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a b s t r a c t

Modulation of the carrier phase turbulence by finite-size solid particles is relevant to many industrial and

environmental applications. Here we report particle-resolved simulations of a turbulent channel flow laden

with finite-size solid particles. We discuss how the mesoscopic lattice Boltzmann method (LBM) can be ap-

plied to treat both the turbulent carrier flow and moving fluid-particle interfaces. To validate the LBM ap-

proach, we first simulate the single-phase turbulent channel flow at a frictional Reynolds number of 180. A

non-uniform force field is designed to excite turbulent fluctuations. The resulting mean flow profiles and tur-

bulence statistics were found to be in excellent agreement with the published data based on the Chebychev-

spectral method. We also found that the statistics of the fully-developed turbulent channel flow are indepen-

dent of the setting of some of the relaxation parameters in the LBM approach. We then consider a particle-

laden turbulent channel flow under the same body force. The particles have the same density as the fluid.

The particle diameter is 5% of the channel width and the average volume fraction is 7.09%. We found that the

presence of the particles reduces the mean flow speed by 4.6%, implying that the fluid-particle system is more

dissipative than the single-phase flow. The maximum local reduction of the mean flow speed is about 7.5%.

The effects of the solid particles on the fluid rms velocity fluctuations are mixed: both reduction and aug-

mentation are observed depending on the direction and spatial location relative to the channel walls. Overall,

particles enhance the relative turbulence intensity in the near wall region and suppress the turbulence inten-

sity in the center region. The particle concentration distribution across the channel is also complicated. We

find that there is a dynamic equilibrium location resembling the Segŕe–Silberberg effect known for a laminar

wall-bounded flows. Our LBM results were found to be in good agreement with results based on a finite-

difference method with direct forcing to handle the moving solid particles. Additionally, phase-partitioned

statistics are obtained and compared.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Turbulent flows laden with solid particles or liquid droplets are

ubiquitous in engineering, biological and environmental applications.

A turbulent particle-laden flow system is more complicated than its

single-phase counterpart owing to a wider range of length and time

scales and the additional parameters associated with the dispersed

phase [1]. For a turbulent flow laden with non-deforming spherical

particles, the length scales range from the particle diameter (dp) and

flow Kolmogorov length (η) to the integral length scale (L). When dp/η
is small and the volume fraction (φ) of the dispersed phase is low, the
∗ Corresponding author at: Department of Mechanical Engineering, 126 Spencer

Laboratory, University of Delaware, Newark, Delaware 19716-3140, United States. Tel.:

+3028318160.

E-mail addresses: lwang@udel.edu (L.-P. Wang), cpengxpp@udel.edu (C. Peng),

zlguo@hust.edu.cn (Z. Guo), yuzhaosheng@zju.edu.cn (Z. Yu).

t

e

r

b

l

b

http://dx.doi.org/10.1016/j.compfluid.2015.07.008

0045-7930/© 2015 Elsevier Ltd. All rights reserved.
esponse of a particle to the local flow can be well described by an

quation of motion [3], making it unnecessary to resolve the distur-

ance flow on the scale of the particle size. Most theoretical under-

tanding for turbulent particle-laden flows has been developed based

n these assumptions. Computationally, the condition of dp/η < 1

artially justifies the use of point-particle based simulation (PPS) [2].

n the last 25 years, PPS has enabled researchers to discover and quan-

ify a number of important phenomena in turbulent particle-laden

ows including preferential concentration [4,5], turbulence modula-

ion by inertial particles [6,7], particle deposition rate, and turbulent

ollision rate of inertial particles [2,8–11].

In many applications, the particle size is comparable to or larger

han the flow Kolmogorov length [12], which introduces a finite-size

ffect greatly complicating the description of the flow system. Cur-

ently, the only rigorous method is to numerically resolve the distur-

ance flows around particles, known as the particle-resolved simu-

ation (PRS). This requires an explicit implementation of the no-slip

oundary condition on the surface of each moving particle.

http://dx.doi.org/10.1016/j.compfluid.2015.07.008
http://www.ScienceDirect.com
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Fig. 1. Sketches of (a) the coordinate system used for the channel flow simulation and (b) the 2D domain decomposition for MPI parallel implementation.
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PRS of turbulent particle-laden flows requires direct simula-

ion of the turbulent carrier flow and explicit and accurate treat-

ent of many moving fluid-solid interfaces, such that all scales

rom the turbulence integral scale to the dissipation scales and par-

icle size are adequately resolved with realistic scale separations

hat depend on applications. In recent years, several PRS methods

ased on the Navier–Stokes (N–S) equation have been developed,

ith the particle-fluid interfaces treated by the immersed boundary

ethod [13,14], direct-forcing [15], local analytical treatment [16],

verset grid [12], force-coupling [17], or penalization method [18].

s reviewed in [19,20], these studies have contributed to the under-

tanding of flow modulation by the inertial particles and the dynamic

ffects due to finite particle size.

As an alternative approach, the lattice Boltzmann method (LBM)

as also been applied as a PRS method for turbulent particle-laden

ows [19–22]. The LBM approach features a high-level data locality

ssential to efficient implementation of PRS. Another advantage is

hat LBM has the flexibility and simplicity (i.e., via local bounce-back)

or implementing interfacial boundary conditions. This offers the po-

ential for the method to be applied to treat turbulent flows laden

ith non-spherical and deformable particles.

The main objective of this paper is to explore the use of LBM for

imulating wall-bounded turbulent particle-laden flows. Previously,

e have applied LBM to homogeneous isotropic particle-laden tur-

ulent flows [19,20]. In a wall-bounded flow, the flow scale near the

all and away from the wall could be quite different, and to au-

hors’ knowledge, there has not been a successful simulation of a

article-laden turbulent channel flow using LBM. There are, however,

article-resolved simulations of such flows based on pseudo-spectral

nd finite-difference methods with the moving particles treated

y the immersed boundary method [14,23,24] or direct forcing

ethod [15].

