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Abstract

An open question in warm rain process and precipitation formation is how

rain forms in warm cumulus as rapidly as it has sometimes been observed.

In general, the rapid growth of cloud droplets across the size gap from 10 to

50 microns in radius has not been fully explained. Three aspects related to

the air turbulence and stochastic coalescence are considered here in an attempt

to resolve this open question. The first is the enhanced geometric collision

rates caused by air turbulence. The second is the effect of air turbulence on

collision efficiencies. The third is stochastic fluctuations and correlations in the

collision-coalescence process. Rigorous approaches are developed to address

these issues. Preliminary results indicate that turbulence could shorten the time

for drizzle formation to about a half of the time needed for the same growth

process based on hydrodynamic-gravitational mechanism alone. To address

the effect of stochastic correlations, we derive and validate a true stochastic

coalescence equation. It is hoped that this new mean field equation will be

useful in the future to improve the deterministic kinetic collection equation.

Keywords: Cloud microphysics; Turbulence; Geometric collision rate; Colli-

sion efficiency; Stochastic coalescence.

1. Introduction

Cloud droplets of radii less than 10 to 15 ��� grow efficiently through diffusion of water va-

por, and droplets larger than 30 to 50 ��� in radii grow efficiently through gravitational col-

lisions (Langmuir 1948; Kogan 1993; Beard and Ochs 1993; Pruppacher and Klett 1997).

An open question is why rain forms in warm (i.e., ice-free) cumulus clouds as rapidly as

it has sometimes been observed. Radar observations in tropical regions show that rain can
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form in cumulus clouds by warm rain process in approximately 15 to 20 minutes (Szu-

mowski et al. 1997; Knight et al. 2002).1 This 20-minute time interval is also quoted in

Rogers and Yau (1989, page 121) as the average time for the initiation of warm rainfall

(i.e., from the initial development of a cumulus cloud to the first appearance of rain). The-

oretical predictions based on the gravitational-coalescence mechanism alone would require

a time interval on the order of an hour for droplets to grow from 20 ��� to 100 ��� in radius

(the actual time depends on the initial droplet size spectrum in clouds, see Pruppacher and

Klett, 1997) Therefore, there appears to be a factor of 2 or more difference between the

predicted growth time and the observed growth time. In general, it is difficult to explain the

rapid growth of cloud droplets in the size range from 10 to 50 microns in radius (i.e., the

so-called size gap) for which neither the condensation nor the collision-coalescence mech-

anism is very effective. The onset of drizzle-size ( � �����
��� in radius) raindrops is still

poorly understood in many precipitating cloud systems. A related issue is the discrepancy

between the width of measured and simulated size distributions of cloud droplets. In par-

ticular, the question why measured droplet size distributions are in general broader is not

fully understood (Beard and Ochs 1993; Khain et al. 2000; Brenguier and Chaumat 2001;

Chaumat and Brenguier 2001).

Several mechanisms have been considered in the past to explain the rapid development

of rain in shallow convective clouds (Beard and Ochs 1993; Pruppacher and Klett 1997;

Khain et al. 2000). The first mechanism involves entrainment of dry environmental air into

the cloud. Although entrainment lowers the cloud water content (and thus has a negative

impact on rain development), it can result in dramatic impact on cloud droplet spectra.

In particular, broad spectra are typically produced as a result of entrainment and mixing

(Brenguier and Grabowski 1993; Su et al. 1998). The second mechanism involves effects

1This time is typically defined as the time interval for radar reflectivity to evolve from about ���	� dBZ to at
least 20 dBZ, roughly corresponding to 10 
�� and 250 
�� average droplet sizes in radius, respectively, for a
liquid water content at ��
���������� . However, as noted by Knight et al. (2002), it is difficult to define precisely
the starting time and ending time for rain initiation in radar observations, as the radar reflectivity depends
on both the average droplet size and the liquid water content. For this reason, only a very few published
observational studies reported this time interval.
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of giant aerosol particles which allow formation of large cloud droplets (Johnson 1982).

Srivastava (1989) suggested that the droplet spectral width can be broadened by consider-

ing local values of the water vapor supersaturation rather than the mean supersaturation that

a large population of cloud droplets experience. However, recent numerical results by Vail-

lancourt et al. (2001, 2002) suggest that this effect contributes insignificantly to the width

of the cloud droplet spectrum. The fourth mechanism concerns effects of air turbulence on

the relative motion of droplets, concentration fluctuations, and collision efficiencies (Khain

et al. 2000; Franklin et al. 2005; Wang et al. 2005b). Finally, in addition to the above phys-

ical mechanisms, the commonly used kinetic collection equation for modeling the time

evolution of droplet size distribution is not fully consistent with the stochastic nature of the

collision-coalescence process (Telford 1955; Scott 1967; Gillespie 1972, 1975a).

This paper concerns the effects of air turbulence and stochastic coalescence. A brief

overview of recent advances towards quantifying the effects of air turbulence on collision

rate and collision efficiency will be presented. The impact of enhanced geometric collision

rate by turbulence on droplet size distribution will be illustrated by Monte-Carlo simula-

tions. The role of stochastic coalescence will be explicitly revealed by a rigorously-derived,

true stochastic coalescence equation (TSCE) which contains correlations of droplet num-

bers in different sizes. We shall validate the TSCE using Monte-Carlo simulations and the

analytical result of Bayewitz et al. (1974). The level and nature of stochastic correlations

and fluctuations will also be discussed.

