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Flow Modulation by Finite-Size
Neutrally Buoyant Particles in a
Turbulent Channel Flow
A fully mesoscopic, multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is
developed to perform particle-resolved direct numerical simulation (DNS) of wall-
bounded turbulent particle-laden flows. The fluid–solid particle interfaces are treated as
sharp interfaces with no-slip and no-penetration conditions. The force and torque acting
on a solid particle are computed by a local Galilean-invariant momentum exchange
method. The first objective of the paper is to demonstrate that the approach yields
accurate results for both single-phase and particle-laden turbulent channel flows, by
comparing the LBM results to the published benchmark results and a full-macroscopic
finite-difference direct-forcing (FDDF) approach. The second objective is to study turbu-
lence modulations by finite-size solid particles in a turbulent channel flow and to demon-
strate the effects of particle size. Neutrally buoyant particles with diameters 10% and 5%
the channel width and a volume fraction of about 7% are considered. We found that the
mean flow speed was reduced due to the presence of the solid particles, but the local
phase-averaged flow dissipation was increased. The effects of finite particle size are
reflected in the level and location of flow modulation, as well as in the volume fraction
distribution and particle slip velocity near the wall. [DOI: 10.1115/1.4031691]

1 Introduction

Turbulent flows laden with solid particles or liquid droplets
occur frequently in engineering, biological, and environmental
applications. Examples include pneumatic conveying, pulverized
coal combustion, spray drying and cooling, particulate pollution
control, and fluid catalytic cracking, etc., see Refs. [1,2]. A turbu-
lent particle-laden flow system is more complicated than its
single-phase counterpart owing to a wider range of length and
time scales and the additional parameters associated with the dis-
persed phase [3]. For a turbulent flow laden with nondeforming
spherical particles, the length scales range from the particle diam-
eter (dp) and flow Kolmogorov length (g) to the integral length
scale (L). When dp=g is small and the volume fraction (/V) of the
dispersed phase is low, the response of a particle to the local flow
can be well described by an equation of motion [4], making it
unnecessary to resolve the disturbance flow on the scale of the
particle size. Most theoretical understanding for turbulent
particle-laden flows has been developed based on these assump-
tions. Computationally, the condition of dp=g < 1 partially justi-
fies the use of point-particle based simulation (PPS) [5]. In the last
25 years, PPS has enabled researchers to discover and quantify a
number of important phenomena in turbulent particle-laden flows
including preferential concentration [6,7], turbulence modulation
by inertial particles [8,9], particle deposition rate, and turbulent
collision rate of inertial particles [5,10–13].

In many applications with high rate of flow dissipation, the par-
ticle size is comparable to or larger than the flow Kolmogorov
length [14], which introduces finite-size effects greatly complicat-
ing the description of the flow system. Currently, the only rigorous
method is to numerically resolve the disturbance flows around
particles, known as the particle-resolved or interface-resolved
simulation (PRS). This requires an explicit consideration of the
no-slip boundary condition on the surface of each moving
particle.

PRS of turbulent particle-laden flows involves direct simulation
of the turbulent carrier flow and explicit and accurate treatment of

many moving fluid–solid interfaces, such that all scales from tur-
bulence integral scale to dissipation scales and particle size are
directly resolved with scale separations determined by applica-
tions. In recent years, several PRS methods based on the
Navier–Stokes (N–S) equations have been developed, with the
particle–fluid interfaces treated by the immersed boundary method
[15,16], direct-forcing [17,18], local analytical treatment [19],
overset grid [14], force-coupling [20], or penalization method
[21]. As reviewed in Refs. [22,23], these studies have contributed
to the understanding of flow modulation by the inertial particles
and the dynamic effects due to finite particle size.

As an alternative approach, the LBM has also been applied as a
PRS method for turbulent particle-laden flows [22–26]. The LBM
approach features a high-level data locality essential to efficient
parallel implementation of PRS. Another advantage is that LBM
has the flexibility and simplicity (i.e., via local bounce-back) for
implementing fluid–solid and fluid–fluid interfacial boundary con-
ditions. This offers the potential for the method to be applied to
treat turbulent flows laden with nonspherical and deformable
particles.

The main objective of this paper is to develop and test a fully
mesoscopic LBM approach for simulating wall-bounded turbulent
particle-laden flows. By fully mesoscopic, we mean that the bulk
flow simulations, no-slip and no-penetration boundary conditions
on the moving particle surfaces, and the computation of hydrody-
namic force and torque acting on a moving particle is treated at
the level of distribution function in LBM. It is crucial that the
results can be compared directly to other approaches under the
identical physical conditions. Previously, we have applied LBM
to homogeneous isotropic particle-laden turbulent flows [22,23].
In a wall-bounded flow, the flow scales near the wall and away
from the wall could be quite different, and to the best of our
knowledge, there has not been a successful simulation of a
particle-laden turbulent channel flow using LBM. There are, how-
ever, some first attempts to develop particle-resolved simulations
of wall-bounded particle-laden flows using pseudospectral and
finite-difference methods, with the moving particles treated by the
immersed boundary method [16,27,28] or direct-forcing method
[17].

From experimental perspective, particle-laden wall-bounded
flows have played an important role in understanding turbulence
modulation by solid particles. Previous experimental studies
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included particle-laden open channel flow [29], turbulent bound-
ary layer [30,31], and turbulent pipe flow [32,33]. It is well known
that the presence of small solid particles typically decreases the
turbulence intensity due to enhanced viscous dissipation, whereas
large particles can enhance the turbulence intensity due to
undamped disturbances and wake effects [34,35]. Solid particle
had also been observed to alter the critical Reynolds number for
laminar to turbulent flow transition, where small particles delay
transition to larger flow Reynolds numbers, and large particles
cause transition at smaller Reynolds numbers [36]. In general, the
nature and level of modulation depend on many factors including
scales and geometric configurations of the carrier phase flow and
particle characteristics, such as size, density, mass loading, parti-
cle distribution, and gravity. Finite-size particles may introduce
both local viscous dissipation and kinetic energy production.
Experimental studies mainly provide bulk flow statistics, how-
ever, they could not reveal detailed interactions between particles
and turbulence at the scale of particle size. It is hoped that
particle-resolved DNSs can provide a deep understanding of tur-
bulence modulation by solid particles and effects of finite particle
size on the dynamics of solid particles.

Specifically, we will validate our LBM approach by comparing
LBM results to the published benchmark data for single-phase tur-
bulent channel flow, and, for particle-laden turbulent channel
flow, to results from a fully macroscopic FDDF approach [17,37].
Due to the complex nature of particle-laden turbulent flows and
lack of experimental data at the identical conditions and at the
microscale, the systematic intercomparisons between two com-
pletely different (mesoscopic versus macroscopic) computational
approaches are much desired, in order to identify potential pitfalls
in a given approach and inaccuracies in the simulation results.
Another objective is to study turbulence modulations by finite-
size solid particles in a turbulent channel flow and to demonstrate
the effects of particle size. Following the study of Shao et al. [17],
neutrally buoyant particles with diameters 10% and 5% the chan-
nel width and a volume fraction of about 7% are considered in
this study.

The paper is organized as follows: In Sec. 2, the physical prob-
lem and the two computation approaches (LBM and FDDF) are
described, along with important implementation details that lead
to successful simulations of the particle-laden turbulent channel
flow. The results are presented in Sec. 3, where we first discuss
results from simulations of single-phase turbulent channel flow,
by comparing our results with published benchmark data. We then
analyze in some detail several aspects of turbulence modulations
and particle distribution, to illustrate the effects of finite particle
size. The summary and main conclusions are presented in Sec. 4.

2 Problem Statement and the Particle-Resolved DNS

Approach

We consider a turbulent channel flow laden with finite-size
solid particles, as sketched in Fig. 1(a), with x, y, and z represent-
ing the streamwise, transverse, and spanwise directions,

respectively. The width of the channel is 2H, and the domain size
in the streamwise direction is Lx and in the spanwise is Lz. The tur-
bulent flow is driven by a constant body force (or equivalently
mean pressure gradient) in the x-direction. Periodic boundary con-
dition is assumed in the x- and z-directions, and the no-slip condi-
tion on the two channel walls.

For the single-phase turbulent channel flow (i.e., without solid
particles), the flow is mainly governed by the flow Reynolds num-
ber Re ¼ UH=�, where � is the kinematic viscosity and U is the
mean flow speed. At the fully developed stage, force balance
2swLxLz ¼ qg2HLxLz leads to the expressions for the wall viscous
shear stress sw and frictional velocity u� as

sw ¼ qgH; u� ¼
ffiffiffiffiffi
sw

q

r
¼

ffiffiffiffiffiffi
Hg

p
(1)

where q is the fluid density and g is the body force per unit mass.
The frictional Reynolds number is Res ¼ u�H=� ¼ H=ð�=u�Þ,
where �=u� is the length unit in the viscous sublayer. The large-
scale eddy-turnover time is defined as H=u�.