From an experimental perspective, particle-laden wall-bounded

ows have played an important role in understanding turbulence

odulation by solid particles. Previous experimental studies in-

luded particle-laden open channel flow [25], turbulent boundary

ayer [26,27], and turbulent pipe flow [28,29]. It is well known that

he presence of small solid particles typically decreases the turbu-

ence intensity due to enhanced viscous dissipation, whereas large

articles can enhance the turbulence intensity due to undamped dis-

urbances and wake effects [30,31]. Solid particles have also been ob-

erved to alter the critical Reynolds number for laminar to turbulent

ow transition, where small particles delay transition to larger flow

eynolds numbers, and large particles cause transition at smaller

eynolds numbers [32]. In general, the nature and level of modu-

ation depend on many factors including scales and geometric con-

gurations of the carrier phase flow, particle characteristics such as

ize, density, mass loading, particle distribution, and gravity. Finite-

ize particles may introduce both local viscous dissipation and ki-

etic energy production. Experimental studies mainly provide bulk

ow statistics, however, they could not reveal detailed interactions

etween particles and turbulence at the scale of particle size. It is
oped that particle-resolved direct numerical simulations can pro-

ide a deep understanding of turbulence modulation by solid par-

icles and effects of finite particle size on the dynamics of solid

articles.

The paper is organized as follows. In Section 2, the physical prob-

em and the LBM model are described, along with important imple-

entation details that lead to successful simulations of the particle-

aden turbulent channel flow. The results are presented in Section 3,

here we first discuss results from simulations of single-phase tur-

ulent channel flow, by comparing our results with benchmark data.

e then analyze in some detail one simulation of particle-laden

urbulent channel flow at dp/(2H) = 0.05, where H is channel half

idth. A summary and main conclusions are presented in Section 4.

. Problem statement and the simulation method

We consider a turbulent channel flow laden with finite-size parti-

les, as sketched in Fig. 1(a), with x, y, and z representing the stream-

ise, transverse, and spanwise directions, respectively. The width of

he channel is 2H, and the domain size in the streamwise direction is

x and in the spanwise is Lz. The turbulent flow is driven by a constant

ody force (or equivalently mean pressure gradient) in the x direction.

eriodic boundary condition is assumed in the x and z directions, and

he no-slip condition on the two channel walls.

For the single-phase turbulent channel flow (i.e., without solid

articles), the flow is mainly governed by the flow Reynolds number

e = UH/ν, where ν is the kinematic viscosity and U is the mean flow

peed. At the fully developed stage, force balance 2τwLxLz = ρg2HLxLz

eads to the expressions for the wall viscous shear stress τw and fric-

ional velocity u∗ as

w = ρgH, u∗ =
√

τw

ρ
=

√
Hg, (1)

here ρ is the fluid density and g is the body force per unit mass. The

rictional Reynolds number is Reτ = u∗H/ν = H/(ν/u∗), where ν/u∗ is

he length unit in the viscous sublayer. The large-scale eddy-turnover

ime is defined as H/u∗.

In this paper, we only consider neutrally buoyant solid particles

f identical diameter dp and density ρp = ρ . To keep the flow driv-

ng force for the particle-fluid system the same, the same body force

is applied in the x direction inside the solid particles. The only dif-

erence from the single-phase flow is then the presence of the mov-

ng fluid-solid interfaces where the no-slip condition is to be satis-

ed. There are two new governing parameters in the particle-laden

ow. The first is the particle size relative to the half channel width

p/H. The second is the volume fraction of the particulate phase,

V = nπd3
p/6, where n is the particle number density.

.1. The lattice Boltzmann method (LBM)

In this paper, we wish to develop a numerical method to solve the

urbulent particle-laden channel flow stated above, with local flow
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around each particle resolved. Following our recent studies [19,20],

the multiple-relaxation-time (MRT) lattice Boltzmann method [33] is

applied for this particle-resolved turbulent flow simulation. Since a

thorough discussion of the method including a few validation cases

have already been presented in [19,20], here we only summarize the

essential components of the method.

The MRT LBM solves the evolution of mesoscopic particle distri-

bution function by a lattice Boltzmann equation

f(x + eαδt, t + δt) = f(x, t) − M−1 · S · [m − m(eq)] + Q, (2)

where eα are microscopic velocities, δt is the lattice time step, M is an

orthogonal transformation matrix converting the distribution func-

tion f from discrete velocity space to moment space m, in which the

collision relaxation is performed. The term Q denotes a forcing field

in the mesoscopic phase space to produce a desired non-uniform,

time-dependent, large-scale physical space forcing field ρ0q(x, t). Its

implementation follows the MRT formulation [34,35] that is free of

low-order discrete lattice errors, and the implementation details in-

cluding the exact form and efficient computational implementation

were discussed in Section 2.2 of [20].

The basic idea of MRT is that the streaming sub-step is han-

dled in the microscopic lattice-velocity space but the collision sub-

step is performed in the moment space. The transformation between

the microscopic velocity space and the moment space is carried out

by matrix operations as m = M · f, f = M−1 · m. The diagonal relax-

ation matrix S specifies the relaxation rates for the non-conserved

moments.

The macroscopic hydrodynamic variables, including density ρ ,

momentum, and pressure p, are obtained from the moments of the

mesoscopic distribution function f. In the nearly incompressible for-

mulation [36], they are given as

ρ = ρ0 + δρ, ρ0 = 1; δρ =
∑
α

fα,

ρ0u =
∑
α

fαeα + δt

2
ρ0q(x, t), p = δρc2

s (3)

where u is the macroscopic fluid velocity, and the sound speed cs is

equal to 1/
√

3 in lattice units. In our implementation, the distribution

functions f are solved only at the fluid lattice nodes.

We shall state all design details of the model. The D3Q19 model

was used and eα represents the discrete lattice velocities, given as

eα =
{

(0, 0, 0), α = 0
( ± 1, 0, 0), (0, ±1, 0), (0, 0,±1) α = 1, 2, . . . , 6,

( ± 1, ±1, 0), ( ± 1, 0,±1), (0,±1,±1) α = 7, 8, . . . , 18

(4)

The 19 orthogonal moments

m = (ρ̃, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww,

pxy, pyz, pxz, mx, my, mz)
T

(5)

are defined through the element of the transformation matrix (each

subscript runs from 0 to 18) as

M0,α = ||eα||0, M1,α = 19||eα||2 − 30,

M2,α =
(
21||eα||4 − 53||eα||2 + 24

)
/2

M3,α = eαx, M5,α = eαy, M7,α = eαz,
Table 1

Parameter settings and simulated statistics.

