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Abstract

The standard lattice-Boltzmann method (LBM) for fluid flow simulation is based on a square (in 2D) or a cubic (in 3D) lattice
grids. Recently, two new lattice Boltzmann schemes have been developed on a 2D rectangular grid using the MRT (multiple-
relaxation-time) collision model, either by adding a free parameter in the definition of moments or by extending the equilibrium
moments. These models satisfy all isotropy conditions and are fully consistent to the Navier-Stokes equations. Here we developed
a lattice Boltzmann model on a 3D cuboid lattice, namely, a lattice grid with different grid lengths in different spatial directions. We
designed the moment equations, derived from our MRT-LBM model through the Chapman-Enskog analysis, to be fully consistent
with the Navier-Stokes equations. A second-order term is added to the equilibrium moments in order to not only satisfy all isotropy
conditions but also to better accommodate different values of shear and bulk viscosities. The form of the second-order term and
the coefficients of the extended equilibrium moments are determined through an inverse design process. An additional benefit
of the model is that the shear viscosity can be adjusted, independent of the stress-moment relaxation parameter, thus potentially
improving the numerical stability of the model. The resulting cuboid MRT-LBM model is then validated through benchmark
simulations using the laminar channel flow, the turbulent channel flow, and the 3D time-dependent, energy-cascading Taylor-Green
vortex flow. The second-order accuracy of the proposed model is also demonstrated. The numerical simulations suggest that the
aspect ratios to ensure numerical stability appear to be constrained at high flow Reynolds numbers, especially for turbulent flow
simulations, which requires further investigation.
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1. Introduction

As a mesoscopic method based on the kinetic Boltzmann equation, the lattice Boltzmann method (LBM) has been
developed rapidly in the last three decades. The basic idea of LBM is the realization that, in the continuum and
incompressible limits, only a few conserved moments and a few non-conserved moments are required to reproduce
the macroscopic hydrodynamic equations. In the LBM, only a few discrete, kinetic-particle velocities are used, and
the kinetic velocities are fully coupled with the lattice grid in the physical space and the time step size, which makes
the numerical implementation highly efficient when compared to other kinetic schemes. The nonlinear interactions
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between kinetic particles are local and are modeled through a collision model, namely, the single-relaxation-time
or Bhatnagar-Gross-Krook (BGK) collision, or the multiple-relaxation-time (MRT) collision. Although the method
solves more variables than the conventional CFD methods based on solving directly the Navier-Stokes (N-S) equa-
tions, its high computational efficiency and flexibility in treating complex solid-fluid boundaries and fluid-fluid inter-
faces have made the method a viable alternative CFD method for many complex flow applications [1, 2, 3].

For many years, the standard lattice grids are adopted in most previous studies, namely, typically a square lattice
for 2D flows and a cubic lattice for 3D flows. These simple lattice grids have a good grid geometric isotropy, but at
the same time, limit the computational efficiency when LBM models are applied to non-isotropic and inhomogeneous
flows, in particular, wall-bounded turbulent flows. In order to remove this drawback, several efforts have been made
to incorporate a more general (i.e., nonuniform or anisotropic) grid into LBM. These efforts could be divided into
four groups. The first group utilizes spatial and temporal interpolation schemes to couple the inherent lattice grid with
a general computation grid on which the hydrodynamic variables are solved [4, 5]. Although such implementations
allow more flexibility of the computational grid structure [6], the accuracy of such two-grid implementations is still
determined by the inherent standard lattice. Furthermore, the interpolations introduce additional numerical errors
and artificial viscosity to the flow system being solved. The second group chooses to replace the exact streaming
operation in LBM with a finite-difference scheme or other discretization schemes [7, 8], in order to remove the usual
coupling between lattice space and lattice time. This type of implementations not only causes additional numerical
diffusion and dissipation, but could be more complicated and computationally more expensive, e.g., additional data
communication may be required.

Different from the above, the third group incorporates directly a non-standard lattice grid such as a rectangular
grid in 2D, by modifying the kinetic particle velocities to fit the lattice grid. The use of a rectangular grid immediately
introduces anisotropy which must be corrected by a proper re-design of the collision operator. This approach preserves
all the appealing features of the standard LBM, i.e., the inherent simplicity, numerical accuracy, and computational
efficiency. Bouzidi et al. [9] was the first to propose a D2Q9 LBM using anisotropic particle velocities to fit a
rectangular lattice grid. Their LBM scheme made use of the MRT collision operator. They modified the definitions
of moments and their model is almost consistent with the Navier-Stokes equations, except that the shear and bulk
viscosities are not strictly isotropic when the grid aspect ratio differs from one, as shown in [10]. Similar attempts
were made by Zhou who proposed two models with both BGK [11] and MRT [12] collision operators. However,
neither of his models is consistent with the N-S equations [10, 13]. Hegele et al. [14] claimed that, for the standard
D2Q9 lattice and D3Q19 lattice, the degrees of freedom are not enough to remove thenanisotropy resulting from the
use of the non-isotropic lattice grid, when the BGK collision operator is used. Thus they suggested to extend these
lattices to D2Q11 and D3Q23, respectively, to recover the N-S equations. Their D2Q11 model was indeed validated
on a rectangular grid using the 2D Taylor-Green vortex flow. Lastly, a D3Q19 model with cuboid lattice is proposed
by Jiang and Zhang for pore-scale simulation of fluid flow in porous media [15]. In their model, the anisotropy of
viscosity is fixed by adopting different relaxation parameters in different spatial directions. Although in their model,
the lattice length of the cuboid could be different in three directions, the aspect ratio can only be larger than 0.82 due
to stability consideration. In this paper, the aspect ratio is always defined as the ratio of smallest lattice spacing in
one spatial direction to the largest lattice spacing in another spatial direction, except stated otherwise. In addition, the
order of accuracy of Jiang and Zhang’s model was not stated.

Recently, Zong et al. [10] extended Bouzidi et al.’s model by introducing a parameter θ to reconfigure the two-
dimensional energy-normal stress moment sub-space. For a given grid aspect ratio, a unique θ value is determined to
restore the full isotropy condition required by the N-S equations. An alternative and more general LBM MRT model
on a rectangular grid has been developed by Peng et al. [16] who instead incorporated stress components into the
equilibrium moments to remove the anisotropy in the stress tensor resulting from the use of a rectangular lattice. Such
an approach was previously used by Inamuro [17] to improve the stability of LBGK model, and later by Yoshino et
al. [18] and Wang et al. [19] to treat non-Newtonian fluid flows. The generality of the extended-equilibrium approach
has also been explored using the simpler BGK collision by Peng et al. [20] who in fact showed that even an LBGK
model can be successfully extended to work on a rectangular grid. Such was not thought to be possible previously.
The key in all these three successful models on a rectangular grid [10, 16, 20] is to combine new constraints and new
adjustable parameters to satisfy all isotropy conditions required by the N-S equations.

The objective of the current paper is to develop a D3Q19 MRT LBM model on a general cuboid grid with grid
spacing ratios given as δx : δy : δz = 1 : a : b, using a D3Q19 lattice. The basic idea of the approach follows
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Figure 1: The illustration of D3Q19 cuboid lattice, the lattice size could be different in three directions.

closely the 2D extended-moment method described in [16]. The remainder of the paper is organized as follows. The
derivation of the new model by the Chapman-Enskog analysis and an inverse design process is presented in Sec. 2.
Careful validations of the model are provided in Sec. 3 using three different flows, namely, the transient laminar
channel flow, the 3D time-dependent energy-cascading Taylor-Green vortex flow [22], and the turbulent channel flow.
Finally, the order of accuracy of this model will be examined by the simulation results of the laminar channel flow
and the 3D decaying Taylor-Green vortex flow.

2. The inverse design analysis of D3Q19 MRT-LBM with cuboid lattice

In this section, we shall design and derive a D3Q19 MRT LBM model on a cuboid grid that is consistent to the
N-S equation with a non-uniform forcing F ≡ (Fx, Fy, Fz).

2.1. The basic model setup

For a cuboid lattice, the lattice spacings can be different in the three spatial directions. Without loss of the
generality, we set the lattice spacing in the x direction to δx = 1, and assume the grid spacing in y and z directions to
be aδx and bδx, respectively. Thus, a and b are defined as a = δy/δx, b = δz/δx, where δx [m], δy [m] and δz [m] are the
lattice sizes in the three directions, respectively. The physical units for key quantities are indicated to help validate the
unit consistency of our model. A sketch of the cuboid lattice is shown in Fig. 1. Therefore, the corresponding discrete
velocities on the D3Q19 cuboid lattice are

ei =


(0, 0, 0) c, i = 0
(±1, 0, 0) c, (0,±a, 0) c, (0, 0,±b) c, i = 1 − 6
(±1,±a, 0) c, (±1, 0,±b) c, (0,±a,±b) c, i = 7 − 18

(1)

where c = δx/δt [m · s−1] is the non-zero lattice velocity component in the x direction, δt [s] is the time step size.
The distribution functions in the cuboid-lattice LBM scheme evolve according to the same lattice Boltzmann

equation (LBE) with the multiple relaxation time (MRT) collision, as

fi(x + eiδt, t + δt) − fi(x, t) = −
[
M−1S

]
i j

[
m j(x, t) − meq

j (x, t)
]

+ Φi, (2)

where fi is the distribution function associated with the kinetic velocity ei, x and t are the spatial and time coordinates,
respectively. The first term on the right hand side of Eq. (2) describes the MRT collision operator and the second term
Φi [kg · m−3] is used to represent the mesoscopic forcing term which accounts for the effect of macroscopic forcing
F ≡ (Fx, Fy, Fz) [kg · m−2 · s−2]. The components of Φi will be designed by an inverse design analysis.

