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We report a slowly-developing, spurious numerical solution in pseudo-spectral direct numerical simula-
tion (DNS) of incompressible fluid turbulence. When the effect of machine round-off on the divergence-
free condition is not carefully controlled, a problem can develop slowly (over about 50 large-eddy turn-
over times) and eventually leads to an unphysical flow field. The problem was found with a previously
published, highly-compact algorithm for pseudo-spectral DNS and therefore it is important to document
the contamination of this numerical artifact on simulated turbulence structure and statistics. This is a
striking example since the problem is not easily noticeable due to its very long development time, and
it does not lead to numerical instability but rather a different flow state. A theory is developed to explain
the unphysical evolution and predicts the exponential growth of round-off error induced velocity diver-
gence. The theory shows that any correlation of the large-scale forcing with the velocity field at the
beginning of the time step could lead to amplification of the velocity divergence. For this reason, the
problem is quite reproducible. Several simple remedies are tested and shown to correct the problem.
It is shown that all revised algorithms are identical theoretically to the original algorithm, with the only
difference in the level of control for the divergence-free condition of the simulated flow field. A general
recommendation is that the pressure projection operation should be performed at the end of each time
step to ensure that the divergence-free condition is not contaminated by machine round-off.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Pseudo-spectral direct numerical simulation (DNS) of
incompressible fluid turbulence has played a central role in our
understanding of turbulence dynamics in the inertial and dissipation
subranges since its introduction in the early 1970s [1–3]. The expo-
nential accuracy in space of the pseudo-spectral method makes it a
method of choice for small-scale turbulence simulation. The pseu-
do-spectral DNS has also contributed enormously to our under-
standing of the complex interactions between small suspended
particles and flow vortical structures such as preferential concentra-
tion and enhanced particle collision rate by turbulence [4–6]. The
algorithms for pseudo-spectral DNS are generally thought to be well
established.

In this short communication, we wish to demonstrate a spuri-
ous numerical solution in pseudo-spectral DNS of incompressible
fluid turbulence. The problem was realized with a previously pub-
lished, highly-compact algorithm [7] for pseudo-spectral DNS and
is shown to originate from machine round-off errors. The unique
feature here lies in the very long development time of the numer-
ical problem so that it has the potential to contaminate the physi-
cal flow statistics without notice. Under most circumstances,
ll rights reserved.
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round-off errors can affect the instantaneous turbulent flow field
due to the nonlinear nature of the Navier-Stokes equation; it is
generally believed, however, that they do not affect the statistical
features of flow vortical structures or averaged statistics of the
simulated flow as long as the flow is well resolved in space and
the Courant-Friedrichs-Lewy (CFL) condition is observed [8]. Theo-
retically, the algorithm to be discussed is precise and accurate. We
discovered the problem in a very unusual manner as the problem
did not lead to numerical instability. Instead it produces a numer-
ically realizable but unphysical flow field for incompressible fluid.
It could be possible that such evolution has some dynamic
relevance to weakly compressible turbulence.

The problem to be discussed falls under the general context of
spurious numerics in computational fluid dynamics [9,10]. Spuri-
ous numerics could come in many forms. They may lead to (1)
numerical instability, (2) unphysical flow evolution without
numerical instability, or (3) negligible consequence if the magni-
tude of spurious numerics remains small in magnitude. Case (1)
is easily realizable and Case (3) can be tolerated. Case (2) is the
most difficult case to deal with, which occurs in our pseudo-spec-
tral DNS due to the amplification of round-off error in the diver-
gence of velocity field after long-time integration. Yee et al. [9]
have shown that, due to spurious numerics, a discretized represen-
tation of partial differential equation (PDE) can produce a stable
solution that is completely different from the physical solution of
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the original conrinuum PDE. The spurious numerics may originate
from errors introduced through initial conditions, boundary condi-
tions, temporal and spatial discretizations, finite time step size, and
finite grid spacings. Standard CFL guidelines for stability do not
eliminate spurious numerics contained in long time integrations.

