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The effect of local aerodynamic interactions on the motion of heavy particles in a bidisperse suspension
in both quiescent and turbulent air is studied by a hybrid simulation and a theoretical treatment.
The particles are assumed to be small in size compared to the Kolmogorov length of the carrier air
turbulence, and Stokes disturbance flows are used to represent the effect of particles. We first consider
the case of no background air turbulence to validate the numerical and theoretical approaches by
comparing with previous results in suspension mechanics. In a bidisperse suspension with background
air turbulence, in addition to the previously known increase due to preferential sweeping, aerodynamic
interactions contribute to a second augmentation in mean settling rate which depends on the flow
dissipation rate. This additional increase in settling rate due to local aerodynamic interactions is also
coupled with preferential concentration, in agreement with the experimental observations of Aliseda
et al. (2002, Journal of Fluid Mechanics, 468, 77–105). In all cases, the numerical results are explained
by the theoretical approach.

Keywords: Particle/fluid flows; Suspensions; Turbulent flows; Sediment transport.

1. Introduction

The gravitational settling of particles and droplets in liquid or gas is of importance to a
wide variety of applications in engineering and a host of phenomena in nature. Examples
include motion of cloud droplets in the atmosphere [48], sedimentation in rivers [59], transport
of pollutants [52], aggregation and deposition of pulp fibers in paper manufacturing [55]
and flotation operations in ore processing [53]. In these applications, particles are usually
suspended in a turbulent carrier fluid. The main objective of this paper is to present results
concerning the mean settling velocity and velocity fluctuations of particles in a turbulent
bidisperse suspension, specifically for the conditions relevant to cloud droplets.1

The sedimentation of particles in a turbulent suspension is a difficult problem because of the
wide range of length and time scales that one has to consider. The carrier-fluid turbulence is
typically generated and maintained by pressure gradient or mechanical stirring in engineering
applications or by thermal convections and/or wind shear in the atmosphere. The integral length
scale of the turbulent velocity fluctuations is usually several orders of magnitude larger than the

∗Corresponding author. E-mail: lwang@udel.edu
1 The terms ‘particles’ and ‘droplets’ are used interchangeably in this paper. Cloud droplets are small and behave like

solid particles as far as the viscous drag is concerned [48]. “Particles” is a more general term for other applications
to which the current study may also be relevant.
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2 L.-P. Wang et al.

Figure 1. The relationship between different length scales in a turbulent suspension. Here a is the radius of particles,
η is the Kolmogorov length scale of the background turbulence, and L is the integral length scale of the background
turbulence.

size of the particles. In figure 1, we illustrate the range of flow length scales in the problem of
atmospheric cloud droplets and contrast this with a typical engineering application. A unique
feature of cloud droplets is that their sizes are usually one to two orders of magnitude smaller
than the Kolmogorov scale of the undisturbed or background air turbulence. In engineering
applications, the particle size overlaps with the Kolmogorov scale.

The current study was motivated by the need to quantify the collision rates of cloud droplets
in locally homogeneous atmospheric turbulence [32, 63–65], as the enhanced collision of
droplets by turbulence may accelerate the initiation and development of rain drops from cloud
droplets through collision-coalescence [48]. In this application, the volume fraction of droplets
is typically on the order of 10−6 and the mass loading on the order of 10−3; the presence of
droplets can be assumed to have little effect on the background air turbulence (i.e., one-way
coupling, Elghobashi [30], Crowe et al. [21]). At the same time, the motion of a given droplet
in the turbulent suspension is affected by both the background air turbulence and the presence
of other droplets as each droplet can introduce a localized disturbance flow. Namely, the local
aerodynamic interactions2 among droplets must be considered. Given the scale separation
mentioned above and the small size of the droplets, the disturbance flows will be assumed to
be contained locally and dissipated quickly within Kolmogorov eddies. These assumptions
make the problem of gravitational settling of cloud droplets somewhat easier to deal with,
relative to a general turbulent suspension. For example, the droplet–droplet aerodynamic
interactions (AI) can be approximately treated by superimposing the small-scale disturbance
flows due to the droplets over the larger-scale background air turbulence [63]. Nevertheless,
the inertial response time of droplets may overlap with the Kolmogorov time scale if the
airflow dissipation rate is sufficiently high. This time-scale overlap can allow turbulence to
modify the droplet–droplet aerodynamic interactions.