The transformation matrix M converts the distribution functions fi to the moments m by m = Mf, and vise versa
f = M−1m, where f denotes a vector containing fi. The equilibrium moments are denoted by m(eq). For simplicity, the
moments are defined in a manner similar to the standard D3Q19 MRT model [23]. Each discrete velocity ei may have
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different velocity magnitudes in the three spatial directions. In order to keep the same simple transformation matrix
as in the cubic-lattice D3Q19 model, we first normalize the velocity components differently in different directions,
namely, the transformation matrix and the moments are defined based on the normalized components eix/c, eiy/(a · c),
and eiz/(b · c). The similar normalizations were used by Zhou [12] in his attempt to develop a D2Q9 rectangular-grid
model. Therefore, the normalized components are identical to those in the standard cubic-lattice D3Q19 model. The
transformation matrix is then written as [23]

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1



, (3)

where the row vectors of M are orthogonal with each other, so are the column vectors in the inverse matrix M−1 [24].
The individual moments thus derived by m = Mf are denoted as

m =
∣∣∣ρ̃, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, πxx, pww, πww, pxy, pyz, pxz,mx,my,mz

〉
, (4)

where ρ̃ [kg ·m−3] is the zeroth-order moment representing local density fluctuation, namely, ρ̃ = ρ−ρ0 ≡ δρ (ρ and ρ0
are the density and the average density, respectively); e [kg ·m−1 · s−2] is a second-order moment related to the energy;
ε [kg ·m · s−4] is a fourth-order moment associated with the square of energy; jx, jy, jz [kg ·m−2 · s−1] are the three first-
order moments connected to the momentum in x, y and z direction, respectively; qx, qy, qz [kg·s−3] are three third-order
moments related to the energy flux in x, y and z direction, respectively; pxx, pww [kg · m−1 · s−2] are two second-order
moments corresponding to the normal stress components; pxy, pyz, pxz [kg ·m−1 · s−2] are the other three second-order
moments related to the shear-stress components; mx,my,mz are all third-order moments that can be regarded as the
normal stress flux; πxx and πww [kg ·m · s−4] are the fourth-order moments derived from products between energy mode
and normal stress mode. Note that the density has been partitioned as in [25] to better reproduce the incompressible
N-S equations. In summary, in the D3Q19 model, we have one zeroth-order moment (ρ̃), three first-order moments
( jx, jy, jz), six second-order moments (e, pxx, pww, pxy, pyz, pxz), six third-order moments (qx, qy, qz,mx,my,mz), and
three fourth-order moments (ε, πxx, πww). These are all the independent moments that can be formed.

As we shall show later, all the moments at the third order or below can be uniquely determined in our inverse
design process, while the three fourth-order moments are irrelevant to the N-S equations.

The diagonal relaxation matrix S specifies all dimensionless relaxation parameters

S = diag(sρ̃, se, sε, s j, sq, s j, sq, s j, sq, sn, sπ, sn, sπ, sc, sc, sc, sm, sm, sm), (5)

where sρ̃ is the relaxation parameter for the zeroth-order moment (ρ̃); s j is the relaxation parameter for the first-
order moments ( jx, jy, jz); three relaxation parameters are introduced for the six second-order moments: se for energy
(e), sn for the normal-stress moments (pxx, pww), and sc for the shear-stress moments (pxy, pyz, pxz); two relaxation
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parameters are used for the six third-order moments: sq for energy flux moments (qx, qy, qz) and sm for normal-stress
flux moments (mx,my,mz); finally, two relaxation parameters are specified for the three fourth-order moments: sε for
energy square moment (ε) and sπ for the energy-stress coupling terms (πxx, πww). As mentioned in the introduction,
we need to overcome the anisotropic transport coefficients that are originated by the anisotropic lattice velocities,
in order to reproduce the N-S equations. In this work, we follow the same idea as in [16], namely, the equilibrium
moments are extended to include a higher-oder term as m(eq) = m(eq,0) + εm(eq,1), where ε is a small parameter that is
proportional to the Knudsen number. The higher-order term εm(eq,1) will be expressed in terms of stress components.

2.2. The Chapman-Enskog analysis and inverse design

Next, a detailed Chapman-Enskog analysis will be performed to design the components of the equilibrium moment
m(eq) and the mesoscopic forcing termΦ. Following the standard procedure, the Taylor expansion with respect to time
and location is applied to fi(x + eiδt, t + δt) in Eq. (2). After multiplying by M/δt, we obtain(

I∂t + Ĉα∇α

)
m +

δt

2

(
I∂t + Ĉα∇α

)2
m = −

S
δt

(
m −m(eq)

)
+Ψ, (6)

where I is an identity matrix,Ψ ≡MΦ/δt denotes the moments associated with the forcing term, ∂t stands for the time
derivative, ∇α with α = x, y, or z denotes the spatial derivatives, and Ĉα ≡ Mdiag(eiα)M−1. The following multiscale
expansion is now applied to m, m(eq), ∂t, ∇α, and Ψ:

m = m(0) + ε m(1) + ε2m(2) + ..., (7a)

m(eq) = m(eq,0) + ε m(eq,1), (7b)

∂t = ε ∂t1 + ε2∂t2, (7c)
∇α = ε ∇1α, (7d)

Ψ = ε Ψ(1). (7e)

Once again, the most significant difference here is that the multiscale expansion is also applied to the equilibrium
moments m(eq). Substituting Eq. (7) into Eq. (6) and rearranging the equation according to O(ε), we obtain the
following three equations

O(1) : m(0) = m(eq,0), (8a)

O(ε) :
(
I∂t1 + Ĉα∂1α

)
m(0) = −

S
δt

(
m(1) −m(eq,1)

)
+Ψ(1), (8b)

O(ε2) : ∂t2m(0) +
(
I∂t1 + Ĉα∂1α

) [(
I −

S
2

)
m(1) +

S
2

m(eq,1) +
δt

2
Ψ(1)

]
= −

S
δt

m(2). (8c)

Each equation in Eq. (8) is a vector equation containing 19 scalar-moment equations. Based on the ordering of
moments defined in Eq. (4), the first row of Eq. (8b) and (8c) should correspond to the continuity equation. The
4th, 6th and 8th row of Eq. (8b) and (8c) should correspond to the hydrodynamic momentum equations in x, y and z
directions, respectively.

Since density is a conserved moment, we set ρ̃(0) = ρ̃(eq,0) = δρ and sρ̃ = 0. Therefore, ρ̃(k) = 0 for k ≥ 1. The first
row of Eq. (8b) thus becomes

∂t1δρ + ∂1x j(0)
x + a∂1y j(0)

y + b∂1z j(0)
z =

sρ̃
δt
ρ̃(eq,1) + Ψ

(1)
1 , (9)

which should reproduce the continuity equation at O(ε) to the leading order

∂t1δρ + ∂1x(ρ0u) + ∂1y(ρ0v) + ∂1z(ρ0w) = 0. (10)

Therefore, j(0)
x = ρ0u, j(0)

y = ρ0v/a, j(0)
z = ρ0w/b. Since the density should not be affected by the forcing, we must

have Ψ
(1)
1 = 0, and thus ρ̃(eq,1) = 0.

5



/ Computers and Mathematics with Applications 00 (2016) 1–28 6

Likewise, the 4th, 6th and 8th rows of Eq. (8b)

∂t1 (ρ0u) + ∂1x

(
10
19

c2δρ +
1

57
e(0) +

1
3

p(0)
xx

)
+ a∂1y

(
p(0)

xy

)
+ b∂1z

(
p(0)

xz

)
= −

s j

δt

(
j(1)
x − j(eq,1)

x

)
+ Ψ

(1)
4 , (11a)

∂t1

(
ρ0v
a

)
+ a∂1y

(
10
19

c2δρ +
1

57
e(0) −

1
6

p(0)
xx +

1
2

p(0)
ww

)
+ ∂1x

(
p(0)

xy

)
+ b∂1z

(
p(0)

yz

)
= −

s j

δt

(
j(1)
y − j(eq,1)

y

)
+ Ψ

(1)
6 , (11b)

∂t1

(
ρ0w

b

)
+ b∂1z

(
10
19

c2δρ +
1
57

e(0) −
1
6

p(0)
xx −

1
2

p(0)
ww

)
+ ∂1x

(
p(0)

xz

)
+ a∂1y

(
p(0)

yz

)
= −

s j

δt

(
j(1)
z − j(eq,1)

z

)
+ Ψ

(1)
8 , (11c)

must match the following Euler momentum equations

∂t1(ρ0u) + ∂1x

(
p + ρ0u2

)
+ ∂1y (ρ0uv) + ∂1z (ρ0uw) = F(1)

x , (12a)

∂t1(ρ0v) + ∂1y

(
p + ρ0v2

)
+ ∂1x (ρ0uv) + ∂1z (ρ0vw) = F(1)

y , (12b)

∂t1(ρ0w) + ∂1z

(
p + ρ0w2

)
+ ∂1x (ρ0uw) + ∂1y (ρ0vw) = F(1)

z . (12c)

In Eq. (12) the pressure is expressed as p = δρc2
s , where cs [m · s−1] is the speed of sound. Consistency of the left

hand sides of Eq. (11) and Eq. (12) leads to the following results

e(0) = 19δρ(c2
s +

c2
s

a2 +
c2

s

b2 −
30
19

c2) + 19ρ0(u2 +
v2

a2 +
w2

b2 ), (13a)

p(0)
xx = δρ(2c2

s −
c2

s

a2 −
c2

s

b2 ) + ρ0(2u2 −
v2

a2 −
w2

b2 ), (13b)

p(0)
ww = δρc2

s
b2 − a2

a2b2 + ρ0(
v2

a2 −
w2

b2 ), (13c)

p(0)
xy =

ρ0uv
a

, p(0)
xz =

ρ0uw
b

, p(0)
yz =

ρ0vw
ab

. (13d)

And a comparison of the right hand sides of Eq. (11) and Eq. (12) yields

−
s j

δt
j(1)
x +

s j

δt
j(eq,1)
x + Ψ

(1)
4 = F(1)

x , (14a)

−
s j

δt
j(1)
y +

s j

δt
j(eq,1)
y + Ψ

(1)
6 =

F(1)
y

a
, (14b)

−
s j

δt
j(1)
z +

s j

δt
j(eq,1)
z + Ψ

(1)
8 =

F(1)
z

b
. (14c)