Label ωε ωεj ωxx s1 s

MRT [33] 0.0 − 475
63

0.0 1.19 1

BGK 3.0 − 11
2

− 1
2

s9 s

MRT-LD [37] 3.0 − 11
2

− 1
2

1.8 s
4,α =
(
5||eα||2 − 9

)
eαx, M6,α =

(
5||eα||2 − 9

)
eαy,

8,α =
(
5||eα||2 − 9

)
eαz, (6)

M9,α = 3e2
αx − ||eα||2, M11,α = e2

αy − e2
αz, (7)

M13,α = eαxeαy, M14,α = eαyeαz, M15,α = eαxeαz, (8)

M10,α =
(
3||eα||2 − 5

)(
3e2

αx − ||eα||2
)
,

12,α =
(
3||eα||2 − 5

)(
e2
αy − e2

αz

)
, (9)

16,α =
(
e2
αy − e2

αz

)
eαx, M17,α =

(
e2
αz − e2

αx

)
eαy,

M18,α =
(
e2
αx − e2

αy

)
eαz. (10)

he equilibrium moments are defined as

(̃eq) = ρ̃ = δρ, e(eq) = −11δρ + 19

ρ0

(
j2
x + j2

y + j2
z

)
,

ε(eq) = ωεδρ + ωε j

ρ0

(
j2
x + j2

y + j2
z

)
,

j(eq)
x = jx = ρ0ux, j(eq)

y = jy = ρ0uy, j(eq)
z = jz = ρ0uz,

q(eq)
x = −2

3
jx, q(eq)

y = −2

3
jy, q(eq)

z = −2

3
jz, (11)

p(eq)
xx = 1

3ρ0

[
2 j2

x −
(

j2
y + j2

z

)]
, p(eq)

ww = 1

ρ0

[
j2
y − j2

z

]
, (12)

p(eq)
xy = 1

ρ0

jx jy, p(eq)
yz = 1

ρ0

jy jz, p(eq)
xz = 1

ρ0

jx jz, (13)

π(eq)
xx = ωxx p(eq)

xx , π(eq)
ww = ωxx p(eq)

ww , (14)

m(eq)
x = m(eq)

y = m(eq)
z = 0, (15)

ith the following relaxation parameters

= diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13,

s13, s16, s16, s16). (16)

he kinematic viscosity ν of the model is given as ν =
(
s−1

9
− 1

)
c2

s δt .

It is noted that some of the relaxation parameters do not affect

he simulated flow, but may affect the numerical stability of the code.

o examine if the results change with different settings, we will test

hree versions of the model in the simulation of single-phase tur-

ulent channel flow, as given by the specific model parameters in

able 1. They will be labeled as MRT, BGK, and MRT-LD (low dissi-

ation). The parameters for the case label as MRT are taken from [33]

nd those marked as MRT-LD are from [37]. The special case of BGK

ssumes all relaxation parameters are equal to s9. The setting labeled

s MRT intends to optimize the numerical stability based on the lin-

ar analysis, while the MRT-LD setting minimizes the numerical dissi-

ation by using a smaller bulk viscosity. For simulations of turbulent
2 s4 s9 s10 s13 s16

.4 1.2 δt
3ν+0.5δt

1.4 s9 1.6

9 s9
δt

3ν+0.5δt
s9 s9 s9

1 s9
δt

3ν+0.5δt
s1 s9 s1
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ow or turbulent particle-laden flow, we found that MRT is numer-

cally much more stable than BGK, although their levels of accuracy

re similar. In term of computational time, the overhead for MRT is

ypically about 20% when compared to the BGK collision model. The

bove completes the description of the D3Q19 MRT LBM model.

When moving particles are present, additional implementation

etails need to be considered. The no-slip condition at the mov-

ng fluid-particle interfaces are treated by a quadratic interpolated

ounce-back scheme [38]. When a particle moves, a solid lattice node

ay become a fluid node with unknown distribution functions. The

issing distribution functions for the new fluid lattice node are con-

tructed by a new velocity-constrained extrapolation method to be

iscussed below (Section 2.2). The hydrodynamic force Fi and torque

i acting on the ith particle are calculated during the interpolated

ounce-back procedure by the recently-developed Galiean invariant

omentum exchange method [39,40]. It is very important that we

nforce the local Galilean invariance property in order to produce

hysically correct results, as discussed in Peng et al. [40]. The parti-

le translational velocity, position, angular velocity and displacement

re then updated as,

t+δt
i

= Vt
i + 1

Mp

(
Ft+δt/2

i
+ Ft−δt/2

i

2
+

∑
j

Ft
i j

)
δt,

t+δt
i

= Yt
i + 1

2

(
Vt

i + Vt+δt
i

)
δt, (17)

�t+δt
i

= �t
i + 1

Ip

(
�t+δ2/2

i
+ �t−δt/2

i

2

)
δt,

t+δt
i

= �t
i + 1

2

(
�t

i + �t+δt
i

)
δt, (18)

here Mp and Ip ≡ 2
5 MpR2

i
are the mass and moment of inertia of

he ith particle, Ri is the particle radius, and Fij represents unresolved

nteraction force acting on the ith particle due to its interaction with

jth particle (e.g., the lubrication force correction, see [41,42]). In this

tudy, a simple pair-wise repulsive force model, the same as what was

sed in [19], was applied to prevent particles from overlapping.

.2. The velocity-constrained normal extrapolation refilling

This refilling scheme is based on the normal extrapolation refilling

cheme proposed in [38]. First, the link direction ec that maximizes

he quantity �n · ec is identified, where �n denotes the outward unit nor-

al to the local solid surface from where the new fluid point was un-

overed. After determining the direction ec, all unknown distribution

unctions at the new fluid node (marked by a square in Fig. 2) are ob-

ained by a quadratic extrapolation using three nodes (marked by the
Fig. 2. Sketch to illustrate the refilling scheme.

d

2

l

t

t

U

w

l

t

n

I

i

ircles in Fig. 2)

f̂α(xnew, t + δt) = 3 fα(xnew + ecδt, t + δt)

− 3 fα(xnew + 2ecδt, t + δt)

+ fα(xnew + 3ecδt, t + δt).