In a typical pseudo-spectral DNS, the following incompressible,
time-dependent, and three-dimensional Navier Stokes equation
governing the fluid velocity U is solved

oU
ot
¼ U� ~x�r P

q
þ 1

2
U2

� �
þ mr2Uþ Fðx; tÞ; ð1Þ

along with the continuity equationr � U = 0. Here ~x � r� U is the
flow vorticity, P is the pressure. The fluid density q is assumed to be
a constant. The F term represents a large-scale, prescribed forcing
field. A cubic domain of nominal size of LB = 2p is considered and
periodic boundary conditions are assumed in all three spatial
directions.

In the Fourier space, the Navier-Stokes equation is

ou
ot
¼ N 1 � ıkN 2 � mk2uþ f; ð2Þ

where u, N 1, N 2, and f are functions of the wave vector k and time
t; they represent the Fourier transform of U, U� ~x, P

qþ 1
2 U2, and F,

respectively. Note that N 1 is a vector field and N 2 is a scalar. The
divergence-free condition ık � u = 0 implies that

N i � N 1;i � ıkiN 2 ¼ N 1;jPij; with Pij � dij �
kikj

k2 ; ð3Þ

where Pij is known as the pressure projection operator. Therefore,
N 2 does not need to be explicitly calculated.

The time-integration algorithm proposed in [7] makes use of
the Adams-Bashforth scheme for the nonlinear term N and exact
integration for the linear viscous term. There are five basic steps
in this algorithm (will be referred to as Algorithm A):

1. Compute the nonlinear term N 1 at the current time t;
2. Compute the full nonlinear term at t by the projection as
N i ¼ N 1;jPij;

3. Perform the time integration

Aðt þ dtÞ ¼ uðtÞ þ dt½1:5NðtÞ � 0:5Nðt � dtÞe�mk2dt�; ð4Þ

4. Compute the velocity field at t + dt by u(t + dt) = A(t +
dt)exp(�mk2dt), and advance time;

5. ReplaceNðt � dtÞwithNðtÞ calculated in Step 2, in order to pre-
pare for the Adams–Bashforth term in the next time step.

Here dt is the time step size. The transformation shown in Step 4
was used to analytically eliminate the viscous term in Eq. (4), or
equivalently the exponential factor exp(�mk2dt) in Steps 3 and 4
results from the exact integration of the viscous term. The forcing
term is left out in the above but can be added as needed, depending
on the nature of the forcing scheme.

In theory, the above time integration scheme satisfies the diver-
gence-free condition D � r � U ¼ 0 or ık � u(t + dt) = 0 at the end of
the time step if the velocity field u(t) at the beginning of the time
step is divergence-free. In our simulation, the initial flow is an
incompressible random flow field with a k�5/3 energy spectrum.
An MPI code using domain decomposition [11] was developed
previously using the above algorithm. The code have always gener-
ated acceptable results.

Recently, we use the same turbulence simulation code to study
dynamics and collision rate of heavy particles. Due to relatively
low particle concentration, we needed to run the simulation for a
very long time (say, 50 to 100 large eddy turnover times). When
we visualized the particle concentration field, an unexpected
large-scale clustering was observed when the relevant parameters
of the particles were set to yield clustering at the Kolmogorov
scale. This is when we realized that the simulated flow somehow
gradually evolved into a flow with completely different vortical
structures, although the simulation was supposed to produce a sta-
tistically stationary turbulent flow under a large-scale determinis-
tic forcing with a fixed kinetic energy of 0.555440 and 0.159843 for
the first two wavenumber shells 0.5 < jkj < 1.5 and 1.5 < jkj < 2.5,
respectively. Fig. 1 shows the isosurfaces of vorticity magnitude
at 1.7 times the field mean, at four times t = 27.8Te, 52.8Te,
55.6Te, 66.7Te, respectively, where Te � (u

0
)2/� = 3.60 is the large-

eddy turnover time, where u0 and � are rms fluctuation velocity
and the average energy dissipation rate per unit mass (see Table
1). The flow structures appear to be normal for a long time before
such an unphysical stage is developed. The flow at t = 66.7.0Te is
dominated by two very strong tornado-like vortices whose induced
flow makes other weaker vortex tubes to wrap around them!