Next, we proceed to compare the moment equations on the order of O
(
ε2

)
with the N-S equations. For simplicity,

we define

A ≡
(
I −

S
2

)
m(1) +

S
2

m(eq,1) +
δt

2
Ψ(1), (15)

which simplifies Eq. (8c) to

O
(
ε2

)
: ∂t2m(0) + (I∂t1 + Ĉα∂1α)A = −

S
δt

m(2). (16)

Since we have shown that ρ(1)
1 = ρ

(eq,1)
1 = 0 and Ψ

(1)
1 = 0, it follows that the first element of A, namely, A1, should

also be zero. Then the 1st row of Eq. (16) reads

∂t2δρ + ∂1xA4 + ∂1yA6 + ∂1zA8 = 0. (17)

6
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The above equation should match with the continuity equation at O
(
ε2

)
, namely, ∂t2δρ = 0. Therefore, A4 = A6 =

A8 = 0, and the following three constraints are obtained

A4 =

(
1 −

s j

2

)
j(1)
x +

s j

2
j(eq,1)
x +

δt

2
Ψ

(1)
4 = 0, (18a)

A6 =

(
1 −

s j

2

)
j(1)
y +

s j

2
j(eq,1)
y +

δt

2
Ψ

(1)
6 = 0, (18b)

A8 =

(
1 −

s j

2

)
j(1)
z +

s j

2
j(eq,1)
z +

δt

2
Ψ

(1)
8 = 0. (18c)

Eqs. (14) and (18) together lead to

j(1)
x = −F(1)

x δt/2, j(1)
y = −F(1)

y δt/2a, j(1)
z = −F(1)

z δt/2b. (19)

The next order equilibrium moments j(eq,1)
x,y,z and the forcing term Ψ

(1)
4,6,8 are not easily separable since they are

coupled in both Eqs. (14) and (18). However, they do not appear in our later derivation. For convenience, we can
simply set j(eq,1)

x,y,z = 0, which then leads to Ψ
(1)
4 = (1− 0.5s j)F

(1)
x , Ψ

(1)
6 = (1− 0.5s j)F

(1)
y /a and Ψ

(1)
8 = (1− 0.5s j)F

(1)
z /b.

Now the 4th, 6th and 8th rows of Eq. (8c)

∂t2(ρ0u) + ∂1x

(A2

57
+

A10

3

)
+ a∂1yA14 + a∂1zA16 = −

s j

δt
j(2)
x , (20a)

∂t2

(
ρ0v
a

)
+ ∂1y

(aA2

57
−

aA10

6
+

aA12

2

)
+ ∂1xA14 + b∂1zA15 = −

s j

δt
j(2)
y , (20b)

∂t2

(
ρ0w

b

)
+ ∂1z

(
bA2

57
−

bA10

6
−

bA12

2

)
+ ∂1xA16 + a∂1yA15 = −

s j

δt
j(2)
z , (20c)

are compared to the N-S equations, namely,

∂t2(ρ0u) − ∂1x

[
µV∇1u + µ

(
4
3
∂1xu −

2
3
∂1yv −

2
3
∂1zw

)]
− µ∂1y

(
∂1yu + ∂1xv

)
− µ∂1z (∂1zu + ∂1xw) = 0, (21a)

∂t2(ρ0v) − ∂1y

[
µV∇1u + µ

(
4
3
∂1yv −

2
3
∂1xu −

2
3
∂1zw

)]
− µ∂1x

(
∂1yu + ∂1xv

)
− µ∂1z

(
∂1zv + ∂1yw

)
= 0, (21b)

∂t2(ρ0w) − ∂1y

[
µV∇1u + µ

(
4
3
∂1zw −

2
3
∂1yv −

2
3
∂1xu

)]
− µ∂1y

(
∂1yw + ∂1zv

)
− µ∂1x (∂1zu + ∂1xw) = 0, (21c)

where ∇1u ≡ ∂1xu + ∂1yv + ∂1zw, µ [kg · m−1 · s−1] and µV [kg · m−1 · s−1] are the dynamic shear and bulk viscosity,
respectively. In order for Eq. (20) to be consistent with Eq. (21), we must set j(2)

x = j(2)
y = j(2)

z = 0. Furthermore, A2,
A10, A12, A14, A15 and A16 can be determined in terms of viscosity coefficients and velocity gradients as

A2 = −
19µ

3

(
ω1 +

ω2

a2 +
ω3

b2

)
− 19κ1µ

V∇1u, (22a)

A10 = −
µ

3

(
2ω1 −

ω2

a2 −
ω3

b2

)
− (3 − κ1) µV∇1u, (22b)

A12 = −
µ

3

(
ω2

a2 −
ω3

b2

)
− κ2µ

V∇1u, (22c)

A14 = −
µ

a

(
∂1yu + ∂1xv

)
, (22d)

A15 = −
µ

ab

(
∂1yw + ∂1zv

)
, (22e)

A16 = −
µ

b
(∂1zu + ∂1xw) , (22f)

where ω1 = 4∂1xu − 2∂1yv − 2∂1zw, ω2 = 4∂1yv − 2∂1xu − 2∂1zw, ω3 = 4∂1zw − 2∂1yv − 2∂1xu, κ1 = 1/a2 + 1/b2 + 1
and κ2 = 1/a2 − 1/b2. Recall that in Eq. (15) we defined A as functions of equilibrium moments m(eq,1) and non-
equilibrium moments m(1) and the mesoscopic forcing terms Ψ. Re-arranging Eq. (8b), m(1) can be obtained in terms

7



/ Computers and Mathematics with Applications 00 (2016) 1–28 8

of equilibrium moments and the forcing term as

m(1) = δtS−1
[
Ψ(1) −

(
I∂t1 + Ĉα∂1α

)
m(eq,0)

]
+ m(eq,1). (23)

Substituting Eq. (23) into Eq. (15), we can express A as functions of equilibrium moments and forcing components
as

A = δtS−1Ψ(1) + m(eq,1) −

(
S−1 −

I
2

) (
I∂t1 + Ĉα∂1α

)
m(eq,0), (24)

and it is important to recognize that, from Eq. (24), the six components of m(eq,1)
i involved in Eqs. (20) and (22) are all

related to the second-oder moments.
A comparison of Eq. (22) and Eq. (24) now allows us to design m(eq) and Ψ so that the hydrodynamic equations

can be satisfied. It is also important to note that the forcing term is introduced to reproduce the macroscopic force,
without other impacts on the N-S equations. Therefore, we abide by two basic considerations: (a) all terms that
contain macroscopic force F and mesoscopic forcing termsΨ should balance and (b) they should be treated separately.
In other words, the model should still work properly if the forcing terms are not present in the LBE and the N-S
equations. These considerations lead to a set of constraints that allow us to derive the most general mesoscopic
forcing formulation. The details are presented in Min et al. [27] when the general forcing formulations for three
D2Q9 models (on both the square and rectangular lattice grids) are considered. The similar inverse design process is
conducted here. The final results for our D3Q19 cuboid-grid model based on the above considerations are

q(0)
x = γc2ρ0u,

q(0)
y =

(
a2κ3 − 4

)
c2ρ0v/a,

q(0)
z =

(
b2κ3 − 4

)
c2ρ0w/b,

m(0)
x = 0,

m(0)
y = 0,

m(0)
z = 0,



εm(eq,1)
2 = ρ0δtc2

(
h11∂xu + h12∂yv + h13∂zw

)
,

εm(eq,1)
10 = ρ0δtc2

(
h21∂xu + h22∂yv + h23∂zw

)
,

εm(eq,1)
12 = ρ0δtc2

(
h31∂xu + h32∂yv + h33∂zw

)
,

εm(eq,1)
14 = ρ0δtc2λ

(
∂yu + ∂xv

)
/a,

εm(eq,1)
15 = ρ0δtc2

[
s∗cκ3

(
a2b2 − a2

)
/10 + λ

] (
∂zv + ∂yw

)
/(ab),

εm(eq,1)
16 = ρ0δtc2

[
s∗cκ3

(
b2 − a2

)
/10 + λ

]
(∂xw + ∂zu) /b,

(25)

where κ3 = (γ + 4), s∗e = (2 − se) /(2se), s∗n = (2 − sn) /(2sn), and s∗c = (2 − sc) /(2sc). Note that γ is the coefficient
in q(0)

x , the energy flux in the x direction. In the current model, γ is an adjustable parameter. However, in the MRT
LBM model on the cubic lattice, γ is not adjustable [23, 24]. Previously, in several LBM models on a rectangular
grid [9, 10, 12, 16, 27], γ is indeed shown to be a free parameter. The coefficients for other two energy flux moments,
q(0)

y and q(0)
z , are not free but depend on γ because they are constrained by isotropy requirements, namely, to achieve

necessary balance of the transport coefficients associated with different velocity gradients in Eq. (22d) to Eq. (22f).
It is reminded that the formulations of six m(eq,1)

i moments shown in Eq. (25) are derived from the consistency and
isotropy considerations with the N-S equations. However, they also bring in additional benefits. For example, λ and
hi j are the coefficients in εm(eq,1)

i as indicated in Eq. (25). Some of these coefficients provide a benefit to adjust both
shear and bulk viscosity which in this model are given as

µ = ρ0δtc2
[
a2s∗c (4 + γ)

10
− λ

]
, (26a)

µV = ρ0δtc2

s∗e
15

(
1 − κ1c2

s

)
+ (4 + γ)

(
1 + a2 + b2

)
15κ1

−
h11 + h12 + h13

57κ1

 . (26b)

We can conclude from Eq. (26) that the relaxation time sc, se are no longer uniquely determined by viscosity since λ
and hi j are also adjustable. Therefore, for given physical shear and bulk viscosities, we could set sc, se to any value
between 0 and 2. This is not possible in the standard LBM MRT model.

It is also important to note that the expressions of both the shear and bulk viscosities in Eq. (26) are consistent
with the expressions in the standard D3Q19 MRT LBM with the cubic lattice [23] if we set a = b = 1, γ = −2/3,
κ1 = 3, and all extended equilibrium moments to zero, namely, hi j = λ = 0.

8
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The consistency and isotropy considerations specify the value of the coefficients hi j in εm(eq,1)
2,10,12 shown in Eq. (25).

