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a b s t r a c t

The paper describes application of the mesoscopic lattice Boltzmann (LB) method to the
simulations of both single-phase turbulence andparticle-laden turbulencewhich aremain-
tained by a large-scale forcing. The disturbance flows around finite-size solid particles
are resolved, providing the opportunity to study the detailed interactions between fluid
turbulence and solid particles at the particle–fluid interfaces. Specifically, a nonuni-
form time-dependent stochastic forcing scheme is implemented within the mesoscopic
multiple-relaxation-time LB approach. The statistics of single-phase forced turbulence ob-
tained from the LB approach are found to be in excellent agreement with those from the
pseudo-spectral simulations, provided that the grid resolution in the LB simulation is dou-
bled. It is shown that the flow statistics is not sensitive to the velocity scale used for the
LB simulation. Preliminary results on forced turbulence laden with non-sedimenting solid
particles at a particle-to-fluid density ratio of 5, solid volume fraction of 0.102, and particle
diameter to Kolmogorov length ratio of 8.05 are interpreted, using a systematic analysis
conducted at three levels: whole-field, phase-partitioned, and profiles as a function of dis-
tance from the surface of solid particles. It is found that the particle-laden turbulence is
much more dissipative in terms of the non-dimensional dissipation rate, due to both re-
duction of the effective flow Reynolds number and the viscous boundary layer on the sur-
faces of solid particles. The thickness of the boundary layer is found to be about 0.4rp.While
this boundary layer region accounts for 19.5% of the space within the fluid, it contributes
to 57.5% of total viscous dissipation. The vorticity magnitude exhibits a maximum inside
the boundary layer and a minimum outside the boundary layer, showing detachment of
the vorticity structure from the solid surface. The sharp gradients near the particle surface
contribute dominantly to the value of velocity derivative flatness, making the flatness in
particle-laden flowmuch larger than that of single-phase turbulence. In the spectral space,
presence of solid particles attenuates energy at large scales including the forcing shells and
augments energy at the small scales. The pivot wavenumber is found to be very similar to
the value previously found in decaying particle-laden turbulence under the similar param-
eter setting.
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1. Introduction

Turbulent flows ladenwith solid particles, small droplets, and gasmicrobubbles are ubiquitous in engineering, biological
and environmental applications. Examples include fluidized bed reactors, spray atomization, bubble columns, plankton
contact dynamics in ocean water, transport of blood corpuscles in the human body, sediment transport, warm rain process,
volcanic ash eruptions, dust storms, and sea sprays. In these applications, particles are usually suspended in a turbulent
carrier fluid. The interactions between the dispersed and the carrier fluid phases impact the dynamics of suspended particles
(e.g., dispersion, deposition rate, collision rate, and settling velocity) and the bulk properties of the multiphase flow (e.g.,
wall or surface drag, turbulence intensity and structures). Understanding turbulent particle-laden flows can help us better
design engineering devices such as coal combustors and better predict natural phenomena such aswarm rain and hurricane.

A turbulent particle-laden flow system ismore complicated than its single-phase counterpart owing to a broader range of
length and time scales and the additional parameters associatedwith the dispersed phase [1]. For a turbulent flow ladenwith
non-deforming spherical particles, the length scales range from the particle diameter (dp) and flow Kolmogorov length (η)
to the integral length scale (L). When dp/η is small and the volume fraction (φ) of the dispersed phase is low, the response
of a particle to the local flow can be well described by an equation of motion [2], making it unnecessary to resolve the
disturbance flow on the scale of the particle size. Most theoretical understanding for turbulent particle-laden flows has
been developed based on these assumptions. Computationally, the condition of dp/η < 1 partially justifies the use of point-
particle based simulation (PPS) [3]. In the last 20 years, PPS has enabled researchers to discover and quantify a number of
important phenomena in turbulent particle-laden flows including preferential concentration [4,5], turbulence modulation
by inertial particles [6,7], particle deposition rate, and turbulent collision rate of inertial particles [3,8–11].

However, even for the relative simple case of small particle size, the interactions between the dispersed phase and the
carrier phase are difficult to describe in general. For heavy particles whose density (ρp) is much larger than the fluid density
(ρf ), the ratio of the particle inertial response time (τp) to the flow Kolmogorov time (τk), known as the Stokes number, can
be expressed as St ≡ τp/τk =

1
18


dp/η

2
(ρp/ρf ), implying that particles could interact with a range of flow time scales

depending on the relative magnitudes of the density and size ratios.
Many applications entail particle sizes comparable to or larger than the flow Kolmogorov length [12]. This introduces a

finite-size effect greatly complicating the description of the multiphase flow system. Currently, the only rigorous method is
to numerically resolve the disturbance flows around particles, known as the particle-resolved simulation (PRS). This requires
an explicit implementation of the no-slip boundary condition on the surface of each particle, making PRS computationally
more demanding than PPS. For this reason, PRS has so far been limited to either low flow Reynolds numbers or to large
particle size relative to the Kolmogorov scale.

Several computational methods have been developed to perform PRS. These include finite element methods [13–15],
the fictitious domain or direct forcing method [16–19], the immersed boundary method (IBM) [20–22], the force coupling
method [23,24], the hybrid method Physalis [25–27], and the pseudo-penalization method [28]. These methods solve the
continuum Navier–Stokes equation for the fluid flow, with different specific treatments at the fluid–solid interfaces.

In contrast, the mesoscopic lattice Boltzmann method (LBM) [29–31] realizes the flow field through local moments of a
lattice Boltzmann equation using a uniform lattice grid. The no-slip boundary condition can be imposed by using a simple
interpolated bounce-back scheme. To reduce force oscillations on the particles, the immersed-boundary–lattice-Boltzmann
method (IB–LBM) [32,33] has also been developed by replacing the conventional bounce-back scheme with a direct forcing
scheme applied on a set of Lagrangian boundary points representing particle surfaces.

Many of these particle-resolved simulation methods have been applied to study particle–particle interaction or
particulate suspension in a non-turbulent fluid [34–37]. There have also been a few studies of particle-resolved simulation
of turbulent particle-laden flows: in this case, the challenge is themultiscale nature involving awide range of scales from the
integral scale of the background turbulence to the scales of disturbance flows around each particle. For this reason, particle
resolved simulation of turbulent particle-laden flows requires the state-of-the-art supercomputers. The dynamics of a single
fixed or moving particle was simulated in [12,28,38,39]. Xu and Subramaniam [40] studied flow modulation by a group of
fixed particles, and Tenneti et al. [41] examined drag forces on a random cluster of fixed spheres. Using a direct-forcing
fictitious domain method, Wu et al. [18] and Shao et al. [19] investigated flowmodulation by finite-size particles in the pipe
and channel flows.

A limited number of studies on particle-laden turbulent flows using particle resolved simulations have also been
reported [31,27,22,24,42], as reviewed in Gao et al. [43]. Using the lattice Boltzmann method, Gao et al. [43] studied
modulation of decaying turbulence by solid particles under conditions similar to Lucci et al. [42]. They found that, at a
given particle volume fraction, the dynamics of the particle-laden flow depended mainly on the effective particle surface
area and particle Stokes number. The presence of finite-size inertial particles enhanced dissipation at small scales while
reducing kinetic energy at large scales, with the normalized pivot wavenumber depending on the particle size, the ratio of
particle size to flow scales, and particle-to-fluid density ratio. Using one-dimensional domain decomposition as the parallel
implementation strategy, they were able to simulate a turbulent flow laden with O(100,000) particles.