2. Effects of Air Turbulence

Over the last 10 years, several studies have been published in both engineering and atmo-

spheric literature concerning the collision rate of particles in a turbulent flow. These studies

suggest, at least qualitatively, that the enhancement of the collision-coalescence mechanism

associated with the cloud turbulence might be a likely explanation for the rapid growth of
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cloud droplets across the size gap. These recent advances are based mostly on numerical

simulations and qualitative theoretical arguments, indicating that the collection kernel of

cloud droplets can be enhanced by several effects of turbulence, including (1) enhanced

relative motion due to differential acceleration and shear effects (Kruis and Kusters 1997;

Pinsky and Khain 1997; Sundaram and Collins 1997; Wang et al. 2000; Zhou et al. 2001;

Dodin and Elperin 2002); (2) enhanced average pair density due to local preferential con-

centration of droplets (Sundaram and Collins 1997; Wang et al. 2000; Zhou et al. 2001;

Zaichik and Alipchenkov 2003; Zaichik et al. 2003); (3) enhancement due to selective al-

terations of the settling rate by turbulence (Wang and Maxey 1993; Davila and Hunt 2001;

Ghosh and Jonas 2001), and (4) enhanced collision efficiency (Koziol and Leighton 1996;

Pinsky et al. 1999; Pinsky et al. 2000; Wang et al. 2005b). The levels of enhancement

depend, in a complex manner, on the size of droplets (which in turn determines the re-

sponse time and settling velocity) and the strength of air turbulence (i.e., the dissipation

rate, Reynolds number, etc.).

While all the studies consistently point to collision enhancements by air turbulence,

they should be viewed as qualitative results as far as the collision-coalescence of cloud

droplets is concerned. This is because the context and the approximations used in most

of these studies do not match the conditions of cloud droplets, e.g., see discussions in

Grabowski and Vaillancourt (1999) and Vaillancourt and Yau (2000). Also the levels of en-

hancement concluded from different studies are vastly different. This status is related to the

complexity of the collisional interactions in a turbulent flow, and the lack and inaccuracy

of direct measurements of turbulence and droplet distribution in clouds. Recent observa-

tions and analyses of observational data from the Fast FSSP probe suggest some evidence

that clouds droplets inside adiabatic cores may not be distributed randomly in space, but

the conclusions have not been consistent and the issue remains largely unresolved (Chau-

mat and Brenguier 1998; Jameson and Kostinski 2000; Kostinski and Shaw 2001; Pinsky

and Khain 2002). For a more elaborated discussion of observational studies on the spatial
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distribution of cloud droplets, the readers are referred to Section 3 of Grabowski and Vail-

lancourt (1999). In a wind tunnel setting, Vohl et al. (1999) reported that turbulence could

lead to a 10% to 20% increase in the overall collision kernel when the flow dissipation

rate was in the range of 110 to 690 � � �������
. Due to the different regions in the parame-

ter space that different studies tend to address (Vaillancourt and Yau 2000), the extent and

dominant lengthscale associated with clustering of cloud droplets and turbulence effects

are still an open question. Although with these limitations, the recent studies do contribute

to a major progress in the understanding and kinematic formulation of collection kernel for

droplets with and without hydrodynamic interactions (Sundaram and Collins 1997; Wang

et al. 1998, 2000; Zhou et al. 2001; Wang et al. 2005b), which will be useful in the future

for the parameterization of collection kernel of cloud droplets.

a. Impact of enhanced geometric collision rate

Although with the above limitations, a major progress has been made in the understanding

and kinematic formulation of collection kernel (Sundaram and Collins 1997; Wang et al.

2000; Zhou et al. 2001). The average geometrical collision kernel between two arbitrary

droplet size groups can be described kinematically as (Sundaram and Collins 1997; Wang

et al. 1998, 2000)
� � �	��

��� ����� ������������� ���"!$#

� �
�����%�&�'��(

(1)

where the geometric collision radius � is the sum of the radii of two colliding droplets,

�)�)* �,+-* � , �.�
is the radial relative velocity, the abbreviation “No HI” denotes statis-

tics computed without considering the disturbance flows due to droplets,
#
� � is the radial

distribution function measuring the effect of preferential concentration on the pair num-

ber density at separation / . By geometric collisions, these kinematic properties are com-

puted without considering droplet-droplet hydrodynamic interactions. Air turbulence can
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increase
���

due to local fluid acceleration and shear effects (Saffman and Turner 1956;

Wang et al. 1998). Furthermore, when the inertial response time of droplets is on the order

of the flow Kolmogorov time scale, droplets could respond effectively to the dynamics of

small-scale flow structures and become nonuniformly distributed, a phenomenon known

as the preferential concentration (Maxey 1987; Squires and Eaton 1990; Wang and Maxey

1993). Since the average collision rates are related to the second moment of the droplet

concentration, the preferential concentration can cause
#
� � to be greater than one (Sun-

daram and Collins 1997; Wang et al. 2000) and thus significantly increases the collision

kernel.