They are determined explicitly as

hi j = gi j +


19s∗e

(
κ3
5 − κ1

c2
s

c2 + 1
)

19s∗e
(

a2κ3
5 − κ1

c2
s

c2 + 1
)

19s∗e
(

b2κ3
5 − κ1

c2
s

c2 + 1
)

s∗n
[

6−γ
5 + (κ1 − 3) c2

s
c2

]
s∗n

[
a2κ3
10 + (κ1 − 3) c2

s
c2 − 1

]
s∗n

[
b2κ3
10 + (κ1 − 3) c2

s
c2 − 1

]
−s∗n

c2
s

c2 κ2 −s∗n
(

a2κ3
10 +

c2
s

c2 κ2 − 1
)

s∗n
(

b2κ3
10 −

c2
s

c2 κ2 − 1
)

 , (27)

where gi j are calculated as

gi j =
1

ρ0δtc2


38(κ1−3)

3 µ − 19κ1µ
V 38(a2κ1−3)

3a2 µ − 19κ1µ
V 38(b2κ1−3)

3b2 µ − 19κ1µ
V

−
2κ1+6

3 µ + (κ1 − 3)µV 4b2κ1−6
3b2 µ + (κ1 − 3)µV 4a2κ1−6

3a2 µ + (κ1 − 3)µV

2κ2
3 µ − κ2µ

V − a2+2b2

a2b2 µ − κ2µ
V 2a2+b2

a2b2 µ − κ2µ
V

 , (28)

where κ1 = 1/a2 + 1/b2 + 1, κ2 = 1/a2 − 1/b2. The notation gi j is introduced here only because otherwise the
expressions for hi j would be too long to be written within a line. We find that hi j are functions of the aspect ratios a
and b, shear and bulk viscosities µ and µV , relaxation parameters se, and sn, sound speed cs, and γ. The expressions
for hi j are derived based on the requirements in Eq. (22) and they work together to achieve two goals:

1. There could be three shear viscosity coefficients and three bulk viscosity coefficients in Eq. (22a)(22b)(22c) and
these viscosity coefficients would be different in different directions if we set hi j = 0, as shown clearly in [10]
for some 2D rectangular-grid models. Thus, hi j are used to achieve the isotropy conditions, namely, all shear
viscosity coefficients are constrained to a same value, and all bulk viscosity coefficients are made identical. This
was our original motivation of extending the equilibrium moments as in Eq. (7b).

2. After the key model parameters, a, b, µ, µV , se, sn, cs, and γ are chosen, we can always find a solution for hi j

such that Eq. (22) holds true and shear (and bulk) viscosity are consistent in different equations.

9
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2.3. Summary of the proposed D3Q19 model on a cuboid grid

We shall now summarize the derived model details that are needed to implement the model. First, the equilibrium
moments at both the leading order and the next order are summarized as

m(eq) =



δρ

19δρ
(
c2

s +
c2

s
a2 +

c2
s

b2 −
30
19 c2

)
+ 19ρ0

(
u2 + v2

a2 + w2

b2

)
,

ε(eq,0)

ρ0u

γc2ρ0u

ρ0v/a
a2κ3−4

a c2ρ0v

ρ0w/b
b2κ3−4

b c2ρ0w

δρ
(
2c2

s −
c2

s
a2 −

c2
s

b2

)
+ ρ0

(
2u2 − v2

a2 −
w2

b2

)
π

(eq,0)
xx

δρc2
s

b2−a2

a2b2 + ρ0

(
v2

a2 −
w2

b2

)
π

(eq,0)
ww

ρ0uv/a

ρ0uw/b

ρ0vw/ab

0

0

0



+ ρ0δtc2



0

h11∂xu + h12∂yv + h13∂zw

0

0

0

0

0

0

0

h21∂xu + h22∂yv + h23∂zw

0

h31∂xu + h32∂yv + h33∂zw

0

λ
(
∂yu + ∂xv

)
/a[

0.1s∗cκ3

(
a2b2 − a2

)
+ λ

] (
∂zv + ∂yw

)
/(ab)[

0.1s∗cκ3

(
b2 − a2

)
+ λ

]
(∂xw + ∂zu) /b

0

0

0



,

(29)
ε j(1)

x = −Fxδt/2, ε j(1)
y = −Fyδt/2a, ε j(1)

z = −Fyδt/2b, (30)

where the first array on the right represents the equilibrium moments at the leading order m(eq,0) and the second array
on the right represents the equilibrium moments at the next order m(eq,1), namely, the extended equilibrium moments.
As before, κ3 = (γ + 4), s∗e = (2 − se) /2se, s∗n = (2 − sn) /2sn, s∗c = (2 − sc) /2sc. The essential key adjustable
parameters are γ, λ, hi j and c2

s . The coefficients hi j are defined by Eq. (27) and (28). Furthermore, ε(eq,0), π
(eq,0)
xx and

π
(eq,0)
ww are not constrained by the N-S equations, therefore, theoretically they can be set to any value. Usually we

choose ε(eq,0) = αc4δρ+ βρ0c2
(
u2 + v2

)
, π

(eq,0)
xx = ωxxc2 p(eq,0)

xx , π
(eq,0)
ww = ωwwc2 p(eq,0)

ww , where the values of α, β, ωxx, ωww

could be determined through a linear stability analysis [23, 24]. Other extended equilibrium moments and forcing
terms in Eq. (29) that are not constrained by the N-S equations are simply set to zero for simplicity. The potential
use of these terms as a way to optimize numerical stability of the current model can be a topic of investigation in the
future.

It is also important to note that the cuboid model would reduce to the standard D3Q19 MRT LBM indicated in [23]
when both aspect ratios a and b are set to 1, and the equilibrium moments are not extended, namely, hi j = λ = 0.
Also, the exact definitions of all equilibrium moments in [23] could be recovered from Eq. (29).

Our derivation shows that m(1)
1 = Ψ

(1)
1 = 0, thus the presence of forcing does not affect the local density fluctuation

and the calculation of pressure is not affected. Also, according to the multi-scale expansion in Eq. (7a), m4 = j(0)
x +

ε j(1)
x = ρ0u − Fxδt/2. Therefore, the computation of hydrodynamic velocity is affected by the forcing, i.e., ρ0u =

10
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M4i fi + Fxδt/2. The same applies to the velocity in the y and z direction. Thus, the pressure and velocity in this model
should be calculated according to

p = δρc2
s , (31a)

u = (M4i fi + Fxδt/2) /ρ0, (31b)

v =
(
aM6i fi + Fyδt/2

)
/ρ0, (31c)

w = (bM8i fi + Fzδt/2) /ρ0. (31d)

Putting all the above results together for the forcing term, we have

Ψ = εΨ(1) =



0
38(1 − 0.5se)(uFx + vFy/a2 + wFz/b2)

Ψ3

(1 − 0.5s j)Fx

Ψ5

(1 − 0.5s j)Fy/a
Ψ7

(1 − 0.5s j)Fz/b
Ψ9

2(1 − 0.5sn)(2uFx − vFy/a2 − wFz/b2)
Ψ11

2(1 − 0.5sn)(vFy/a2 − wFz/b2)
Ψ13

(1 − 0.5sc)(vFx + uFy)/a
(1 − 0.5sc)(vFx + uFy)/ab
(1 − 0.5sc)(vFx + uFy)/b

Ψ17

Ψ18

Ψ19



. (32)

A few observations about the mesoscopic forcing term can now be made: (1) The components of the mesoscopic
forcing term are related to macroscopic forcing field F =

(
Fx, Fy, Fz

)
, macroscopic velocity, and relaxation param-

eters. The mesoscopic forcing terms Ψ are added to Eq. (2) as Φ = M−1Ψδt to realize the effect of macroscopic
forcing at the mesoscopic level; (2) nine of the 19 components: Ψ3, Ψ5, Ψ7, Ψ9, Ψ11, Ψ13, Ψ17, Ψ18, and Ψ19, are
not constrained by the N-S equations and thus they can be specified freely. Basically, only the components associated
with the 0th, 1st, and 2nd order moments are determined by the continuity and N-S equations. In principle, we could
manipulate the nine irrelevant components in the forcing term, to further enhance numerical stability.

The above completes the description of the MRT LBM model details on a cuboid lattice, with a general nonuniform
forcing. We should now provide a few general comments on how to use this model in a typical application of solving
a 3D viscous flow. First, all physical parameters of a flow problem are gathered, namely, viscosity coefficients µ
and µV , macroscopic forcing field F, domain size, the initial condition, boundary conditions of the flow, etc. They
determine the length scale L, characteristic velocity U0, and the flow Reynolds number. Next, key parameters of
the cuboid model and numerical settings are specified, including grid aspect ratios a and b, speed of sound cs, the
coefficient in the x−component energy flux γ, relaxation parameters S. In the proposed cuboid model, in principle,
the relaxation parameters can be set to any value between 0 and 2 as long as the code is stable, because enough degrees
of freedom are introduced so the relaxation parameters are not uniquely related to the physical viscosity coefficients.
The parameter λ is then calculated according to Eq. (26a). With Eqs. (27) and (28), hi j are then determined from
µ, µV , a, b, cs, relaxation parameters, and γ. Thus, all equilibrium moments m(eq) can now be specified using Eq.
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(29). The mesoscopic forcing term Ψ is also known from Eq. (32). Therefore, we could advance the flow step by step
according to the lattice Boltzmann equation, Eq. (2). In the cuboid model, the additional equilibrium moments εm(eq,1)

contain strain-rate components. Thus, we need to compute them every time step. These strain-rate components can
be calculated from the non-equilibrium moments so they all have a second-order accuracy. The method of calculating
strain-rate components is given in the Appendix.

3. Numerical validations

In this section, the D3Q19 MRT lattice Boltzmann method on a cuboid lattice grid derived in Sec. 2 will be
validated with three different benchmark cases: the transient laminar channel flow, the three-dimensional decaying
Taylor-Green vortex flow, and the turbulent channel flow. Furthermore, the order of numerical accuracy of this model
will be examined.