In this paper, we only consider neutral solid particles of density
qp ¼ q. To keep the flow driving force for the particle–fluid sys-

tem the same, the same body force g is applied in the x-direction
inside the solid particles. The only difference from the single-
phase flow is then the presence of the moving fluid–solid interfa-
ces where the no-slip condition is to be satisfied. There are two
new governing parameters in the particle-laden flow. The first is
the particle size relative to the half channel width ap=H, where ap

is the radius of a solid particle. The second is the volume fraction

of the particulate phase, /V ¼
4npa3

p=3

2HLxLz
, where n is the particle num-

ber density.

2.1 The LBM. Advances in computer resources, numerical
methods, and algorithms have made it possible, in the past decade,
to conduct interface-resolved simulations of a turbulent particle-
laden flow. Conventional computational fluid dynamics (CFD)
makes use of the macroscopic N–S equations. In this study, the
turbulent channel flow with many moving solid–fluid interfaces is
solved by a mesoscopic computational approach known as the
LBM. The LBM approach is based on a kinetic formulation and
could have certain advantages over the conventional N–S based
CFD [38,39]. The basic idea of LBM is to design an optimal
kinetic model based on the Boltzmann equation that would pro-
duce the essentially exact N–S equations. There are two draw-
backs of LBM, when compared with N–S based CFD: LBM
solves a larger number of variables (typically 15 or 19 particle dis-
tributions at a given lattice point in three-dimensional); due to its
short history, the general fluid mechanics community is less famil-
iar with its capability, accuracy, and reliability and related imple-
mentation issues for the type of complex flows we intend to
address here. These drawbacks, however, are outweighed by its
tremendous computational advantages including: (1) quasi-linear
nature of the lattice Boltzmann equation, (2) ease of imposing no-

Fig. 1 Sketches of (a) the coordinate system used for the channel flow simulation and (b) the
two-dimensional domain decomposition for message passing interface parallel implementation
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slip boundary conditions on solid walls in complex geometry, (3)
straightforward coding and parallelization, and (4) flexibilities in
incorporating interfacial physics in multiphase flows. Specifically,
the accuracy and reliability of LBM as a DNS tool have been
documented in many studies, e.g., Refs. [22,23,40,41]. For single-
phase turbulence, the use of double spatial resolution allows LBM
to produce results as accurate as the pseudospectral method based
on the N–S equations [22,23,40]. Due to its inherent low numerical
dissipation (by using the exact streaming–collision mechanics),
mesoscopic conservation laws, and better rotational invariant prop-
erty or better symmetry in comparison with the N–S solvers, LBM
of nominal second-order accuracy in space and time is likely to per-
form better than a second-order finite-difference or finite-volume
scheme based on the N–S equations [40]. The accuracy of LBM in
simulating particle-laden turbulent flow is a topic relevant to the
current study. The key here is to resolve the boundary layer on the
solid particle surface due to the relative motion of the fluid. In this
work, the advantages of LBM are mainly reflected in treating the
moving boundaries at the fluid–solid interfaces [42].

In this paper, we wish to develop a numerical method to solve
the turbulent particle-laden channel flow stated above, with local
flow around each particle resolved. Following our recent studies
[22,23], the MRT LBM [43] is applied for this particle-resolved
turbulent flow simulation. Since a thorough discussion of the
method including a few validation case has already been pre-
sented in Refs. [22,23], here we only summarize the essential
components of the method, along with the latest improvements.

The MRT LBM solves the evolution of mesoscopic particle dis-
tribution function by a lattice Boltzmann equation

fðxþ eadt; tþ dtÞ ¼ fðx; tÞ �M�1 � S � ½m�mðeqÞ� þQ (2)

where f is a 19-component vector distribution function represent-
ing the probability of a lattice fluid particle taking a specific dis-
crete velocity, ea (a¼ 0, 1, 2,., 18) are the 19 discrete microscopic
velocities (to be defined below for the D3Q19 model), dt is the lat-
tice time step, and M is an orthogonal transformation matrix con-
verting the vector distribution function f from the discrete velocity
space to the moments m (a vector of 19 components). The colli-
sion relaxations are applied over the components of m. The term
Q denotes a forcing field in the mesoscopic space to produce a
desired nonuniform, time-dependent, large-scale physical space
forcing field q0qðx; tÞ. Its implementation follows the MRT for-
mulation [44,45] that is free of low-order discrete lattice errors,
and the details were discussed in Ref. [23].

The basic idea of MRT is that the streaming substep is handled
in the microscopic lattice-velocity space but the collision substep
is performed in the moment space. The transformation between
the microscopic velocity space and the moment space is carried
out by matrix operations as m ¼M � f; f ¼M�1 �m. The diago-
nal relaxation matrix S specifies the relaxation rates for the non-
conserved moments.

The macroscopic hydrodynamic variables, including density q,
momentum, and pressure p, are obtained from the moments of the
mesoscopic distribution function f. In the nearly incompressible
formulation, they are given as

q ¼ q0 þ dq; q0 ¼ 1 (3)

dq ¼
X

a

fa; q0u ¼
X

a

faea þ
dt

2
q0q x; tð Þ; p ¼ dqc2

s (4)

where u is the macroscopic fluid velocity, and the sound speed cs

is equal to 1=
ffiffiffi
3
p

in lattice units. In our implementation, the distri-
bution functions f are solved only at the fluid lattice nodes.

The design details of the MRT model include three parts. The
first part is to choose a proper set of discrete microscopic veloc-
ities. The standard D3Q19 model is used here with the following
19 velocities: e0 ¼ ð0; 0; 0Þ, e1;2 ¼ ð61; 0; 0Þ, e3;4 ¼ ð0;61; 0Þ,

e5;6¼ð0;0;61Þ, e7;8;9;10¼ð61;61;0Þ, e11;12;13;14¼ð61;0;61Þ,
and e15;16;17;18¼ð0;61;61Þ. The use of only 15 or 19 lattice
velocities in three-dimensional LBM simulations is adequate for
incompressible flows. This can be proven rigorously by the
Gauss–Hermite quadrature of the moment integrations [46]. If com-
pressible flows or moment equations at higher-orders (beyond the
N–S) are considered, then more lattice velocities will be needed [47].
At the level of incompressible N–S flow, increasing discrete veloc-
ities may give better results, but it can be expected that the results are
similar, since they all converge to the nearly incompressible N–S
equations in terms of the Chapman–Enskog analysis.

The second part is to specify the 19 orthogonal moments:
m ¼ ð~q; e; e; jx; qx; jy; qy; jz; qz; 3pxx; 3pxx; pww;pww; pxy; pyz; pxz; mx;

my;mzÞT. These are defined through the elements of the trans-
formation matrix (each subscript runs from 0 to 18) as

M0;a ¼ jjeajj0; M1;a ¼ 19jjeajj2 � 30

M2;a ¼ ð21jjeajj4 � 53jjeajj2 þ 24Þ=2

M3;a ¼ eax; M5;a ¼ eay; M7;a ¼ eaz

M4;a ¼ ð5jjeajj2 � 9Þeax; M6;a ¼ ð5jjeajj2 � 9Þeay

M8;a ¼ ð5jjeajj2 � 9Þeaz

M9;a ¼ 3e2
ax � jjeajj2; M11;a ¼ e2

ay � e2
az

M13;a ¼ eaxeay; M14;a ¼ eayeaz; M15;a ¼ eaxeaz

M10;a ¼ ð3jjeajj2 � 5Þð3e2
ax � jjeajj2Þ

M12;a ¼ ð3jjeajj2 � 5Þðe2
ay � e2

azÞ
M16;a ¼ ðe2

ay � e2
azÞeax; M17;a ¼ ðe2

az � e2
axÞeay

M18;a ¼ ðe2
ax � e2

ayÞeaz

(5)

Then, the Chapman–Enskog multiscaling analysis can be per-
formed on Eq. (2), to formulate the equilibrium moments such
that the Euler and N–S equations would be satisfied at the first and
second-order, respectively. This will lead to the following results
for mðeqÞ with a few adjustable parameters:

~q eqð Þ ¼ ~q ¼ dq; e eqð Þ ¼ �11dqþ 19

q0

j2
x þ j2

y þ j2
z

� �
e eqð Þ ¼ xedqþ xej

q0

j2
x þ j2

y þ j2z

� �
j

eqð Þ
x ¼ jx ¼ q0ux; j

eqð Þ
y ¼ jy ¼ q0uy; j

eqð Þ
z ¼ jz ¼ q0uz

q
eqð Þ

x ¼ � 2

3
jx; q

eqð Þ
y ¼ � 2

3
jy; q

eqð Þ
z ¼ � 2

3
jz

p
eqð Þ

xx ¼
1

3q0

2j2
x � j2

y þ j2z

� �h i
; p

eqð Þ
ww ¼

1

q0

j2
y � j2

z

h i
p

eqð Þ
xy ¼

1

q0

jxjy; p
eqð Þ

yz ¼
1

q0

jyjz; p
eqð Þ

xz ¼
1

q0

jxjz

p
eqð Þ

xx ¼ xxxp
eqð Þ

xx ; p
eqð Þ

ww ¼ xxxp
eqð Þ

ww

m
eqð Þ

x ¼ m
eqð Þ

y ¼ m
eqð Þ

z ¼ 0

(6)

Finally, the relaxation of unconserved moments is described as
S¼diagð0;s1;s2;0;s4;0;s4;0;s4;s9;s10;s9;s10;s13;s13;s13; s16;s16;s16Þ.
The kinematic viscosity � of the model is given as
�¼ðs�1

9 �1Þc2
s dt.

In this study, the specific model parameters are taken
from Ref. [43] with some modification to s1 and s16, and they are
xe¼ 0:0;xej¼�475=63;xxx¼ 0:0; s1¼ 1:5; s2¼ 1:4; s4¼ 1:2,
s9¼ dt=ð3�þ0:5dtÞ; s10¼ 1:4; s13¼ s9, and s16¼ 1:98. The above
completes the description of the D3Q19 MRT LBM model.

2.2 Accurate Treatment of Moving Fluid–Solid Interfaces
in the LBM Approach. When moving solid particles are present,
additional implementation details need to be considered. The
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no-slip condition at the moving fluid–solid interfaces is treated by
a quadratic interpolated bounce-back scheme [48]. In this scheme,
the exact location where a lattice link and the solid particle bound-
ary intersect is considered; therefore, the curved solid–fluid inter-
face is explicitly represented. The quadratic interpolation also
maintains the second-order accuracy of the LBM approach [42].
When a solid particle moves, a solid lattice node may become a
fluid node with unknown distribution functions. The missing dis-
tribution functions for the new fluid lattice node are constructed
by a newly developed velocity-constrained extrapolation method
[42]. The basic idea is to first estimate the missing distribution
functions using the three-point normal extrapolation refilling pro-
posed in Ref. [48]. Then, a refinement step is performed to con-
strain the velocity at the new fluid lattice node to the local solid
velocity. This is conveniently carried out within the MRT formu-
lation by transforming the distributions into the moment space,
correcting for the momentum, and updating the distributions
through an inverse transformation. We find that this constraint can
significantly reduce the fluctuations in the hydrodynamic forces
when compared to the unconstrained normal extrapolation [42].
Even more importantly, before introducing this constrained
scheme, we used equilibrium plus nonequilibrium refilling [49]
and encountered numerical instability that causes the code to
diverge. After replaced by the velocity-constrained normal extrap-
olation refilling, our particle-laden turbulent channel flow code
has a much better numerical stability.

Care has to be taken to ensure periodic boundary conditions
associated with finite-size solid particles. A solid particle is
defined by its center, radius, translational, and angular velocity,
these are saved in all processors. Essentially, a subdomain near
the physical domain boundary will have part of its neighboring
domain composed of the periodic image of the physical domain.
This is processed by assign a unique ID to each subdomain, as
well as IDs for all its neighboring subdomains.

The hydrodynamic force Fi and torque Ti acting on the ith
particle are calculated during the interpolated bounce-back proce-
dure by the recently developed Galilean-invariant momentum
exchange method [42,50]. In this method, when lattice fluid par-
ticles interact with a solid particle boundary, the loss of fluid mo-
mentum relative to the local solid surface is summed over all
lattice links crossing the boundary of a solid particle. This net loss
is interpreted as the hydrodynamic force acting on the solid parti-
cle. Namely, the lattice particle velocity relative to the local solid
boundary velocity is used to compute the force and torque acting
on a solid particle. It is very important that we enforce this local
Galilean invariance property in order to produce physically cor-
rect results, as discussed in Ref. [42]. The particle translational
velocity, position, angular velocity, and displacement are then
updated as

Vtþdt
i ¼ Vt

i þ
1

Mp

F
tþdt=2
i þ F

t�dt=2
i

2
þ
X

j

Ft
ij

0
@

1
Adt (7)

Ytþdt
i ¼ Yt

i þ
1

2
Vt

i þ Vtþdt
i

� �
dt (8)

Xtþdt
i ¼ Xt

i þ
1

Ip

T
tþdt=2
i þ T

t�dt=2
i

2

 !
dt (9)

Htþdt
i ¼ Ht

i þ
1

2
Xt

i þ Xtþdt
i

� �
dt (10)

where Mp and Ip � 2=5Mpa2
p;i are the mass and moment of inertia

of the ith particle, Ri is the particle radius, and Fij represents the
unresolved interaction force acting on the ith particle due to its
interaction with jth particle (e.g., the lubrication force correction,
see Refs. [51,52]). In this study, a simple pairwise repulsive force
model, same as what was used in Refs. [22,53], is applied to

prevent particles from overlapping, when the gap distance is
below 2 lattice units. A similar model is used to model near-field
particle–channel wall interactions. Since the volume fraction is
finite, this artificial lubrication model may have an effect on the
results—an aspect that should be studied in the future.

In order to assess the relative changes of the flow statistics, a
single-phase turbulent channel flow was simulated first as a refer-
ence flow to analyze the results of a particle-laden turbulent chan-
nel flow. In a typical single-phase channel flow simulation, we
initialize the flow field using a prescribed mean flow that is con-
sistent with the profile for the linear viscous sublayer and the iner-
tial sublayer. To speed up the transition from the initial flow to the
fully developed turbulent channel flow, we added a strong nonuni-
form, divergence-free forcing field to the flow for a short period
of time [54]. Immediately after the nonlinear flow instability was
excited, we switched off this nonuniform forcing, leaving only the
constant body force g to drive the turbulent flow.

On the other hand, in the simulation of a particle-laden flow,
the disturbances due to the solid particles provide a natural mech-
anism to excite the flow instability that will lead to a turbulent
flow. Therefore, no extra forcing was applied.

The MRT LBM code was parallelized using two-dimensional
domain decomposition where the domain is divided in x- and z-
directions as shown in Fig. 1(b). Since the data communications
are with the neighboring subdomains only, a nearly ideal scalabil-
ity was realized.

2.3 The FDDF Approach. A major objective of this paper is
to compare our LBM results (a mesoscopic approach) to results
from an FDDF method (a macroscopic continuum-based
approach). Here, we briefly describe the key elements of the
FDDF approach.

The FDDF method employed belongs to a family of fictitious
domain methods. The key idea is to fill the domains inside the
solid particles with the same fluid as the surroundings and the
Lagrange multiplier (i.e., a pseudobody force) is introduced into
the momentum equation to enforce the interior (fictitious) fluid to
satisfy the constraint of rigid-body motion [53]. A fractional-step
time integration scheme is used to decouple the system into the
fluid-flow subproblem and the particle-motion subproblem. The
fluid-flow subproblem is solved with a second-order accurate
finite-difference method and a projection method on a uniform
half-staggered grid. The particle-motion subproblem is solved
with the direct-forcing scheme. The trilinear function is used to
interpolate the fluid velocity from the Eulerian nodes to the
Lagrangian marker locations and to distribute the pseudobody
force from the Lagrangian marker locations to the Eulerian nodes.
The reader is referred to Yu and Shao [37] for the details of the
FDDF method. The method has been applied to the simulations of
the particle-laden turbulent channel [17] and pipe flows [55] at a
given flow flux and the transitional pipe flow [56].

3 Results

In this section, we present results on both single-phase and
particle-laden turbulent channel flows. We focus our discussions
on two general questions. The first is how the statistics of a
particle-laden turbulent channel flow differ from those of single-
phase turbulent channel flow and how this difference depends on
the size of the particles under a given particle volume fraction.
The second question is how reliable our simulation results are for
simulations of such complex multiphase turbulent flows.