The main goal of this paper is to extend the work of Gao et al. [43] to forced particle-laden turbulent flows. A
forced stationary turbulence permits flow statistics to be averaged over time. The implementation of a large-scale forcing
scheme within the lattice Boltzmann approach will be described in Section 2, along with a brief discussion on the parallel
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implementation using two-dimensional and three-dimensional domain decompositions. In Section 3, we first validate the
simulation of single-phase forced turbulence against pseudo-spectral simulation results, followed by a presentation of
preliminary results on forced particle-laden flow. We will discuss whether the flow statistics are sensitive to the velocity
scale setting in LBM. The results of particle-laden turbulence will be analyzed systematically at three levels: whole-field,
phase partitioned, andprofiles as a function of distance from the surface of a solid particle. Together, the results provide an in-
depth understanding of the local interactions at the fluid–solid interfaces. Section 4 contains a summary and future outlook.

2. Simulation method

The particle-resolved simulation is based on the multiple-relaxation-time (MRT) lattice Boltzmann approach [44]. Since
a thorough discussion of the method including a few validation cases has already been presented in [43], here we only
summarize the essential components of themethod. The applied large-scale forcing and scalable MPI implementation using
multiple dimensional domain decompositions are new and will be described in detail in Sections 2.2 and 2.3.

2.1. The lattice Boltzmann (LB) approach

The MRT LB approach solves the evolution of mesoscopic particle distribution function by a lattice Boltzmann equation

f(x + eαδt, t + δt) = f(x, t) − M−1
· S · [m − m(eq)

] + Q, (1)

where M is an orthogonal transformation matrix converting the distribution function f from discrete velocity space to the
moment space m, in which the collision relaxation is performed. The term Q denotes a forcing field in the mesoscopic
space to produce a desired non-uniform, time-dependent, large-scale physical space forcing field F(x, t); its details will be
discussed in Section 2.2. The transformation between the particle velocity space and the moment space is carried out by
matrix operations as m = M · f, f = M−1

· m. The diagonal relaxation matrix S specifies the relaxation rates for the non-
conservedmoments. The D3Q19model was used and eα represents the discrete lattice velocities. Further details of theMRT
LB approach can be found in [44]. The macroscopic hydrodynamic variables, including density ρ, momentum, and pressure
p, are obtained from the moments of the mesoscopic distribution function f, namely,

ρ = ρ0 + δρ, ρ0 = 1; δρ =


α

fα, ρ0u =


α

fαeα +
δt
2
F(x, t), p = δρc2s (2)

where u is the macroscopic fluid velocity, and the sound speed cs is equal to 1/
√
3 in lattice units. In our implementation,

the above LB equation is only applied to the fluid lattice nodes.
An interpolated bounce-back scheme [45] was used to treat the interaction of the fluid withmoving solid surfaces.When

a particlemoves, a solid lattice nodemay become a fluid nodewith unknowndistribution functions. Themissing distribution
functions for the new fluid lattice node are constructed by an equilibriumdistributionplus a non-equilibriumcorrection [46].

The hydrodynamic force Fi acting on the ith particle is calculated during the interpolated bounce-back procedure by
summing up the loss of fluid momentum on all the links across the surface of the ith particle, and the torque 0i acting on
the ith particle is the sum of the cross product of the local position vector relative to the particle center and the loss of fluid
momentum, over all boundary links. The particle translational velocity, position, angular velocity and displacement are then
updated as

Vt+δt
i = Vt

i +
1
Mp


Ft+δt/2
i + Ft−δt/2

i

2
+


j

Ftij


δt, Yt+δt
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1
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δt, (3)
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whereMp and Ip ≡
2
5MpR2

i are themass andmoment of inertia of the ith particle, respectively, Ri is the particle radius, and Fij
represents unresolved interaction force acting on the ith particle due to its interaction with jth particle (e.g., the lubrication
force correction; see [47,48]). In this study, a simple pair-wise repulsive force model, same as what was used in [43], is
applied to prevent particles from overlapping.

2.2. Implementation of large-scale forcing

We apply the well-known stochastic forcing scheme of Eswaran and Pope [49] to drive the turbulent flow. This forcing
method has been used in numerous studies of single-phase and particle-laden turbulences (e.g., [5,50]) and has the
advantage of predictable energy input. Using the same forcing scheme also allows us to compare our PRS results to PPS
results such as the recent results of Abdelsamie and Lee [50]. The disadvantage of this scheme is that it requires a fast Fourier
transform (FFT) to transform the large-scale forcing prescribed in the spectral space to the physical space. In this study,
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we employ the recently developed highly-scalable FFT implementation using two-dimensional domain decomposition; see
Ayala and Wang [51].

In the Eswaran–Pope forcing scheme an artificial forcing term is specified as a complex, vector-valued Uhlenbeck–
Ornstein (UO) stochastic process. There are three parameters in the forcing scheme that determine the overall flow
characteristics and energy input. The first is the forcing radius kF , which determines how many modes are subjected to
the forcing. In our study, 80 modes defined by 0 < |k| < kF =

√
8 were forced. The other two parameters are the forcing

amplitude σf and timescale Tf , which specify the standard deviation and the correlation time of the UO process, respectively.
These together control the rate of energy addition (and thereby the dissipation rate) and the integral scales. In this work, we
set σ 2

f = 447.3 and Tf = 0.038, as in [5]. All values here are given in units of a pseudo-spectral simulationwith a domain size
of 2π . In the lattice Boltzmann simulation, the domain size is N lattice units, where N is the number of lattice cells in each
spatial direction. The conversion between spectral units and lattice units will require a velocity scale Vs, representing the
ratio of fluid velocity magnitude in lattice units to the velocity magnitude in spectral units. A basic requirement for nearly
incompressible LB flow simulation is that the velocitymagnitude in lattice unitsmust be significantly smaller than the sound
speed cs, whichwill bemet by choosing a proper Vs. Wewill study briefly how the simulated flow depends on the value of Vs.

According to the analysis of Eswaran and Pope [49], the average net rate of energy input through the forcing scheme,
which is also equal to the average viscous dissipation rate, can be expressed empirically as

rate of energy input =
4Nf σ

2
f Tf

1 + Tf (σ 2
f TfNf k20)1/3/β

, (5)

where the number of modes forced is Nf = 80 and the lowest wavenumber in spectral units is k0 = 1. β is a fitting param-
eter. Based on their lower resolution simulations, Eswaran and Pope [49] found that β ≈ 0.8. Using this β value, the rate of
energy input is estimated to be 3564 in spectral units.