There are several consequences of the above observations. In this paper, we will demonstrate
that, because of the time-scale overlap, the mean settling velocities of the droplets can be
augmented by aerodynamic interactions, and this augmentation in a turbulent flow can depend
on the energy dissipation rate of the turbulence and preferential concentration of droplets
[1, 29, 42, 56]. Previously, without considering particle–particle aerodynamic interactions,

2 The term ‘aerodynamic interaction’ and ‘hydrodynamic interaction’ are used interchangeably in this paper. Tradi-
tionally, the term ‘hydrodynamic interaction’ is used in the suspension mechanics to represent mutual interactions
of finite-size solid particles suspended in a viscous liquid. Here in our application the fluid medium is air, therefore,
“aerodynamic interaction” would be a better term. The physics of the two are identical, regardless if the carrier
medium is a liquid or a gas.
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Effects of aerodynamic interactions on the motion of heavy particles 3

Maxey [42] and Wang and Maxey [60] have shown that the settling velocity of particles can
be larger than their terminal velocity due to a preferential sweeping mechanism resulting from
preferential concentration of particles coupled with gravitational settling. In this paper, we will
show, with both the hybrid direct numerical simulation (HDNS) approach of Wang et al. [63]
and a theoretical analysis, that there is an additional increase in the mean settling velocity
due to particle–particle aerodynamic interactions. This enhanced settling will be shown to
depend on the volume fraction of particles, consistent with the recent experimental results
of Aliseda et al. [1] who measured the settling velocity of water droplets (with diameters on
the order of 10 µm) in a decaying homogeneous air turbulence. Indeed, several aspects of the
experimental conditions of Aliseda et al. [1] are similar to our application. For example, the
water droplets were at least one order of magnitude smaller than the flow Kolmogorov scale,
with inertial response time overlapping with the flow Kolmogorov time scale. The differences
in the study of Aliseda et al. [1] include a higher flow dissipation rate, a polydisperse droplet-
size distribution, and a nonstationary background air turbulence. Aliseda et al. [1] found that
the settling velocity of droplets increases with the volume fraction φ, for φ varying from
1.5 × 10−5 to 7 × 10−5. In a very recent experimental study, Yang and Shy [67] measured
the settling rate of solid particles in homogeneous air turbulence at a particle volume fraction
of 5 × 10−5 and found a 10–40% increase in the mean settling velocity due to interactions of
particles with dissipation-range turbulent eddies, but they did not vary the volume fraction of
the particles.

Another consequence is the possibility for the turbulent flow to modify the collision effi-
ciency of droplets relative to the aerodynamic-gravitational collision efficiency. The level of
this modification also depends on the level of viscous dissipation rate, and existing results are
somewhat contradictory [4, 39, 47, 63].

The more general problem of average settling rate of particles in a turbulent flow when the
particle size overlaps with turbulence length scales (e.g., Kolmogorov length) is a much more
difficult problem. Since in that case, the turbulent carrier flow will be significantly modified
by the presence of particles, the fluid motion at the particle scale has to be coupled with the
evolution of turbulence at all scales. An example of an effort toward treating such a problem
is the recent work of Burtin and Eaton [12, 13].