3.1 Single-Phase Turbulent Channel Flow. The single-
phase turbulent channel flow represents one of the simplest wall-
bounded turbulent flows as the flow is homogeneous in both
streamwise and spanwise directions. We are interested in flow sta-
tistics when the flow becomes stationary, namely, the rate of work
done by the driving body force is balanced by the net viscous

041306-4 / Vol. 138, APRIL 2016 Transactions of the ASME

Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 04/09/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



dissipation in the flow. The parameter setting of the single-phase
turbulent channel flow in our LBM simulation and two FDDF
simulations is shown in Table 1, along with a pseudospectral sim-
ulation (denoted by “Stanford”) done by the Stanford group
[57,58]. In the spectral (SP) simulation, the flow is expanded in
terms of Fourier series in the x-and z-directions and Chebyshev
polynomials in the transverse direction. The friction Reynolds
numbers are comparable in these simulations. In this preliminary
study, we consider primarily a computational domain size of
4H � 2H � 2H (LBM–SP and YuL4–SP). A larger domain
(8H � 2H � 4H) was also used in the FDDF simulation
(YuL8–SP) to gain some understanding of the effect of domain
size on the turbulence statistics. In both LBM and FDDF simula-
tions, a uniform grid was used. The spectral simulation used a
much larger domain size (4pH � 2H � 4pH=3) and a nonuniform
grid in the transverse direction which allows the linear viscous
sublayer to be adequately resolved.

The viscosity in the LBM–SP simulation was set to 0.0036,
above the limiting value of 0.00254 [43] below which the MRT
model may become unstable. The friction velocity was set to
0.006513, which resulted in a maximum local velocity magnitude
of about 0.14 or a maximum local Mach number (defined as the
maximum local velocity magnitude over the speed of sound cs) of
about 0.24; thus, the compressibility effect can be neglected. Note
that the grid resolution is checked by the value of dyu�=�, where
dy is the grid spacing. Based on the simulations of a turbulent
channel flow using the Bhatnagar–Gross–Krook (BGK) LBM
model, Lammers et al. [41] suggested that this value should be
kept less than 2.25 for a well-resolved simulation. If this same cri-
terion is applied to the FDDF simulations, they were perhaps
somewhat under-resolved.

Applying the Reynolds decomposition and noting that the flow
is homogeneous in x- and z-directions, we can write ux ¼ UðyÞ
þ u0xðx;y; zÞ; uy ¼ u0yðx;y; zÞ; uz ¼ u0zðx;y; zÞ, p¼ PðyÞ þ p0ðx; y; zÞ,
where U(y) and P(y) are the mean flow velocity and pressure,
respectively. When the flow reaches the stationary stage, the x-
momentum balance equation is

0 ¼
dh�u0xu0yi

dy
þ gþ � d2U

dy2
(11)

which leads to the total shear stress (Reynolds plus viscous) distri-
bution as

1

u�2
h�u0xu0yi þ �

U

dy

� �
¼ � yc

H
(12)

where yc is the distance relative to the channel center, and y is the
distance from a wall. Figure 2 compares the simulated Reynolds
shear stress profiles in half of the channel. The channel center is at
y=ð2HÞ ¼ 0:5. Although our domain size is smaller than the
domain size in the spectral simulation, the results are in excellent
agreement with the spectral simulation results. The two FDDF
results show a slightly smaller peak Reynolds stress, which could
be due to the inadequate grid resolution used (Table 1).

Next, the mean velocity profiles are compared on a log–linear
plot in Fig. 3. In the wall length unit, the channel center is at
yþ ¼ 180. Once again, the LBM–SP result is in excellent agree-
ment with the spectral simulation result for most of the locations,
except in the channel center region where the LBM–SP result is

about 0.7% less than the spectral result. The profile fits well the
standard linear viscous sublayer scaling for yþ < 5, and the iner-
tial sublayer scaling starting at yþ > 30. The FDDF results appear
to slightly overpredict the mean velocity for yþ > 5 with both
domain sizes. The average flow speeds in LBM–SP, Yu4L-SP,
Yu8L-SP, and Stanford are 15.65, 15.84, 15.85, and 15.69, respec-
tively. Note that the spectral simulation used a nonuniform grid,
so a cubic spine interpolation is first used to obtain the velocity at
the same uniform yþ locations as in Yu4L-SP before the average
flow speed is processed.

The root-mean-squared (RMS) velocity profiles are shown in

Fig. 4. Here, uþRMS �
ffiffiffiffiffiffiffiffiffi
hu02x i

p
=u�, vþRMS �

ffiffiffiffiffiffiffiffiffi
hu02y i

q
=u�, and

Table 1 Parameter settings in the simulations of single-phase turbulent channel flow

Run Lx � Ly � Lz Nx � Ny � Nz Res dy=ð�=u�Þ (<2:25 [41])

LBM–SP 4:020H � 2H � 2:010H 400� 199� 200 180 1.806
YuL4–SP 4H � 2H � 2H 256� 128� 128 180 2.81
YuL8–SP 8H � 2H � 4H 512� 128� 256 180 2.81
Stanford 4pH � 2H � 4pH=3 128� 128� 128 178.1 0:054! 4:4

Fig. 2 Turbulent Reynolds shear stress profiles in half of the
channel. All quantities are normalized by u�2. The thin diagonal
line denotes the total shear stress, so the difference between
this straight line and the data represents the viscous shear
stress due to the mean flow.

Fig. 3 Comparison of the mean flow velocity profiles of the
simulated single-phase turbulent channel flows
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wþRMS �
ffiffiffiffiffiffiffiffiffi
hu02z i

p
=u�. Overall, the profiles from different

approaches are in reasonable agreement. Specifically, the LBM–SP
results are in excellent agreement with the YuL4–SP results, for all
three components, although there are some discrepancy in the aver-
age velocity profiles (see Fig. 3). These two simulations used the
same small domain (4H � 2H � 2H); as a result, the streamwise
RMS velocities are larger than the spectral result (about 6.5% larger
at the peak location yþ ¼ 15:4), and the spanwise RMS velocities
are less than the spectral result (4.3% smaller at the peak location
yþ ¼ 35:1). Here, the peak locations are chosen as per the respec-
tive spectral result. These discrepancies are attributed to the use of
different domain sizes since the YuL8–SP results are in much better
agreement with the spectral results. The transverse RMS velocity
profile appears to be almost independent of the domain size.

In summary, the comparisons of the LBM–SP results to the
FDDF results and the spectral results show that the turbulence
profiles are accurately simulated by the LBM approach. The
LBM–SP simulation produces stress profile and mean velocity
profile that are in excellent agreement with those from the spectral
simulation. At the same domain size, the RMS velocity profiles of
the LB-SP and YuL4–SP simulations are in excellent agreement.
The domain size affects slightly the RMS velocities in the stream-
wise and spanwise directions, but has negligible effect on the
RMS velocity in the transverse direction.

3.2 Particle-Laden Turbulent Channel Flow. The parame-
ters for particle-laden simulations to be discussed are shown in
Table 2. We consider here only neutrally buoyant solid particles
(qp ¼ qf ) with a same body force pointing in the streamwise
direction only. Under such a special case, there are only two gov-
erning parameters associated with the particulate phase, namely,
the dimensionless particle radius (ap=H) and the average particle
volume fraction /V . Two particle sizes (ap=H ¼ 0:10 and
ap=H ¼ 0:05) are considered and they are denoted as PPL (parti-
cle-laden flow with large-size solid particles) and PLS (particle-
laden flow with small-size solid particles). The particle volume

fraction /V was set to about 7% for all runs. Note that the resolu-
tion in the LBM runs is increased by 50% in each direction
(Table 2) when compared to the single-phase LBM simulation
(Table 1), to better resolve the disturbance flows due to solid par-
ticles and to overcome potential numerical stability. The kine-
matic viscosity for the LBM–PLL and LBM–PLS runs was set to
0.0040 and 0.0036, respectively; and friction velocity was reduced
to 0.004816 and 0.004334, respectively.

