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Abatract—Turbulent diffusion of passive scalars and particles is often simulated with either 2 Monte Cirlo
prooess or a Markov chain. Knowledge of the velocity correlation generated by either of these stochastic
trajectory modecls is essential to their application, The velocity correlation for Monte Carlo process and
Markov chain was studied analytically and numerically. A general relationship was developed between the
Lagrangian velocity correlation and the probability density function for the time steps in a Monte Carlo
process. The velocity correlation was found to be independent of the fluid velocity probability density
function, but to be related to the time-step probability density function. For a Monte Carlo process with a
constant time step, the velocity correlation is a triangle function; and the integral time scale is equal to one-
half of the time-step length. When the time step was chosen randomly with an exponentia! pdf distribution,
the resulting velocity correlation was an exponential function, Other time-step probability density functions,
such as a uniform distribution and a half-Gaussian distribution, were also tested.

A Markov chain, which presumes one-step memory, has a piecewise linear velocity correlation funetion
with a finite time step. For a Markov chain with a short time step, only an exponential velocity correlation
function can be realized. Thus, a Monte Carlo process with random time steps is more versatile than a
Markov chain. Direct numerical calculation of the velocity correlation verified the analytical results,

A new moedel which combines the ideas of the Monte Carlo process and the Markov chain was
developed. By examining the long-time mean square dispersion, we found an exact solution for the
Lagrangian integral time scale of the new mode! in terms of the intercorrelation parameter and the mean
and the variance of the time steps. Using this new model, we can generate-any velocity correlation, including
one with a negative tail. Two approximate solutions that give upper and lower bonnds lor the Lagrangian
velacity correlation are proposed.
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Langevin equation,

I, INTRODUCTION

According to Taylor's (1921) work on “diffusion by
continuous movements”, the natural way to describe
diffusion in a turbulent field is to foltow the trajector-
ies of fluid elements and to accumulate velocity stat-
istics along their path. This Lagrangian approach is
the basis for the two major stochastic trajectory
models for turbulent diffusion and dispersion: the
Monte Carlo process (Gosman and Toannides, 1981;
Shuen er al,, 1983; Kallio and Reeks, 1989} and the
Markov chains (Durbin, 1980; Sawford, 1982, 1985;
Walklate, 1987; Zhuang et al., 1989). Both the Monte
Carlo process and Markov chains can be viewed as a
special case of Markov process (van Kampen, 1981).
The Monte Carlo process generates the Lagrangian
velocity through independent random numbers with
either constant or random time steps, while the Mar-
kov chains simulate the Lagrangian velocity through
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dependent random numbers with one-step memory.
Although both models have been widely used to study
turbulent diffusion numerically, the Lagrangian veloc-
ity correlations embedded in these models are not well
understood. A knowledge of the Lagrangian velocity
corrections generated by these models is essential to
their applications. In this paper, the results of a study of
the Lagrangian velocity correlations generated by the
stochastic trajectory models are presented.

We shall consider the diffusion of fluid elements ina
homogeneous, isotropic and stationary turbulent
field. Without loss of generality, a one-dimensional
formulation of the diffusion relation can be used, i.e.

1d<y* ey, [
a(t)—-2 m =Ug J; R(t)dr, (0
where &(t) is the diffusivity, u, is the root-mean-square
(rms) fluctuation velocity, y(t} is the displacement of a
fluid element relative to its mean motion, and the
angle brackets indicate an ensemble average over all
realizations of the trajectories. The Lagrangian velo-
city auntocorrelation, R(r), is defined as

<v(t)v(;+r)>! @)
Uy

R{7)=
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where »(t) is the instantaneous velocity along a par-
ticle trajectory, The Lagrangian integral time, 7}, is
the net area under the correlation curve,

€«

')“,_=J~ R(7)dx, 3)
0

and is a measure of how long the particle velocity at

present time will affect the future motion. In the short-

time limit, Equation (1) may be writien as

s(t)=udt, <yUay=ugt’, for t<kT,. {4)

The long-time limit is

e)=udT . <y*>~2ulTir, for 1T, (5)

Therefore, the diffusion statistics under the two limits
are independent of the shape of R{r). The integral
time 7 is an important parameter for the long-time
diffusion.