It took us a long time to trace the origin of such an unusual flow
evolution. In fact, the problem would not have been noticed if the
simulation had not heen performed for a very long time. The anal-
ysis below demonstrates succinctly that the origin is a result of
tiny machine round-off errors combined with a positive feedback
mechanism. Several remedies are then offered and are shown to
correct the problem.

2. Analysis

A large number of flow statistics were processed in order to
trace the origin of the problem. These include rms fluctuating
velocity u0, the longitudinal integral length scale Lf, the energy dis-
sipation rate �, the Taylor-microscale flow Reynolds number Rk,
spatial resolution parameter kmaxg, the CFL number jUjmaxdt/dx,
Kolmogorov scales (length g and time sk), and the skewness (S)
and flatness (F ) of velocity gradient, where kmax = 61.5 is the max-
imum wavenumber resolved in the simulation. The skewness and
flatness are based on an average over the three longitudinal gradi-
ents oU1/ox1, oU2/ox2, and oU3/ox3. We made sure that the flow was
well resolved spatially and a small time step was used by requiring
CFL < 0.3 and kmaxg > 1.4 at any time. Table 1 summarizes the aver-
age values from a corrected, well-behaved numerical algorithm
(see below).

It was observed that the skewness S and flatness F were well
behaved for t < 50Te (Fig. 2), but then they mysteriously deviated
from the expected range.

The origin of the problem became immediately clear when the
rms fluctuation D0 of the velocity divergence D was processed
(Fig. 3). According to Eq. (4) and noting that N is always diver-
gence-free, one can conclude that D0 would be identically zero at
all times.

This is not the case as shown in Fig. 3. WhileD0 is on the order of
10�15 initially, it grows monotonically with time exponentially for
the time interval of 10Te < t < 50Te. While D0 is still very small after
many eddy turnover times, it eventually grows to a level that ren-
ders the flow field locally compressible (note that the mean of D is
always zero). So there are regions of positive and negative D in the
flow field. While nothing strange is noticeable for t < 50Te when
other statistics are plotted as a function of time, the exponential
growth of D0 is established long before t = 50Te. This indicates that
there is a positive dynamic feedback mechanism that drives the
system away from D ¼ 0 once a small error is introduced to the
D field. The value of D0 reached a maximum at around t = 53.6Te

and then decreases slightly with time thereafter. The maximum
D0 is around 0.118/sk or 3.041/Te, therefore, it is a relative weak
compressibility when scaled by the Kolmogorov time but strong
relative to the large scale at the moment of saturation.



Fig. 1. Isosurfaces of vorticity magnitude at 1.7 times the local-in-time field mean
at t = 27.8Te, 52.8Te, 55.6Te, and 66.7Te from top to bottom, respectively.
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What originates the deviation from the divergence-free condi-
tion? We first note that, since Dðx; t ¼ 0Þ ¼ 0, the only possibility
for the deviation is the machine round-off in the code. Namely,
summing three divergence-free components in Eq. (4) could intro-
duce a small round-off error that leads to a very tiny non-zero D to
the u(t + dt) field. Second, if u(t) has a non-zero D, it will be passed
on to u(t + dt).

With the above observations, we shall now attempt to develop a
theory to predict the exponential growth of D0 in the intermediate
time interval 5Te < t < 55Te. Let d be the Fourier transform of D,
then d = ık � u. By multiplying Eq. (2) with ık�, we have

od
ot
¼ ık � N � mk2dþ ık � f: ð5Þ

Since the algorithm computes N by Eq. (3), it follows that

ık � N ¼ 0: ð6Þ

Therefore, Eq. (5) becomes

od
ot
¼ �mk2dþ ık � f: ð7Þ

For unforced modes, we have

od
ot
¼ �mk2d; for k > 2:5: ð8Þ

This implies that the divergence field would not have small-scale
structures since the viscous term quickly removes the round-off er-
rors. For the forced modes (i.e., k < 2.5), we need to examine the
term ık � f. In the particular deterministic forcing scheme used in
[7], the value of u(t + dt) in each of the two forced wavenumber
shells (i.e., 0.5 < k < 1.5 and 1.5 < k < 2.5) was multiplied, at the
end of each time step, by a factor a such that the kinetic energy
in the first two shells is restored to the prescribed value of
0.555440 and 0.159843, respectively. The value a could be different
for the two shells and could vary with time. Now we shall make an
approximation by assuming that all forced modes receive a same
scaling factor a. We proceed to estimate a. Since all dissipated en-
ergy is made up by the forcing in the range k < 2.5, a reasonable
estimate for a is then