Without the background carrier-fluid turbulence, the sedimentation of particles in a sus-
pension belongs to the topic of microhydrodynamics [37] and has been studied extensively
(see review papers [25, 44, 49]). For a spherical cluster of size L containing monodisperse
particles settling in an unbounded fluid, the mean velocity of the particles is larger than the
terminal velocity of a single particle due to hydrodynamic interactions (e.g., [34]). The par-
ticles enhance the settling motion of their surrounding particles, and the closer together they
are, the stronger is the enhanced settling. Since the weight of the cluster scales as L3 and the
drag force scales as L , the fall velocity of the cluster must increase quadratically with the size
of the cluster. An example of this situation is the experiment of Noh and Fernando [45]. An
alternative situation is a homogeneous monodisperse suspension in an unbounded domain.
Since the Stokes disturbance flow velocity decays linearly with distance, the cummulative
effect of long-range hydrodynamic interactions increases quadratically with the effective in-
teraction radius. Batchelor [5] was well aware of the divergent integrals for settling velocity.
He introduced a renormalization procedure by using a frame of reference where there was no
net flux (i.e., the downward flux of particle is balanced by a return fluid flow). This renor-
malization is essentially equivalent to introducing a mean pressure gradient to support the
weight of particles, a situation similar to the sedimentation of particles in a finite-size con-
tainer. Using this new reference frame, Batchelor [5] found that particles settle at a slower rate
(i.e., hindered settling), and the change in the settling velocity depends linearly on the particle
volume fraction when the volume fraction is low. At higher volume fraction, the change in
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4 L.-P. Wang et al.

settling velocity may be obtained by empirical correlations based on numerous experiments
(e.g., [14, 51]).

When the suspension is statistically homogeneous, theoretical predictions [15, 34] exhibit a
divergent increase of the velocity fluctuations with the size of the container, with the variance
of the velocity fluctuations scaled linearly with the container size and the volume fraction.
The dependence of fluctuations on the container size has been demonstrated in numerical sim-
ulations where the homogeneity condition could be ensured by periodic boundary conditions
[18, 41]. The theoretical prediction on fluctuations has not been supported by experiments
[46], perhaps due to the fact that experimental conditions often exhibit a vertical gradient
and other microstructures [43]. Several other theories based on various screening mechanisms
[10, 38, 40] have also been suggested to eliminate the divergent dependence. In general, the
nature of velocity fluctuations is not fully understood.

Much less is known on the sedimentation of bidisperse or polydisperse suspensions. For
a homogeneous bidisperse suspension at low concentrations, Batchelor and Wen [6, 7] have
derived a theory to predict the average settling velocity for each size. Their results for dilute
bidisperse suspensions were later verified by experiments [3, 11, 27]. Empirical relations for
sedimentation rate and stability in dense polydisperse suspensions have also been the subject
of several other experimental and numerical studies [8, 19, 22, 28, 50].

In this study, we are concerned with dilute, bidisperse, non-Brownnian suspensions settling
in both still and turbulent air. In atmospheric clouds, a range of droplet sizes exists. Since
the total volume fraction of droplets is very small, understanding the motion in a bidisperse
suspension is a meaningful intermediate step toward a complete understanding of the motion
of polydisperse droplets in atmospheric clouds.

The paper is organized as follows. In section 2, we describe briefly the HDNS approach
[62, 63] for aerodynamically interacting particles in a turbulent flow. A theoretical approach
is developed in section 3 to predict average settling velocity and velocity fluctuations. Results
from HDNS will be discussed in section 4 and compared with the theoretical predictions.
Finally, conclusions are provided in section 5.

2. The hybrid direct numerical simulation approach

This study was motivated by results from a hybrid direct numerical simulation (HDNS) ap-
proach designed for a suspension of cloud droplets whose individual motion is governed by
both a dynamically evolving background air turbulence, generated and maintained at large
scales, and local small-scale disturbance flows induced by the presence of other droplets. The
droplets have a finite size and they may collide, although the percentage of droplets participated
in collision is extremely small at any given time step due to the low volume fractions. The orig-
inal objectives of the HDNS were to reproduce the dynamic conditions of cloud droplets in a
turbulent atmosphere and to study the collision rates of aerodynamically interacting droplets in
a turbulent flow [63]. For the dual purpose of understanding the methodology employed in the
HDNS for such a complex system and of setting the stage for later theoretical analysis aimed at
better explaining the HDNS results, we shall describe the main relevant components in HDNS.