(19)

hen two particles are close and the information at a fluid lattice

ode is not available, the order of the interpolation is reduced to the

inear interpolation or the simple bounce-back. It is recognized that

he distribution functions after this first step may not precisely satisfy

he Dirichlet boundary condition at the new fluid node, which is very

lose to the wall node marked by a blue triangle. In MRT LBM, we can

ake advantage of the fact that the velocity can be constrained to the

all velocity without changing other macroscopic properties (such

s pressure and stress components). Therefore, in the second step,

e first computed all moments at the new fluid node by multiplying

he transfer matrix M as

(xnew, t + δt) = Mf̂(xnew, t + δt) (20)

here f̂ indicates the temporary distribution function after the un-

onstrained normal extrapolation. Next, we enforced the no-slip

oundary condition by constraining the momentum moments

jx = ρ0ux,w, jy = ρ0uy,w, jz = ρ0uz,w. (21)

nder the nearly incompressible formulation, this is equivalent to

onstraining the velocity to the local velocity (ux, w, uy, w, uz, w) at the

all node. Finally, transfer the moments m∗ after the above modifi-

ation back to the distribution functions as

(xnew, t + δt) = M−1m∗(xnew, t + δt) (22)

here m∗ means the moment vector after the velocity is constrained.

n this procedure, except the velocity, no other macroscopic quanti-

ies are changed.

We find that this constraint significantly reduces the fluctuations

n the hydrodynamic forces compared to the unconstrained normal

xtrapolation. Even more importantly, before introducing this con-

trained scheme, we used equilibrium plus non-equilibrium refill-

ng [43] and encountered numerical instability that causes the code

o diverge. After replaced by the velocity-constrained normal extrap-

lation refilling, our particle-laden turbulent channel flow code has a

uch better numerical stability.

The MRT LBM code was parallelized using 2D domain decompo-

ition where the domain is divided in x and z directions as shown

n Fig. 1(b). Since the data communications are with the neighboring

ubdomains only, a nearly ideal scalability could be realized using 1D,

D and 3D domain decompositions, see discussions in Section 2.3 of

ang et al. [20]. The 2D domain decomposition was chosen here be-

ause of the use of an MPI interface code for FFT (Fast Fourier Trans-

orm) in data post-processing subroutines, for which the 2D domain

ecomposition was found to be optimal [44].

.3. Method to excite transition to turbulence

We have simulated both single-phase and particle-laden turbu-

ent channel flows, as the single-phase flow provides a reference flow

o study turbulence modulation by finite-size solid particles. We ini-

ialize the flow field using a prescribed mean flow as

+(y+) =
{

y + if y+ ≤ 10.8,

1

0.41
ln (y+) + 5.0 if y+ > 10.8,

(23)

here all quantities with a superscript + are normalized by the wall

ength unit ν/u∗ or velocity unit u∗. While in the particle-laden flow,

he disturbances due to the solid particles provide a natural mecha-

ism to excite the flow instability that will lead to a turbulent flow.

n the single-phase flow simulation, we must design a mechanism to

nject perturbations to the flow to excite flow instability.
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Table 2

Parameter settings and simulated statistics.

Run Nx × Ny × Nz ν u∗ Reτ δy/(ν/u∗) dp/H φV

(< 2.25 [47])

Single-phase MRT 400 × 199 × 200 0.0036 0.006513 180 1.806 − −
Single-phase BGK 400 × 200 × 200 0.0036 0.00648 180 1.806 − −
Single-phase MRT-LD 400 × 200 × 200 0.0036 0.00648 180 1.806 − −
MRT-PL 600 × 299 × 300 0.0040 0.004816 180 1.204 0.1003 7.09%

U/ u∗

tu∗/ H

Fig. 3. Time evolution of the mean flow velocity for the simulated single-phase tur-

bulent channel flow. The thin red line marked the long-time average of 〈U〉/u∗ = 15.7.

( For interpretation of the references to colour in this figure legend, the reader is re-

ferred to the web version of this article).
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We add a non-uniform, divergence-free forcing field to the flow

for some period of time. Namely, for h0 < y < h + h0 < H,

qx = g

[
1 − A0

Lx

β
sin

(
2π(y − h0)

h

)
sin

(
β

2πx

Lx

)
cos

(
γ

2πz

Lz

)]
(24)

qy = g
A0

2
h

[
1 − cos

(
2π(y − h0)

h

)]
cos

(
β

2πx

Lx

)
cos

(
γ

2πz

Lz

)
(25)

qz = g
A0

2

Lz

γ
sin

(
2π(y − h0)

h

)
cos

(
β

2πx

Lx

)
sin

(
γ

2πz

Lz

)
(26)

and for 2H − h0 − h < y < 2H − h0,

qx = g

[
1 + A0

Lx

β
sin

(
2π(2H − y − h0)

h

)
× sin

(
2πβ

(
x

Lx
+ ψ

))
cos

(
γ

2πz

Lz

)] (27)

qy = g
A0

2
h

[
1 − cos

(
2π(2H − y − h0)

h

)]
× cos

(
2πβ

(
x

Lx
+ ψ

))
cos

(
γ

2πz

Lz

) (28)

qz = g
A0

2

Lz

γ
sin

(
2π(2H − y − h0)

h

)
× cos

(
2πβ

(
x

Lx
+ ψ

))
sin

(
γ

2πz

Lz

) (29)

where A0 =
(
βÃ0/Lx

)
sin (2πt/T) with T being a prescribed period,

ψ is a random number between 0 and 1 to introduce a random

phase shift, and Ã0, T, β, γ , h, h0 are prescribed constants. Typically,

we set, in lattice units, h0 = 2, h = H/4, Ã0 = 40, T = 2000, β = 3,

and γ = 2. The magnitude of forcing as reflected by Ã0 is quite large.

The parameters used here were chosen by trial-and-error to ensure a

rapid development of turbulence without causing numerical instabil-

ity. When the nonlinear flow instability is excited, we switch off the

non-uniform forcing by setting A0 = 0 and the flow is only driven by

the constant body force g.