The Monte Carlo process with constant time steps
is often used when long-time diffusion is of interest. It
is an efficient method since the time-step size can be of
the order of 7. The Markov chains with constant
time steps are known to give an exponential velocity
correlation in the limit that the time step size &t
approaches zero {Durbin, 1980). In a numerical simu-
lation, this exponential correlation can be reasonably
realized when 6¢~0.17,. The Markov chains have
been used for short-time as well as intermediate-time
{t~7,) diffusion simulations. Recently, the Monte
Carle process with random time steps, instead of the
usual constant time step, has also been used for diffu-
sion simulations (Kallio and Reeks, 1989). The use of
random time steps seems logical since the size of a
turbulent eddy and its lifetime are both random. The
Lagrangian velocity corrections embedded in such a
general Monte Carlo process has not been studied.
Markov chains can also be extended to allow for
random time steps.

The integral equation of diffusion (Smith, 1982;
Pasquill and Smith, 1983) can also be used to model
the diffusion process. This technique requires that the
Lagrangian scales be known or that they be approx-
imated. It has the advantage of being simple to
formuiate, fast to compute, and capable of calculating
the moments of the concentration distribution dir-
ectly in terms of prescribed Lagrangian scales. The
purpose of our paper, however, is to show how the
Lagrangian scales are related to the parameters used
in a stochastic model. Our goal is to understand how
to adjust the parameters to obtain a desired Lagran-
gian correfation.

In this work, we obtained the Lagrangian velocity
correlation for a Monte Carlo process by trans-
forming the ensemble average into time average for a
stationary random process and employing physical
reasoning to find the contribution of individual velo-
city pairs to the velocity correlation function. The
same method was used to study the Lagrangian velo-
city correlation for a Markov chain with randem time
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steps. The analytical results were verified by nu-
merical tests.

2. VELOCITY CORRELATION IN MONTE CARLO PROCESS

2.1. Monte Carlo process with constant time steps

The velocity of a particle in a Monte Carlo (or
random walk) process with constant time steps is
given by

v TM=p, {T-o2T)=0p,,
H2T-23T)=0,, ... .., (6)

where vy, 1y, £y, ..., are random numbers of zero
mean. The variance of v, is assumed to be uZ, the mean
square fluctuation velocity of the flow; T is the size of
time steps.

The velocity correlation for this discontinuous
stochastic process can be obtained as follows. Since
for a stationary ergodic random process the ensemble
average can be replaced by a time average over one
trajectory, Equation (2) for the velocity correlation
can be written as
4 i i

v{t)o(t' +1) dar

R(1)=lim j M

[ “3
The time average of the product of velocity pairs with
time separation ¢ is of interest. One can easily see that
the velocity correlation is zero for all 12 7, since the
two velocities in the pair are independent, Fort< T, a
velocity pair has (T"—1)/T chance to be equal and in
this portion of time the velocity correlation between
the pair is one (Fig. 1). Thus we have

-1
R(x)emmzm, ot 1T
Rit)=0, fore=T (3]
This is a triangle function.
C

Velocity
l =

o

Time

Fig. 1. A sketch showing correlation for individual
velocity pairs; the velocity pair A--A has no correla-
tion since the time delay (z) is larger than the time-
step size (T, the velocity pair B-B has a correlation of
one since both points arc located in the same time
step; the correlation for pair C-C is zero since the two
points are located in different time steps, although the
time delay is less than 7'
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We can also numerically calculate the velocity cor-
relation by taking a large number of the discrete
velocity samples from the velocity history. Figure 2
shows a velocity history, v(2), based on Equation (6)
(solid line) and the corresponding velocity samples,
vikt), k=1,2,3,..., for 7=04T (symbols). The vaiue
R(z) can be directly calculated by