To gain a quantitative understanding of how the enhanced geometric collision rates

by turbulence may promote to growth of cloud droplets, the following idealized but exact

calculation using discrete mass classes was performed. Consider a system, say about 1 � � �

volume, initially containing 60 droplets of 20 ��� in diameter and another 60 droplets of

22 ��� in diameter. These two droplet sizes were placed in bin 3 and bin 4 as two discrete

sizes since their mass ratio is very close to �
���

, as such bin 1 and bin 2 were unoccupied in

the full discrete mass representation involving a total of 420 bins. The elemental mass (the

mass for bin 1) is taken to be
� ���

of the mass of a 20– � � droplet. If all these droplets were

to coalesce to form a single droplet, the final droplet size would be 103.8 ��� in diameter

and would belong to the mass bin 420 (i.e., � 
 � ��� ��� � +�� ��� � ).
A fully stochastic collision-coalescence calculation was carried out using the Monte-

Carlo method of Gillespie (1975b). The Monte-Carlo method, although computationally

more expensive, inherently incorporates all stochastic correlations (see Section 3 below for

further details) and also eliminates the numerical errors in solving the kinetic collection

equation (Bott 1998; Tzivion et al. 1999; Simmel et al. 2002). Eq. (1) was used to pa-

rameterize the collision kernel with the model of
� � � � � !

after Wang et al. (1998) and
#
� � taken from Zhou et al. (2001). The parameterization of

#
� � in Zhou et al. (2001) was

developed based on direct numerical simulations (DNS) at low flow Reynolds numbers but
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was extrapolated to high flow Reynolds numbers. This extrapolation was done using estab-

lished Reynolds-number scaling rules for local fluid shear rates and for the ratio of large to

small scales in high Reynolds-number turbulence (Hinze 1975). Stokes drag was assumed

and the collision efficiency was set to unity. 10,000 Monte-Carlo realizations were used

to obtain the average droplet size distribution and related statistics. The r.m.s. fluctuation

velocity � � of the air turbulence was assumed to be 1 �
���

in order to derive the Taylor mi-

croscale Reynolds number which was given as ��� � � � ��� ��� �	��

, where

�
is air kinematic

viscosity and



is the flow dissipation rate.

In Fig. 1 we show time evolution of the average numbers in three separate bins, namely,

from top to bottom, corresponding to 20, 60, and 103.8 ��� in diameter, respectively. Three

levels of flow dissipation were considered and the results were compared to the base case

of no air turbulence. Statistical uncertainties, an inherent feature of Monte-Carlo simula-

tions, were also shown. The time was normalized by the characteristic time scale � of the

gravitational coagulation process ( � � 
�
	� � �
). The average number for 20– � � droplets

decreases monotonically due to collision-coalescence events, however, the rate of deple-

tion depends on the flow dissipation rate. The higher the flow dissipation, the faster the

depletion rate.

While for the intermediate sizes (Fig. 1(b)), the mean number first increases with time

(the production phase), reaches a peak value at a critical time, and then decreases afterwards

(the depletion phase). The production phase and the critical time occur earlier as the flow

dissipation rate is increased. The peak value is also less for larger flow dissipation rate due

to a faster spreading of the size spectrum. Finally the depletion phase happens earlier and

is completed faster as the flow dissipation rate increases. All of these imply an enhanced

growth of cloud droplets due to effects of turbulence.

The average number for the last bin increases monotonically as expected (Fig. 1(c)).

One can see that turbulence can shorten the time for the largest droplet to form. For the

case of

 � � � � � � � ��� �

, the time for the coalescence process to complete is roughly half of
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that for the pure gravitational case.

To better quantify how turbulence promote the growth of droplets, we computed the

droplet diameter based on the mean droplet mass and show its time evolution in Fig. 2.

Clearly, the droplets grow faster as the flow dissipation rate is increased. We show in

Table 1 the time in seconds for the droplet diameter based on mean mass to reach a certain

size. At high flow dissipation rate, turbulence may shorten the growth time by as much as

30 to 40%. This clearly shows that turbulence can speed up the growth of cloud droplets.

The main open issue here is the modeling of the radial distribution function
#
� � at

high flow Reynolds numbers and how the radial distribution function is affected by the

gravitational settling, as the relative velocity,
� �

, can be more easily modelled. Theoretical

advances in this direction are currently being made (Jeffery 2001; Sigurgeirsson and Stuart

2002; Zaichik and Alipchenkov 2003; Zaichik et al. 2003). DNS and experimental data

at higher flow Reynolds are certainly desired as well. The recent DNS studies by Franklin

et al. (2005) and Wang et al. (2005b) represent efforts to obtain quality simulation data

relevant to cloud droplets.

b. Collision efficiencies

For droplets of radii less than 60 ��� , hydrodynamic interactions between two colliding

droplets can significantly affect the trajectories of the droplets due to short inertial response

time and small settling rate. It follows that the collision efficiency is a sensitive function of

droplet sizes (Klett and Davis 1973; Wang et al. 2005a). While there have been a large num-

ber of studies on the collision efficiency due to the gravitational-hydrodynamic interaction

of two isolated cloud droplets (Pruppacher and Klett 1997), only a very few studies exist in

the literature concerning collision efficiencies of cloud droplets in turbulent air (Almeida

1979; Grover and Pruppacher 1985; Jonas 1996; Koziol and Leighton 1996; Pinsky et al.