In the context of turbulent collision of aerodynamically interacting cloud droplets, there
are five components to the development of HDNS codes: (a) direct numerical simulation of
background turbulent air flow, (b) a representation of disturbance flows due to the presence
of particles, (c) tracking the motion of particles, (d) dynamic detection of collision events
and post-collision treatment, and (e) computation of statistics associated with single parti-
cles and particle–particle pairs. All of these have been described in detail in our previous
publications [60, 61, 63, 69], so only the essential information will be provided below.
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Effects of aerodynamic interactions on the motion of heavy particles 5

In this paper, we focus our attention on droplets of 20–25 µm in radius, settling in air
turbulence with kinetic energy dissipation rate typical of atmospheric clouds. The droplet
terminal velocity is on the order of the background flow Kolmogorov velocity and the Stokes
response time is typically less than the Kolmogorov time [33], turbulence–droplet interactions
take place mainly in the viscous subrange and droplet–droplet aerodynamic interactions occur
mainly below the Kolmogorov scale.

2.1 Background air turbulence

The air flow in core regions of cumulus clouds may be modeled as a homogeneous and isotropic
turbulence by direct numerical simulations using a pseudo-spectral method. As explained
in section 1, the presence of droplets has little effect on the background air turbulence which is
denoted by U(x, t). The incompressible, time-dependent and three-dimensional Navier–Stokes
equations

∂U
∂t

= U×�ω − ∇
(

P

ρ
+ 1

2
U2

)
+ ν∇2U + f(x, t), (1)

were solved along with the continuity equation ∇ ·U = 0. Here �ω ≡ ∇ × U is the undisturbed
air flow vorticity, P is the pressure. The flow was generated from rest by the random forcing
term f(x, t) which is nonzero only for a few modes at low wavenumbers [31, 60]. After some
time, the flow becomes statistically stationary when, on average, the rate of viscous dissipation
at small scales balances the rate of energy addition by the forcing term at large scales.

The small-scale features of the flow are characterized by the Kolmogorov scales defined
based on the viscous dissipation rate and kinematic viscosity; namely, the Kolmogorov length
η, time τk , and velocity vk are, respectively,

η = (ν3/ε)1/4, τk = (ν/ε)1/2, vk = (νε)1/4. (2)

The large-scale features may be characterized by the r.m.s. fluctuation velocity or flow Taylor-
microscale Reynolds number

u′ ≡
√

< U · U >

3
, Rλ =

√
15

(
u′

vk

)2

. (3)

In HDNS, the flow Taylor-microscale Reynolds number is typically two to three orders of
magnitude smaller than in real clouds, so the effects of large-scale flow features could not be
directly represented in DNS. The size of the computational domain is typically on the order
of 10 cm or roughly 150 η when a 643 grid and a 400 cm2/s3 dissipation rate are used.

2.2 Disturbance flows and aerodynamic interactions

The disturbance flows due to particles must be described for the purpose of incorporating
particle–particle aerodynamic interactions. The size of the computational grid cell is typically
about 2 η which is one to two orders of magnitude larger than the radii of the particles. Figure
2 illustrates the relative length scales in HDNS. Obviously, the disturbance flows due to the
particles could not be directly resolved by the computational grid used for air turbulence
simulation.

What we have developed is a hybrid approach in which the disturbance flow is represented
analytically. In this paper, it is assumed that the particles are very small so the disturbance flows
are modeled as quasi-steady Stokes flows. An improved superposition method has recently
been developed [62] in which the no-slip boundary condition on the surface of each particle
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6 L.-P. Wang et al.