i=N

R(r):-.ﬁlu—% ‘2:[ viitio(it 41}, ]
where N is the number of velocity pairs used in the
correlation estimation. Figure 3 compares the analyt-
ical result, Equation (8), with the result of a numerical
caiculation based on Equation (9). The good agree-
ment indicates that the triangle function is the correct
correlation function. Numerical calculations of the
velocity correlation using probability distributions
other thar Gaussian distribution for v; give the same
result, implying that the velocity correlation R(1) is
independent of the form of probability distribution
used for the velocity value.
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Fig. 2. A velocity history generated by the Monte Carlo

process with constant time steps and the corresponding

velocity samples with an interdata time of 0.4T, Gaussian

deviates were used for the velocity values at different time

steps. The number of velocity pairs in the samples de-

pends on both the total record length and the interdata
time.
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Fig, 3. Velocity correlation for the Monte Catlo

process with constant time steps: solid line shows

the analytical result (triangle function} and sym-

bols represent the result of direct numerical calcu-

lation. In the numerical calculation, a total record
length of 30007 was used.
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Now it is interesting to examine diffusion statistics,
The integral time scale is obviously § x { x T'(the area
under the correlation curve). Therefore, if we simply
set T'= Ty, with T, the real Lagrangian integral scale
of a fluid particle, the integral time scale of the velocity
signal generated by the Monte Carlo process will be
Ti/2. The long-time diffusivity is then u3T,/2, one-
half the true long-time diffusivity (see Equation 5),
This was referred to as the self-consistency problem
by Kallio and Reeks (1989} in their simulation, Here
we see clearly why this occurs. The self-consistency
can be achieved simply by allowing the time-step
length 7" to be 27,.

2.2. Monte Carlo process with random time steps

If instead of using a constant time step we can
assurne that the time steps are random with a prob-
ability density distribution

plt)=f(t)=>0, for1 =0,
p(t)=0, for ;<0 (10)
and generate the velocity signal as
0ty )=0(, 0(t, =t +13)=0,,
(it +t—t i+ iy)=Ua,..... ) (11)

where v,, v,, 15, . . ., are independent random num-
bers with any probability density distribution, as long
as the mean is zero and the variance is the rms
fluctuating velocity of the flow. A Monte Catlo pro-
cess with constant time steps can be viewed as a
special case of (10) and (11) with f(t;)=d(t,— T). An
example of velocity history for a Monte Carlo process
with random time steps is shown in Fig, 4.

To find the velocity autocorrelation for the general
Monte Carto process, we first notice the following
(Fig. 5) (1) the velocity history in any time interval
with ¢, <1 does not contribute to the velocity correla-
tion R(7), since velocity values in different time inter-
vals are independent; (2) the velocity history in time
intervals with ¢, >t has R(z) equal to one for a t;~1

o) |
L
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Fig. 4. Velocity history (solid line} generated by the

Monte Carlo process with exponential deviates as

time-step size. The symbols represent the velocity

samples of interdata time equal to 0.47, which were

used to calculate directly the corrclation value with a
time delay equal to 047, te. R(v=04T),
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Velocity

Time

Fig. 5. A sketch showing the contribution of velo-
¢ity history for individual time step to the correla-
tion value at a given time delay: all the three
velocity pairs, A-A, B-B and C~C, have the same
time delay but only the B-B pair has a contribu-
tion to the velocily correlation. A-A has a zero
correlation since the time-step size in between the
pair is less than the given time delay. C-C has no
correlation since the two points are located in
different time steps, although the time-step size in
the neighborhood of the pair is farger than the
time delay.

duration and zero for the remaining duration. There-
fore, Equation {7} becomes

)

fosuchthatr;>r

Yot (12)

alti

R(z)= (1) /

Dividing both the numerator and the denominator of
the right-hand side of Equation (12) by the number of
time intervals, #, and letting » go to infinity gives

R(T)=I?J(IJ“'T)f{ri)d[i‘

13
= (13)
where T is the mean of the time interval ¢,
T=f Lfide, (14)
0

Equation (13) directly relates the Lagrangian velo-
city autocorreiation (characteristics of turbulent diffu-
sion) to the pdf function of the time-step size, f(¢,), in
the Monte Carlo process {characteristics of the
model). Since f(t,) is always non-negative, Equation
(13) indicates that the velocity correlation is always
non-negative for the generalized Monte Carlo pro-
cess. We also notice that the form of pdf function for v,
does not affect the velocity correlation since it does
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not appear in the relation. In addition, if R{z) is

continuous and differentiable, we may express f(t,) in

terms of the velocity correlation function as

d2R(7)
dr?

fl)=T (15)

L8l 1]
Equation (13) shows what f(¢;) to use if a given
velocity correlation is to be generated.