1999; Pinsky et al. 2000; Wang et al. 2005b). A careful review of these studies reveals
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that different kinematic formulations were used to define the collision efficiency, almost all

of which are some extensions to the definition based on grazing trajectory, which is only

strictly valid for the gravitational-hydrodynamic interaction of two isolated cloud droplets

(Wang et al. 2005b). Furthermore, these kinematic definitions of collision efficiency were

used in these studies without direct validation using dynamic collision statistics. This prob-

lem along with various (often) inaccurate representations of the air turbulence and different

droplet-size combinations has generated somewhat controversial conclusions regarding the

influence of turbulence on collision efficiencies.

Therefore, the topic of collision efficiency of cloud droplets in a turbulent suspension is

widely open. Recently we have successfully developed a hybrid direct numerical simula-

tion (HDNS) approach (Wang et al. 2005b) to allow an accurate evaluation of the effect of

turbulence on collision efficiency. The HDNS approach combines a pseudospectral simu-

lation of air turbulence with an improved superposition method (Wang et al. 2005a) for the

disturbance flows due to droplets. This approach allows, for the first time, the direct incor-

poration of hydrodynamic interactions within DNS and computations from first principles

of all statistical information related to collision-coalescence.

Our main findings to date are summarized here. First we have demonstrated that

the same kinematic formulation, Eq. (1), can be used to describe the collision kernel of

hydrodynamically-interacting droplets, namely,

� � ����
�� � ����� ��� � ���'� �"! #
� �

� �&�'� �-

� � � � � ����� �&�%���'� � ! #
� �

� ������� ���
� ��� (2)

but now the kinematic properties
� �

and
#
� � are computed with droplet-droplet hydrody-

namic interactions considered. Here “HI” indicates statistics computed with hydrodynamic

interactions included in the simulations, namely, droplets move under the influence of dis-

turbance flows due to all other droplets, in addition to the drag force due to the background

flow, gravity, and inertia (Wang et al. 2005b). On the other hand, the abbreviation “No
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HI” denotes statistics computed without considering the disturbance flows due to droplets.

Computations of kinematic properties require finite corrections due to the fact that droplets

can no longer overlap in space (Wang et al. 2005b). The true collision efficiency
�

� � is

defined as
�

� ���
� � ���
� ! � �&� �

� � ��� �"! � ��� ���'� �
#
� �

����� �
#
� �

� �&�%���'� ( (3)

This kinematic formulation then separates the effect of turbulence on collision efficiency

from the enhanced geometric collision rate.

Fig. 3 shows enhancement factors due to turbulence measured relative to the results of

the gravitational-hydrodynamic case, when the flow dissipation rate is � � � � � � ��� �
. Air tur-

bulence increases both the geometric collision rate and the collision efficiency, particularly

when collisional interactions between similar-size droplets ( * � � * ��� �
) are considered.

For * �.� � � ��� , the enhancement factor on the geometric collision rate is larger than the

enhancement factor on collision efficiency. However, when * � ��
 � � � , the enhancement

factor on the collision efficiency is much greater that that of the geometric collision rate.

In other words, the effect of air turbulence on the collision efficiency depends sensitively

on the size of the larger droplets. Furthermore, both the effects of turbulence on the colli-

sion efficiency and the geometric collision rate depend on the level of flow dissipation rate.

We observe that hydrodynamic interactions are less effective in changing the relative ra-

dial velocity in a turbulent flow, when compared to the pure hydrodynamical-gravitational

problem. This is the main reason that turbulence enhances the collision efficiency, in addi-

tion to augment the geometric collision rate. We also find that hydrodynamic interactions

increase the near-field pair density, resulting in higher radial distribution function at con-

tact when compared to the geometric collision case. The overall enhancement factor on

collision kernel by turbulence can be as large as 2 to 6 when the flow dissipation rate is

high.

Furthermore, the collision efficiency for collisions among equal-size droplets depends
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on the presence of the other size droplets in a binary suspension, due to the cumulative

weak far-field hydrodynamic interactions of all droplets in the suspension (Wang et al.

2005c). This observation implies that the collision efficiency based on the interaction of

two isolated droplets, as is often theoretically treated in the past, may not be applicable to

a suspension of many droplets, even for the hydrodynamic-gravitational problem.

Much work is needed to understand and quantify the effect of turbulence on collision

efficiency. We are in the process of conducting a parametric study of collision efficiency

for different droplet-pair sizes, different flow dissipation rates, and Reynolds numbers. The

goal will be to develop a parameterization model to quantify the enhanced collision effi-

ciency by air turbulence which can later be used to study its impact on the size evolution of

cloud droplets.

3. Stochastic Coalescence

Typically, the modeling of size distribution in a collision-coalescence system is performed

by a mean-field equation such as the classical Smoluchowski coagulation equation (Smolu-

chowski 1917),

�����
��� �

�


��� �	

�� �

� 
 � �
� 
 � 
 ����� 
�� �����	

�� �

� � � 
 � 
 (4)

where
���

is the average number of droplets of mass equal to � elemental mass units,

per unit volume at time
�
.