Figure 2. Relative length scales in HDNS. The cube represents grid cell size in HDNS, the circle indicates domain
of influence for aerodynamic interactions. For 643 DNS at Rλ = 40, computational domain is about 141 η, grid cell
size is about 2.2 η, particle diameter is 0.083 η.

is satisfied when averaged over the surface of the particle. Specifically, the fluid velocity of
the composite flow at the center of each particle is equal to the velocity of that particle. This
requirement leads to a more accurate representation of the force acting on a particle due to the
disturbance flows by all other particles than the original superposition method (e.g., [48]).

Consider a suspension of Np particles in a background turbulent flow of velocity field
U(x, t). The composite air velocity field, after adding all the disturbance flow fields, is

Ũ(x, t) ≡ U(x, t) +
k=Np∑
k=1

uS

(
r(k); a(k), V(k) − U(Y(k), t) − u(k)

)
, (4)

where

uS (r(k); a(k), V(k)) ≡
[

3

4

a(k)

r (k)
− 3

4

(
a(k)

r (k)

)3
]

r(k)

(r (k))2
(V(k) · r(k))

+
[

3

4

a(k)

r (k)
+ 1

4

(
a(k)

r (k)

)3
]

V(k) (5)

represents Stokes disturbance flow due to the k-th particle of radius a(k) moving at velocity V(k)

in an otherwise quiescent fluid, and r(k) ≡ x−Y(k). Here Y(k) is the instantaneous location of the
k-th particle. In equation (4), the combination [V(k) − U(Y(k), t) − u(k)] represents the relative
velocity between the k-th particle and the composite flow excluding the disturbance flow due to
the k-th particle itself. Namely, u(k) represents the disturbance flow velocity due to all particles
except the k-th particle, at the location of the k-th particle. u(k) is determined by applying the
center-point approximation [62] to the boundary conditions Ũ(|r(k)| = a(k), t) = V(k), yielding

u(k) =
m=Np∑
m=1︸︷︷︸
m �=k

uS

(
d(mk); a(m), V(m) − U(Y(m), t) − u(m)

)
, for k = 1, 2, . . . , Np, (6)

where d(mk) ≡ Y(k)−Y(m). The above equation represents a linear system of dimension equal to
3Np. We note that u(k) is a function of both the background air flow field and the instantaneous
locations and velocities of all particles.

Since the Stokes flow induced by m-th particle decays with d (mk) ≡ |d(mk)| as a(m)/d (mk), as
an approximation, we may truncate the right hand side of equation (6) if d (mk)/a(m) ≥ H , or only
contributions from particles in the neighborhood are considered. Physically, the dimensionless
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Effects of aerodynamic interactions on the motion of heavy particles 7

truncation radius H should be made on the order of (Rep)−1 as the far-field disturbance flow
can be better modeled by Oseen’s equation [37, 45], where Rep is the particle Reynolds
number. Furthermore, the fluid inertial effect at the scales above the Kolmogorov scale in
the turbulent background flow also implies that the Kolmogorov scale may also be a relevant
scale for determining H . As a first step, in this paper the truncation radius H is determined by
a combined consideration of numerical accuracy and computational efficiency. The efficient
cell-index method with cell size equal to the truncation radius and the concept of linked
lists [2] were used to quickly identify all the pairs participating in aerodynamic interactions.

Once u(k) is determined, the drag force acting on the k-th particle can be calculated simply
as [62]

D(k) = −6πµa(k)[V(k) − U(Y(k), t) − u(k)]. (7)

The simulation typically involved a total of 100 000 particles, with half of the particles of
size 1, and second half of size 2. The simulation considered all aerodynamic (i.e., 1–1, 1–2,
2–2) interactions, where 1–1 denotes aerodynamic interactions among size-1 particles, 1–2
denotes aerodynamic interactions of size-1 particles with size-2 particles, and 2–2 aerodynamic
interactions among size-2 particles.

2.3 Motion of particles

Since the density of the droplet ρp is much larger than the air density, the equation of motion
for the k-th particle takes a relatively simple form

dV(k)(t)

dt
= −V(k)(t) − U(Y(k)(t), t) − u(k)

τ
(k)
p

− g, (8)

dY(k)(t)

dt
= V(k)(t), (9)

where τ (k)
p = 2ρp(a(k))2/(9µ), g is the gravitational acceleration, and µ is the air viscosity.