3.1. The laminar channel flow
First, we use the two-dimensional, transient, laminar channel flow to validate the cuboid model as the analytical

solution for this time-dependent flow is available. The laminar channel flow is a wall-bounded flow with two parallel
flat walls. In the simulation, the mid-link bounce back scheme is applied to fulfill the no-slip boundary condition.
The wall boundary is placed half lattice away from the boundary fluid nodes. On each link cutting the wall, the
inward post-streaming non-equilibrium distribution of a boundary node is set to the pre-streaming distribution in the
opposite direction, namely, fī (xB, t + δt) = f̃i (xB, t) where xB is the location of a boundary node, f̃i represents the
post-collision (pre-streaming) distribution function with particle velocity ei, which points into the wall. fī represents
the post-streaming distribution function in the direction opposite to ei.

The domain is three-dimensional, with periodic boundary conditions in both the streamwise and the spanwise
directions. In the code, x, y, and z represent the transverse, streamwise, and spanwise direction, respectively. All
simulation results from the cuboid D3Q19 model are compared to the analytical solution.

In Table 1, the parameter settings of the cuboid model with four different aspect ratios are listed. In the most
extreme case, the aspect ratio a = δy/δx = δstreamwise/δtransverse and b = δz/δx = δspanwise/δtransverse are set to 20, thus
the lattice in this case looks like a square plate. The channel height H of all cases is set to H = 40δtransverse. Since the
flow is laminar, there is no variation in streamwise and spanwise directions. We only need to resolve the flow in the
transverse direction and in time. The computational domain size for all cases is set to Nx × Ny × Nz = 40 × 2 × 2.
The maximum streamwise velocity Vmax is set to 0.1 and the speed of sound cs is set to 0.6325 so the maximum
Mach number is much smaller than 1/3. The kinematic shear and bulk viscosities are set to 0.1333 so the steady-state
Reynolds number Re = VmaxH/ν is 30. The adjustable parameter γ depends on the aspect ratio as this parameter was
found to affects the numerical stability of the cuboid model. For all cases, all relaxation parameters in Eq. (5) are set
to 1.2.

The flow starts from rest, and a uniform and constant body force Fy [kg · m−2 · s−2] is applied in the streamwise
direction to drive the flow to its steady state with the long-time maximum velocity Vmax at the channel centerline. The
external body force Fy according to the steady-state solution is

Fy =
8ρ0νVmax

H2 . (33)

In Fig. 2(a), the time evolution of the streamwise velocity v at x/H = 0.4875 is shown for all cases. The theoretical
velocity at this location is also plotted as the benchmark. Under the constant uniform external force, the streamwise
velocity increases with time. The steady-state velocity is reached at roughly tν/H2 = 0.5, when the the external force
is balanced by the viscous shear stress. Since the location we selected is x/H = 0.4875, which is very close to the
center of channel, the ratio v/Vmax at the steady state is very close to one. Results from all aspect ratios are in excellent
agreement with the theory at all times.

In Figs. 2(b) and 2(c), the streamwise velocity profiles and the profiles of velocity gradient dv/dx are shown,
respectively. There are six different curves in the plots and they represent the profiles at six different times: tν/H2 =

0, 0.025, 0.0541, 0.0967, 0.167, 1.25, respectively. All results are compared to the theoretical velocity profiles at the
corresponding time and again an excellent agreement is observed, regardless of the aspect ratios used.
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Table 1: Parameter settings of the laminar channel flow with cuboid lattice grids.

Cases Aspect ratio H Vmax ν νV cs γ Re

1 a = b = 2 40 0.1 0.1333 0.1333 0.6325 −3.0 30
2 a = b = 4 40 0.1 0.1333 0.1333 0.6325 −3.8 30
3 a = b = 10 40 0.1 0.1333 0.1333 0.6325 −3.97 30
4 a = b = 20 40 0.1 0.1333 0.1333 0.6325 −3.98 30

tν/H2

v/Vmax

v/Vmax

x/H

(a) (b)

dv
dx

H
Umax

x/H

(c)

Figure 2: (a) The time evolution of the streamwise velocity v at x/H = 0.4875 (close to the channel centerline). (b) The streamwise velocity
profiles and (c) the profiles of velocity gradient dv/dx at six different times, tν/H2 = 0, 0.025, 0.0541, 0.0967, 0.167, and 1.25, All quantities are
normalized as indicated.
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v−vtheory

Vmax

x/H

(v−vtheory)a2

Vmax

x/H

(a) (b)

Figure 3: (a) The numerical error profiles of different aspect ratios at the steady state (tν/H2 = 1.25). (b) The rescaled normalized numerical error
profiles (tν/H2 = 1.25). Here H = 40, and all quantities are normalized as indicated.

Recall that the original goal of developing the cuboid lattice model is to improve the efficiency of LBM simu-
lations, especially for wall-bounded flows. Therefore, in previous tests on the laminar channel flow, the streamwise
direction (the direction of main flow) is aligned on the wider lattice spacing side of cuboid lattice (a = δy/δx > 1).
For completeness, we next investigate the situation when the main flow velocity is aligned with the shorter lattice
side (a = δy/δx < 1). The second aspect ratio b = δz/δx is fixed to one as the lattice spacing in the z direction is
essentially irrelevant for the 2D laminar flow. As shown in Table 2, five cases are tested with the aspect ratio a as the
only variable and a < 1 so that the shorter lattice side is parallel to the streamwise direction. In previous tests with
aspect ratios a, b > 1, the smallest lattice spacing is δx = 1. Now, the smallest lattice spacing becomes δy = a < 1 in
lattice units. Since the lattice spacing is the product of molecule discrete velocity and time step, the speed of sound
should be reduced accordingly, to accommodate the smaller minimum lattice spacing, as recognized in Peng et al.
[16]. Consequently, the flow velocity should be reduced proportionally to maintain a small Mach number, so is the
Reynolds number.

As shown in He et al. [21], LBM yields a constant numerical error (i.e., independent of the wall-normal location)
for the case of steady-state laminar channel flow. This error could be determined analytically and it is related to the
relaxation parameter and the number of lattice grids in the wall-normal direction[21]. In Fig. 3(a) the numerical error
profiles at steady state are plotted for the five cases with different aspect ratios . It is shown that the error is also
independent of the wall normal location, with its magnitude increasing with decreasing aspect ratio. In Fig. 3(b) the
same numerical error is further rescaled by multiplying it by a2. The error data collapse, implying that the numerical
error scales with 1/a2. Furthermore, it is found that the numerical error varies with the coefficient γ involved in the
equilibrium energy flux, but the effect of aspect ratio dominates the resulting error. Thus, a large numerical error
would occur when a small aspect ratio is applied. In this case, one way to ensure the numerical accuracy is to increase
the grid resolution in the wall normal direction. The fact that the numerical solution converges to the theoretical value
again shows that our cuboid model is physically correct. Although this is computationally more expensive but it does
not contradict with our motivation since we usually align the large-velocity direction with the wider lattice side so the
aspect ratio δy/δx is usually larger than one.

In Fig. 4, the numerical results using 200 lattices in the wall normal direction are shown (all other parameters are
the same as Case 2 in Table 2). The results are in excellent agreement with the theory as the numerical error is small
according to Fig. 4(b).
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v/Vmax

x/H

(v−vtheory)
Vmax

x/H

(a) (b)

Figure 4: (a) The streamwise velocity profiles at at different times tν/H2 = 0.025, 0.0541, 0.0967, 0.167, 1.25 obtained with H = 200. (b) The
numerical error profiles at at different times tν/H2 = 0.025, 0.0541, 0.0967, 0.167, 1.25 obtained with H = 200. All quantities are normalized as
indicated.

Table 2: Parameter settings of the laminar channel flow when the aspect ratio a is smaller than one. The streamwise direction is aligned with the
shorter lattice side of the cuboid grid.

Cases Aspect ratio H Vmax ν νV cs γ

1 a = 0.1, b = 1 40 0.005 0.1333 0.1333 0.1 −3.5
2 a = 0.2, b = 1 40 0.005 0.1333 0.1333 0.1 −3.5
3 a = 0.3, b = 1 40 0.005 0.1333 0.1333 0.1 −3.5
4 a = 0.4, b = 1 40 0.005 0.1333 0.1333 0.1 −3.5
5 a = 0.5, b = 1 40 0.005 0.1333 0.1333 0.1 −3.5
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Table 3: Parameter settings of the 3D decaying Taylor-Green vortex flow.

Cases Aspect ratio L Nx × Ny × Nz Re0 U0 ν νV c2
s γ

1 a = b = 0.8 64 64 × 80 × 80 300 0.10186 0.0035 0.0035 0.3 −1.5
2 a = b = 0.8 128 128× 160× 160 300 0.05093 0.0035 0.0035 0.3 −2.0
3 a = b = 0.5 64 64 × 128 × 128 30 0.05 0.0017 0.0017 0.08 −0.2

3.2. The 3D Taylor-Green vortex flow

The 3D Taylor-Green vortex flow was proposed by Taylor and Green [22] to study the production of small eddies
from large eddies. They solved the three-dimensional time-dependent flow analytically using a short-time perturbation
expansion, making this an ideal benchmark for any 3D numerical method. In the 3D Taylor-Green flow, the kinetic
energy of the flow decreases in time, and at the same time, is transferred from the initial large-scale eddy to newly-
created small-scale eddies. The energy-cascading feature is not present in the 2-D Taylor-Green vortex flow [10] often
used to validate numerical methods in 2D. We have also solved the 3D Taylor-Green vortex flow by a highly-accurate
pseudo-spectral method. Both the short-time analytical solution and the spectral solution will be used to validate the
present cuboid-lattice model.

Specifically, we consider the 3D Taylor-Green vortex flow with the following initial velocity field
u = U0cos (2πx/L) sin (2πy/L) sin (2πz/L) ,
v = −U0sin (2πx/L) cos (2πy/L) sin (2πz/L) ,
w = 0,

(34)

where u, v and w represent the velocity in the x, y, z directions, respectively. U0 is the characteristic velocity of the
flow at the initial time. The domain size is L, which is the same in the three directions. Periodic boundary condition
is assumed in all three directions.