3. Results

In this section, we present results on both single-phase and

particle-laden turbulent channel flows. We are interested in flow

statistics when the flow becomes stationary, namely, the driving force

is balanced by the net viscous dissipation in the flow. In this prelim-

inary study, we discuss results from four simulations as shown in

Table 2: three simulations for single-phase turbulent channel flow

corresponding to the model parameters described in Table 1, and
ne for particle-laden turbulent channel flow. The frictional Reynolds

umber is set to 180. The fluid viscosity is set above the limiting value

.00254 [33] when the MRT model may become unstable. Note that

he grid resolution is quantified by the value of δyu∗/ν , where δy is

he grid spacing. Based on the simulations using the BGK LBM model,

ammers et al. [47] suggested that this value should be less than 2.25.

.1. Single-phase turbulent channel flow

In the three single-phase flow simulations shown in Table 2, the

hysical settings are essentially the same, the only difference is in the

pecification of model parameters (Table 1). Initially, we used a grid

esolution 400 × 200 × 200 for a computational domain with Lx = 4H

nd Lz = 2H. The viscosity was set to 0.0036 and the body force g was

etermined by g =
(
νH−1.5Reτ

)2
. During the simulation, we monitor

he maximum local Mach number (|u|max/cs) and the maximum den-

ity fluctuations δρmax to make sure that they remain small.

Interestingly, we found that the single-phase MRT run became nu-

erically unstable and the run diverged after about 5,000 time steps.

isualizations of the flow velocity field show a chequerboard instabil-

ty [45,46] with a clear chequerboard pattern oriented at ± 45o, while

he other two runs are stable. The cause for the chequerboard insta-

ility could be that an even lattice number in the wall-normal direc-

ion led to the reflected acoustic wave to be in phase with the orig-

nal acoustic oscillations. This problem was somewhat unexpected,

ut was fixed by simply changing the domain size in y to 199. This

s the reason for the minor differen ce in grid resolutions shown in

able 2.

Applying the Reynolds decomposition and noting that the

ow is homogeneous in x and z directions, we can write

x = U(y) + u′
x(x, y, z), uy = u′

y(x, y, z), uz = u′
z(x, y, z), p = P(y) +

p′(x, y, z), where U(y) and P(y) are the mean flow velocity and pres-

ure, respectively. In Fig. 3, we show the mean flow speed (aver-

ged over y) as a function of non-dimensional time t∗ ≡ tu∗/H. The
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uxuy

u∗2

y/ 2 yH / 2H

(a) (b)

Fig. 4. (a) Turbulent Reynolds stress profile in half the channel, (b) Mean pressure distribution and transverse mean-square fluctuation velocity profiles in half the channel. All

quantities are normalized by u∗2. The data are averaged over 110 < t∗ < 150. The thin red line in (a) denotes the total shear stress, so the difference between this straight line and

the data represents the viscous shear stress due to the mean flow. ( For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article).

U+

y+ y/ (2H)

u+
rms

w+
rms

v+
rms

(a) (b)

Fig. 5. (a) The mean flow velocity profiles, (b) r.m.s. velocity profiles from the single-phase MRT run. The data are averaged over 110 < t∗ < 150. The results from the single-phase

BGK run and the single-phase MRT-LD run are essentially identical.
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onuniform force field to excite the turbulent flow is only applied

or 0 < t∗ < 3.24. During this period of extra forcing, the mean

ow speed decreases and kinetic energy is quickly transferred from

he mean flow to the turbulent fluctuations. After t∗ = 3.24, for the

RT and MRT-LD runs, there is a further reduction in the mean flow

peed (possibly due to shifting of intense vertical structures towards

he channel walls immediately after the nonuniform force field is

witched off) before the mean flow rebounds and gradually reaches

stationary value of about 15.7u∗. It is evident that the flow reaches

statistically stationary stage at around t∗ = 50. All three runs con-

erge to the same average mean speed. Although not explicitly shown

ere, we compare various profiles from the three runs and found that

hey are essentially identical. For this point on, only results from the

RT run will be reported.

For this channel flow, we can show that the x-momentum balance

quation becomes

=
d
〈
−u′

xu′
y

〉
dy

+ g + ν
d2U

dy2
, (30)

hich leads to the total stress (Reynolds plus viscous) distribution as

1

u∗2

[〈
−u′

xu′
y

〉
+ ν

dU

dy

]
= −yc

H
, (31)

here yc is the distance relative to the channel center, and y is

he distance from a wall. Fig. 4(a) compares our simulated Reynolds

tress profile in half of the channel with several benchmark results

t the same Reτ . The channel center is at y/(2H) = 0.5. Throughout

he paper, “Stanford” refers to the data from the Chebychev-spectral
imulation done by the Stanford group [48,49] using a domain size

πH × 2H × 4πH/3, “Jimenez” denotes the data from the Chebychev-

pectral simulation done by Jimenez et al. [50,51] using a domain size

πH × 2H × 4πH/3, “YuL4” indicates data from a second-order finite-

ifference simulation by Yu et al. [15] using a domain size 4H × 2H ×
H (identical to ours). Although our domain size is smaller than the

omain size in the Chebychev-spectral simulations, the results are in

xcellent agreement with the Chebychev-spectral simulation results.

his could demonstrate that the MRT LBM scheme has less numeri-

al diffusion than the finite-difference method which shows a slightly

maller maximum Reynolds stress.

The y-momentum balance equation is

∂

∂y

[〈
u′2

y

〉
+ P

ρ0

]
= 0, (32)

hich shows that P(y) + ρ0

〈
u′2

y

〉
= constant. Fig. 4(b) shows the pro-

les of P(y) and ρ0

〈
u′2

y

〉
over half of the channel, as well as the sum.

everal observations can be made. First the sum is indeed a con-

tant and equal to 0.4913. Second, the transverse velocity fluctua-

ion reaches a maximum at around y/(2H) = 0.14, corresponding to

minimum mean pressure. Third, the mean normalized pressure in-

egrated over y was found to be around 10−6, which is essentially

ero. This is expected as the total mass is conserved by the mid-link

ounce-back.