The Stokes terminal velocity of k-th particle is W (k) = τ (k)
p |g|.

The particles were introduced into the simulation when the background air turbulence had
reached the statistically stationary stage. Then the turbulence field, disturbance flow velocities,
and locations and velocities of all particles were advanced in time simultaneously. For each
time step, the following procedures were implemented:

1. interpolate the undisturbed fluid velocities at the locations of the particles, U(Y(k), t);
2. solve the disturbance velocities u(k) using equation (6);
3. advance the velocities and locations of the particles using equations (8) and (9);
4. process collision detections, post-collision redistribution, and single particle or particle–

particle pair statistics;
5. advance the undisturbed fluid turbulence field U(x, t) using the pseudo-spectral approach.

The initial conditions were that the locations of the particles were randomly distributed and
the initial velocity was set equal to the local fluid velocity plus the terminal velocity of the
particle. After about 3×max(τp1, τp2), single-particle and particle–particle pair statistics were
accumulated to obtain running averages.

The computation of the disturbance velocities or aerodynamic interactions was the most
time-consuming part of the simulations, taking about 70–80% of the CPU time. The simula-
tions were performed on NCAR’s SGI Origin 3800 with 16–32 nodes and OpenMP. A typically
simulation with about 4000 time steps (amounts to over 10 large-eddy turnover times) took
5–10 h of real-clock time on 32 nodes.
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8 L.-P. Wang et al.

2.4 Collision detections and post-collision treatment

The method for collision detection went through several iterations [61, 68, 69] and the final
version utilized the efficient cell-index method and the concept of linked lists [2]. A collision
detection grid was carefully chosen so that all collision events were counted and, at the same
time, no time was wasted on processing pairs of large separations. All collision events (1–1,
1–2, and 2–2 collisions) were considered.

No particles were allowed to overlap in space. Whenever two particles collided, they were
immediately removed from their current locations and, at the same time, two new particles
having the same material properties as the pair just removed were added back to the com-
putational domain. The locations of the two new particles were randomly chosen and care
was taken to make sure that they did not overlap with any other particles in the system. Their
velocities were set to their terminal velocity plus the local fluid velocity. They were then
tracked by solving their equation of motion just like all other particles. In this manner, the
total number of particles remains the same and no particle overlaps with any other particles
at the beginning of any time step. The above treatment mimics most closely the real situation
of stochastic collision-coalescence of cloud droplets, since coalescence of two droplets will
transform these droplets from their own size groups to a larger size group, while coalescence
of smaller droplets can introduce new droplets to these size groups being considered.

A variety of statistics related to the motion of individual particles and particle–particle
interactions were computed. The statistics most relevant to this study were the mean velocities
of particles in all three directions and for both sizes. The pair statistics such as the radial
distribution functions [57, 69] will also be needed in this study to quantify the effect of
preferential concentration (e.g., [29]) on the mean motion of particles [1, 42, 60]. For further
details on collision detections and computation of statistical properties, the reader is referred
to Zhou et al. [68, 69].

3. Theory for mean and fluctuation velocities in a bidisperse suspension

Before discussing the numerical results, we shall attempt to develop some theoretical predic-
tions based on the setting of HDNS. These theoretical predictions provide good quantitative
estimates of the effects of aerodynamic interactions on the mean and fluctuation velocities of
particles. The roles of truncation radius and volume fractions of particles will also be clearly
described.