We must now show how to relate the mean value of
t;, T, to the Lagrangian time scale, 7\, in order to
ensure the self-consistency of the model. Substituting
Equation {13) into Equation (3} and performing par-
tial integration with respect to 1, we obtain

2’1‘71,=J 121 (2}, (16)
i
The right-hand side of (16) is the mean square of the
time-step size. Table 1 lists the velocity correlation
and T—T, relation for four different f(t,) distribu-
tions.

It is interesting to see that exponential velocity
correlation can be generated by a Monte Carlo pro-
cess with an exponential distribution for the time-step
size. In this case the self-consistency is retained by
simply using T'== T} . For the other three f(z,) distribu-
tions, T is different from 7. Using Equation (16}, we-
can show that 0< T'g27,.

Figures 6a, 6b and 6c compare the analytical results
with the results of direct numerical calculations of the
Lagrangian velocity correlation. Good agreement is
seen for all the distributions tested.

3. YVELOCITY CORRELATION FOR A MARKOV CHAIN

3.1. A Markov chain with finite time steps

A Markov chain simulates the velocity history with
a one-step memory. The velocity values between two
adjoining time steps have an intercorrelation of p, and
the velocity history is given by

00—t )= oy =g}
BlEy =ty -ty )=t = pv, +u0\/1 -t }

v{t, +t,—+t, +r-_,+t3]=v3=pv2+uo\/l_-—pzv'3
(1n

where v}, 05, ¢, ... , are independent random num-
bers with zero mean and unit variance. The value of p

Table 1. Examples of the generalized Monte Carlo process

fup
Constant 3it;~T)
Uniferm 1727, for O0=<1;<2T
0, otherwise
Exponential (1/Tyexp{—1,/T)

Half-Gaussian (2/Ta)exp(—t#/nT?)

Ri7) 7--T, relation
l~gT fort<T T=2T,
0, otherwise
(f—1/27)2 for 12T T=1.5T,
0, otherwise
expl—/T) =T,
exp(—13/aT?)—{1/T) T=%T,

x [ —erf{t/ /aT)]
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R(r){

(a} uniform deviates

(b) exponential deviates
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¢

{c) hali-Gaussian deviates

Fig. 6. Velocity correlations for the Monte Carlo

process for various time-step pdf: solid line shows

the analytical result, Equation (13), and symbols

represent the results of direct numerical calcu-

lation. In the numerical calculations, 3000 time
steps were used.

may depend on the length of the time step. It then
follows that

oy =ug, (Oiry 1) =pug,
(vt 20 =p uf, (18)

Figure 7 shows an example of velocity history for a
Markov chain with constant and finite time steps.

If the time steps, ty, ¢3, t3, . . ., are constant and
equal to T, then it can be shown, using the same
methodology as discussed in the last section, that the
exact velocity correlation is

R(T’ T')mp"’[l ’{"(P'— 1)(T/T_m)]v
form<t/T<m+ 1,
m=(,1,2,3...

(19)

A numerical test of this relation is shown in Fig. 8, A
Markov chain with a finite time step produces a
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Fig, 7. Velocity history (solid line} generated by a

Markov chain with g==0.6, The symbols represent the

corresponding velocity samples of interdata time
equal to 0.4T.