3.2.1 Turbulence Modulation. In Fig. 5, we show the phase-
averaged mean flow speed (averaged over y) as a function of non-
dimensional time t� � tu�=H. The mean flow speed can be
expressed as

U ¼ 1

1� /Vð ÞLy

ð
y

1�Wp yð Þ
� �

U yð Þdy (13)

where U(y) is the phase-averaged fluid velocity at a given y loca-
tion, and Wp is the percentage of lattice nodes covered by solid
particles at a given y. Clearly,

/V ¼
1

Ly

ð
y

Wp yð Þdy (14)

In the LBM–SP run, the flow was initialized with a mean flow and
an extra nonuniform force field [54] was applied to excite the tur-
bulent flow for 0 < t� < 3:24. During this period of extra forcing,
the mean flow speed decreases and kinetic energy is quickly trans-
ferred from the mean flow to the turbulent fluctuations. After
t� ¼ 3:24, there is a further reduction in the mean flow speed

Fig. 4 Comparison of the RMS velocity profiles of the simu-
lated single-phase turbulent channel flows

Table 2 Parameter settings in the simulations of particle-laden turbulent channel flow

Run Lx � Ly � Lz Lx � Ly � Lz ap Np Res dy=ð�=u�Þ (<2:25 [41]) ap=H /V (%)

LBM–PLL 4:013H � 2H � 2:007H 600� 299� 300 15.0 270 180 1.204 0.10033 7.09
LBM–PLS 4:013H � 2H � 2:007H 600� 299� 300 7.5 2160 180 1.204 0.05017 7.09
YuL4–PLL 4H � 2H � 2H 256� 128� 128 6.4 270 180 2.81 0.10 7.07
YuL4–PLS 4H � 2H � 2H 256� 128� 128 3.2 2160 180 2.81 0.05 7.07
YuL8–PLL 8H � 2H � 4H 512� 128� 256 6.4 1080 180 2.81 0.10 7.07

Fig. 5 The time evolution of mean flow speed (averaged over
y) in the LBM simulations. The two vertical dash lines indicate
the stationary stage (32:2 < t�<56:1) used to obtain average sta-
tistics for LBM–PLL. The two blue vertical lines indicate the sta-
tionary stage (31:9 < t�<53:9) used to obtain average statistics
for LBM–PLS. The three horizontal lines mark 15.74, 15.02, and
14.82, respectively.
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before the mean flow rebounds and gradually reaches to a station-
ary value of about 15:65u� starting at t� � 30. While for the
particle-laden flow runs, the initial flow is static and an augmented
constant body force (up to 10q0g) was applied for 0 < t� < 0:3.
The force was gradually reduced to the normal value (q0g) from
t� ¼ 0:3 to t� ¼ 1:5. Note that there is a jump at a later time
(t� � 3 or t� � 5)—this is due to a change in the friction velocity
and viscosity in the simulations; initially, we used a larger u� and
later decided to reduced u� for better numerical stability and accu-
racy. Interestingly, regardless of type of the flows and the method
used to accelerate the flow development, the flows reach the
stationary stage at t� � 30. For the results to be presented below,
the time intervals used to obtain the average flow statistics
for LBM–SP, LBM–PLL, and LBM–PLS are 40:5 < t�

< 115:; 32:2 < t� < 56:1; 31:9 < t� < 53:9, respectively.
At the stationary stage, all the LBM flows are driven by a same

body force in the streamwise direction. Therefore, the net rate of
work applied to the system is

_P ¼ Vg

Ly

ð
y

1�Wpð ÞqU yð Þ þWp yð ÞqpUp yð Þ
� �

dy (15)

¼ Vqg 1� /Vð ÞU þ
qp

q
/VUp

� �
(16)

¼ qV u�2

H
1� /Vð ÞU þ

qp

q
/VUp

� �
(17)

where V ¼ LxLyLz is the volume of the computational domain, Up

is the velocity averaged over all lattice nodes covered by solid
particles (the local velocity within a solid particle is computed
according to the solid body rotation), and Up is the phase-
averaged velocity over all lattice nodes covered by the solid
particles

Up ¼
1

/VLy

ð
y

Wp yð ÞUp yð Þdy (18)

This rate of work (or the rate of loss of potential energy of the sys-
tem) is balanced by the net viscous dissipation within the fluid
phase

_D ¼ qLxLz

ð
y

½1�WpðyÞ�ef ðyÞdy ¼ qVð1� /VÞef (19)

where

ef ðyÞ ¼ 2�hsijðx; y; zÞsijðx; y; zÞi (20)

ef ¼
1

1� /Vð ÞLy

ð
y

1�Wp yð Þ
� �

ef yð Þdy (21)

with h:::i denotes average over the two homogeneous directions
within the fluid phase and the local strain rate
sij � ð@ui=@xj þ @uj=@xiÞ=2.

Combining Eqs. (17) and (19), we obtain

ef H

u�3
¼ Uþ þ /V

1� /V

qp

q
Uþp (22)

Therefore, the phase-averaged dimensionless dissipation rate
depends on the relative magnitudes of the phase-averaged mean
speeds.

Figure 5 shows that the phase-averaged mean fluid speeds are
15:74u�; 15:02u�, and 14:82u�, respectively, for LBM–SP,
LBM–PLL, and LBM–PLS. Namely, Uþ is reduced by 4.57%
and 5.84%, respectively, due to the presence of large solid par-
ticles and small solid particles, respectively.

The distributions of fluid-phase-averaged velocity Uþ are
shown in Fig. 6 in both log–linear and linear–linear plots. In the

linear viscous sublayer (yþ < 5), the velocity profiles overlap and
are close to the single-phase profile Uþ ¼ yþ. This is understand-
able as the particle local volume percentage Wp in this region is
very small (~1 % or less, see Fig. 13 below) so the effect in the par-
ticulate phase seems negligible. In the inertial sublayer, the veloc-
ity is reduced and the reduction is larger for the smaller particle
size. The strongest modulations to the mean flow, relative to the
single-phase flow, occur in the region (10 < yþ < 100) between
the wall and the channel centerline. The reductions are larger in
the FDDF simulations when compared to the LBM simulations.

Pan and Banerjee [27] (hereafter PB97) developed an approxi-
mate particle-resolved simulation method and studied turbulence
modulation in a particle-laden turbulent channel (with no-slip bot-
tom wall and free-slip rigid top wall) by finite-size particles, with
a particle-to-fluid density ratio of 1.05 and a much lower volume
fraction [Oð10�3Þ]. The flow friction Reynolds number in their
simulation was smaller (85.4). For ap=H ¼ 0:05, they found also
that the presence of solid particles reduced the mean flow and the
reduction occurs mostly in the transition region between the linear
viscous sublayer and logarithmic inertial sublayer. For
ap=H ¼ 0:10, however, they found that the mean flow is aug-
mented very close to the wall (yþ < 7), which is not the case in
our LBM and FDDF simulations.

Fig. 6 The mean velocity profiles from both the LBM and FDDF
simulations with a domain size of 4H32H32H : (a) log–linear
plot and (b) linear–linear plot
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Another relevant study is the particle-resolved simulation of
turbulent particle-laden channel by Uhlmann [16] (hereafter Uhl-
mann08), where he considered a case of ap=H
¼ 0:025; qp=q ¼ 2:21; /V ¼ 0:0042, and a friction Reynolds
number of 172 (similar to ours). His density ratio is higher and
volume fraction is lower. Since he considered a vertical channel
and the potential energy change is larger in the particle-laden flow
(due to qp=q > 1), the friction Reynolds number in the particle-
laden flow reached 225. This density difference makes it difficult
to compare their profiles directly to our results here. So the com-
parison will be mainly restricted to the particle volume fraction
profile.

To better quantify the modulation of the mean flow velocity by
the presence of solid particles, we compare changes in the mean
flow velocity relative to the single-phase flow in Fig. 7. Due to the
change of resolution, the yþ positions for the single-phase flow
simulation could be different from the locations where the
particle-laden flow data are computed. A linear interpolation is
used to interpolate the particle-laden flow data to match the same
locations used for the single-phase flow. The relative changes are
always computed based on results of the single-phase and
particle-laden flows using a same domain size and same computa-
tional approach. The computed relative changes of the local mean
flow velocity from the LBM simulations are qualitatively similar
to the FDDF data. Specifically, the locations of maximum reduc-
tion are the same and appear to only depend on the particle size.

Both approaches show that the reduction is larger for the smaller
particle size. Quantitatively, the LBM simulations yield signifi-
cantly less reduction in the mean flow velocity at almost all loca-
tions. For the large particles, the maximum change in the mean
flow velocity occurs at yþ � 30, the reduction is 7.5% in
LBM–PLL, 11.96% in YuL4–PLL, and 11.53% in YuL8–PLL.
For the small particles, the maximum change in the mean flow
velocity occurs at yþ � 21, the reduction is 10.3% in LBM–PLS
and 20.1% in YuL4–PLS. The location of maximum reduction
appears to be correlated with the location of local particle volume
fraction maximum (see Fig. 13). A comparison of results from
YuL4–PLL and YuL8–PLL shows that the effect of domain size
on this relative reduction is not significant. The difference
between the two computational approaches originated from a
combination of a slightly larger mean flow velocity for the single-
phase flow and a slightly smaller mean velocity in the particle-
laden case in the FDDF results (see Fig. 6). We suspect that the
reason for this difference is related to the poor resolution of the
boundary layer in FDDF (see the last column of Table 1). The first
grid cell near the wall in FDDF is 2.81 wall units, which exceeds
the maximum allowed value of 1.5 to 2 wall units recommended
in Ref. [41]. In LBM, the near-wall resolution is 1.81 wall units.
This combined with lower numerical dissipation and better rota-
tional symmetry in LBM implies that the LBM results are likely
more accurate.