� � � 
 is the collision kernel between m-size droplets and k-

size droplets. Here we only consider the discrete formulation as in Gillespie (1972). The

first term on the right hand side represents rate of generation of m-size droplets due to

all coalescence events of pairs of small droplets with the sum of their masses equal to

that of � -size droplet. The second term on the right hand side is the rate of depletion
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due to all coalescence events involving � -size droplets. Such deterministic Smoluchowski

equation or kinetic collection equation (KCE) describes how the number density of a certain

mass evolves in time. Although the term “stochastic” has been associated with the above

equation for historical reasons to imply that a full spectrum of different droplet sizes are

considered, the above equation is clearly deterministic and has no stochastic correlations

or fluctuations included.

Telford (1955), in his pioneering work on stochastic coalescence, first introduced the

probabilistic interpretation to the occurance of instantaneous coalescence events assuming

that (1) the concentration of the droplets available for collection remains unchanged during

their removal by coalescences and (2) the collecting drops do not interact among them-

selves. The possibility of having a range of sizes for the collecting drops greatly increases

the spectral width of the drops than in the earlier continuous growth model in which all

collecting drops are assumed to be of a same size. Recently, Kostinski and Shaw (2005)

published a simplified version of Telford’s analysis to illustrate that stochastic fluctuations

can lead to a factor-of-10 acceleration in the growth of a few lucky drops. However, the de-

scriptions of Telford (1955) and Kostinski and Shaw (2005) are stochastically rather incom-

plete. In general, coalescence events occur randomly and its local rates vary in space, time,

and with realizations, the size distribution modeling must consider the stochastic nature

of the coagulation process. The stochastic completeness of the kinetic collection equation

was later studied by Scott (1967); Warshaw (1967); Long (1971); Gillespie (1972, 1975a);

Bayewitz et al. (1974). The common wisdom is that when the system volume or number

of droplets is very large, the stochastic fluctuations tend to be small compared to the mean

values. However, we may argue that, when a particular droplet size class is considered, the

number may not always be large simply due to the system initial condition. Spatial inho-

mogeneity and fluctuations can also be augmented by air turbulence, which adds another

dimension to the stochastic nature of the coalescence process.

Here we shall revisit the question of stochastic completeness in coalescence modeling.
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Table 2 provides an overview of all the different approaches that have been developed to

model size distribution of droplets in a collision-coalescence system, and draws an analogy

between these approaches and different approaches used to describe fluid flow. From top to

bottom in Table 2, the degrees of freedom of the system are systematically reduced while

the nature of governing rules or equations changes from linear to nonlinear. Of importance

is that the full moment equations for a coalescence system have not been derived in general,

except for the special case of constant collision kernel by Bayewitz et al. (1974). We will

show below how to derive the full mean field equation at the first order which we will

refer to as the true stochastic coalescence equation (TSCE). Full mean field equations at

higher order could be similarly derived. We will then point out an error in the derivation of

Bayewitz et al. (1974), namely, Eq. (6) of their paper.

a. The master equation or the V-equation

We shall follow the approach of Bayewitz et al. (1974, hereafter BYKS74) by specifying

the state of a realization of the system at any time by the numbers of droplets for all possible

discrete mass (or size) groups, � � , � � , � � , ...., ����� . The total number of droplets is denoted

by
�

, namely,
� ��� � 
 .

Let � � be the mass of the elemental droplets. The mass of the k-th size group is

assumed to be given as � 
 �	� � � . For any given realization, the mass conservation

states
	

 � 
 � 
 � � �

	

 � � 
 � � � ��
 � (5)

where
��


is the largest possible mass class. The system would be completely specified by

the probability distribution 
 � � � � � � � ��� � � ( ( (�� � � of the state space
� �

� � � � � ��� � � ( ( ( � and, by
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definition, the summation of 
 over the state space is unity:

	 ��� 	 ��� ( ( ( 	 	��� � 

� �

� � � � � � � � � ( ( ( � � � � �
(6)

It is assumed that the coalescence kernels
��� � 
 ; � � � � �

� 
 � ( ( ( � ��
 , have been determined

such that
�	� � 
 ��� represents the probability that a given pair of cloud droplets with masses

� �
and � 
 will coalesce in the next infinitesimal time interval

���
(Gillespie 1972; Bayewitz

et al. 1974; Gillespie 1975a,b).
�
� � 
 may be a function of � �

and � 
 , but we shall assume
��� � 
 does not depend on � � and � 
 , a reasonable assumption as long as the total volume

concentration of droplets is very small and only binary collisions need to be considered.

To develop a governing equation for 
 � � � � � � � ��� � � ( ( (�� � � , we follow the arguments of

BYKS74 and examine three sets of scenarios, during the infinitesimal time interval from
�
�
� + ���

, that will contribute to 
 � � � � � � � � � � � ( ( (�� � + ��� �
: (1) a coalescence takes place

between two droplets of the same size; (2) a coalescence occurs between two droplets of

different sizes; and 3) no coalescence occurs. The first contribution requires consideration

of all neighboring states
� � + �

� � � � ( ( ( � � 
 + 
 � ( ( ( � � � 
 � �
�
( ( ( ( �

at time
�

and, after summing

over all different pairs and droplets sizes, is given as

	

 


� � + �
� � � � ( ( ( � � 
 + 
 � ( ( ( � � � 
 � �

�
( ( ( ( � � �

�





�
� � + 





��������
�

� 
 � 
 ��� (

The second contribution requires consideration of all neighboring states
� � + �

� � � � ( ( ( � � � +
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�
�
( ( (
� � 
 + �

�
( ( (
� � ��� 
 � �

�
( ( ( ( �

at time
�

and is

	 � 	

� ��� ���� 


 � � + �

� � � � ( ( ( � � � + �
�
( ( (
� � 
 + �

�
( ( (
� � �	� 
 � �

�
( ( ( ( � � � � � � + � � � � 
 + � � ��� � 
 � � (

The last contribution should be


 � � � � � � � ��� � � ( ( ( � � �


������
�
� � 	 � 	


� ��� ���� 

� � � 
 ��� � 
 ��� � 	 


�





�
� 





��������
�

� 
 � 
 � �


�������
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The sum of these three contributions will be equal to 
 � � � � � � � ��� � � ( ( ( � � + � � �
, therefore,

the governing equation for 
 � � � � � � � ��� � � ( ( ( � � � can be written as
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(7)

We shall call the above equation the master equation or V-equation. The above equation

extends the formulation of BYKS74 for the special case of constant coalescence kernel

to arbitrary collision kernels. The above description is stochastically complete. Once the
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probabilities of the states are determined, one can derive all other statistical quantities. The

probability distribution for a given particle mass can be written as:

� ���
� �
� � � � 	

�������
	
���

 

� �

� � � � � � � ( ( ( ( � � � � �
�
( ( ( (�� � �

� (8)

where the summation is understood as over all the state variables except � � .

The mean and moments of particle number for a given mass are

� � � !�� 	
����� �

� 
 � � ���� !�� 	
����� ���

� 
 � (9)

where the summation is over the full state space. Likewise, correlations can also be evalu-

ated as
� � � � 
 !�� 	

����� �
� � 
 
 ( (10)

Here the brackets implies an average over all realizations in the state space. We shall define

the cross-correlations coefficient � � 
 as

� � 
 �
� � � � 
 ! � � � � ! � � 
 !

� �'� � �� ! � � � � ! � � �'� � �
 ! � � � 
 ! � �
(

(11)

Of particular importance is the fact that the system of equations represented by Eq.

(7) are linear and can, in principle, be solved analytically for arbitrary variable collision

kernels, in terms of eigenvalues and eigenvectors of the linear system. Furthermore, random

initial conditions can be handled by a probability-weighted superposition of deterministic

initial conditions because of the linearity. The analytical solutions can be used to validate

numerical solutions such as those based on Monte-Carlo method (Gillespie 1975b) and to

study the correlations between different particle sizes (BYKS74). Of course, in practice,
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this is only feasible for a system containing a small number of droplets since the total

number of states increases extremely quickly with
� 


. For example, the total number of

states for
��
 � �

�
���

� � � , and,
� � �

are 7, 42, 37 338, and 190 569 292, respectively.2

b. Derivation of the true stochastic coalescence equation (TSCE)

We shall now present a derivation for the true stochastic collision-coalescence equations.

While BYKS74 presented such an equation for the special case of constant collision kernel,

no derivation was given in their paper. Therefore, this section serves two purposes: 1) to

present a detailed derivation and 2) to show that it’s possible to develop the true stochas-

tic coalescence equations for arbitrary collision kernels. To our knowledge, this has not

been attempted in terms of discrete masses, although some discussions in terms of continu-

ous mass are provided by Ramkrishna and co-workers (Ramkrishna and Borwanker 1973,

1974; Ramkrishna et al. 1976).

Multiplying eqn(7) by � � and then summing over all state space, we have
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(
(12)

2Finding all distinct states for a given total number is known as a partition problem, see for example,
(Andrews 1998).
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The range of values that � may take in term
�

is from 1 to ����� � � �� �
, where
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(13)

Rewriting Term A in Eq. (12) as
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where we have introduced the notation, following Gillespie (1972), that
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(15)

The second notation � �
�

�
is defined as

� �
�

� �

�������� ������	
�
� if ��������� � ���� �

�
� if �

! ����� � ���� ��(
(16)
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Noting the state location of the probability 
 , the three parts of the term
�

then become
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Similarly, the second term � can be handled as
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(18)

It is crucial to understand all the possible combinations of � and � as represented by the

five parts in term � . In Fig. 4, we show all these combinations by different symbols and

indicate the sub-domains covered by the five parts shown on the right hand side of Eq. (18).
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Note that the last term in Eq. (18) would not be there if �
! ����� � � �� �

since � + � � ��

(see

Fig. 4). However, it is harmless to drop the constraint � + � � � 

and to let the domain

extend over all the region covered by � ! � with � � � 

and � � � ��
 � � �

. This is because

the extended region makes zero contribution anyway since

� � ( ( ( � � � � 
 ! � �
� if � + � ! ��
 (

Namely, when � + � ! � 

, � � and � 
 cannot take non-zero value simultaneously because

of the constraint of the total system mass. This same concept may be applied to the other

terms in Eq. (18), and that is why we did not explicitly state � + � � � 

in the summations.

However, this domain extension must be taken with care when (i) the last two terms in

Eq. (18) are combined, as given in the next expression; (ii) any nonzero terms involving

� � � ! ����� � ��
 � 
 � must be excluded from the final equations.