Next, we show the mean velocity profile on a log-linear plot in

ig. 5(a). In wall units, the channel center is at y+ = 180. Once again,

ur LBM result is in excellent agreement with the spectral simulation

esults. The profile fits well the standard linear viscous sublayer scal-

ng for y+ < 5, and the inertial sublayer scaling starting at y+ > 30.
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U/ u∗

u∗t/ H

Fig. 6. The time evolution of mean flow speed (averaged over y) in the turbulent

particle-laden flow. The two blue dash lines indicate the stationary stage (32.2 < t∗

< 56.1). The two horizontal lines mark 15.74 and 15.02, respectively. ( For interpreta-

tion of the references to colour in this figure legend, the reader is referred to the web

version of this article).

(a) (b)U+

y+ y+

Fig. 7. The mean velocity profile for the particle-laden flow run: (a) log-linear plot; (b)

linear-linear plot. The data are averaged over 32.2 < t∗ < 56.1. Also shown are other

profiles for comparison including the results from the finite-difference method [15].
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Yu et al.’s finite-difference result appears to slightly over-predict the

mean velocity for y+ > 5. The average flow speeds in our LBM, Yu

et al., Standford, and Jimenez are 15.65, 15.84, 15.69, and 15.60, re-

spectively. Note that the two Chebychev-spectral simulations use a

non-uniform grid, so a cubic spine interpolation is first used to obtain

the velocity at the same uniform y+ locations as in Yu et al.’s before

the average flow speed is processed.

The root-mean-squared velocity profiles are shown in Fig. 5(b).

Here u+
rms ≡

√〈u′2
x 〉/u∗, v+

rms ≡
√〈u′2

y 〉/u∗, and w+
rms ≡

√〈u′2
z 〉/u∗.

Overall, the profiles from different studies are in reasonable agree-

ment. Our LBM results are in excellent agreement with the results of

Yu et al., for all three components. Since both our simulation and Yu

et al.’s are based on a smaller domain size, the difference between
U+
pl U+

sp

U+
sp

)a(

y+

Fig. 8. The relative change in the mean velocity of the flow due to the presence of particles:
ur results and the Chebychev-spectral results are likely due to the

se of different computational domain sizes. Our LBM data show a

lightly larger streamwise rms velocity and slightly smaller spanwise

ms velocity.

In summary, our LBM simulations for single-phase turbulent

hannel flow are validated by comparing with data from published

pectral and finite-difference simulations.

.2. Particle-laden turbulent channel flow

Next we present preliminary results for the particle-laden turbu-

ent channel flow. The physical parameters were shown on the last

ow in Table 2. Note that the resolution is increased by 50% in each di-

ection when compared to the single phase flow simulation to better

esolve the disturbance flows due to solid particles and to overcome

otential numerical stability. We will compare directly our LBM re-

ults to those of the finite-difference results [15] where the moving

articles are treated by a direct forcing method.

.2.1. Turbulence modulation

In Fig. 6, we plot the average mean flow speed as a function of

ime. For the particle-laden flow simulation, the initial flow velocity

s zero, the same body force (could be made larger than g during the

eveloping stage to accelerate the transition and development) is ap-

lied to generate the flow. Suspended particles provide the natural

echanism to excite the turbulent fluctuations. The phase-average

ow speed (averaged over the fluid lattice points only), U/u∗, for

he particle-laden flow is 15.02, which is 4.6% smaller than the value

15.74) for the single-phase turbulent channel flow. All results pre-

ented are based on a time average in the interval 31.9 < t∗ < 53.9.

The fluid-phase-averaged mean flow profile and rms fluctuation

elocities are shown in Fig. 7. Also shown for comparison are data

rom the finite-difference method, for both the single-phase and

article-laden flows. While in the linear viscous sublayer, the velocity

rofile is unchanged by the presence of the solid particles, in the iner-

ial sublayer, the mean flow speed is reduced. The strongest modula-

ion to the mean flow occurs in the region (10 < y+ < 100) between

he wall and the channel centerline.

To better quantify the modulation of the mean flow velocity by

he presence of solid particles, we compare changes in flow speed

elative to the single-phase flow in Fig. 8. Due to the change of res-

lution (Table 2), the y+ positions for the single-phase flow simula-

ion could be different from the locations where the particle-laden

ow data are computed. A linear interpolation is used to interpo-

ate the particle-laden flow data to match the same locations used

or the single-phase flow. Also added to the plots are results from

u et al. based on a larger domain size (8H × 2H × 4H), denoted by

uL8. The relative changes are always computed based on results of

he single-phase and particle-laden flows using a same domain size.

he computed relative changes of the local mean flow speed from our
)b(

y+

(a) linear–linear plot; (b) log-linear plot. The data are averaged over 32.2 < t∗ < 56.1.
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u+
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w+
rms

v+
rms

)b()a(

y+ y+

Fig. 9. The r.m.s. velocity profiles in the particle-laden flow: (a) linear–linear plot; (b)

log-linear plot. Other results are also plotted for comparison. The data are averaged

over 32.2 < t∗ < 56.1.
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Fig. 10. The relative changes of r.m.s. velocity fluctuations due to the presence of solid

particles, relative to the single-phase flow: (a) linear–linear plot; (b) log-linear plot.

The data are averaged over 32.2 < t∗ < 56.1.
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Fig. 11. (a) The local volume fractions of the particulate phase and the fluid phase.

(b) The average forces acting on the particle along transverse direction. The data are

averaged over 32.2 < t∗ < 56.1 in (a) and over 41.6 < t∗ < 56.1 in (b).
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BM simulation are qualitatively similar to Yu et al.’s data. Quantita-

ively, our results show significant less reduction in the mean flow

elocity at almost all locations. The maximum changes in the mean

ow speed is about 7.5% in our simulation (or 11.96% (L4) to 11.53%

L8) in Yu et al.’s simulations), which occurs at y+ ≈ 30. The location

f the maximum corresponds to the maximum local particle concen-

ration (see Fig. 11 later). Therefore, the particle–particle hydrody-

amic interactions may alter the local mean flow speed. This differ-

nce between ours and Yu et al.’s is originated from a larger mean

ow velocity for the single-phase flow and a smaller mean velocity

n the particle-laden case in the finite-difference approach. The rea-

on for this difference is not clear. The results from Yu et al. for two

omain sizes (YuL4 and YuL8) show that the effect of domain size on

he relative reduction is not significant in their simulations.