It appears that there is always an inertial-sublayer region where
the mean velocity can be fitted by Uþ ¼ lnyþ=k þ A. In Fig. 8, we
apply linear regression to the region 30 < yþ < 130. For the
LBM–PLL run, we obtain k¼ 0.326 and A¼ 2.411 with a R2

value (a measure of goodness-of-fit) of 1.0; while for the
LBM–PLS run, we obtain k¼ 0.326 and A¼ 2.237 with a R2 value
of 0.9997. They can be compared to the values for the single-
phase flow: k¼ 0.40 and A¼ 5.5. A smaller k implies a large slope
in the log–linear plot. A smaller A means that the interception
level with a vertical line at yþ ¼ 1 is reduced. The presence of
solid particles makes the transition from the linear viscous sub-
layer to the logarithmic inertial sublayer more gradual. Interest-
ingly, the k value for the two particle sizes happens to be
identical.

We note that a recent study by Picano et al. [59] also considered
neutrally buoyant solid particles in a turbulent channel. They used

Fig. 7 The relative change in the mean velocity of the flow due
to the presence of particles: (a) linear–linear plot and (b)
log–linear plot

Fig. 8 The mean velocity profiles from the LBM simulations
and fitting coefficients in the inertial sublayer by the logarith-
mic law. The two vertical lines mark the region where linear
regression is performed to obtain a fit of the form
U15lny1=k1A. The two vertical lines mark the region
(30 < y1<130) used to perform the logarithmic fitting.
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a second-order finite-difference scheme on a staggered grid, with
a domain size of 6H � 2H � 3H resolved by a 864� 288� 432
grid. They applied the immersed boundary method to treat the
moving fluid–solid interface. One of the cases they simulated has
/V ¼ 0:10 and ap=H ¼ 1=18 ¼ 0:056; these parameters are simi-
lar to our small-particle case LBM–PLS. They found the constants
for the logarithmic region to be k¼ 0.32 and A¼ 0.27, so their
slope and our slope for particle-laden flow are very similar.

The RMS velocity profiles from the LBM runs are compared in
Fig. 9 on both linear–linear and log–linear plots. The general fea-
tures shared by both particle sizes include: (1) in the streamwise
direction, the presence of particles reduces the RMS velocity sig-
nificantly in the near wall region but may increase the RMS veloc-
ity in the center region and (2) in the spanwise and transverse
directions, the presence of solid particles has an opposite effect,
namely, suppression of RMS velocity in the center region and
augmentation of RMS velocity in the near-wall region. The level
of these modulations is larger for smaller particles, perhaps due to
a larger solid–fluid interface area per unit volume. The interface
area per unit volume can be written as Ssf =V ¼ n4pa2 ¼ 3/V=ap,
so the PLS case has twice of the interface area of the PLL case.
The RMS velocity profiles from the FDDF runs are shown in Fig.
10. The general features are very similar to that of Fig. 9.

In Figs. 11 and 12, we show the percentages of change of RMS
velocity relative to the single-phase flow, for the LBM runs and
FDDF runs, respectively. First, in the streamwise direction, the
two approaches yield very similar quantitative results in most of

the channel, except very close to the wall where the LBM runs
show reduction all the way to the wall, but the FDDF runs show
augmentation immediately next to the wall. In general, there is a
strong minimum (the largest reduction): 18.2% at yþ ¼ 19:9
for LBM–PLL, 19.2% at yþ ¼ 19:6 for YuL4–PLL, 17.9% at
yþ ¼ 19:6 for YuL8–PLL, 20.4% at yþ ¼ 13:6 for LBM–PLS,
and 25.9% at yþ ¼ 14:0 for YuL4–PLS. There is also a weak
maximum (the moderate augmentation) within the inertial sub-
layer: 1.5% at yþ ¼ 84:1 for LBM–PLL, 2.8% at yþ ¼ 120 for
YuL4–PLL, 2.1% at yþ ¼ 117 for YuL8–PLL, 6.9% at yþ ¼ 82:3
for LBM–PLS, and 6.4% at yþ ¼ 93:5 for YuL4–PLS. The differ-
ence between YuL4–PLL and YuL8–PLL runs is not significant.

Second, in the spanwise and transverse directions, the strongest
modulations occur near the wall. The presence of particles aug-
ments the transverse RMS velocity by as much as 50%. The near-
wall augmentations in the spanwise direction are 10–15% for the
LBM runs and 30–50% for the FDDF runs; thus, they are quanti-
tatively different. In the center region, the quantitative comparison
is better, showing about 5–15% suppression. It should be noted
that while both approaches show general agreement on the trends
of turbulence modulation, the data contain some uncertainties due
to limited time intervals that are used to obtain the average
statistics.

In general, the quantitative agreement between LBM and YuL4
is much better in the RMS velocities (Figs. 9 and 10) and their rel-
ative changes (Figs. 11 and 12) due to presence of the solid par-
ticles, than in the mean velocity (Fig. 6) and its relative change

Fig. 9 The RMS velocity profiles in the flows simulated by
LBM: (a) linear–linear plot and (b) log–linear plot

Fig. 10 The RMS velocity profiles in the flows simulated by the
FDDF approach: (a) linear–linear plot and (b) log–linear plot
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(Fig. 7). This general agreement is very encouraging due to the
very different methods (mesoscopic lattice Boltzmann versus
macroscopic N–S) used to simulate the flow, and the very differ-
ent methods used to treat the fluid-moving solid interfaces (meso-
scopic bounce back versus macroscopic direct forcing). For such
complex flows where microscopic measurements at the scale of
solid particle size are hard to obtain, establishing such intercom-
parison between the two different approaches will open ways to
gather reliable statistics at both the channel scale and the particle
size scale (e.g., statistics conditioned on the particle surface [23]).

We may compare our results (LBM–PLL, YuL4–PLL, and
YuL8–PLL) with ap=H ¼ 0:05 and qp=q ¼ 1 to the results of
PB97 with ap=H ¼ 0:05 and qp=q ¼ 1:05 (Fig. 14(a) in PB97).
Their results for the transverse (wall-normal) direction are qualita-
tively the same, with augmentation near the wall, followed by
reduction further away from the wall. However, their results show
that the spanwise RMS velocity is always augmented by the pres-
ence of the particles, and the streamwise RMS velocity is aug-
mented immediately to the right of its peak location. Since their

treatments of fluid-moving particle interfaces are not exact, we
believe our LBM and FDDF results are much more accurate and
reliable.

3.2.2 Particle Distribution and Particle Phase-Averaged
Mean Velocity. As indicated in the above discussions, to the low-
est order, the particle volume percentage distribution WðyÞ and
particle mean velocity Uþp ðyÞ are relevant. Here, we shall discuss
them briefly, a full exposition of the statistics related to the partic-
ulate phase is beyond the scope of this current paper.

It has been well known that small inertial particles may accu-
mulate in low-speed streaks in the viscous sublayer [60]. The cur-
rent problem is very different: particles have no relative inertia,
but there are of finite sizes so the disturbance flows around the
particles contain inertial effects. In a laminar wall-bounded flow
at low particle volume fraction, it is well known that at a finite-
size particle may find certain (single or multiple) equilibrium
positions between the center and the wall, known as the
Segr�e–Silberberg effect [61,62]. This results from a balance of the

Fig. 11 The relative changes of RMS velocity fluctuations due to the presence of solid particles in the LBM simulations,
relative to the single-phase flow simulated by the same method using a same domain size: (a) linear–linear plot and (b)
log–linear plot

Fig. 12 The relative changes of RMS velocity fluctuations due to the presence of solid particles in the FDDF simulations,
relative to the single-phase flow simulated by the same method using a same domain size: (a) linear–linear plot and (b)
log–linear plot
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inertia-induced lift force and lubrication force due to the wall.
Even for the simplest case of neutrally buoyant particles, the equi-
librium positions depend on the flow Reynolds number and the par-
ticle size. This Segr�e–Silberberg effect is also affected by the local
hydrodynamic interaction between solid particles, see further dis-
cussions and references of the Segr�e–Silberberg effect in Ref. [63].