-2
~0.4

Fig. 8. Velocity correlations for Markov chains
with finite time steps: solid line shows the analyt-
ical result, Equation (19}, and symbols represent
the results of direct numerical calculation. In the
numerical caleulations, 3000 time steps were used,

piecewise linear correlation function. The integral
time scale is T =(T/2)(1 4+ p}/(1 — p), which is a func-
tion of both the time-step size and the intercorrelation
parameter,

3.2, Markov chain with short time steps

A Markov chain with short time steps has been
used to simulate atmospheric diffusion. To be com-
plete, we now show that Equation (19) will reduce to
an exponential function and that the Lagrangian in-
tegral time is independent of the time-step size used as
the time-step size becomes small,

When the time-step size T goes to zero, the velocity
intercorrelation parameter p approaches one. There-

fore, we let
p=1-8T, (20)

where £ is 2 parameter. If 740, Equation {19) reduces
to

R(t=nT)= lm (1-87Y
B, 70
, ( ﬁr)”
=lim { 1w | =exp{-fit). (21)
oo n .
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The integral time is 1/8. Therefore, the parameter f is
nothing but 1/7, . Letting dt= T and using (20) for p
with ff=1/T,, we can write Equation (I7) as

d Uid \/2 d
vEn, — = e di iy f— dwy,
+ 1 i T 0 T i

i I

(22)

when de—0. Here dw, is any independent random
number (white noise) of zero mean and variance equal
to dt. Equation {22) is known as the Langevin equa-
tion and has been extensively used to model atmo-
spheric diffusion (Durbin, 1980; Sawford, 1982). It is
often stated that dt=T should be less than 0.17, to
ensure no significant influence of the time-step size on
the Lagrangian velocity correlation {convergence and
consistency). We can check the difference between the
true correlation (Equation 19) and the convergent
corretation when dr—0 (Equation 21). For dt=0.1T,,
and t=7,, the exact value of R{r)=(19/21}'°
=0.36757. The convergent value is R{t)=e '
== (,36788. Therefore a time step of 017, is small
enough to ensure convergence and consistency.

4. VELOCITY CORRELATION FOR THE MARKOV
CHAIN-MONTE CARLO MODEL

Constant time steps are used in the Markov chains,
but we can extend the idea of the Markov chains by
allowing the time steps to be random numbers with
some pdf function, as was assumed in the generalized
Monte Carlo process. We call this method of simu-
lating the Lagrangjan velocity by combining Equa-
tion (17) and Equation (10} the Markov chain—-Monte
Carle model, which is more general than either the
Markov chain or Monte-Carlo process discussed in
the previous sections. Figure 9 shows an example of
the velocity history for this new model. The velocity
correlations for the model are developed in this section.

We have not been able to develop an exact solution
for the velocity correlation for the Markov chain-
Monte Carlo model, However, we find the following

Velocity
— ™~
T T

o

1

i ot ) et
0 & 18 6 20

Time

Fig. 9. Velocity history (solid line) generated by the
Markov chain-Monte Carfo model with p=0.6. Bx-
penential random deviates were used for the time-
step size, The symbols represent the corresponding
velocity samples of interdata time equal to 0.47,
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two approximations. The usefulness and accuracy of
the approximations will be examined by comparing
them with direct numerical calculations.

A first approximation was constructed by weight-
ing the Markov chain correlation for uniform time
steps (Equation 19) with the time step pdf, f(z,). The
correlation for each time step, R(t,1,), are weighted by
the fraction of the total time for which this size of step
is taken, ¢,f(t;). Therefore, we can approximate the
velocity corretation as

_}'G’R{‘f, St d
A= e

Substituting Equation (19) for R(t,¢;) into {23) and
simplifying, we have

{23)

i 2 j .
Rie)=o ¥ | - (L= p)e —jt) 1S (6 .
T,-.-_-o j‘

T

(24)

This approximation assumes that time steps of the
same values occur at the same time. This indirectly
impose some correlations on the time steps. The res-
ults of this approximation for the four different f{t,)
distributions listed in Table 1 are given in Appendix
A.

A second approximation was developed by modi-
fying the correlation for the generalized Monte Carlo
process (Equation 13), by a factor of exp(pt/T):

Riz)=exp(pt/T) j\' {fi“?‘f(ft)dh.

(25)
The exponential factor is used since the convergent
correlation for Markov chains is exponential.