The first step in the forcing implementation is to generate a complex UO process for eachmode in the spectral space with
0 < |k| <

√
8. When the minimum widths of all subdomains in the y and z directions are 6 and 3, respectively, only two

processors are involved in setting up the UO processes for the forced modes in the spectral space. The vector field is then
transformed to the physical space to produce F(x, t). The mesoscopic forcing field, consistent with the incompressible MRT
formulation and free from low-order discrete lattice errors, is given as [52,53]

Q = M−1

I −

S
2


M8δt, where Φα = ρ0Wα


eα · F
c2s

+
uF :


eαeα − c2s I


c4s


. (6)

To reduce the number of matrix multiplications, we implemented the forcing scheme by introducing an intermediate
variable, f(x, t) = f(x, t) + 8δt/2. Then Eqs. (1) and (6) can be combined to yield a compact form as

f(x + eαδt, t + δt) = f(x, t) − M−1
· S ·


Mf(x, t) − m(eq)

+ 8
δt
2

. (7)

The forcing is applied at the collision step. We will validate this implementation of time-dependent non-uniform forcing
by comparing, in Section 3.1, the simulated single-phase forced turbulence with results from a pseudo-spectral simulation.
This comparison is a necessary step before preliminary results on forced particle-laden turbulent flow are presented. This
comparison can also be viewed as an extension to the study of Peng et al. [54] on comparing LB and spectral simulations
for decaying homogeneous isotropic turbulence. To our knowledge, such a direct comparison between LB and pseudo-
spectral for a forced turbulence has not been attempted previously, although several papers reported simulations of forced
turbulence by the LB approach [55–57]. In particular, we note that the simple forcing implementations used in [55,57]
contain low-order discrete lattice errors according to Guo et al. [52]. We also note that these previous LB simulations of
forced turbulence were done with the single-time relaxation (BGK) collision operator.

2.3. MPI implementation and scalability

In our previous implementation reported in Gao et al. [43], the code was parallelized using 1D domain decomposition.
We have now implemented 2D and 3D domain decompositions to allow the use of a much larger number of processors. The
basic idea is to divide the data and tasks according to the subdomains, namely, each processor handles the computational
load within a subdomain. In addition to the implementation details reported in Gao et al. [43], we streamlined the data
communication needs near the subdomain boundaries into two general categories. The first and themost common category
is the forward data communication where some data from a current subdomain are sent to neighboring subdomains
to provide information in the extended (or halo) zones of each subdomain. Examples include gathering of node/link
information for processing boundary links, interpolating variables at off-grid locations from grid data, and constructing
unknown distributions for new fluid lattice nodes. This is done in each of the decomposed direction sequentially. Data
communication in each subsequent coordinate directionmakes use of the updated subdomain data in coordinate directions
that have already been communicated. In this manner, only two send–receive steps are needed in each coordinate direction
and the data in the subdomain corners are automatically covered.
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a b

Fig. 1. Wall clock time as a function of the number of processors used: (a) single-phase turbulence simulation on 5123 grid; (b) particle-laden flow on
5123 grid and with 50,000 particles of diameter equal to 8 lattice units. Three domain decomposition strategies are compared.

The second category is the reverse data communication where some updated data in the neighboring subdomains must
be collected by a current processor. A typical example is the redistribution of particles after their centers have beenmoved to
a different subdomain. In this case, we first separate particles whose centers have beenmoved out of the current subdomain
and re-pack the remaining particles with centers located within the current subdomain. All particles in the neighboring
subdomains whose locations have been changed to the current subdomain are then identified and added to the current
processor. Again data communications are done sequentially, one direction after another. The communication of data from
corners is handled essentially in reverse when compared to the forward communication. In the end, each processor will
contain all information of particles with centers located within the corresponding subdomain, with a reasonable load
balancing.

Fig. 1 shows the scalability of the code for both single-phase turbulence simulations at 5123 resolution and particle-
laden flow simulations at 5123 resolution with 50,000 solid particles of diameter equal to 8 lattice units. In general, the
performance is similar for the different domain decompositions. When running the flow simulation with 1024 processors,
the wall clock time is significantly less than what would be expected from the ideal scaling. This apparent super-scaling
is a result of decreasing data size to the point that the fast cache memory becomes adequate in handling the data. The
particle-laden flow code shows essentially ideal scaling up to 1024 processors tested. For particle-laden flows, the super-
scaling was not observed for three reasons. First, the particle-laden flow code made use of quite a few global arrays for
code simplicity [43], which increases the memory usage for each processor. Second, there is relatively more latency time
associated with more data communication steps, when compared to the single-phase flow. Third, currently, the boundary
link information is saved in 4D arrays for code simplicity, which is also memory intensive. We believe that this last aspect
can be improved by using 1D, indexed arrays, so the memory requirement for treating boundary links can be drastically
reduced.

3. Results

In this section, we present results on both single-phase and particle-laden turbulent flows driven by the large-scale
stochastic forcing.

3.1. Single-phase forced turbulence

For the single-phase turbulence, the focus is on the comparison of the simulated flow statistics with results from pseudo-
spectral simulation. We consider a setting that would lead to a well-resolved forced turbulence when the pseudo-spectral
method is used at a grid resolution of 1283. The spectral resolution is typically measured by kmaxη, where kmax =

1
2N − 1.5

is themaximumwavenumber considered in the pseudo-spectral simulation and η is the Kolmogorov length. This resolution
parameter is kmaxη = 1.39, and the resulting Taylor microscale flow Reynolds number is Rλ = 74.3. Four LB simulations
were designed to match the same physical parameters as the pseudo-spectral simulation (see Table 1), with varying grid
resolutions and velocity scale Vs, where Vs represents the ratio of velocity magnitude in the LB simulation to that in the
pseudo-spectral simulation.

In Fig. 2 we plot the time evolution of volume-averaged flow kinetic energy and dissipation rate. The results from the
LB simulations are converted back to the spectral units to allow for a direct comparison. The flow is initially at rest, and
the large-scale forcing injects energy into the large scales, which is transferred to smaller scales. Eventually, the viscous
dissipation balances the energy input from the large-scale forcing, and the flow becomes statistically stationary. Typically, it
takes about 3–5 large-eddy turnover times for the flow to reach the stationary stage. The results from all simulations overlap
initially, and their general features are very similar during the stationary stage.
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Table 1
Parameter settings and simulated statistics in forced single-phase turbulent flows. The values in the lattice Boltzmann simulations have been transformed
to the units in the pseudo-spectral simulation, except |u|max . Note that the CFL number is defined as (|u1|+ |u2|+ |u3|)maxdt/dx in the spectral code, while
it is defined as |u|maxdt/dx in the LBM code.

Run PS128 LB128 LB256H LB256HR LB512H2

Grid resolution N3 1283 1283 2563 2563 5123

Viscosity ν 0.0945 0.0945 0.0945 0.0945 0.0945
Time step dt 1 × 10−4 1 × 10−4 0.5 × 10−4 0.25 × 10−4 0.2 × 10−4