An interesting question here is whether the solid particles are
distributed uniformly or clustered near the wall. Figure 13 shows
Wn � Wp=/V as a function of yþ. Due to the finite size, Wp is zero
at yþ ¼ 0. The vertical thin line marks the location of y¼ ap. For
the large case (LBM–PLL), Wn increases near the wall and
reaches a maximum that is 1.031, at y=ap ¼ 1:64 or yþ ¼ 29:50.
It then decreases and reaches a minimum of 0.745, at y=ap ¼ 2:44
or yþ ¼ 43:95. There is a very gradual increase in /n, when yþ is
increased from 44 to 120. In the center region (yþ > 120), /n is
nearly uniform and is 1.234. For the small particle case
(LBM–PLS), the first peak from the wall has a value of 0.956
reached at y=ap ¼ 1:80 (yþ ¼ 16:25) and the minimum 0.674
reached at y=ap ¼ 2:74 (yþ ¼ 24:7). The key difference between
the large and small particles is in the center region: for the small
particle case, the volume fraction is more or less uniform for
yþ > 60, while for the large particle case it is slowly increasing
with yþ.

Also shown in Fig. 13 is the profile from Picano et al. [59] with
/V ¼ 0:10 and ap=H ¼ 1=18 ¼ 0:056. Since they fixed the mean

bulk velocity, the friction Reynolds number was 153. Despite the
differences in numerical method, volume fraction, particle size,
etc., the local volume fraction profile is qualitative similar to our
LBM–PLS profile: a maximum near the wall followed by a mini-
mum and a constant value in the channel center region. The
center-region volume fraction is also larger than the mean value.
Note that in all our plots, the friction velocity in the single-phase
flow was used to define the wall units.

The Wn profiles are replotted as a function of y=ap in Fig. 14.
The data from Uhlmann08 for the case of ap=H ¼ 0:025; qp=
q ¼ 2:21; and /V ¼ 0:0042 are added for comparison. The pro-
file from Picano et al. [59] with /V ¼ 0:10 and ap=H ¼ 0:056 is
also plotted. We observe that the Wn profiles are more similar,
implying that the locations of the near-wall maximum and min-
imum scale better with the particle size. The curve from Uhl-
mann08 is qualitatively similar, with a near-wall maximum
followed by a minimum and then gradual increase toward the
center of the channel. However, perhaps due to the higher parti-
cle inertia, the location of the near-wall maximum and mini-
mum is shifted away from the wall. The near-wall maximum
also has a larger magnitude. The general conclusion is that the
volume fraction distribution is nonmonotonic.

The location of the near-wall maximum could be interpreted as
a quasi-equilibrium position and is located at y ¼ 1:64ap (larger
particles) to 1:80ap (small particles), thus very close to the wall.

Fig. 14 Replot of Fig. 13 as a function of y=ap: (a) log–linear
plot and (b) linear–linear plot. The profiles from Uhlmann [16]
and Picano et al. [59] are also shown for comparison.

Fig. 13 The average local volume fraction Wp of the particulate
phase as a function of y1: (a) linear–linear plot and (b)
log–linear plot. The profile from Picano et al. [59] at /V 5 0:1
and ap=H 5 1=1850:056 is also shown for comparison. The ver-
tical lines mark the location of y 5 ap.
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We argue that this quasi-equilibrium is similar to the
Segr�e–Silberberg effect [61,62]. This is confirmed by the hydro-
dynamic force and total force (hydrodynamic plus the lubrication
force) in the transverse direction, shown in Fig. 15, as a function
of the center position of the solid particles (using two normaliza-
tions for the distance). Here, the center positions of the solid par-
ticles are divided into bins of width Dyþ � 3:5, and the average
force is computed by averaging over all particles with the centers
sitting in a given bin. A positive force denotes a force directed
away from the wall and negative into the wall. Note that
Fig. 15(b) shows all the data near the channel wall, while Fig.
15(a) uses a narrow y range in order to better show the behavior
near the channel center. The lubrication force includes the repul-
sive forces due to both the particle–particle and particle–wall
interactions.

First, in each case (LBM–PLL and LBM–PLS), in the first bin
next to the wall with particles, the hydrodynamic force is close to
zero (implying these particles have very low velocities); but the
lubrication force (based on the simple model) due to the wall gen-
erates a large force away from the wall, which will push the solid
particle back into the bulk flow. Immediately outside (the next
few bins after the first nontrivial bin), the hydrodynamic force is
negative, implying that the particles move away from the wall.
The net lubrication force also changes direction and becomes neg-
ative, this is primarily due to the outward movement, but the

particle–particle hydrodynamic interaction (which is biased as
more particles are located to the right if the wall is on the left)
may also contribute to this change. The net force crosses zero at
yþ ¼ 29:50 (y=ap ¼ 1:64) and yþ ¼ 18:6 (y=ap ¼ 2:0) for
LBM–PLL and LBM–PLS, respectively. These locations corre-
spond roughly to the location of maximum Wp. At the location of net
zero force, the hydrodynamic force is now positive. There is a region
(29:5 < yþ < 65 for large particles and 18:1 < yþ < 37:0 for small
particles) where the net force is positive, and in this region particles
on average migrate toward to the center region of the channel. The
location yþ < 65 (for large particles) or yþ < 37 (for small particles)
could be interpolated as the second quasi-equilibrium position, but
the exact location is vague due to large uncertainties (limited sam-
ples). Longer simulations are needed to obtain better curves. Finally,
in the region 70 < yþ < 150, the net force appears to be weakly
negative, with a weakly positive net lubrication force.

In Fig. 16, we plot the phase-partitioned mean velocity profiles
(Uþ and Uþp ), which are velocity inside each phase, averaged over
all lattice nodes within the respective phase at a given y location.
The velocity inside a solid particle is given by the translation
velocity at the particle center plus solid body rotation. Uþ data are
the same as those shown in Fig. 6. The most interesting feature is
that, very close to the wall, the particle mean speed is significantly
larger than the fluid velocity, implying that there is a significant
slip between the particle motion and the wall. A linear extrapola-
tion shown in Fig. 16(b) shows that the effective slip is 8:80u� and

Fig. 15 The average forces normalized by ½qf ðu�Þ2d2
p �, acting

on the particle along the transverse direction as a function of
(a) y1 and (b) y=ap

Fig. 16 Comparison of the phase-partitioned mean velocity
profiles: (a) Log-linear plot and (b) linear-linear plot
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6:82u� for large and small particles, respectively. In the intermedi-
ate region (19:9 < yþ < 46:4 for LBM–PLL and 15:1 < yþ < 24:7
for LBM–PLS), the fluid velocity exceeds slightly the particle ve-
locity. Then in the center region, they reach to mutual equilib-
rium, with particle velocity slightly large than the fluid velocity
(about 0.9% for LBM–PLL and 0.7% for LBM–PLS). For the
small particle case, there is a third region 24:68 < yþ < 98:13
where the mean velocity of particle again exceeds that of fluid by
about 1%.

The phase-averaged particle mean speeds (U
þ
p ) for LBM–PLL

and LBM–PLS are 16.16 and 15.78, respectively. These are larger
than the respective phase-averaged fluid mean speeds (15.02 for
LBM–PLL and 14.82 for LBM–PLS) by 7.59% and 6.48%. This
may be interpreted as the mean slip between the two phases. In
fact, the phase-averaged particle mean speeds are larger than the
single-phase mean flow speed (15.74). Substituting these into Eq.
(22), we obtain Uþ þ ½/V=ð1� /VÞ�½qp=q�Uþp ¼ 16:25 for the
large particle case and 16.02 for the small particle case. This
implies that the fluid phase-averaged viscous dissipation is
increased by ð16:25� 15:74Þ=15:74 ¼ 3:24% for the large parti-
cle case and 1.88% for the small particle case, even though the
fluid-phase mean speed is reduced relative to the single-phase
flow.

Finally, Fig. 17 provides visualization of the instantaneous
spanwise vorticity xz, normalized by u�2=�, at the stationary stage
from the LBM–SP, LBM–PLL, and LBM–PLS runs. The viscous
boundary layers around solid particles are visible by local higher-
than-average vorticity near the particle surfaces. The visualiza-
tions show that the near-wall vortices are being transported away
(or being lifted up) from the wall due to the presence of the solid
particles, indicating that solid particles stir the near-wall vortical
structures and cause a higher-level of mixing or exchange of the
flow between the near-wall region and the outside. Perhaps this
explains why the strongest turbulence modulation occurs in the
transition region between the linear viscous sublayer and the loga-
rithmic inertial layer. Shao et al. [17] argued that the large-scale
streamwise vortices are suppressed by added viscous dissipation
due to solid particles entrained within and other particles outside
large-scale vortices induce the smaller-scale structures, both hin-
dering the development of the large-scale streamwise vortices.