Taylor and Green [22] obtained the short-time perturbation solution as follows. First, a Poisson equation of the
pressure could be derived by combining the continuity equation with the N-S equations. Based on the initial velocity
given in Eq. (34), the pressure field could be solved from the Poisson equation. Next, the pressure is then substituted
back to the N-S equations to determine the time derivative of velocity at the initial time, which can be integrated to
obtain the first approximation of the short-time solution. The above process (velocity - pressure - time derivative of
velocity - new velocity) is regarded as one perturbation iteration. Then, the new velocity field becomes the starting
solution for the next iteration. After a few iterations, the short-time theoretical solution of the 3D Taylor-Green vortex
flow can be obtained, with the time dependence expressed through mode coefficients as polynomials in time. The
final three-dimensional time-dependent perturbation solution of the velocity field, the average kinetic energy, and the
average dissipation rate are presented in [22].

Some key parameter settings of this flow are listed in Table 3. We first tested two cases with an aspect ratio
a = δy/δx = 0.8 and b = δz/δx = 0.8. The domain size L is set to Lx = Ly = Lz = 64 and 128, respectively.
The number of lattices in each direction is chosen according to the aspect ratio a = δy/δx and b = δz/δx to keep
the physical domain size identical. Since the flow is decaying, Re0 represents the initial Reynolds number defined as
Re0 = (U0L) / (2πν). The relaxation parameter of both cases are set to se = 0.8, sε = 0.6, sq = 0.8, sn = 0.8, sc =

0.8, sπ = 0.8, sm = 1.95 to obtain a better stability. In the first two cases, results of the cuboid model are compared
with results of the corresponding MRT-LBM with cubic lattice and spectral method.

Four statistics of the flow are calculated and compared to the results of other models and the short-time theory, the
average kinetic energy E = 〈u2

i 〉/2, averaged total dissipation rate D = 2ν〈
(
S i j − ∇ · uδi j/3

)2
+ νV (∇ · u)2〉, where S i j

is the strain rate, νV is the bulk viscosity and ∇·u is the divergence. The effect of bulk viscosity is considered since the
usual LBM simulation is not fully incompressible so the divergence of the flow is not strictly zero. If the flow is fully
incompressible, then the total dissipation rate would reduce to D = 2ν〈S 2

i j〉. The velocity skewness S u and flatness Fu
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Figure 5: The time evolutions of (a) the average kinetic energy Ek , (b) the average dissipation rate ε, (c) the velocity-derivative skewness, and (d)
the velocity-derivative flatness. The results of two cuboid cases in Table 3 are compared to those of the two MRT-LBM cases with the cubic lattice
and two different resolutions, the spectral method, and the short-time theory .

are calculated. The velocity skewness and flatness are defined as

S u =

〈
1
3

[
(∂xu)3 +

(
∂yv

)3
+ (∂zw)3

]〉
〈

1
3

[
(∂xu)2 +

(
∂yv

)2
+ (∂zw)2

]〉3/2 , (35a)

Fu =

〈
1
3

[
(∂xu)4 +

(
∂yv

)4
+ (∂zw)4

]〉
〈

1
3

[
(∂xu)2 +

(
∂yv

)2
+ (∂zw)2

]〉2 , (35b)

where S u and Fu represent the velocity skewness and flatness, respectively. The velocity skewness and flatness are
high order statistics and thus could be used to evaluate the accuracy of the small scale structure of the simulation.

In Fig. 5, the results of two cuboid cases are compared to the corresponding MRT-LBM with cubic lattice, and
spectral method, and the theoretical solution of 3D Taylor-Green vortex flow. The 1283 spectral method is the most
accurate one because LBM is a second-order accurate method and the order of accuracy of the spectral method is
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higher than two. In Fig. 5, all curves are matched at the beginning, including the short-time theory of the Taylor-
Green vortex flow. But the theoretical solutions of 3D Taylor-Green vortex flow are only valid for a short time. For
low order statistics like kinetic energy and dissipation rate, the short-time theory is valid for about 2 non-dimensional
time. For higher order statistics like velocity skewness, the theory of 3D Taylor-Green vortex flow is valid for about
1.5 non-dimensional time and the lifetime of theoretical velocity flatness is less than 1.

In Fig. 5(a), the kinetic energy decays monotonically. The time evolution of normalized kinetic energy of all
models are matched with a good agreement, which means the large structure is adequately captured by all models
with two different resolutions. Meanwhile, the result of high resolution cases is slightly better than low resolution
cases comparing to the 1283 spectral method, which is expected. Fig. 5(b) shows the time evolution of the normalized
dissipation rate of the flow. The results from all models are identical until two non-dimensional times, which is
expected since all simulations are initialized with the same profile and there are only large flow structures in the initial
field so the flow is well resolved at the beginning of all cases. As indicated in [22], small-scale flow structure like
small eddies will be created from large eddies. Therefore, to fully resolve the flow, the number of lattice grids should
also be increased. For a quantity like dissipation rate which is related to the small-scale structure of the flow, it is easy
to tell that the result of 1283 cubic and cuboid LBM is much better than the corresponding 643 cases. Different from
the evolution of kinetic energy, the dissipation of the flow first increases due to the production of small-scale structure
and then decreases since the flow is decaying and the Reynolds number is reducing.

Fig. 5(c)(d) shows the time evolution of the velocity-derivative skewness and flatness of different models. Recall
that in Fig. 5(b), the difference of kinetic energy between different resolutions are small. Here we observe that all
high resolution cases are significantly better than low resolution cases comparing to the 1283 spectral method. This
is because the velocity-derivative skewness and flatness are high-order quantities and are more sensitive to the fluid
motion at small scales. The above results mean that 643 is not enough to fully resolve the flow. Another reason
of the discrepancy between different models is that the system is highly non-linear. Therefore, a small error would
increases rapidly over time and leads to a different local structure. If the time of simulation is long enough, even the
whole domain would be affected by the difference of local flow structures. For example, the results of two spectral
simulations at different resolutions are only matched till 3.5 non-dimensional times. Therefore, results of the proposed
cuboid lattice model are still reasonable comparing to the spectral method and the LB models with cubic lattice.

In Fig. 6, the velocity profiles on the line x/L = 1/4, y = z, at the non-dimensional time 2πU0t/L = 5, is plotted
for the cuboid case 1 in Table 3 and a MRT-LBM with 643 cubic lattices. The velocity profiles of two models are
matched exactly. The velocity profiles at other times and on some other lines are also examined (but not shown here),
and in all cases the results of the cuboid model are in excellent agreement with MRT-LBM results with a cubic lattice.

In the 3D Taylor-Green vortex flow at Re0 = 300, due to the strong non-linearity and local anisotropy of flow, the
capability of the proposed cuboid lattice model is limited due to the lack of numerical stability when lattice aspect
ratio is reduced below 0.8. However, we are able to simulate the same flow at Re0 = (U0L) / (2πν) = 30 with an aspect
ratio of a = b = 0.5. The parameter setting of this case is given in case 3 of Table 3. The code remains stable and
the results are in good agreement with the benchmark data from MRT-LBM on cubic lattice grid, as shown in Fig. 7.
Therefore, 0.8 is not the lower limit of the aspect ratio, although the origin for numerical instability for the case of
high Re0 and lower aspect ratios requires further investigation.

3.3. Order of accuracy
It has been known that the lattice Boltzmann method has a second-order accuracy in space and time [10, 16, 28].

The order of accuracy of the proposed cuboid model can be examined using the results for the transient laminar
channel flow and the 3D decaying Taylor-Green vortex flow presented in Sec. 3.1 and 3.2. To examine the accuracy
with the laminar channel flow, we use Case 2 in Table 1 (a = b = 4) with four different grid resolutions: 10 × 2 ×
2, 20× 4× 4, 40× 8× 8, and 80× 16× 16. Other parameters are the same as in Table 1 and all results are compared to
the theoretical solution. To study the accuracy with 3D Taylor-Green vortex flow, we choose Case 1 in Table 3 (a = b
= 0.8) with 5 different resolutions: 32× 40× 40, 64× 80× 80, 128× 160× 160, 256× 320× 320, and 512× 640× 640.
Due to the anisotropy of lattice sizes of the cuboid model, it is impossible to match the node points in the cuboid
model with other models like the spectral method based on the cubic grid. The short-time theory of 3D Taylor-Green
flow could be a great benchmark tool for average statistics like the average kinetic energy, but it is only valid at short
times. However, the order of accuracy must be based on local errors at the exact same locations. Therefore, we instead
use the results of the cuboid model at 512 × 640 × 640 as the benchmark when computing local errors for the other 4
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Figure 6: The velocity profiles on a line x/L = 1/4 and y = z at the non-dimensional time 2πU0t/L = 5. (a) Velocity in the x direction, (b) velocity
in the y direction, and (c) velocity in the z direction. Results of the cuboid model are compared to results of the corresponding MRT-LBM with 643

cubic lattice. All quantities are normalized as indicated.
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Figure 7: The time evolutions of (a) the kinetic energy Ek , (b) the total dissipation rate ε, (c) the velocity-derivative skewness, and (d) the velocity-
derivative flatness. Results of the cuboid model at Re0 = 30 with a = b = 0.5 are compared to the MRT-LBM on cubic lattices.
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Table 4: The order of accuracy of the cuboid model evaluated with results from the transient laminar channel flow. The theoretical solutions are
used as the benchmark. Results are calculated at tν/H2 = 1. The streamwise velocity v is examined.

Resolutions v (L1) order v (L2) order

10 × 2 × 2 1.658E-2 (−) 1.521E-2 (−)
20 × 4 × 4 4.577E-3 1.857 4.183E-3 1.862
40 × 8 × 8 1.354E-3 1.757 1.236E-3 1.759

80 × 16 × 16 4.426E-4 1.613 4.040E-4 1.613
Averaged 1.742 1.745

Table 5: The order of accuracy of the cuboid model evaluated with the 3D decaying Taylor-Green vortex flow. Results of the cuboid model with
a resolution of 512 × 640 × 640 are used as the benchmark to compute the error norms of the cuboid model at lower grid resolutions. Results are
calculated at 2πU0t/L = 3.