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:555440þ 0:159843
0:555440þ 0:159843� �dt

r
� 1þ 0:14386dt; ð9Þ

where � = 0.2058 is the average dissipation rate (See Table 1). At
this point, according to Eq. (2), we can approximate the forcing term
as

dtf � ða� 1ÞfuðtÞ þ dt½N � mk2uðtÞ�g: ð10Þ

It follows that

ık � fdt ¼ ða� 1Þð1� mk2dtÞd � ða� 1Þd � 0:14386ddt: ð11Þ

Since mk2dt << 1 for k < 2.5, then the divergence for the forced
modes grows exponentially as

d / e0:14386t for k < 2:5: ð12Þ

Therefore, a prediction for the slope of log10ðD0skÞ versus t/Te is

0:14386� log10e� Te ¼ 0:14386� 0:4343� 3:60 ¼ 0:2249:

ð13Þ

This theoretical slope is plotted in Fig. 3 (a) and compares well
with the simulation result from Algorithm A. The positive feedback
mechanism is now clear: it is the specific deterministic scheme
that amplifies the velocity divergence on large-scale forced modes,
as shown by Eqs. (10) and (11). In other words, the forcing field is
correlated with the u(t) field. If a stochastic forcing scheme is used,
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Fig. 3. The rms fluctuation of the velocity divergence as a function of time. The
legends indicate the type of algorithm: (a) the whole time interval; (b) zoom in near
t = 0. In Algorithms C1 and C2, an additional projection was done every 1000 time
steps or every Dt = 1000dt = 2.0 = 0.56Te time interval, so there is a periodic
restoration of D0 back to the machine representation of zero divergence. Algorithm
B always gives the machine zero-divergence.

Fig. 2. The skewness and flatness as a function of time. The legends indicate the
algorithms: A for the original algorithm with the projection at the beginning of a
time step, B for the revised algorithm with the projection done at the end of a time
step, C1 applies a second projection to u(t) once every 1000 time steps, C2 applies a
second projection to u(t + dt) once every 1000 time steps, and CN for using the
Crank-Nicholson scheme for the viscous term. Algorithm A is described in Section 1,
Algorithm CN in Section 2, and Algorithms B, C1, and C2 in Section 3.

Table 1
Parameter setting and average flow statistics obtained from the time interval 13.9Te < t < 66.7Te using Algorithm B.

N m dt u0 Lf � Rk kmaxg CFL g sk S F

128 0.004 0.002 0.8608 1.519 0.2058 100.2 1.478 0.2149 0.02365 0.1399 �0.4715 5.084
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such a correlation may be weaker or non-exist; the exponential
amplification would also be either weaker or non-exist.

Fig. 4 shows color contours of vorticity and velocity divergence
in a same 2D slice for the flow shown in Fig. 1(d). Several interest-
ing observations can be made. First, the divergence exhibits large-
scale structure only, consistent with what are described by Eqs. (8)
and (12); while the vorticity shows small-scale structure inside the
large-scale bundles. Second the large-scale vorticity bundles tend
to overlap with regions of negative divergence, although the corre-
lation of bundles and the convergence zones is not strong. There-
fore, large-scale convergence zones cause bundling of the
vortices. At the same time, the bundling of the vortices can effec-
tively induce large-scale flow field. This positive dynamic feedback
can drive the flow from initially randomly distributed small-scale
vortical structures to clustered large-scale stuctures, as seen in
Fig. 1. The rapid growth of S and F at the late stage also signifies
that a dynamic bias is introduced by this positive feedback mech-
anism. The positive feedback mechanism shown here and the
mechanism for exponential growth of D0 in Eq. (12) make the spu-
rious flow evolution very reproducible.