4 Summary and Outlook

Motivated by the need to understand turbulence modulation by
finite-size solid particles in a wall-bounded flow, in this paper, we
reported the first particle-resolved simulations of turbulent
particle-laden channel flow using the mesoscopic lattice Boltz-
mann approach. The effects of fluid-moving particle interfaces on
the fluid motion are treated by an interpolated bounce-back
scheme, and the effects on the dynamics of the solid particles (the
hydrodynamic force/torque acting on a moving particle) are
handled by a local Galilean-invariance momentum exchange
method [42,50]. These treatments are fully consistent with the
mesoscopic scheme and do not require any smoothing at the inter-
faces (as often encountered in the popular immersed boundary
method). Thus, the method treats the fluid-moving solid particle
interfaces as sharp interfaces and maintains the advantage of low
numerical dissipation of the lattice Boltzmann approach. This is
important for accurate particle-resolved DNS of turbulent
particle-laden flows, where sharp velocity gradients occur near the
moving solid surfaces. The sharp-interface treatment requires a
sufficient grid resolution to be numerically stable, efforts are still
needed to enhance the numerical stability of the approach. We
have recently introduced a velocity-constrained normal extrapola-
tion refilling to fill the missing populations at the new fluid nodes,
and this method takes advantage of the MRT lattice Boltzmann
approach and was found to improve numerical stability [42].

One main goal of the paper is to demonstrate that the results
from the LBM approach are accurate and reliable. We first simu-
lated the single-phase turbulent channel flow at Res ¼ 180. The
resulting mean flow profile and turbulence statistics were found to
be in excellent agreement with the published data based on the
spectral method [57,58]. The results were also compared with a
macroscopic FDDF approach. The RMS velocity profiles resulting
from the LBM approach and the FDDF approach using the same
domain size (4H � 2H � 2H) are in excellent agreement. The
FDDF results show that the domain size affects the values of
RMS velocities in the streamwise and spanwise directions.

We then considered a particle-laden turbulent channel flow
under the same body force used to drive the single-phase flow.
The particles have a same density as the fluid. Two particle sizes
(ap ¼ 0:1H and 0:05H) were considered, with the overall particle
volume fraction fixed at 7.1%. A systematic intercomparison
between the LBM approach and the FDDF approach was per-
formed. While there are some discrepancies between the simu-
lated mean flow profiles, the two approaches yield quantitatively
similar RMS velocity profiles for the particle-laden flows. Such
direct intercomparisons under essentially identical conditions are
rare, but are much needed to establish the fidelity of numerical
methods and the resulting data. Given the higher grid resolution,
lower numerical dissipation, and better rotational symmetry in
LBM, we believe the LBM results are likely more accurate than
the FDDF results.

Fig. 17 Visualization of instantaneous spanwise vorticity xz,
normalized by u�2=m, on an x 2y slice: (a) LBM–SP, (b)
LBM–PLL, and (c) LBM–PLS
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We studied the flow modulations by finite-size particles in the
turbulent channel flow and the effects of finite particle size. Under
the same driving body force, we found that the mean flow speed
was reduced by 4.6% and 5.8% due to the presence of the large
and small particles, respectively, but the local phase-averaged
flow dissipation was increased by 3.2% and 1.9%, respectively.
This implies that the fluid–particle system is more dissipative than
the single-phase flow. It was found that a logarithmic inertial sub-
layer still exists in the particle-laden flows for 30 < yþ < 130, but
with a slope and interception that are different from the single-
phase flow. A similar observation is made in a recent study by
Picano et al. [59].

The key observations regarding modulation of the fluid RMS
velocity include:

(1) The presence of the particulate phase strongly affects the
RMS velocity fluctuations in the near wall region, and the
level and nature of modulation depend on the spatial direc-
tion and location.

(2) In the streamwise direction, the RMS velocity is signifi-
cantly reduced below the inertial sublayer and weakly aug-
mented within the inertial sublayer.

(3) In the transverse and spanwise directions, the RMS veloc-
ities are increased below the inertial sublayer and are
reduced in the inertial sublayer and the channel center.

Similar observations were made in Shao et al. [17], who con-
cluded that the presence solid particles weakens the large-scale
streamwise vortices and generates small-scale vortices. We argue
from preliminary flow visualizations that solid particles enhance the
mixing and exchange of fluid motion and vortices between the near
wall region and the outside that region. The FDDF results showed
that the relative changes due to the presence of particles are not sen-
sitive to the computational domain size. One qualitative difference
between the results from the two approaches concerns whether the
streamwise RMS velocity is reduced or enhanced immediately next
to the wall. The LBM results show reduction all the way to the wall,
but the FDDF results show augmentation next to the wall.

The particle volume fraction was found to have an interesting
nonmonotonic distribution. We found that there is a dynamic
equilibrium location resembling the Seg�re–Silberberg effect
known for a laminar wall-bounded flows [61,62]. This equilibrium
location is very close to the wall (with particle center at roughly
2ap away from the wall). We found that there is a finite slip at the
channel wall for particle mean velocity (8:80u� for the large par-
ticles and 6:82u� for the small particles, roughly half of the mean
flow speed) between the particle mean motion and the channel
wall, and the slip is larger for large particles. Such strong slip
implies that solid particles do not stay in the near-wall region for
too long. The phase-averaged particle mean speed was also larger
than the mean fluid speed as a result of this slip.

In summary, this study established a mesoscopic computational
approach for particle-laden turbulent flows. Significant flow mod-
ulations were found on the RMS velocities due to the presence of
particles, even for neutrally buoyant particles. The effects of finite
particle size are reflected in the level and location of flow modula-
tion, as well as in the volume fraction distribution and particle slip
velocity near the wall. In some cases, a longer simulation would
be desired to obtain better flow statistics. The lubrication force
model may affect the simulated results, which needs further inves-
tigation. The analyses presented in this paper should be consid-
ered preliminary. The parameter space for the particle-laden flow
system is large, and substantial efforts are needed to cover this
space and to compare with experimental results in the literature.
Also rigorous theoretical modeling methods are needed to help
interpret the simulation results.
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Nomenclature

ap ¼ radius of solid particles
cs ¼ speed of sound
dp ¼ diameter of solid particles
e ¼ microscopic velocity
f ¼ microscopic distribution function vector
F ¼ force acting on a particle
g ¼ body force per unit mass
H ¼ half width of the channel
Ip ¼ moment of inertia of a particle
Lx ¼ computational domain size in the streamwise (x)

direction
Ly ¼ computational domain size in the wall-normal or trans-

verse (y) direction
Lz ¼ computational domain size in the spanwise (z) direction
m ¼ microscopic moments vector
M ¼ transformation matrix from f to m

Mp ¼ mass of a solid particle
n ¼ particle number density
N ¼ number of grid points in a given spatial direction

Np ¼ the total number of solid particles in the computational
domain

p ¼ local fluid pressure
P ¼ phase-averaged fluid pressure at a given y
q ¼ nonuniform force vector per unit mass
Q ¼ nonuniform force vector in the microscopic velocity

space
Res ¼ Reynolds number based on the friction velocity,

Res ¼ Hu�=�
S ¼ relaxation matrix
T ¼ torque acting on a particle
u ¼ fluid velocity in the x-direction

U ¼ phase-averaged fluid velocity over the whole volume
u� ¼ friction velocity

U(y) ¼ phase-averaged fluid velocity at a given y
UpðyÞ ¼ phase-averaged solid velocity at a given y

Up ¼ phase-averaged solid velocity over the whole volume
v ¼ fluid velocity in the y-direction

V ¼ particle velocity
w ¼ fluid velocity in the z-direction
Y ¼ particle position
dt ¼ time step size
dy ¼ grid length in the y-direction
dq ¼ density fluctuations in LBM
g ¼ wall length unit (g ¼ �=u�) or Kolmogorov scale
H ¼ particle angular position
� ¼ fluid kinematic viscosity
q ¼ fluid density

qp ¼ density of solid particles
sw ¼ wall shear stress
/V ¼ average particle volume fraction
W ¼ local average volume fraction at a given y
Xp ¼ particle angular velocity

Subscripts

i, j ¼ spatial direction indices
p ¼ solid or the particulate phase
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pl ¼ quantities associated with a particle-laden flow
RMS ¼ root-mean-squared value

sp ¼ quantities associated with a single-phase flow
a ¼ microscopic lattice-velocity direction, from 0 to 18

Superscripts
�1 ¼ inverse matrix
ðeqÞ ¼ value corresponding to equilibrium
þ ¼ normalized quantities in wall units
� ¼ quantities normalized by the friction velocity
0 ¼ the fluctuation component in the Reynolds

decomposition
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