Figures 10a to 10d compare the two approxima-
tions with direct numerical calculations of velocity
correlations. Several comments are in order. First,
both approximations give the correct value for the
velocity correlation when p=0, which is expected
since the new model reduces to the Monte Carlo
process, Second, when the time steps are constant, the
first approximation is exact while the second approx-
imation gives a poor prediction; however, when the
time steps are exponential deviates, the second ap-
proximation is an exact solution {Appendix B). Third,
the first approximation is better than the second
approximation when time steps are uniform deviates.
Fourth, in the case of half-Gaussian time steps, the
numerical data are in between the two approxima-
tions. Fifth, the first approximation tends to over-
predict correlation when p >0 and underpredict cor-
relation when p <0; the second approximation does
the opposite. Sixth, a smooth and negative loop in the
velocity correlation can be generated by our new
model.

Although the exact solution for the velocity correla-
tion for our new model i3 not known, the exact
solution to the Lagrangian integral time can be ob-
tained by directly examining the long-time mean
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R(7)(

R(r)

Fig. 10. Velocity correlations for the Markov
chain-Monte Carlo model: solid line shows the
first analytical approximation, Equation (24), da-
shed line shows the second analytical approxima-
tion, Equation (25), and symbols represent the
results of direct numerical calculation. In the au-
merical calculation, 3000 time steps were used.

square displacemeni {Appendix C). The value T, is
found to be related to three model characteristic
parameters: the mean value of ¢, the mean square of 1,
and the velocity intercorrelation; i.e.

(26)
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Fig, 11, Lagrangian time scales in the Markov
chain-Monte Carlo model with different pdf
distribution functions for the time step.

Figure 11 shows a Lagrangian time scale for the
different f(t;) distributions. The ratio 7, /7 increases
monotonically with p. An exponential distribution
gives the largest value for T, /7, while a constant time
step gives the smallest 77/T.

The new model has more capability for modeling
turbulent diffusion than either the Markov chain or
the Monte Carlo process since it is possible for the
new model to generate any desired velocity correla-
tion function by adjusting the intercorrelation g or the
time-step pdf function, f(y). The proper model
characteristics can be determined by numerical tests.
The two approximations for the velocity correlation
can be used as a guide to help pick the model charac-
teristics. Random time steps should be used if a
smooth correlation function is to be produced. Nega-
tive g can be used in the model! if a negative correla-
tion loop is required.

5. CONCLUSIONS

The Lagrangian velocity correlation is the most
important characteristic of a stochastic trajectory
model when it is used to simulate turbulent diffusion.
Our analytical results show that the Monte Carlo
process with constant time steps has a triangle cor-
relation function. A Monte Carlo process with ran-
dom time steps can generate many smooth positive
correlation functions, including the exponential func-
tion. On the other hand, Markov chains with a
constant and finite time step give a piecewise lincar
correlation function which depends on both the velo-
city intercorrelation and the time-step size. In the
limit of a short time step, the exponential function is
the only consistent and convergent correlation,
Therefore, a Monte Carlo process with random time
steps is more versatile for turbulent diffusion
modeling than a Markov chain. In addition, by using
a Monte Carlo process to replace a Markov chain in
numerical models of atmospheric turbulent diffusion,
the computation time can be remarkably reduced,
since the time-step size for 2 Monte Catlo process can
be of the order of the Lagrangian integral time.
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We have also developed a new mode} which extends
the idea of the Markov chain to allow for the use of
random time steps. Proper choice of the model
characteristics enables the new model to produce any
smooth velocity correlation, including the one with a
negative tail. The new model widens the applicability
of stochastic trajectory model. We recommend that
further work be done to test the new model as well as
the Monte Carlo process with random time steps for
atmospheric turbulent-diffusion modeling,

It is desired to explore further the physical implica-
tion of the pdf function, f'(z,), for the time-step size in
& stochastic trajectory model, since f(t;) is the back-
bone of the model. The use of a correct f{t,) makes the
model more realistic. If possible, experimental data
should be gathered for the pdf function. The time-step
pdf function may be related to the distribution of the
lifetime for turbulent eddies. The refationship, if any,
between the intercorrelation and the time-step pdf
function should also be studied.
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APPENDIX A
THE FIRST APPROXIMATION OF YELOCITY
CORRELATION FOR THE MARKOV CHAIN-MONTE
CARLO MODEL

When the pdf distribution for the time steps is known,
Equation (24) can be simplified to give an approximation for
the velocity correlation. Here we present the results for the
four f(1,} distributions listed in Table 1.