To demonstrate this point, we consider the use of Crank-Nichol-
son scheme for the viscous term (Algorithm CN) as:



Fig. 5. Correlation coefficient between the divergence field and the vorticity
magnitude field.

(b)

(a)

Fig. 4. Color contours of (a) vorticity magnitude and (b) velocity divergence in the
same 2D cross-section for the flow shown in Fig. 1(d). The correlation coefficient
between the vorticity magnitude and velocity divergence is �0.55.
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1. Compute the nonlinear term N 1 at the current time t;
2. Compute the full nonlinear term at t by the projection as
N i ¼ N 1;jPij;

3. Perform the time integration as

uðt þ dtÞ ¼ uðtÞ þ dt½1:5NðtÞ � 0:5Nðt � dtÞ�

� dtmk2½0:5uðtÞ þ 0:5uðt þ dtÞ� ð14Þ
and advance time;

4. ReplaceNðt � dtÞwithNðtÞ calculated in Step 2, in order to pre-
pare for the Adams-Bashforth term in the next time step.

The results from this CN algorithm are also plotted in Figs. 2
and 3.

The average exponential growth rates are similar, as implied by
the theory, Eq. (12). The skewness and flatness deviated from the
normal range somewhat earlier (Fig. 2).
If double-precision representation were used in the code, the
problem may be delayed since the relative magnitude of D0 at
the initial time due to the machine round-off will be smaller. The
positive feedback mechanism, Eq. (12), implies nevertheless that
the same problem will eventually occur.

Fig. 3 shows that the growth of D0 is very slow initially, but it is
monotonic. After about t = 8Te, an exponential growth is quickly
established. But even at this stage, the flow dynamics is not yet af-
fected. Only when D0 reaches a level of Oð1=TeÞ, the skewness S
and flatness F become unphysical. The true danger here is that
one could use the unphysical flow without knowledge, due to the
facts that the development time is very long (about 50Te) and most
of the flow statistics appear to be acceptable for a long time.

Fig. 5 shows the correlation coefficient between the D field and
the vorticity magnitude field X � j~xj, namely, qDX � hðD� hDiÞ
ðX� hXiÞi=ðD0X0Þ, where X0 is rms fluctuation of X. A significant
negative correlation is observed when the flow deviates from its
normal evolution. This indicates that the high-vorticity region
tends to be found in convergence zones, consistent with the visu-
alizations in Fig. 4. Another observation is that the fluctuation level
of qDX is higher, even at the earlier times, for the two algorithms (A
and CN) contaminated by the round-off.

3. Remedies

Once the origin of the problem is found, we can offer several
remedies that will correct the problem. The most logical modifica-
tion is to switch the projection operation to the end of the time
step by the following modified algorithm (Algorithm B):

1. Compute the nonlinear term N 1 at the current time t;
2. Perform the following time integration

eAðt þ dtÞ ¼ uðtÞ þ dt 1:5N 1ðtÞ � 0:5N 1ðt � dtÞe�mk2dt
h i

; ð15Þ

3. Compute euðt þ dtÞ ¼ eAðt þ dtÞ expð�mk2dtÞ;
4. Project eu to yield uiðt þ dtÞ ¼ eujPij and advance time;
5. Replace N 1ðt � dtÞ with N 1ðtÞ calculated in Step 1, in order to

prepare for the Adams–Bashforth term in the next time step.

Delaying the projection operation and applying it directly to the
velocity field ensure that the u(t + dt) field is divergence-free or
any round-off error on the D field at the beginning of the time step



Fig. 6. Isosurfaces of vorticity magnitude at 1.7 times the local-in-time field mean
at the end of the simulation (t = 66.7Te) using Algorithm (a) B, (b) C1, and (c) C2.
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will not be carried on to the u(t + dt) field. The main change in
Algorithm B is that the first part of the nonlinear term N 1 is saved
for the purpose of the Adams-Bashforth step, instead of the full
nonlinear termN in Algorithm A. It is straightforward to show that
the net time evolution in Algorithm B is identical to that in Algo-
rithm A, in view of the relationship given by Eq. (3). The computa-
tional requirement for Algorithm B is identical to that of Algorithm
A.