Vs = Ndt/(2π) – 2.04 × 10−3 2.04 × 10−3 1.02 × 10−3 1.63 × 10−3

ϵ per unit mass 3475 ± 54 3549 ± 45 3570 ± 69 3581 ± 62 3648 ± 115
u′ 18.63 ± 0.10 18.90 ± 0.09 18.70 ± 0.13 18.78 ± 0.11 18.83 ± 0.24
Rλ 74.3 ± 0.5 75.7 ± 0.5 74.0 ± 0.6 74.5 ± 0.6 74.2 ± 1.1
kmaxη 1.39 1.38 2.79 2.79 5.60
CFL 0.289 0.24 0.25 0.13 0.18
|u|max (LB units) – 0.24 0.25 0.13 0.18
Skewness S −0.505 ± 0.001 −0.450 ± 0.003 −0.499 ± 0.003 −0.487 ± 0.003 −0.504 ± 0.004
Flatness F 4.794 ± 0.014 4.534 ± 0.014 4.859 ± 0.017 4.816 ± 0.020 4.872 ± 0.027
η 0.0222 ± 0.0001 0.0221 ± 0.0001 0.0221 ± 0.0001 0.0221 ± 0.0001 0.0220 ± 0.0002
λ 0.377 ± 0.002 0.379 ± 0.002 0.374 ± 0.002 0.375 ± 0.002 0.372 ± 0.003
Lf 1.07 ± 0.01 1.06 ± 0.01 1.05 ± 0.01 1.06 ± 0.01 1.049 ± 0.015
τK (5.24± 0.04)e−3 (5.18± 0.03)e−3 (5.18± 0.05)e−3 (5.16± 0.04)e−3 (5.12± 0.08)e−3
Te 0.1004 ± 0.0010 0.1013 ± 0.0010 0.0990 ± 0.0011 0.0993 ± 0.0011 0.0979 ± 0.0016
∆T ave/Te 70.0 69.1 70.7 70.5 27.6
ϵLf /(u′)3 0.577 ± 0.023 0.556 ± 0.019 0.575 ± 0.028 0.570 ± 0.025 0.573 ± 0.048

a b

Fig. 2. Time evolution of (a) kinetic energy and (b) dissipation rate in the forced single-phase flow.

Each simulation except Run LB512H2 is run for about 80 eddy turnover times, and the volume-averaged statistics are
further averaged over the last 70 eddy turnover times. The resulting statistics are shown in Table 1. The opportunity to
average over 70 eddy turnover times provides a way to estimate the standard deviation of the final averaged value. Let
σA be the standard deviation of volume-averaged quantity A(t). The standard deviation of the time-averaged A, namely,
A ≡

1
∆Tave

 t0+∆Tave
t0

A(t)dt , is [49]

σA = σA


2Tc

∆Tave
, (8)

where Tc is the correlation time of A(t), and ∆Tave is the time duration used for averaging. We computed the correlation
coefficient, R(τ ) ≡ ⟨A(t1)A(t1 + τ)⟩ /σ 2

A , and Tc is estimated by simply setting R(Tc) = 0.5. In Table 1, we list the statistics
in the form of A ± σA.

In addition to the three forcing parameters (Nf , σ 2
f , and Tf ) and Vs (for LB flow simulation), the flow-simulation input pa-

rameters are: the grid resolutionN , kinematic viscosity ν, and the time step dt . The computed flow statistics at the stationary
stage, listed in Table 1, include the flow dissipation rate ϵ, r.m.s. component fluctuation velocity u′, Taylor microscale flow
Reynolds number Rλ, resolution parameter kmaxη, CFL number, the maximum velocity magnitude |u|max in LB units, veloc-
ity derivative skewness S, velocity derivative flatness, Kolmogorov length η, transverse Taylor microscale λ =


15νu′2/ϵ,

longitudinal integral length scale Lf , Kolmogorov time τK , eddy turnover time Te = u′2/ϵ, the normalized averaging time
interval ∆Tave/Te, and the normalized dissipation rate ϵLf /


u′
3.

As noted previously, according to Eswaran and Pope [49], the expected flow dissipation rate is around 3564. This value
is consistent to what are realized in the simulations, considering the levels of statistical uncertainty as indicated by the
standard deviations. The low-resolution LB simulation, LB128, yields a slightly larger u′, smaller magnitudes of velocity
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1.62

Fig. 3. Compensated kinetic energy spectra of forced single-phase flow. The horizontal line shows the expected level in the inertial subrange.

Fig. 4. Time evolution of velocity-derivative skewness. The right panel is a zoom-in view of a portion of what is shown in the left panel.

derivative skewness and flatness, and smaller normalized dissipation rate, when compared to the benchmark values from
the pseudo-spectral simulation. Other three higher resolution LB simulations produce matching values of statistics when
compared to those from the pseudo-spectral simulation (the only exception is perhaps the velocity derivative skewness,
which will be discussed below). In particular, they all yield a normalized flow dissipation of ϵLf /(u′)3 ≈ 0.575 ± 0.025.
The general conclusion is that the LB simulation, due to its overall second-order spatial accuracy, would require twice the
grid resolution to produce similar statistics as the pseudo-spectral simulation, in agreement with the conclusion of Peng
et al. [54] who compared LB simulation and pseudo-spectral simulation for decaying turbulence. The different values of
velocity scale Vs appear to have a negligible effect of the overall flow statistics.

Fig. 3 provides a comparison of compensated energy spectra from various simulations. Since the pseudo-spectral
simulation is not fully de-aliased, a minor upward tail is present near the maximum kη. Except the run LB128, all LB runs
provide the same spectrum as the pseudo-spectral simulation. This again confirms that twice of the spatial resolution is
needed for the LB simulation to reproduce the spectral accuracy. Note that the two runs LB256H and LB256HR yield an
identical spectrum. The best benchmark of the spectrum in the high wavenumber region should be that from LB512H2.
Increasing resolution in LB simulations leads to better representation of the spectrum in the far-dissipation region (kη > 1).

We also compare the time evolutions of skewness and flatness in Figs. 4 and 5, respectively. Careful examination of Fig. 4
reveals two differences of LB results from the pseudo-spectral simulation. First, there appears to be large fluctuations in the
skewness from the LB simulation. Second, the skewness in the LB simulation is slightly less in magnitude for most of the
time, when compared with the pseudo-spectral result. However, occasional spikes of large magnitudes in skewness are also
evident. Similar features in the LB velocity derivative flatness are also observed in Fig. 5. The spikes and large fluctuations are
related to acousticwaves inherent in the LBmethod, as pointed out in Peng et al. [54]. These spikes could be further amplified
by the bounce-back scheme on the solid surface in the particle-laden flows. It may be possible to reduce the fluctuations in
MRT-LB by optimizing the relaxation parameters. A close inspection of Figs. 4 and 5 indeed indicates that the non-physical
part of the fluctuations is smaller in LB256HRwhen compared to those in LB256H. A systematic study of tuning all relaxation
parameters is beyond the scope of the current study. This aspect, although having little impact on the overall flow statistics,
deserves further investigation.
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Fig. 5. Time evolution of velocity-derivative flatness. The right panel is a zoom-in view of a portion of what is shown in the left panel.

Table 2
Parameter settings and simulated statistics in forced particle-laden turbulent flows. The
values in the lattice Boltzmann simulations have been transformed to theunits in thepseudo-
spectral simulation, except |u|max and |v|max .