Eq. (18) can be rearranged to obtain
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(19)

The reason for including � �
�

�
in the last term has been stated in the last paragraph. The

key to the above steps is to recognize that, when � or � overlaps with �
� 
 , � , or 
 � , the

terms must be handled with care.

The last two terms in Eq. (12) reduce to

� � 	 � 	
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(20)
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Substituting Eqs. (17), (19), (20), and (21) into Eq. (12) and noting that
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we obtain finally
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(22)

This is the true stochastic coalescence equation (TSCE).

c. Results and discussions

Eq. (22) is almost identical to Eq. (6) in BYKS74 when all
��� � 
 are set to one. How-

ever, there are two important differences between our equation and the equation given in

BYKS74. First, the range for � in the second term on the right hand side is here explicitly

specified. The upper bound � � � 
 � � is necessary to exclude any unphysical coag-

ulations between two particles with the sum of their mass larger than the total mass of

the system. This is a very important requirement and must be satisfied at each individual

realization.

Secondly, the third term on the right hand side is zero here when �
! ����� � � 
 � 
 � ,

because of � �
�

�
. We can show easily that � �

�
�

is necessary because of the mass conser-
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vation, �
���
� �	
� � � �

� � � ! � � (
(23)

Without � �
�

�
, Eq. (22) would not satisfy Eq. (23), since the first two terms on the right

hand side of Eq. (22) would cancel each other if the operation � � �� � � � �'( ( �
is taken. There-

fore, Eq. (6) in BYKS74 is not correct because � �
�

�
is missing.

The third term (Term C) on the right-hand-side of Eq. (22) is a correction to Term A

required to reinstate the correct bookkeeping of the number of pairs for self-collisions.

The forth term is a correction to term 1 for the same reason. These correction terms are

not relevant if self-collisions are not involved such as the case of gravitational collision-

coalescence.

Unlike the usual, deterministic KCE, the TSCE, Eq. (22), contains correlations among

instantaneous droplets of different sizes. In Fig. 5, we display the value of all terms in the

TSCE for the case of
��� � � � �

with
��
 � ��� �

and � � 
 � , using the analytical solution

of BYKS74. Initially, it is assumed that � � � ��
�� � � . This figure demonstrates that the

left hand side of TSCE and the right hand side of TSCE are exactly the same. We can also

conclude that the additional term C and term D in TSCE can be important for large droplet

sizes or for later times. Using the analytical solution of BYKS74, we can obtain correlation

coefficients of droplet number fluctuations for different mass pairs for the case of constant

collision kernel. The analytical solution of BYKS74 involves subtractions of extremely

large numbers in a series summation, and care was taken to make sure that the final result

is correct. Monte-Carlo simulations were also used to check the results. Fig. 6(a) shows

results for 1-2 and 2-3 pairs for two different system sizes
� 


. When plotted against
� 
��

,

the results overlap for two system sizes. The magnitude of correlation coefficients can be

quite large. � ��� � is close to � �
at small times for the reason that, given the initial condition,

only self collisions between size-1 droplets are possible and these generate only size-2

droplets initially. � � � � is almost always negative because the only way size-3 droplets are
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produced is through coalescences of size-2 droplets with size-1 droplets. Therefore, the

production of size-3 droplets goes with the depletion of size-2 droplets. The negative value

of � � � � will impact the production rate of size-5 droplets. Also shown in Fig. 6(b) is the

ratio of rms fluctuation to the mean for three different droplet sizes and two system sizes.

We can see that the rms fluctuations may be much larger than the mean if the mean is

small. For an initially narrow size distribution, the mean values in large size bins are all

necessarily small.

The non-zero correlations and large relative fluctuations shown above would imply that

the size distribution may not be correctly modelled by the usual KCE in general. Consider

a system initially containing 100 monodisperse elemental droplets and
� � � � � �

. If all

droplets coalescence, the final state is one large droplet of 100 times of elemental mass.

We compare, in Fig. 7, results of mass distribution using three different approaches: the

stochastically complete approach of BYKS74, KCE, and the truncated KCE (i.e., Eq. 4

with only 100 bins considered). Fig. 7 shows that the mass distribution is almost the same

for the three approaches at early time
� � � ( �

. At later time (
� � � ( � ), however, they

give different results. The difference is partly due to the fluctuation correlations discussed

above. The truncation at � � � 
 � ��� �
also accelerates the production of the largest

droplet when compared to the untruncated KCE.

Finally, we note that the nature of collision kernel can affect the level of the correlation

coefficients. Fig. 8 compares results obtained by Monte-Carlo simulations, for gravita-

tional collision kernel and a turbulent collision kernel at

 � ����� � � � � � �

. These kernels

and the initial conditions are the same as these used in Section 2.a. Of importance is that

the turbulent collision kernel results in larger correlation coefficients, implying that the de-

viation from the KCE description due to the stochastic coalescence is larger in a turbulent

flow. We also compared the mass distributions obtained from the Monte-Carlo method with

that obtained by solving the truncated KCE. Fig. 9 displays the distributions at
� � � for

two of the cases discussed in Section 2.a. The difference between the two is indeed larger
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for the turbulent kernel case, particularly at later times.