The rms velocity profiles are shown in Fig. 9 on both linear–linear

nd log-linear plots. The data from both single-phase and particle-

aden flows are shown from our LBM and Yu et al.’s finite-difference

imulations using the same domain size. In general, all the rms pro-

les are in excellent agreement. In the streamwise direction, the pres-

nce of particles reduces the rms velocity significantly for y+ < 70,

ith almost no effect near the channel center. However, in the span-

ise direction, the rms velocity is augmented by the particles in

he near wall region (y+ < 30). This is more clearly seen in Fig. 10

here the percentages of change relative to the single-phase flow

re shown. In the outer region, the spanwise velocity fluctuation is

lightly reduced. The effect of particles on the transverse rms ve-

ocity is somewhat similar to the effect on the spanwise rms veloc-

ty, with the augmentation taking place in an even wider region (up

o y+ ≈ 40). The relative changes in rms velocities from our simula-

ions and the finite-difference simulations are in good quantitative

greement, confirming that the nature of turbulence modulation de-

ends on both location relative to the wall and the spatial direction.

gain the effect of computational domain size on the relative changes

particle-laden vs single-phase) is not significant when the results

rom Yu et al. based on two domain sizes are compared. The main

ifferences between our results and Yu et al.’s occur in the near wall
egions (Fig. 10b). Very close to the wall, the finite-difference results

how an augmentation of the rms velocity even in the streamwise

irection, which is not the case in our LBM simulation. The finite-

ifference results also show a larger augmentation of rms velocity in

he spanwise direction near the wall.

.2.2. Particle distribution

An interesting question is whether the particles are distributed

niformly or clustered near the wall (which is typically found in

oint-particle simulations). Fig. 11(a) shows the fraction of space

aken up by particle and by fluid nodes, as a function of y+. Due to the

nite size, the particle fraction φp is zero at y+ = 0. The vertical thin

ine marks the location of y = 0.5dp. The particle fraction increases

ear the wall and reach a maximum that is 103.10% of the mean value,

t y/dp = 0.82 or y+ = 29.50. It then decreases and reaches a mini-

um that is 74.47% of the mean value, at y/dp = 1.22 or y+ = 43.95.

here is a very gradual increase in φp when y+ is increased from 44

o 120. In the center region ( y+ > 120), the particle fraction is nearly

niform and is 123.41% of the mean.

The results indicate that there is a quasi-equilibrium position

t y/dp = 0.82 or y+ = 29.50, similar to the Segré–Silberberg effect

nown for laminar wall-bounded flows [52,53]. This is confirmed by

he hydrodynamic force and total force (plus the lubrication force)

n the transverse direction in Fig. 11(b), as a function of the center

osition of the solid particles. Here the center positions of the solid

articles are divided into bins of width �y+ ≈ 3.5, and the average

orce are computed by averaging over all particles with the centers

itting in a given bin. Here a positive force is a force directed into the

all and negative away from the wall. The lubrication force includes

he repulsive forces due to both the particle–particle and particle-

all interactions. The net force crosses zero at y+ = 29.50, corre-

ponding roughly to the location of maximum φp. There is a region

29.5 < y+ < 65) where the net force is negative, and in this region

articles on average move towards to the center region of the chan-

el. In the center region, y+ > 120, the net force is essentially zero,

ndicating that particles on average are uniformly distributed.

.2.3. Phase-partitioned statistics

We shall now partition the flow domain into the fluid nodes and

odes covered by the solid particles. The velocity inside a solid par-

icle is given by translation plus solid body rotation, and vorticity

nside is defined as twice the angular velocity. Statistics averaged

ithin the lattice points inside the solid particles are to be compared

ith the fluid-phase averaged statistics discussed in Section 3.2.1.

ig. 12(a) shows the mean velocity profiles averaged over the fluid

odes and over the solid nodes. Very close to the wall, the particle

ean flow speed is significantly larger than the fluid velocity, imply-

ng that there is a slip between the particle motion and the wall. In

he intermediate region (19.87 < y+ < 46.35), the fluid velocity ex-

eeds the particle velocity. Then in the center region, they reach to
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Fig. 12. (a) The phase-partitioned mean velocity profiles. (b) The phase-partitoned r.m.s velocity profiles. The data are averaged over 41.6 < t∗ < 56.1.

q/ u∗2

y+

Fig. 13. The phase-partitioned turbulent kinetic energy profiles. The data are averaged

over 41.6 < t∗ < 56.1. The result of the single-phase flow is also shown for comparison.

Ωz ν 
(u∗)2
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y+ y+

Fig. 14. (a) The phase-partitioned mean vorticity profiles. (b) The phase-partitioned

r.m.s vorticity profiles. The mean vorticity is anti-symmetric with respect to the cen-

terline, only the bottom half of the channel is shown. The data are averaged over 41.6

< t∗ < 56.1.
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a mutual equilibrium, with particle velocity slightly larger than the

fluid velocity (about 0.9%).

The comparison of the rms velocity fluctuations between the two

phases is provided by Fig. 12(b). In both the streamwise and spanwise

directions, there is a significant difference between the fluid velocity

fluctuation and the particle velocity fluctuation, due to the finite-size

effect. There is no difference in inertia between the solid particle and

the fluid, but the fluid inertia due to the relative motion between the

fluid and the particle also contributes to the reduction of particle rms

velocity. Clearly, solid particles follow the mean motion of the fluid

much more closely than the fluid velocity fluctuations. The most in-

teresting one is the comparison in the transverse direction. The par-

ticle rms velocity is significantly larger than the fluid rms velocity for

y+ < 36.72, but they are similar outside this region. This interesting

larger transverse particle velocity fluctuation near the wall could be

related to the sweeping and ejection associated with large-scale flow

dynamics in the near-wall region. Clearly, the particulate phase can

bring more kinetic energy into the wall region by both the augmented

particle mean flow velocity and particle transverse velocity fluctua-

tion. The presence of particles also makes the flow velocity fluctu-

ations more isotropic. The profiles for the particulate phase show a

bump at y+ = 40.33, close to the location where the local particle

volume fraction is peaked.