Another alternative is to periodically flush out any contamina-
tion to the D ¼ 0 condition in Algorithm A by adding a second pro-
jection: either perform a second projection operation on u(t)
(Algorithm C1) or perform a second projection operation on
u(t + dt) (Algorithm C2). This flushing or second-projection step
adds some additional computation, however, it only needs to be
performed infrequently, say once every 1000 time steps, in view
of the long development time for the contamination by round-off
to become physically relevant.

Since PijPjm = Pim and thus N jPij ¼ N i, we obtain

Ajðt þ dtÞPij ¼ ujðtÞPij þ dt 1:5N iðtÞ � 0:5N iðt � dtÞe�mk2dt
h i

¼ Pij ujðtÞ þ dt 1:5N 1;jðtÞ � 0:5N 1;jðt � dtÞe�mk2dt
h in o

¼ Pij
eAjðt þ dtÞ:

ð16Þ

It follows

uðC2Þ
i ðt þ dtÞ ¼ uðAÞj ðt þ dtÞPij

¼ Ajðt þ dtÞPije�mk2dt

¼ eujðt þ dtÞPij

¼ uðBÞi ðt þ dtÞ;

ð17Þ

where the superscript above u(t + dt) corresponds to the Algorithm
used. Therefore the net evolution for Algorithm C2 is identical to
that of Algorithm B. Also Algorithm C1 is essentially the same as
Algorithm C2. Algorithm B is clearly the optimal one since it only
requires one projection operation per time step as in Algorithm B,
and at the same time ensures zero-divergence at the end of every
time step.

In Figs. 2, 3, and 5, we also show the results from Algorithms B,
C1, and C2. All simulations were started with an identical initial
flow field and were driven by a same large-scale forcing. Clearly,
the problem in Algorithm A has been corrected by all of them.
The additional projection in Algorithms C1 and C2 were done once
every 1000 time steps, the desired effect of this additional projec-
tion is shown clearly in the zoom-in plot, Fig. 3(b). Also the results
of Algorithms C1 and C2 are indistinguishable in Fig. 3(b). Finally,
we visualize the vortical structures at the end of the simulation at
t = 66.7Te, in Fig. 6, to confirm that the overall flow structures are
normal.

4. Conclusions and summary

In this paper, we have documented a spurious numerical solu-
tion in pseudo-spectral DNS of incompressible turbulence in a peri-
odic cube, using a previously published, popular algorithm. This
falls under the general context of spurious numerics, and in some
cases, such spurious numerics can lead to a stable but unphysical
flow evolution [9,10]. The artifact is shown to originate from
machine round-off errors, but is driven by a dynamic positive feed-
back mechanism in the large-scale forcing term. The artifact does
not affect the dynamics of the turbulent flow until about 50
large-eddy turnover times, making it rather hard to be detected.
The artifact does not lead to numerical instability, but rather cre-
ates completely different flow structures and turbulence statistics.
At the same time, it is reproducible due to the positive dynamic
feedback. The striking tornado-like flow structures developed from
the numerical artifact was found by surprise.

The problem was examined theoretically by the velocity-diver-
gence equation. It was shown that unforced modes are able to
remove the round-off errors by the viscous effect. However, the
deterministic forcing provides a positive feedback on the large-
scale forced modes. The exponential rate of growth at intermediate
times is reasonably predicted.

Several remedies that do not require much additional computa-
tion have been offered and are shown to solve the problem. The
general recommendation is that the pressure projection operation
should be performed at the end of each time step to ensure that the
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divergence-free condition is not contaminated by machine round-
off. Fortunately, this is typically the case in non-spectral flow
simulation codes.

Another general recommendation is that the divergence field be
monitored, even for an algorithm that is designed to ensure zero-
divergence. In the algorithms shown in this paper, the incompress-
ibility is used to construct each of the algorithms, but the machine
round-off combined with a dynamic feedback slowly moves the
system away from the designed state of the turbulent flow.
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