Our ultimate goal is to use TSCE to identify the conditions under which the usual

deterministic collision-coalescence mean-field equation such as KCE can be applied, or

else how the mean field equation could be improved to account for the stochastic nature of

the coalescence process. Our strategy for future research developments is to use the TSCE

and the Monte-Carlo method to understand the stochastic correlations and fluctuations, and

then apply the knowledge to design closure models for these stochastic variations when

necessary.

4. Summary and Remarks

While the potential importance of air turbulence on the collision-coalescence growth of

cloud droplets has generally been recognized, quantitative descriptions of various effects

of air turbulence on the collision rate are still incomplete. Turbulent coalescences of hydro-

dynamically interacting droplets represent a complex problem which necessarily requires

sophisticated research tools. Computational approaches such as HDNS (Wang et al. 2005b)

will continue to be a good quantitative research tool as they provide important data to ad-

vance the fundamental understanding of relevant physical processes. Theoretical (Zaichik

et al. 2003; Zaichik and Alipchenkov 2003) and accurate experimental tools (Shaw 2004;

Chuang and Bachalo 2004) are also much needed, particularly when certain aspects such

as the effect of flow Reynolds number may not be directly addressed by computational ap-

proaches. It is anticipated that results from DNS, theoretical, and experimental approaches

will be integrated to address the Reynolds number issue in the coming years.

In this paper, we summarized our on-going efforts in quantifying the effects of tur-

bulence and stochastic coalescence on the growth of cloud droplets. We showed that the

enhanced geometric collision rates by air turbulence may reduce the time for drizzle for-

mation due to coalescence by about � � �
at


 � � � � � � � � � �
, relative to the gravitational
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coalescence. Uncertainties remain on the level of droplet accumulation due to turbulence at

high flow Reynolds numbers. Preliminary results also show that air turbulence can signifi-

cantly increases collision efficiencies (Wang et al. 2005b). Combining these two enhance-

ments by turbulence is expected to further reduce the time for drizzle formation. Future

work will be aimed at parameterizing these effects by combining HDNS with a theoretical

approach.

We also revisited the question of stochastic completeness of the kinetic collection equa-

tion. It is shown that a true stochastic coalescence equation can be derived for arbitrary

collision kernels. We also validated this new mean field equation using known analytical

results and Monte-Carlo simulations. For a system of finite liquid mass and narrow initial

size distribution, it is demonstrated that both stochastic correlations and fluctuations are

significant. Therefore, for certain initial conditions, the stochastic correlations, which are

not considered in the usual kinetic collection equation, could be another source of uncer-

tainty in modeling rain formation. It is hoped that the TSCE will be useful in the future to

improve the deterministic kinetic collection equation.
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Table 1: Time in seconds for the droplet diameter based on mean mass to reach a certain size. The
percentages are obtained by dividing the times by the corresponding value for the gravitational case.

������� ���
	����
40 � � 60 � � 90 � �

0 2208 2703 3354
25 2148, 97% 2594, 96% 3131, 93%

100 1938, 88% 2270, 84% 2646, 79%
400 1500, 68% 1763, 65% 2081, 62%

35



Table 2: Analogy between coalescence modeling and fluid mechanics.

Level of Approach Coalescence models Fluid Mechanics

Particle-level Monte-Carlo method Molecular dynamics
(e.g., Gillespie, 1975b)

Phase space State space probability Boltzmann equation
(e.g., Sec. 2 of Bayewitz et al, 1974)

Field variables
� � �

� �
� � �

Navier-Stokes eqn
(e.g., Gillespie, 1972)

Full moment eqns Not fully known Full Reynolds-averaged
(e.g., Sec. 3 of Bayewitz et al, 1974) Navier-Stokes (RANS) eqn

Modeled moment eqns Example: Smoluchowski equation Modeled RANS eqns
(Smoluchowski 1917)
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(a)

(b)

(c)

Figure 1: The time evolution of average number in (a) bin 3 (20 � � in diameter), (b) bin 81 (60
� � in diameter), and (c) bin 420 (103.8 � � in diameter).
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Figure 2: Diameter in 
�� based on the average droplet mass as a function of time.
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Figure 3: Enhancement factors due to turbulence measured relative to the results of the gravitational-
hydrodynamic case for ��� � �	� and

� � 
�� as a function of ��� � � � ( 	 � � �	� 
 � � � � � ). The total enhancement
factor is the enhancement factor on geometric kernel times the enhancement factor on collision efficiency.
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Figure 4: The five sub-domains covered by the five parts in term B, as displayed in the order shown
in Eq. (18).
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Figure 5: Validation of the TSCE for the case of constant collision kernel when applied to bin 80.
The initial system size is equal to 100.
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(a)

(b)

Figure 6: (a) Analytical correlation coefficients and (b) ratio of rms fluctuation to the mean for the
case of constant collision kernel.
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(a)

(b)

Figure 7: Mass distribution obtained from different approaches: (a) t=0.1; (b) t=0.6.
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Figure 8: Correlation coefficients for hydrodynamic kernels with and without air turbulence. The
time scale ����������� s.
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(a)

(b)

Figure 9: Mass distributions at � � � for two of the cases discussed in Section 2.a: (a) gravity
kernel; (b) turbulent kernel at � � ����� ��� � �
	 �

. The open circles are based on the truncated KCE
and the filled circles are from Monte-Carlo simulations.
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