Run LB256HP LB256HRP LB512H2P

Grid resolution N3 2563 2563 5123

Viscosity ν 0.0945 0.0945 0.0945
Time step dt 0.5 × 10−4 0.25 × 10−4 0.20 × 10−4

Vs = Ndt/(2π) 2.04 × 10−3 1.02 × 10−3 1.63 × 10−3

ϵ full per unit mass 2414 ± 63 2424 ± 73 2532 ± 123
u′ 13.16 ± 0.13 13.15 ± 0.15 13.46 ± 0.19
Rλ 44.6 ± 0.3 44.5 ± 0.4 45.5 ± 0.8
kmaxη 3.08 3.08 6.13
|u|max (LB units) 0.17 0.088 0.135
|v|max (LB units) 0.13 0.069 0.092
Skewness S −0.326 ± 0.006 −0.323 ± 0.006 −0.346 ± 0.016
Flatness F 11.45 ± 0.03 11.38 ± 0.03 20.39 ± 0.20
η 0.0244 ± 0.0002 0.0244 ± 0.0002 0.0241 ± 0.0003
λ 0.3201 ± 0.0014 0.3196 ± 0.0015 0.3197 ± 0.0048
Lf 1.26 ± 0.01 1.26 ± 0.01 1.25 ± 0.02
τk (6.30± 0.08)e−3 (6.30± 0.09)e−3 (6.14± 0.15)e−3
Te 0.07235 ± 0.0006 0.07213 ± 0.0006 0.07220 ± 0.0021
∆Tave/Te 96.8 97.0 18.0
ϵLf /(u′)3 1.335 ± 0.083 1.343 ± 0.096 1.301 ± 0.145

3.2. Forced particle-laden turbulence

We shall now consider forced turbulence laden with solid particles. The same flow parameters adopted for the single
phase forced turbulence are used. A particle-laden system involves 4 additional governing parameters: the particle diameter
relative to the flowKolmogorov length of single-phase turbulence dp/η, particle-to-fluid density ratioρp/ρf , particle volume
fraction φv , and particle terminal velocity relative to the Kolmogorov velocityW/vk. In this preliminary study, we consider
non-sedimenting particles (W = 0) with a density ratio of ρp/ρf = 5. The particle diameter is set to 8 lattice units when
2563 grid resolution is used, leading to dp/η = 8.05. The volume fraction is fixed at 0.102. This amounts to 6400 solid
particles at 2563 grid resolution.

For this single combination of system parameters, three LB simulations are conducted (Table 2). The purpose here is to
examine whether variations of grid resolution and velocity scale affect the physical results.

We shall focus mainly on the statistics at a stationary stage. To gain insights into the dynamics of the particle-laden
system, wewill report on three levels of analysis. At the first level, we view the particle–fluid system as a continuous system
in local velocity, with velocity inside each particle set to that of solid body rotation. The velocity gradients are certainly not
continuous at the particle–fluid interface. At the second level, we partition the flow into two parts, the region belong to the
fluid and the region within the particles; statistics are computed in each region separately. At the third level, statistics are
gathered as a function of distance from the surface of a particle, to elucidate the role of no-slip particle–fluid interfaces.

3.2.1. Level 1: whole field statistics
Table 2 provides the whole field statistics. Evidently, the three particle-laden LB runs generate essentially the same

statistics, except the velocity derivative flatness.We suspect that the value of velocity derivative flatness is mostly governed
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Fig. 6. (a) Kinetic energy and (b) dissipation rate spectra for particle-laden flows. Also shown are the spectra for the single-phase turbulence LB512H2.
The vertical line label k = 30.

by the large values at the particle–fluid interface. The increased resolution in run LB512H2P provides a better representation
of the extreme values leading to a higher value of velocity derivative flatness.

Compared to the single phase turbulence, the magnitude of field-averaged dissipation rate in the particle-laden flow is
significantly smaller. Take, for example, the run LB256HRP, the average dissipation rate is 2424, which is 67.7% the value
of the corresponding single phase run LB256HR. Since the dissipation rate is still balanced by the large-scale energy input,
this implies that the large-scale energy input is also reduced to 67.7% when compared to the single-phase turbulence. This
reduction can be roughly explained as follows. First, for the single phase turbulence, wemay approximate the forcing energy
input as

forcing energy rate (SP) ≈
4Nf σ

2
f Tf

1 + 1.356Tf /T SP
e

, (9)

where T SP
e is the eddy turnover time in single-phase turbulence; the coefficient 1.356 is introduced to reproduce the value

shown in Table 1 for run LB256HR. For the particle-laden flow, two aspects will reduce the forcing energy input: the forcing
is only applied to the region occupied by the fluid, and the field eddy turnover time is reduced. A simplemodel for the forcing
energy input in the particle-laden (PL) flow is

forcing energy rate (PL) ≈ (1 − θv) ×
4Nf σ

2
f Tf

1 + 1.356Tf /T PL
e

, (10)

where T PL
e is the eddy turnover time in particle-laden turbulence. Using θv = 0.102 and T PL

e = 0.07213 from Table 2, we
obtain an estimate for forcing energy input at 2849. This is comparable to the value (2424) actually realized, although it
does not fully explain the reduction. The simple model assumes that the dissipation rate in the fluid region is uniformly
distributed, which is certainly not true—a point we shall return to in Section 3.2.3.

The whole field kinetic energy, 1.5(u′)2, in the particle-laden flow is about 50% of the single-phase value. In forced
particle-laden flow simulation using the point-particle approach, Abdelsamie and Lee [50] found that the system kinetic
energy is reduced to 65% of single-phase turbulence for the density ratio of 800 and volume fraction of 5 × 10−4, and
the dissipation rate is reduced to 35%–75% depending on the particle Stokes number. Although the parameter ranges are
different, our results are qualitatively similar. The magnitude of the velocity derivative skewness is also reduced. The most
interesting quantity is the normalized flow dissipation rate ϵLf /(u′)3. It is around 1.34, much larger than the single-phase
value of 0.575. This implies that the particle-laden system is much more dissipative than the single-phase turbulence.
Physically, the enhanced system dissipation is due to the enhanced local dissipation at the particle–fluid interfaces.

Fig. 6 shows the kinetic energy spectra and the dissipation rate spectra for particle-laden turbulent flows. Also shown
for comparison are the respective spectra for single phase forced turbulence run LB512H2. The three particle-laden LB
simulations produce essentially the same energy spectrum. The nearly periodic oscillations reflect the discontinuities at
the solid–fluid interfaces, qualitatively labeled as the boxcar effect by Lucci et al. [42]. However, these oscillations do not
affect the interpretation of the whole-field velocity field, as the realized kinetic energy has the proper interpretation of the
average kinetic energy of the whole system containing the fluid phase and solid particles. The energy is attenuated at low
wavenumbers including the two forced shells (0.5 < k < 1.5 and 1.5 < k < 2.5) where the large-scale forcing is applied,
and is augmented at large wavenumbers. Essentially, the disturbance flows around the solid particles enhance the high-
wavenumber energy content, at the cost of reduced low-wavenumber velocity fluctuations. Alternatively, the presence of
solid particles increases the resistance to large-scale flowdue to the added drag on the solid particles. The pivotwavenumber
dividing the two regions is around kpivot = 30 or kpivotdp/(2π) = 0.94. This pivot wavenumber is very similar to what was
observed in [43] for decaying turbulence (kpivotdp/(2π) ≈ 0.9) at similar particle size, density ratio, and volume fraction.
Specifically, E(k = 1) and E(k = 2) in the forced particle-laden turbulence are 69% and 66% of the respective values of
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Table 3
Statistics in forced particle-laden turbulence partitioned into the fluid phase and
the solid particles. The values from the lattice Boltzmann simulations have been
converted to the units in the pseudo-spectral simulation.