Resolutions u/v/w (L1) order u/v/w u/v/w (L2) order u/v/w

32 × 40 × 40 2.805E-2/2.263E-2/4.009E-2 (−) 3.439E-2/2.458E-2/4.336E-2 (−)
64 × 80 × 80 6.162E-3/4.309E-3/8.224E-3 2.187/2.393/2.285 7.242E-3/4.881E-3/9.262E-3 2.248/2.332/2.227

128 × 160 × 160 1.172E-3/8.336E-4/1.583E-3 2.394/2.370/2.377 1.356E-3/1.010E-3/1.904E-3 2.417/2.273/2.282
256 × 320 × 320 2.352E-4/2.101E-4/3.224E-4 2.317/1.988/2.287 2.541E-4/2.341E-4/3.930E-4 2.416/2.109/2.276

Averaged 2.299/2.250/2.316 2.360/2.238/2.262

lower resolutions. Using the results of the cuboid grid at the highest-resolution as a benchmark has another benefit,
namely, the initial flow conditions are identical at the mesoscopic level due to the same initialization method used.

In order to measure the order of accuracy, the L1 and L2 errors are calculated as

εL1 (t) =

∑
x,y,z |qn (x, y, z, t) − qb (x, y, z, t)|∑

x,y,z |qb (x, y, z, t)|
, (36a)

εL2 (t) =

√∑
x,y,z |qn (x, y, z, t) − qb (x, y, z, t)|2√∑

x,y,z |qb (x, y, z, t)|2
. (36b)

where qn(x, y, z, t) and qb(x, y, z, t) represent the numerical value and corresponding benchmark value of a quantity
at location (x, y, z) and time t. For each quantity, the L1 and L2 error norms for velocity at different grid resolutions
are calculated according to Eq. (36). The order of accuracy could be estimated based on either L1 or L2 error norms.
Assume the error norm calculated from one given resolution is ε0(t), as we increase the resolution by a factor of m
in each direction, the new error norm should be smaller and is denoted by εm(t). Then the order of accuracy n is
estimated as

n(t) = logm

(
ε0(t)
εm(t)

)
. (37)

The order of accuracy is first checked by laminar flow at tν/H2 = 1. Only the streamwise velocity v are examined
because the other two velocity components are always zero in the laminar channel flow. The results are compiled
in Table 4, showing that the order of accuracy is between 1.6 to 1.8. That is because the laminar channel flow can
be easily well resolved. Thus, increasing the grid resolution has a less significant effect on the error norm especially
when the resolution is already high enough.

For the case of the 3D decaying Taylor-Green vortex flow, the results of error norms computed from each velocity
component are compiled in Table 5 and Table 6, for two different times, 2πU0t/L = 3 and 5, respectively. The results
clearly demonstrated that the order of accuracy is around 2.

In addition, the L1 and L2 error norms with different aspect ratios are also compared to study if the error norms are
dependent on the aspect ratio. Four laminar flow cases listed in Table 1 are used at the same resolution of 40 × 2 × 2.
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Table 6: The order of accuracy of the cuboid model evaluated with the 3D decaying Taylor-Green vortex flow. Results of the cuboid model with
a resolution of 512 × 640 × 640 are used as the benchmark to compute the error norms of the cuboid model at lower grid resolutions. Results are
calculated at 2πU0t/L = 5.

Resolutions u/v/w (L1) order u/v/w u/v/w (L2) order u/v/w

32 × 40 × 40 1.001E-1/1.043E-1/1.128E-1 (−) 1.261E-1/1.239E-1/1.210E-1 (−)
64 × 80 × 80 2.104E-2/2.005E-2/2.485E-2 2.250/2.379/2.182 2.969E-2/2.876E-2/3.465E-2 2.087/2.107/1.804

128 × 160 × 160 4.143E-3/3.279E-3/4.641E-3 2.344/2.612/2.421 6.044E-3/5.222E-3/6.706E-3 2.296/2.461/2.369
256 × 320 × 320 6.619E-4/5.503E-4/8.162E-4 2.646/2.575/2.507 1.049E-3/8.904E-4/1.237E-3 2.526/2.552/2.439

Averaged 2.413/2.522/2.370 2.303/2.373/2.204

tν/H2

εv,L1

tν/H2

εv,L2

(a) (b)

Figure 8: (a) The L1 error norm and (b) the L2 error norm of the streamwise velocity v in the laminar channel flow simulations. Results from four
different aspect ratios are compared.

The L1 and L2 error norms of streamwise velocity v are compared in Fig. 8. We can conclude that when aspect ratios
a and b are both larger than one, the error norms are independent of the aspect ratio since the smallest lattice spacing
is δx = 1. However, as stated in Sec. 3.1, the numerical error in laminar channel flow depends on the aspect ratio if
the smallest lattice spacing is smaller than one, namely, when a or b < 1.

3.4. Turbulent channel flow
The final test case is the turbulent channel flow, which is a canonical wall-bounded turbulent flow [29, 30, 31]. This

is a time-dependent and three-dimensional flow. The flow is also highly inhomogeneous and anisotropic, especially
in the near-wall region. Like the laminar channel flow, the turbulent channel flow is also bounded by two parallel flat
walls. Again, x, y, and z represent the transverse, streamwise, and spanwise direction, respectively. At a sufficiently
high flow Reynolds number, the flow may transit from a laminar flow to a turbulent flow. In this paper, we only focus
on the fully developed stage of turbulent channel flow which have been documented extensively, both in terms of
direct numerical simulations and experimental measurements [33, 34, 31].

In this first simulation of a turbulent channel flow using the cuboid model, the domain size is set to 2H×4H×2H,
where H here is the channel half width. Although this domain is not very wide in the streamwise and spanwise
directions, reasonable flow statistics can still be obtained as shown in our previous studies of particle-laden turbulent
channel flows [37]. The periodic boundary condition is applied to both the streamwise (y) direction and the spanwise
(z) direction. In the transverse (x) direction, again the mid-link bounce back (as described in Sec. 3.1) is applied to
satisfy the no-slip boundary condition. In this simulation, 2D domain decomposition [32] is used to parallelize the
code, and an efficient one-step two-array approach is used to integrate the collision and streaming sub-steps.

The simulation of turbulent channel flow could be divided into three stages:
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Table 7: Parameter settings of the turbulent channel flow.

Aspect ratio Reτ H Domain size Nx × Ny × Nz ν νV uτ cs γ

a = 1.25, b = 1 180 100 2H × 4H × 2H 199×320×200 0.0036 0.1 0.00648 0.6325 -0.8

1. The initial excitation of turbulent fluctuations. Starting from an initial flow field, a non-uniform time-dependent
perturbation force field is applied to the flow, in addition to the physical constant body force, to promote and
accelerate velocity fluctuations in the flow.

2. Rapid transition to turbulent flow. Once velocity fluctuations in all the three directions have reached a certain
level, the perturbation force field is then switched off. The constant body force can now sustain the turbulent
fluctuations and the flow gradually evolves to a fully developed turbulent channel flow.

3. The fully developed turbulent channel flow. At this stage, the flow is statistically stationary, although the local
flow structures continue to evolve in time. A simulation over a sufficiently long period of time can then be used
to obtain average flow statistics such as the mean and turbulent r.m.s. velocity profiles.

In this simulation, the perturbation force is applied for 3 eddy turnover times. The eddy turnover time is defined
as H/uτ, where the friction velocity is uτ =

√
τw/ρ0, and τw is the average wall shear stress. The friction Reynolds

number Reτ = uτH/ν is set to 180, where ν is the kinematic shear viscosity. The wall length unit is defined as
δτ = ν/uτ. All quantities with superscript + are normalized by uτ and δτ. The values of key parameters used for the
turbulent channel flow are listed in Table 7. The two aspect ratios are set to a = δy/δx = 1.25 and b = δz/δx = 1,
and δx = 1 in lattice units. The half channel width H is set to 100δx. The domain size is 2H × 4H × 2H, Since
δy/δx = 1.25, thus for the same physical domain size the number of lattice nodes in the streamwise direction is 80%
of the number used in the standard LBM model using the cubic lattice. Namely, the grid resolution for the cuboid
lattice is 199 × 320 × 200, compared to 199 × 400 × 200 in the cubic lattice model [37].

The kinematic shear viscosity νwas set to 0.0036. The bulk viscosity νV is set to 0.1 to help maintain the numerical
stability. This leads to a frictional velocity uτ = 0.00648. All relaxation parameters in Eq. (5) are set to 1.2. When
simulating the turbulent channel flow with the cuboid model, we found that the numerical instability could occur for
larger lattice aspect ratio. The reason for the numerical instability and methods to enhance numerical stability of the
cuboid model should be studied in the future.

In Fig. (9a), the streamwise velocity v averaged over the whole domain is shown as a function of time. The result
from the standard LBM model with the cubic lattice (taken from Wang et al, [37]), using the same physical parameters,
initial flow field, and perturbation forcing is shown for comparison. The time evolutions of the averaged streamwise
velocity based on the two models are identical for about 1.5 eddy turnover times. Then they become different at a
given time due to inherent nonlinearity. Nevertheless, the evolutions remain similar qualitatively. Both reach the
stationary stage after about 40 to 60 eddy turnover times. Thus, the statistic from 63 to 117.7 eddy turnover times
are used to calculate the mean profiles at the stationary stage. The mean velocity averaged over 63 < tuτ/H < 117.7
is 15.57 based on the cuboid model, compared to 15.67 from the cubic model. Both are within 0.5% of the value of
15.63 based on the spectral method [33]. All averaged profiles to be shown below are obtained time-averaging over
the time interval of 63 < tuτ/H < 117.7.

The mean streamwise-velocity profiles are compared in Fig. 9(b), where x+ is the distance from the channel wall
in wall units. At a given x, the streamwise velocity is averaged over the y − z plane. Only the profiles over half of the
channel are shown since they are symmetric. The linear viscous sublayer and the logarithmic region can be clearly
identified. The result from the cuboid model is in excellent agreement with that from the cubic model, and they both
agree with the spectral benchmark data taken from the literature [33, 34, 35, 36].