L-P. WANG and D. E. Stocx

1. Constant time steps
Rz, T)=p"[1 +(p — He/T—m}],
for mgt/T<m+1,

2. Uniform deviates

R
@=pm i m=om =)t e i i 17

o= 1 1 pf
t5 L (T+.—)T—."W“ﬂ
T? james N I/ JG+D 4

T
form<—<m+t,m=0123....

3. Exponential deviates

R(t)=(1-pf ffpf“‘exp(—,i).
ir

f=1

4. Half-Gaussian deviates
a 1'2
e ; P e
R(t) ;=Zop {(lﬂ m)[ﬂP( rcT“(j+1)’)
() -l 5
—exp i —{ —'P)F e \/;:—T,
T
(|}
NLEATESY

where erf(x} is the standard error lunction.

APPENDIX B
THE EXACT SOLUTION FOR VELOCITY CORRELATION

Although we are unable to obtain an explicit and closed-
form solution for the velocity correlation in Section 4 for the
Markov Chain-Mente Carlo model, the exact velocity cor-
relation can be written formally as

1"~ ©
R(n=,’:f (t—pdt 3, p*"! fle). (B1)

L]

In arriving at (B!}, we applied a similar argument to that
used for Equation (13); £(¢) is the pdf function for ¢, +1¢,
+ ... +t,=4, subject to the requirement that ¢, -+, . ..
+8 41,1 <1 Therefore

Sily=f(t)
fz(f)=j deg fle b f(0~-1)
[

f3(3)=J‘ dtl[ de, St ) (1) St~ —1,),
o o

for 7, In general, it is very difficult to find fi(r) explicitly.
However, for the exponential pdf, f{1)=1/Texp(~T), it
can be shown that

t* texp(—¢/T)

Alt)= ""“z’:":_“a"l"}:k“” (B2}
Substituting (B2) into (B1), we have
N (1- p)t)
R(z)m-exp( T ) (B3}

which is exactly the same as Equation (25).
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APPENDIX C
THE INTEGRAL TIME SCALE FOR THE MARKOY
CHAIN-MONTE CARLO MODEL

Here we explain how {o obtain an exact solution to the
integral time scale for the Markov chain-Monte Carlo
modei by simply studying the long-time mean square dis-

placement.
We first note that the relative displacement after n steps is
Y ETI PR T S R THY S S + lipty. (C1}
Then the mean square value is
(YA =md<tf)
+2ui T*[{n—)p+{n-2)p*
+{n=3)pP+ .. +p" 1] (C2)

The following have been used in obtaining (C2):
Uty =<y =T>  foris#]
(gt p e (ita iy = .. = puif
Lty p = pug>= ... =p*u}
Qg ={ugugy= ... =pu}

and s0 on.
Equation (C2) can be rewritten as

yrmyy =nud{t}
? )(n—x—p“”“). ©3
1—-p l—p

+2T%ud (
Now if we assume n is very large, then the total time would
be t=Z].ot;~nT. We have

tz
<y2(:)>nug(<*>+er)z. t»T. (C4)
T 1—p
Also notice that
YD ~2u3 Tt e T {C5)

1607
Compare (C4) and (C5), we have
(€s)

Thus we see that the integral time scale is only related to
the mean square of time steps, the mean of ¢;, and the velocity
intercorrelation p. For the four f(¢,} distributions listed in
Table 1, the T'— 7, relations are given in the following.

1. Constant time steps
(thy=T?

1+p\T
T =(___’i) -
1—p/ 2
2, Unifarm deviates

4
ety =3 T
24+p\T
ne(222)7.
1—p/ 3
3. Exponential deviates

Ry =21

4. Half-Gaussian deviates