Run LB256HP LB256HRP LB512H2P

dp/dx 8 8 16
Np 6400 6400 6400
ρp/ρf 5 5 5
φv 0.102 0.102 0.102
φm 0.510 0.510 0.510
dp/ηa 8.05 8.05 8.15
dp/λa 0.614 0.614 0.614

St ≡
1
18

ρp
ρf


dp
η

2
18.0 18.0 18.5

ϵ
full
s per unit mass 2414 ± 63 2424 ± 73 2532 ± 123

ϵparticle 0 0 0
ϵ
fluid
s 2688 ± 70 2699 ± 81 2820 ± 137

ϵ
fluid
p

b 3228 ± 338 2820 ± 429 2992 ± 348
1
2


u2
full
s 260.6 ± 5.3 260.6 ± 6.2 272.2 ± 7.8

1
2


u2
fluid
p 267.7 ± 5.4 267.8 ± 6.3 280.6 ± 8.1

1
2


V2
p


p

198.2 ± 4.2 196.9 ± 5.0 197.5 ± 5.5
Ω2

p


p

633.4 ± 11.4 642.2 ± 12.6 627.0 ± 20.6
1
2


V2
p


p
+

1
20 d

2
p


Ω2

p


p

199.5 ± 5.5 198.2 ± 6.4 197.8 ± 8.1
1
4


ω2
fluid
p 6915 ± 181 6967 ± 211 7262 ± 352

ν

ω2
fluid
p 2614 ± 69 2634 ± 80 2745 ± 133

Rep1 ≡
√
3(u′

− V ′
p)dp/ν 6.1 6.1 7.1

Rep2 ≡


Ω2

p


d2p/ν 10.3 10.3 10.2

a Here η is defined based on the full-field; see Table 2.
b These values are obtained from one time instant (from the fields saved at the end

of simulation, the same used for visualizations).

single-phase turbulence. Part of this reduction is due to the fact that the forcing field is only applied to the fluid lattice node
(1−θv = 89.8% of space). Another reason could be direct transfer of energy at the solid–fluid interface at the time of forcing
application. In contrast, in the decaying particle-laden flows, the energy levels in the forced shells are almost unaffected
(see Fig. 33 in Lucci et al. [42], and Fig. 10 in Gao et al. [43]). Interestingly, this distinction in the energy levels in the forced
shells between forced and decaying particle-laden flows is also observed in point-particle based simulations (see Fig. 8 in
Abdelsamie and Lee [50]). In particular, Abdelsamie and Lee [50] pointed out a direct energy transfer from the forced scales
to the small scales, perhaps this is the reason for reduced kinetic energy levels in the forced shells.

3.2.2. Level 2: partitioned statistics
Next, we shall compute statistics within the fluid phase and the solid particles separately. The results are displayed in

Table 3. Since, by definition, the local dissipation rate is zero everywhere inside a solid particle, one can infer that the local
average dissipation rate within the fluid phase is

ϵ fluid
=

1
1 − φv

ϵ full, (11)

where the superscripts fluid and full indicate an average over the fluid phase and the full field, respectively. For some
quantities, we also have two options of computing the statistics in spectral space and physical space, and they are denoted
respectively by subscripts s and p, respectively, in Table 3.

It can be shown that, with regard to the kinetic energy per unit mass, we have [43]
u2

2

full
= (1 − φv)


u2

2

fluid
+ φv


1
2


V 2
p


+

1
20

d2

Ω2

p


. (12)

The data in Table 3 can be used to confirm that
u2

2

full
s

= (1 − φv)


u2

2

fluid
p

+ φv


1
2


V 2
p


p
+

1
20

d2

Ω2

p


p


, (13)

which demonstrates the precise interpretation of the whole-field statistics discussed in Section 3.2.1.
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It is also interesting to examine the average kinetic energy per unit volume for the whole system and we expect
ρ
u2

2

full
= (1 − φv)ρf


u2

2

fluid
+ φvρp


1
2


V 2
p


+

1
20

d2

Ω2

p


. (14)

Taking, for example, Run LB256HP, with ρf = 1 and ρp = 5, we obtain
ρ
u2

2

full
= 267.7 × (1 − 0.102) + 0.102 × 5 ×


198.2 + 0.196352

× 633.4/20


= 342.1. (15)

This may be compared with the value of the kinetic energy per unit volume of a single phase flow (Run LB256H), 524.5.
Namely, the kinetic energy per unit volume of the particle-laden flow is 65% of the value for the single-phase turbulence.

We also observe from Table 3 that, within statistical uncertainty, the following relation is valid:

ϵ fluid
≈ ν


ω2fluid . (16)

Namely, the relation for single-phase turbulence remains valid when applied to the particle-laden turbulence within the
fluid phase.

In the limit of passive and small particles, it is expected that

V2
p


/⟨u2

⟩
fluid

= 1 and 4

Ω2

p


/⟨ω2

⟩
fluid

= 1.Wehave a ratio of
V2
p


/⟨u2

⟩
fluid

= 0.74, 0.74, 0.70 and 4

Ω2

p


/⟨ω2

⟩
fluid

= 0.0916, 0.0921, 0.0863, respectively, for Runs LB256HP, LB256HRP,
and LB512H2P. In terms of rms fluctuations, (u′)fluid/V ′

p = 0.86, 0.86, 0.84 and 2Ω ′
p/ω

′
= 0.303, 0.304, 0.294, respectively,

for Runs LB256HP, LB256HRP, and LB512H2P. This reduction in particle translational velocity and angular velocity is due to
both the finite size (spatial filtering) and inertial filtering. The reduction in angular velocity is much larger due to significant
contribution from the small scales which translates to a strong spatial filtering effect.

Finally, the data in Table 3 allow us to estimate particle Reynolds number. Two methods are used and results are shown
in the last two rows. It appears that the particle Reynolds number is ∼10 in the particle-laden flow simulation.

3.2.3. Level 3: profiles relative to the particle surface
To gain some insight into the variations of various quantities near the particle surface, we associate each fluid lattice

point with the nearest particle surface. The distance, r − rp, from the nearest particle surface is then calculated, where r
is the distance from a fluid lattice node to the center of the nearest particle and rp is the particle radius (rp = 0.5dp). This
distance is then divided into bins of a given width of δ = 0.05rp: namely, the i-th bin gathers all fluid lattice points whose
distance from the nearest particle surface falls within the range from (i − 1)δ to iδ.

The average particle center-to-center distance lp can be estimated as

lp
rp

=


4π
3φv

1/3

≈ 3.45. (17)

For small (r − rp)/rp, the number of fluid lattice points in i-th bin, nb(i), may be estimated as

nb(i)
N3

=
4
3
π

(rp + iδ)3 − (rp + iδ − δ)3

 Np

N3
=

[1 + 0.05i]3 − [1 + 0.05(i − 1)]3


φv. (18)

If the solid particles are placed in a regular array, the above formula will apply till r/rp = 0.5lp/rp = 1.725 and nb(i) would
reach a maximum at r/R = 1.725.

Fig. 7 shows nb(i) as a function of r , in both linear–log and linear–linear plot, calculated from one time instant at the
end of the simulations; Eq. (18) gives a reasonable prediction when r/rp < 1.4. The location of maximum nb(i) appears
to occur indeed at r/rp ≈ 1.725; however, the maximum value is significantly less than the prediction by Eq. (18) due to
irregular solid particle distribution. The maximum distance was found to be around r/rp = 6.0, significantly larger than
0.5

√
2lp/R = 2.44 for a perfectly regular arrangement of solid particles. This implies that solid particles exhibit some level

of preferential concentration. However, the value to nb(i) is negligibly small when r/rp > 4.0. It should be noted that nb(i)
in Fig. 7 is computed based on a single time for each simulation, so the values of nb(i) at large r/dp are subject to significant
statistical uncertainties.