The phase-partitioned net kinetic energy q = (〈u′2
x 〉 + 〈u′2

x 〉 +
〈u′2

z 〉)/2 for each phase is compared in Fig. 13, along with the result

from the single-phase flow. The fluid-phase kinetic energy is not al-

tered very close to the wall, but it reduced significantly in most parts

of the channel. The presence of solid particles contributes to this re-

duction. Since the mean flow is reduced (Fig. 8), this implies that the

relative turbulence intensity is slightly increased near the wall.

The mean vorticity profiles are contrasted in Fig. 14(a). The top

two curves represent profiles for the top half channel, and the bottom

two for the lower half channel. y+ is always measured from the wall in

each case. The profiles are antisymmetric with respect to the center of
he channel. In terms of the magnitude, the two phases have identical

ean (and linear) vorticity distribution for y+ > 60. Interestingly, for

he intermediate region (18.7 < y+ < 47.6, the upper bound is based

n the mean particle vorticity being 20% larger than that of the fluid

orticity), the particle mean vorticity exceeds that of the fluid, indi-

ating that some fast-rotating particles from the near-wall region are

eing transported into this intermediate region. Finally, in the region

ery close to the wall (y+ < 18.7), the mean vorticity of the fluid is

ignificantly larger as finite-size particles only respond to the local-

olume-averaged fluid vorticity. Near the wall, particle rotation is in-

ibited by the wall.

Finally, the rms vorticity profiles are compared in Fig. 14(b). The

article rms vorticity is roughly half of the corresponding fluid rms

orticity, clearly due to the finite-size (finite-volume) filtering and

ther effects such as the fluid inertia effect. Unlike the rms veloc-

ty, the rms vorticity is nearly isotropic for the region y+ > 30 for the

uid phase (and y+ > 60 for the particulate phase). Near the wall, the

panwise rms vorticity is the largest, followed by the transverse rms

orticity. The streamwise rms vorticity is the smallest. The fluid rms

orticities in the streamwise and spanwise directions exhibit a peak

n the near wall region. There is also the peak in the particle rms vor-

icity in the spanwise direction, but the peak location is further away

rom the wall at y+ = 34.3.

. Summary and outlook

The research was motivated by the desire to simulate wall-

ounded turbulent particle-laden flows with the fluid-moving

olid interfaces directly resolved. We have developed a multiple-

elaxation-time lattice Boltzmann approach for this purpose. An

mportant implementation issue is to accurately resolve the mov-

ng interfaces, which has been discussed in detail in a separate

aper [40]. Specifically, we wish to note that a Galilean invariant

omentum exchange method [39] has been implemented, and a
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elocity-constrained normal extrapolation refilling is developed to

ll populations at the new fluid nodes. These details not only allow

he method to produce correct results, but also make the simulations

umerically more stable.

To validate the LBM approach, we first simulated the single-phase

urbulent channel flow at Reτ = 180. A non-uniform force field was

esigned to excite turbulent fluctuations. Three different versions of

he collision treatment (i.e., the optimized MRT [33], MRT with low

issipation [37], and BGK) were tested. While not shown in the paper,

e found that the statistics of the fully-developed turbulent channel

ow are independent of the setting of some of the relaxation param-

ters. Interestingly, we encountered a checkerboard instability with

he optimized MRT setting, and this problem was solved by using an

dd number of grid points in the transverse direction. The resulting

ean flow profiles and turbulence statistics were found to be in ex-

ellent agreement with the published data based on the Chebychev-

pectral method, although the domain size we used in this prelimi-

ary study was relatively small.

We then considered a particle-laden turbulent channel flow under

he same body force used to drive the single-phase flow. The particles

ave a same density as the fluid. The particle diameter is 5% of the

hannel width and average volume fraction at 7.09%. We found that

he presence of the particles reduce the mean flow speed by 4.6%,

mplying that the fluid-particle system is more dissipative than the

ingle-phase flow. The maximum local reduction of the mean flow

peed is about 7.5%. The effects of the solid particles on the fluid

ms velocity fluctuations are mixed: both reduction and augmenta-

ion are observed depending on the direction and spatial location rel-

tive to the channel walls. Overall, particles enhance the relative tur-

ulence intensity in the near wall region and suppress turbulence in

he center region. Particles then play a role of bringing more kinetic

nergy into the near wall region. This general observation is consis-

ent with experimental observations in wall-bounded particle-laden

ows [28]. The particle concentration distribution across the chan-

el is also complicated. We found that there is a dynamic equilibrium

ocation resembling the Segŕe–Silberberg effect known for a laminar

all-bounded flows [52,53]. Our LBM results were compared to sep-

rate results using a finite-difference method with direct forcing to

andle the moving solid particles [15]. While the results on the re-

uction of mean flow velocity are quantitatively different, the results

n the modulation of flow rms velocities from the two numerical ap-

roaches are in good quantitative agreement. The relative changes

ue to the presence of particles are not sensitive to the computa-

ional domain size, partially justifying the use of a smaller domain

ize in this study.

We also examined the phase-partitioned statistics and found that

here is a finite slip between the particle mean motion and the chan-

el wall. The particle transverse rms velocity is significantly larger

han the fluid transverse rms velocity. The presence of solid parti-

les tends to help mix the flow in the wall region with the flow

n the center region, and also make the flow more isotropic. The

ean vorticities for the two phases are the same for the center re-

ion. In the intermediate region (18.7 < y+ < 47.6), the particle mean

orticity can exceed the fluid mean vorticity. The particle rms vor-

icity is much less than the fluid rms vorticity due to finite-size

ltering.

From the above results, it is clear that LBM has the potential to

ccurately and efficiently treat particle-laden turbulent flows. This

tudy represents our first effort in applying LBM to wall-bounded

urbulent particle-laden flows. Only one mesh resolution was con-

idered for the particle-laden flow case. Based on our prior experi-

nce [20], the local profiles very close to a solid particle surface may

equire a higher resolution. Nevertheless, the average field statistics

f the kind reported in this paper do not depend much on the grid res-

lution. It is also desirable to consider local mesh refinement around

moving solid particle [54]. We are in the process of optimizing our
imulation code so we can carry out a variety of simulations cover-

ng different flow and particle parameter regimes. Some additional

esults regarding the effect of particle size can be found in [55]. We

re also exploring a possibility to use a cuboid mesh so that the mesh

ize in the wall normal direction is different from these in the other

wo periodic directions.
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