct numerical simulations of 

GIBSON, C. H., STEGEN, G. R. & MCCONNELL, S. 1970 Measurements of the universal constant 

velocity signals in grid-generated, ‘isotropic’ turbulence. J .  Fluid Mech. 48, 273-337. 

turbulence. Computers Fluids 16, 257-278. 

in Kolmogorov’s third hypothesis for high Reynolds number turbulence. Phys. Fluids 13, 
2448-245 1. 

GUFWICH, A. S. & YAGLOM, A. M. 1967 Breakdown of eddies and probability distributions for 

HOSOKAWA, 1. 1991 Temperature structure functions in isotropic turbulence. Phys. Reu. A 43, 

HOSOKAWA, I. & YAMAMUTO, K. 1992 Evidence against the Kolmogorov refined similarity hypothesis. 

JIM~NEZ, J., WRAY, A. A., SAFFMAN, P. G. & ROGALLO R. S. 1993 The structure of intense vorticity 

KERR, R. T. 1985 High-order derivative correlations and the alignment of small-scale structures in 

small-scale turbulence. Phys. Fluids Suppl. S59-365. 

6735-6739. 

Phys. Fluids A 4, 457-459. 

in isotropic turbulence. J. Fluid Mech. 255, 65-90. 

isotropic numerical turbulence. J. Fluid Mech. 153, 31-58. 
KERR, R. T. 1990 Velocity, scalar and transfer spectra in numerical turbulence. J. Fluid Mech. 211, 

309-332. 
KIDA, S. 1991 Log-stable distribution in turbulence. Fluid Dyn. Res. 8, 135-138. 
KOLMOGOROV, A. N. 1941a The local structure of turbulence in incompressible viscous fluid for very 

large Reynolds numbers. C.R. Acad. Sci. URSS 30, 301-305. 
KOLMOGOROV, A. N. 1941b Dissipation of energy in the locally isotropic turbulence. C.R. Acad. Sci. 

URSS 32, 16. 
KOLMOGOROV, A. N. 1962 A refinement of previous hypotheses concerning the local structure of 

turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 
82-85. 

KRAICHNAN, R. H. 1974 On Kolmogorov’s inertial-range theories. J. Fluid Mech. 62, 305-330. 
KRAICHNAN, R. H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521-1536. 
KUO, A. Y. S. & CORRSIN, S. 1971 Experiments on intermittency and fine-structure distribution 

LANDAU, L. E. & LIFSHITZ, E. M. 1963 Fluid Mechanics. p. 126, Pergamon. 
LEE, M. J. & REYNOLDS, W. C. 1985 Numerical experiments on the structure of homogeneous 

turbulence. Department of Mechanical Engineering Rep. TF-24 Stanford University, Stanford, 
CA. 

LIN, W.-Q. 1993 Structural and dynamical characteristics of intermittent structures in homogeneous 
turbulent shear flow. PhD Thesis, Department of Mechanical Engineering, Pennsylvania State 
University. 

LIU, T. 1993 A note on the probability distribution of the dissipation rate in locally isotropic 
turbulence. Phys. Fluids A 5, 2234-2238. 

MANDELBROT, B. B. 1974 Intermittent turbulence in self-similar cascade: divergence of high moments 
and dimension of the carrier. J. Fluid Mech. 62, 331-358. 

MENEVEAU, C., SREENIVASAN, K. R., KAILASNATH, P. & FAN, M. S. 1990 Joint multifractal measures: 
theory and applications to turbulence. Phy. Reu. A 41, 89&913. 

M~TAIS, 0. & LESIELJR, M. 1992 Spectral large-eddy simulation of isotropic and stably stratified 
turbulence. J .  Fluid Mech. 239, 157-194. 

MONIN, A. S. & YAGLOM, A. M. 1975 Statistical Fluid Mechanics, Mechanics of Turbulence, Vol 2. 
MIT Press. 

NARASIMHA, R. 1990 The utility and drawback of traditional approaches. In Whither Turbulence? 
Turbulence at the Crossroads (ed. J. L. Lumley). Lecture Notes in Physics, Vol. 357. Springer. 

NOVIKOV, E. A. 1970 Intermittency and scale similarity of the structure of turbulent flow. Prikl. 
Math. Mekh. 35, 266-277. 