Fig. 8(a) is a snapshot of fluid vorticity distribution on a slice at z = 128.5 from Run LB256HRP. It is clear that there
are patches of high vorticity near the surfaces of solid particles due to the viscous boundary layers. Occasionally, there
is even evidence of vortex shedding (see, for example, the wake associated with a particle in the lower left portion of
the slice). It could be possible that the turbulent background field might induce vortex-shedding at much lower particle
Reynolds number (also keep inmind that the local particle Reynolds number could be significantly higher than the estimated
average value of ∼10). In Fig. 8(b) we plot the bin-averaged normalized enstrophy as a function of r , revealing several
interesting features. First, the bin-averaged enstrophy is larger than the mean for (r − rp) < 0.4rp and less than the mean
for (r − rp) > 0.4rp. There is a peak normalized enstrophy very close to the particle surface, with a peak value of ∼4.3 to 7
depending on the grid resolution. The peak occurs at (r − rp)/rp = 1.175 for the two 2563 runs and at (r − rp)/rp = 1.075
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Fig. 7. The number of fluid lattice points in a given bin as a function of distance from the particle center: (a) linear–log plot; (b) linear–linear plot. The
three vertical lines mark the locations of r/rp = 1, 1.725, and 2.44, respectively.

for the LB512H2P. This implies that the vorticity is not fully resolved at 2563, causing some numerical diffusion near the
particle surface. Interestingly, there is also a weak minimum of ω2/⟨ω2

⟩
fluid

= 0.44 at (r − rp)/rp ≈ 1.0, regardless of the
resolutions. The bin-averaged enstrophy seems to increase with distance slowly after the minimum. Finally, Fig. 8(c) shows
the relative contribution from each bin to the total fluid enstrophy; namely, the weighted bin value is defined as

[ω(i)]2nb(i)
[ω(i)]2nb(i)

1
δ/rp

, (19)

so that the area under each curve in Fig. 8(c) is exactly one. A reasonable estimate of the boundary layer thickness is 0.4rp—
the location where the normalized vorticity crosses 1.0. We found that this 19.5% of the spatial region with (r − rp) < 0.4rp
contributes to about 57.5% of the total fluid enstrophy regardless of the grid resolution, revealing the dominant role of the
viscous boundary layer at the solid particle surface in the enstrophy budget.

A similar analysis is performed for the local dissipation rate (Fig. 9). Visualization of strain-rate magnitude (Fig. 9(a))
shows that patches of high strain rate tend to be found near the particle surfaces. Regions of high strain rate are typically
nearby regions of high vorticity, but appear to be less structured when compared to the vorticity distribution. The bin-
averaged normalized local-dissipation value decreases monotonically with r (Fig. 9(b)), with values larger than the mean
for (r − rp)/rp < 0.4 and smaller than the mean otherwise. The maximum value near the surface could reach 5.6–8.0, and
again depends on grid resolution. The value away far from the surface is around 0.38. The relative contributions (Fig. 9(c))
fromvarious bins drop rapidlywith r , especially near the particle surface. The 19.5% of the spatial regionwith (r−rp) < 0.4rp
contributes to around 52.3% of the total viscous dissipation, comparable to but slightly less than the enstrophy concentration
in this region.

We also analyze this bin dependence for local velocity magnitude and kinetic energy (Fig. 10). The visualization on the
same slice shows, in contrast to vorticity and strain rate, that the fluid velocity magnitude is less near the particle surface, as
expected from the no-slip condition and the lower particle velocity fluctuations (u′/V ′

p ≈ 0.85; see Table 3). This is clearly
demonstrated in Fig. 10(b) when the bin averaged kinetic energy is quantified. Indeed, the local kinetic energymatches that
of the solid particles at the particle surface, and increases with r for r/rp < 3. The trend for r/rp > 3 is not clear and also
subject to large statistical uncertainties. The relative contribution (Fig. 10(c)) shows a peak at r/rp = 1.775. The 19.5% of
the spatial region with (r − rp) < 0.4rp contributes to only ∼16.1% of the total kinetic energy. If the separation is too large,
there is no sample (see Fig. 7(a)), then a zero value is assigned.

Taken together, the above analyses demonstrate that the region ((r − rp) < 0.4rp) near the particle surface exhibits high
strain rate and high vorticity, but low kinetic energy, due to the presence of solid particles of higher inertia. It is hoped that
the profiles presented here could provide a starting point for parameterizing the turbulence statistics in particle-laden flow.

3.3. Transient evolution for Run LB512H2P

In this section, we show transient evolution for Run LB512H2P. Initially we ran the single-phase flow simulation (Run
LB512H2) to a stationary stage. Solid particles were then introduced at t = 1.6 with velocity of a given particle set to the
local fluid velocity at the center of the particle and angular velocity set to zero.

Fig. 11 displays the time evolution of whole-field kinetic energy and dissipation rate for both Run LB512H2P and Run
LB512H2. The kinetic energy of the system drops quickly immediately after the introduction of solid particles and then
settles to the stationary stage with mean values consistent with those obtained from 2563 runs. In contrast, the dissipation
rate jumps by a factor of 2 immediately after the release of particles, due to the discontinuity of velocity at the solid–fluid
interfaces, very similar to the results reported for decaying particle-laden flows [43]. The transition to the stationary stage for
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Fig. 8. (a) Contours of fluid vorticity magnitude |ω|/


ω2
fluid and particle position in an x–y plane at z = 128.5, at the end of simulation from LB256HRP.

Only a quarter of the plane is shown. (b) Profile of bin-averaged ω2/⟨ω2
⟩
fluid as a function of distance from the center of a solid particle. The horizontal line

marks the level 1.0. (c) Weighted bin-averaged ω2/⟨ω2
⟩
fluid as a function of distance from the center of a solid particle.

both kinetic energy and dissipation rate contains two phases: a fast relaxation phase taking about one to two eddy turnover
times, followed by a slow relaxation phase lasting about 4–5 eddy turnover times. The stationary-stage average dissipation
is consistent with those from 2563 runs.

The evolutions of velocity-derivative skewness and flatness are shown in Fig. 12. The magnitudes of stationary-stage
skewness are slightly larger than those from 2563 runs. The stationary-stage flatness for Run LB512H2P is much larger
than the corresponding 2563 runs, as previously noted, due to the better resolution of velocity gradient near the particle
surfaces which seems to dominate the overall magnitude of velocity-derivative flatness. As indicated previously, this local
grid-dependence, however, does not affect the overall coupling between the fluid phase and solid particles. The flatness
value for particle-laden flows are significantly larger than that of single-phase turbulence.

4. Summary and outlook

In this study, we have applied the mesoscopic lattice Boltzmann (LB) method to simulations of both single-phase turbu-
lence and particle-laden turbulence which are maintained by large-scale forcing. Forced stationary flows allow averaging to
be taken over time, to obtain better average statistics. The disturbance flows around finite-size solid particles are resolved,
providing the opportunity to study the detailed interactions between fluid turbulence and solid particles at the particle–fluid
interfaces. This particle-resolved simulation (PRS) approach is much more general than the previous point-particle simula-
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Fig. 9. (a) Contour of normalized local strain rate


ϵ/⟨ϵ⟩fluid and particle position in an x–y plane at z = 128.5, at the end of simulation from LB256HRP.
Only a quarter of the plane is shown. (b) The profile of bin-averaged ϵ/⟨ϵ⟩fluid as a function of distance from the center of a solid particle. The two horizontal
lines mark the levels of 1.0 and 0.38, respectively. (c) Weighted bin-averaged ϵ/⟨ϵ⟩fluid as a function of distance from the center of a solid particle.

tion (PPS) approach [3], and is expected to become a quantitative research tool for particle-laden turbulent flows as better
computational resources are becoming available. This study may be viewed as a continuation of two recent studies, one
on the comparison of pseudo-spectral and LB simulations of single-phase decaying turbulence [54] and the other on the
simulation of decaying particle-laden turbulence [43].