The corresponding profiles for the averaged Reynolds stress −〈u′v′〉/u2
τ are shown in Fig. 10(a), and these of

root-mean-square (r.m.s.) fluctuation velocities are presented in Fig. 10(b). The results of the cuboid model are
compared with the results from the standard cubic-lattice model and spectral benchmark data. Clearly, the cuboid
model reproduces the same statistics and profiles of the cubic model. They both are in reasonable agreement with
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Figure 9: (a) The streamwise velocity averaged over the whole domain when the flow reaches the stationary stage. (b) Profiles of mean streamwise
velocity as a function of x+ when the flow reaches the stationary stage. All quantities are normalized as indicated.

the spectral benchmark data. There are also some differences in the streamwise and spanwise r.m.s. velocity profiles,
which is related to the use of different domain size as discussed in Wang et al. [37, 38].

In summary, the cuboid lattice model is used, for the first time, to simulate the fully developed turbulent channel
flow. The statistics of the fully developed flow are compared with the results from the cubic-lattice model in [37, 38]
and previous spectral simulation data. All results are in good agreement. For the same physical domain size, the
cuboid-lattice model with δy = 1.25δx uses 20% less grid points in the streamwise direction when compared to the
cubic-lattice model. With proper optimization of model parameters, we believe that larger aspect ratios could be used
to further reduce the computational cost.

4. Summary and Conclusions

In this paper, a D3Q19 multiple-relaxation time lattice Boltzmann model on a cuboid lattice grid is developed
through an inverse design analysis based on the Chapman-Enskog expansion. In this cuboid model, the lattice grid-
lengths in the three spatial directions could be set to different values, namely, the aspect ratios a and b, defined as
a = δy/δx, b = δz/δx, are input parameters of the cuboid model, where δx, δy and δz are the grid sizes in the three
directions, respectively. In the model, the equilibrium moments are extended to include additional higher-order terms
in order to address the anisotropy problem of viscosity coefficients due to the use of the cuboid lattice. This extension
allows the proposed cuboid model to adopt the same transform matrix of the standard cubic model. A mesoscopic
forcing term is also added to the lattice Boltzmann equation to realize the effect of macroscopic forcing.

In general, there are three important aspects to such non-standard LBM models: (a) full consistency with the
Navier-Stokes equations, (b) numerical accuracy (whether the second-order accuracy is maintained), and (c) numerical
stability and its dependence on the grid aspect ratio. To our knowledge, the new model represents one of the only
three correct 3D models on a cuboid lattice, namely, the other two being the models of Hegele et al. (2013) and
Jiang and Zhang (2014). We note that Hegele et al. (2013) used more lattice velocities (D3Q23) and they did not
provide any meaningful numerical validation of 3D flow (the only validation in their paper was the propagation of
cylindrical pressure wave). Jiang and Zhang (2014) did not demonstrate the second-order accuracy of their model and
their numerical validations were limited to 3D laminar flows. The smallest aspect ratio used in their work was 0.82.
In this paper, we developed a new model, provided a series of numerical validations (channel flow, 3D Taylor-Green,
and turbulent channel flow). We also shown that the model has a second-order accuracy similar to standard LBM
models.

To recover the correct hydrodynamic equations, the Chapman-Enskog expansion has been used to develop all
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Figure 10: (a) The Reynolds stress −〈u′v′〉/u2
τ profiles and (b) the r.m.s. velocity profiles. All quantities are normalized as indicated.

constraints for the cuboid model. These constraints are then applied to design the zeroth to third-order equilibrium
moments, and mesoscopic forcing terms. This inverse design process ensures a consistent and general cuboid model.

Based on the inverse design analysis shown in Sec. 2, 16 of the 19 zeroth-order equilibrium moments, 6 of the
19 first-order equilibrium moments, and 10 of the 19 mesoscopic forcing terms can be determined directly from the
constraints resulting from the hydrodynamic equations. Clearly, further studies are needed to optimize those free
terms that are not constrained by the hydrodynamic equations, in order to achieve a better numerical stability. It
is also found that the first-order equilibrium moments offer two functions: (i) to resolve the anisotropy of viscosity
coefficients associated with the use of the anisotropic lattice structure, and (ii) to adjust both shear and bulk viscosities
independent of the relaxation parameters.

The cuboid model is then validated by three different benchmark cases, namely, the transient laminar channel
flow, the 3D energy-cascading Taylor-Green vortex flow, and the fully developed turbulent channel flow. In all cases,
results of the cuboid-lattice model are compared with the analytical solutions or results of other numerical methods.
Good agreements are shown among these results, regardless of the aspect ratios used in the cuboid model.

With the proposed cuboid-lattice model, a smaller number of lattice points can be used to achieve the same result
for an anisotropic flow such as the turbulent channel flow. This is because, compared to the standard cubic lattice,
a relatively coarser lattice grid can be used in the direction where the flow variables vary more gradually (i.e., , the
streamwise direction of a channel or pipe). Thus, the overall computational efficiency can be improved.

Finally, we wish to comment on the range of grid aspect ratios that can be used in each non-standard model. In
the 2D models of this kind, the minimum aspect ratio used in the previous studies is 0.45 in Bouzidi et al. [9], 0.5 in
Zhou [11, 12], 2/3 in Hegele et al. [14]. Using the θ−model [10], an aspect ratio of 0.3 could be used to simulate a 2D
laminar lid-driven cavity flow and 2D Taylor-Green vortex flow. In a 2D model [16] using an extended equilibrium and
MRT collision model, which is very similar to the current paper, an aspect ratio of 0.25 was used to simulate both 2D
laminar lid-driven cavity flow and 2D Taylor-Green vortex flow. Another model [20] using an extended equilibrium
and BGK collision model, an aspect ratio of 1/3 could be used to simulate 2D laminar flows. The above discussions
indicate two aspects. First, for each non-standard model, there appears to be a limiting aspect ratio for numerical
stability. Second, the study of Peng et al. [16] implies that aspect ratio below 0.8 could be used in our current cuboid
model, as demonstrated in the case of laminar channel flow. The results of the current paper further demonstrates that,
for the case of a turbulent flow, there seems to be a more strict requirement on the permissible range of aspect ratios
for numerical stability.

For the 3D Taylor-Green vortex flow, we have attempted to use aspect ratios smaller than 0.80 for Re0 = 300.
In each case, the code became unstable eventually. We found that the instability first appears as noises in both the
normal and shear stress modes as well as in the pressure mode. The noises grow in time, which leads to unphysical

25



/ Computers and Mathematics with Applications 00 (2016) 1–28 26

velocity gradients and eventually excessive values of the extended components of the equilibrium moments. When
Re0 is reduced to 30, the cuboid model is stable for a = b = 0.5. At this moment, we have not fully understood the
origin of numerical instability when simulating the 3D Taylor-Green vortex flow and the turbulent channel flow at
relatively high flow Reynolds numbers. Namely, we have not found a method to optimize model parameters in order
to ensure numerical stability at high flow Reynolds numbers. The logical approach would be to perform a systematic
linear stability analysis of our cuboid model, as done for the standard LBM models [24, 39, 40, 41]. This is beyond
the scope of the current paper and should be a topic for future research.
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6. Appendix

As mentioned in Sec. 2, the added part of equilibrium moments, m(eq,1)
i , is composed of a set of 9 coefficients hi j,

λ, and the strain-rate tensor (∂βuα + ∂αuβ)/2. Therefore, we need to update the strain-rate components at each time
step and apply them in the collision term. By design, all the strain-rate components can be calculated based on the
non-equilibrium moments. The derivation is a bit tedious, we only present the final results here.

First, from Eq. (23) we observe that m(1) is related to equilibrium moments and forcing. To separate the two,
we define an array Gi as the part of m(1) without any forcing involved. According to our derivation, we shall have
Gi = Mi j f j−m(eq,0)

i +δtΨi/ (2 − si), where M,m(eq,0)
i ,Ψi and si are defined in Sec. 2. Then, the strain-rate components

can be calculated according to

∂xu = (C1B4 −C2B2) / (B1B4 − B2B3) ,

∂yv = (C2B1 −C1B3) / (B1B4 − B2B3) ,

∂zw =
[
G2/

(
ρ0δtc2

)
− r11∂xu − r12∂yv

]
/r13,

∂yu + ∂xv = G14/c1,

∂zv + ∂yw = G15/c2,

∂zu + ∂xw = G16/c3,



B1 = r11r23 − r13r21,

B2 = r12r23 − r13r22,

B3 = r23r31 − r21r33,

B4 = r23r32 − r22r33,

C1 = (r23G2 − r13G10) /
(
ρ0δtc2

)
,

C2 = (r23G12 − r33G10) /
(
ρ0δtc2

)
,

(38)

where c1 = ρ0δtc2λ/a − aρ0δtc2κ3/ (10sc), c2 = ρ0δtc2
[
0.1s∗cκ3

(
a2b2 − a2

)
+ λ

]
/(ab) − abρ0δtc2κ3/ (10sc),

c3 = ρ0δtc2
[
0.1s∗cκ3

(
b2 − a2

)
+ λ

]
/b − bρ0δtc2κ3/ (10sc), s∗c = (2 − sc) /(2sc), and κ3 = γ + 4. Other parameters

have been defined in Sec. 2. The coefficients ri j are given as

ri j = hi j +



(
19κ1

c2
s

c2 − 30 − 21+19γ
5

)
/se

(
19κ1

c2
s

c2 − 30 − 21+19aγa
5

)
/se

(
19κ1

c2
s

c2 − 30 − 21+19bγb
5

)
/se[

(3 − κ1) c2
s

c2 −
6−γ

5

]
/sn

[
(3 − κ1) c2

s
c2 +

6−aγa
5

]
/sn

[
(3 − κ1) c2

s
c2 +

6−bγb
5

]
/sn

κ2
c2

s
c2 /sn

(
κ2

c2
s

c2 −
6−aγa

10

)
/sn

(
κ2

c2
s

c2 +
6−bγb

10

)
/sn

 (39)

where κ1 = 1/a2 + 1/b2 + 1, κ2 = 1/a2 − 1/b2, γa = a (γ + 4) − 4/a, γb = b (γ + 4) − 4/b and hi j are defined in Eq.
(27).
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