OBOUKHOV, A. M. 1962 Some specific features of atmospheric turbulence. J .  Fluid Mech. 13, 77-81. 
PELTIER, L. J. & WYNGAARD, J. C. 1995 Mean and local structure-function parameters in the 

PIOMELLI, U., CASUT, W. H., MOIN, P. & LEE, S. 1991 Subgrid-scale backscatter in turbulent and 

functions in fully turbulent field. J .  Fluid Mech. 50, 285-319. 

convective boundary layer from large-eddy simulation. J. Atmos. Sci. (to appear). 

transitional flows. Phys. Fluids A 3, 1766-1771. 



156 L.-P. Wang, S. Chen, J. G. Brasseur and J. C. Wyngaard 
PRASKOVSKY, A. A. 1992 Experimental verification of the Kolmogorov refined similarity hypothesis. 

PRASKOVSKY, A, A. & ONCLEY, S. 1994 Measurements of the Kolmogorov constant and intermittency 

RUETSCH, G. R. & MAXEY, M. R. 1991 Small-scale features of vorticity and passive scalar fields in 

SHE, Z.-S., CHEN, S.,  DOOLEN, G., KRAICHNAN, R. H. & ORSZAG, S. A. 1993 Reynolds number 

SHE, Z.-S. & LEVEQUE, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 

SHE, Z.4. & WAYMIRE, E. C. 1995 Quantized energy cascade and log-Poisson statistics in fully 

SREENIVASAN, K. R. 1984 On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27, 

SREENIVASAN, K. R. & KAILASNATH, P. 1993 An update on the intermittency exponent in turbulence. 

STOLOVITZKY, G., KAILASNATK P. & SREENIVASAN, K. R. 1992 Kolmogorov’s refined similarity 

STOLOVITZKY, G. & SREENIVASAN, K. R. 1993 Scaling of structure functions. Phys. Rev. E 48, R33-36. 
STOLOVITZKY, G. & SREENIVASAN, K. R. 1994 Kolmogorov’s refined similarity hypotheses for 

turbulence and general stochastic processes. Rev. Mod. Phys. 66, 229-240. 
THORODDSEN, S. T. & VAN ATTA, C. W. 1992 Experimental evidence supporting Kolmogorov’s refined 

similarity hypothesis. Phys. Fluids A 4, 2592-2594. 
TSINOBER, A., KIT, E. & D u r n ,  T. 1992 Experimental investigation of the field of velocity gradients 

in turbulent flows. J. Fluid Mech. 242, 169-192. 
VAN ATTA, C. W. & ANTONIA, R. A. 1980 Reynolds number dependence of skewness and flatness 

factors of turbulent velocity derivatives. Phys. Fluids 23, 252-257. 
VAN ATTA, C. W. & PARK, J. 1972 Statistical self-similarity and inertial subrange turbulence. In 

Statistical models and Turbulence. Proc. Symp. at San Diego, July 15-21,1971 (ed. M. Rosenblatt 
& C. Van Atta). Lecture Notes in Physics, Vol. 12, pp. 402426. Springer. 

VINCENT, A. & MENEGUZZI, M. 1991 The spatial structure and statistical properties of homogeneous 
turbulence. J .  Fluid Mech. 225, 1-20. 

WALLACE, J. M. & Foss, J. F. 1994 The measurement of vorticity in turbulent flows. Ann. Rev. Fluid 
Mech. 27, 469-514. 

WYNGAARD, J. C. & PAO, Y. H. 1971 Some measurements of the fine structure of large Reynolds 
number turbulence. Statistical models and Turbulence. In Proc. Symp. at San Diego, July 15-21, 
1971 (ed. M. Rosenblatt & C. Van Atta). Lecture Notes in Physics, Vol. 12, pp. 384-401. 
Springer. 

WYNGAARD, J. C. & TENNEKES, H. 1970 Measurements of the small-scale structure of turbulence at 
moderate Reynolds numbers. Phys. Fluids 13, 1962-1969. 

YEUNG, P. K. & BRASSEUR, J. G. 1991 The response of isotropic turbulence to isotropic and 
anisotropic forcing at the large scales. Phys. Fluids A 3, 884897. 

Phys. Fluids A 4, 2589-2591. 

exponent at very high Reynolds numbers. Phys. Fluids 6, 2886-2888. 

homogeneous isotropic turbulence. Phys. Fluids A 3, 1587-1597. 

dependence of isotropic Navier-Stokes turbulence. Phys. Rev. Lett. 70, 3251-3254. 

72, 336-339. 

developed turbulence. Phys. Rev. Lett. 68, 2762-2765. 

1048-105 1. 

Phys. Fluids A 5, 512-514. 

hypotheses. Phys. Rev. Lett 69, 1178-1181. 