Wehave demonstrated that the popular nonuniform time-dependent stochastic forcing schemeof Eswaran and Pope [49]
can be implemented in the mesoscopic MRT LB approach following the formulation of Lu et al. [53]. The statistics of single-
phase forced turbulence obtained from theMRT LB approach are in excellent agreementwith those from the pseudo-spectral
simulations, provided that the grid resolution in the LB simulation is doubled. We also demonstrated that the flow statistics
is not sensitive to the velocity scale used for the LB simulation, even when the local maximum velocity is as large as 0.25
in lattice units. We did, however, observe larger fluctuations in the velocity derivative skewness when compared to the
pseudo-spectral results, resulting from acoustic waves in the system as noted in [54]. We conclude that the MRT LBmethod
is a reliable and accurate method for direct numerical simulation of forced homogeneous isotropic turbulence.

Preliminary results on forced turbulence laden with non-sedimenting solid particles at ρp/ρf = 5, φv = 0.102, and
dp/η = 8.05 have been presented. While only one specific parameter setting is considered, a systematic analysis of the
particle-laden flow has been carried out. The analysis is performed at three levels: whole-field, phase-partitioned, and pro-
files as a function of distance from the surface of solid particles. Several important conclusions have been reached. First, we
have shown that the particle-laden turbulence is much more dissipative in terms of the non-dimensional dissipation rate
(ϵ fullLf /(u′)3 = 1.34), when compared to the single-phase forced turbulence (ϵ fullLf /(u′)3 = 0.575). Part of this difference
is related to the difference in the effective flow Reynolds number (see Fig. 2 in Ishihara et al. [58]), which is Rλ = 45 for
the particle-laden flow and Rλ = 74 for the single-phase turbulence. If we take the data from Fig. 2 in Ishihara et al. [58],
the value of ϵ fullLf /(u′)3 for single-phase turbulence at Rλ = 45 would be in the range of 0.7–1.0, still significantly less than
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Fig. 10. (a) Contour of normalized local velocity fluctuation

u2/⟨u2⟩ and particle position in an x–y plane at z = 128.5, at the end of simulation from

LB256HRP. Only a quarter of the plane is shown. (b) The profile of bin-averaged u2/⟨u2
⟩ as a function of distance from the center of a solid particle. The

long horizontal line marks the level of 1.0, and the three short horizontal lines mark 0.740, 0.735, and 0.704, the respective solid-particle rms velocity for
the runs. (c) Weighted bin-averaged u2/⟨u2

⟩ as a function of distance from the center of a solid particle.

ba

Fig. 11. Evolution of (a) kinetic energy and (b) dissipation rate after particles are introduced, relative to the single-phase turbulence. The vertical dash
line shows the time when the particles are introduced. The mean values are marked by horizontal lines through the data, with the lines spanning the time
intervals used for computing them. The short horizontal lines on the very right show the mean and two standard deviations from LB256HR and LB256HRP.
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ba

Fig. 12. Evolution of (a) velocity-derivative skewness S and (b) flatness F , relative to the single-phase turbulence. The mean values are marked by
horizontal lines through the data, with the lines spanning the time intervals used for computing them. The short horizontal lines on the very right show
the mean and two standard deviations from LB256HR and LB256HRP.

N

Fig. 13. Simulated flow Taylor-microscale Reynolds number, Rλ , as a function of grid resolution, for published single-phase turbulence simulations (black
symbols), point-particle simulations (blue symbols) and particle-resolved simulations (red symbols) of turbulent particle-laden flows. The line denotes the
fitted theoretical scaling for single-phase turbulence DNS. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

1.34 in our particle-laden turbulence. The reason for the higher dissipative nature of the particle-laden turbulence has been
shown to be related to the higher dissipation near the particle surface as a viscous boundary layer is present due to the
difference in the velocity fluctuations between the fluid phase and the solid particles. The thickness of the boundary layer is
estimated to be about 0.4rp. While this near-surface region accounts for 19.5% of the space within the fluid, it contributes to
57.5% of total viscous dissipation.We also found that the vorticitymagnitude exhibits amaximum inside the boundary layer
and aminimum outside the boundary layer, showing detachment of the vorticity structure from the solid surface. The sharp
gradients near the particle surface contribute dominantly to the value of velocity derivative flatness, making the flatness in
particle-laden flow much larger than that of single-phase turbulence.

In the spectral space, the presence of solid particles attenuates energy at large scales including the forcing shells and
augments energy at the small scales. This differs from the results for decaying particle-laden turbulence in that there the
energy in the lowest shells are not altered by particles. This distinction between forced and decaying particle-laden flows
has been shown previously in [50] using PPS. On the other hand, the pivot wavenumber is found to be very similar to the
value found in decaying particle-laden turbulence under the similar parameter setting [43].

Due to the limited space, we have not analyzed fully the statistics of the particle-laden turbulence. For example, it would
be interesting to examine the probability density functions of local velocity, local velocity-gradient, local dissipation rate,
and local vorticity, and compare them with those of single-phase flows. The distribution and collision rate of solid particles
may also be studied [31].

We must emphasize the preliminary nature of the results presented in this paper. In general, PRS is still in its very early
stage, and results are limited in the range of resolved length and time scales covered. The range of explicitly resolved scales is
crucial in any numerical simulation of turbulent single-phase andmultiphase flows. Fig. 13 summarizes the resolutions that
have been achieved in direct numerical simulations (DNS) of single-phase turbulence, PPS, and PRS. Due to the increased
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complexities of multiphase flows, the resolutions of both PPS and PRS are behind those of the single-phase turbulence DNS.
Tracking the interactions of a large-number of particles in a turbulent flow is computationally more intensive than the sim-
ulation of carrier fluid turbulence [10]. In PPS, the resolution is determined by the need to resolve the Kolmogorov scale
η. This requires a grid spacing of dx ≈ 2η in a pseudo-spectral simulation or dx ≈ η in a LB simulation [54,59]. The grid
resolution then dictates the ratio of integral scale to Kolmogorov length, L/η. However, PRS using the LB approach requires
the grid spacing dx that can simultaneously resolve η, the particle size, and the viscous boundary layer around a particle
[27,38]. Namely, (dx)PRS = min(η, 0.1dp, dp/


Rep), where Rep is the particle Reynolds number based on slip velocity be-

tween the phases. Therefore, the resolution requirement in PRS is higher than that in PPS. These explain that, for a given
grid resolution, the realized flow Rλ in PRS is lower than that in PPS (Fig. 1).

Clearly, it is desired that PRS sufficiently separates scales in terms of both Lf /η and L/dp so that the phase interactions
and coarse-grained multiphase turbulence characteristics can be meaningfully examined. To this end, highly-scalable PRS
codes such as the LB approach used here will need to be applied to broaden the parameter ranges. Our ultimate goal is to
bridge PRS and PPS by significantly increasing the range of length scales resolvable in PRS.
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