3.1 A model for average velocities of particles without background air turbulence

We first consider the gravitational settling of particles in a suspension without the background
air turbulence. At t = 0, N [1] particles of radius a[1] and known still-fluid terminal velocity
W [1] and N [2] particles of radius a[2] and terminal velocity W [2] are randomly distributed in
the computational domain of volume VB, with the initial velocity of each particle set to its
terminal velocity. Note here we have introduced a superscript within a square brackets to
represent a group behavior, namely, the superscript ‘[1]’ denotes properties associated with
all size-1 particles. While the superscript within parentheses such as ‘(k)’, used for example
in equation (8), denotes properties associated with an individual particle, i.e., the k-th particle.
The volume fractions for the two sizes are

φ[α] ≡ 4π N [α](a[α])3

3VB
, (10)
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Effects of aerodynamic interactions on the motion of heavy particles 9

for α = 1 and 2. All the particles then move according to the equation of motion, equation
(8), under the influence of particle inertia, Stokes drag, and gravity. The background air flow
U(x, t) is set to zero.

Without aerodynamic interactions, namely if u(k) are all set to zero, the equation of motion
has the trivial solution (

V [1]
3 (t)

V [2]
3 (t)

)
=

(
W [1]

W [2]

)
, (11)

and the mean velocities of particles in the horizontal directions are zero. Furthermore, there are
no velocity fluctuations in any direction. For convenience, we have the vertical (3−) direction
pointing downward to align with the direction of gravity.

The purpose here is to obtain the average behavior of particles in each size. We shall first
focus on the average velocities of particles and assume that all particles in the size-1 group
behaves in exactly the same manner on average and experience the same average disturbance
flow velocity u[1]

3 . We shall also assume that the particles in each size-group are distributed
uniformly in space. Only the mean vertical motion needs to be considered as, on average,
there is no horizontal mean motion. The average equation of motion then reduces to

dV [1]
3

dt
= −

[
V [1]

3 − u[1]
3

]
τ

[1]
p

+ g, (12)

dV [2]
3

dt
= −

[
V [2]

3 − u[2]
3

]
τ

[2]
p

+ g. (13)

The question now is how to relate u[1]
3 and u[2]

3 to the particle velocities V [1]
3 and V [2]

3 , concentra-
tions φ[1] and φ[2], and other parameters in the numerical implementation of the aerodynamic
interactions. u[1]

3 represents the sum of all disturbance flows at the location of a size-1 particle,
due to the presence of all other particles in the system. This consists of two parts: the cumu-
lative effect of all disturbance flows due to all other size-1 particles as shown in figure 3(a)

Figure 3. Sketch illustrating how the disturbance flows are summed up over spherical shells: (a) for u[11]
3 ; (b) for

u[12]
3 .
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10 L.-P. Wang et al.

and the cumulative effect of all disturbance flows due to all size-2 particles as illustrated in
figure 3(b). Each of these two contributions can be summed up, as shown in appendix A. A
similar procedure can be used to derive u[2]

3 . Finally, u[1]
3 and u[2]

3 can be shown to satisfy the
following linear set of equations:

u[1]
3 = 1.5φ[1][H 2 − 4]

(
V [1]

3 − u[1]
3

) + 1.5φ[2] f

(
H,

R

a[2]

) (
V [2]

3 − u[2]
3

)
, (14)

u[2]
3 = 1.5φ[1] f

(
H,

R

a[1]

) (
V [1]

3 − u[1]
3

) + 1.5φ[2][H 2 − 4]
(
V [2]

3 − u[2]
3

)
, (15)

where the function f is given by Equation (A.6).
Equations (12)–(15) together completely specify the time-dependent mean motion of par-

ticles for both sizes. It is important to note that, because of the aerodynamic interactions, the
motion of size-1 particles is coupled with the motion of the size-2 particles. Eliminating the
disturbance flow velocities from equations (12) and (13), we can formally write(

dV [1]
3 /dt

dV [2]
3 /dt

)
=

(
a11 a12

a21 a22

) (
V [1]

3

V [2]
3

)
+

(
g

g

)
, (16)

again demonstrating the mean motions for two particle sizes are coupled. Here ai j are in
general nonzero and are related to the two inertial response times τ [1]

p and τ [2]
p , concentrations

φ[1] and φ[2], the AI truncation radius H , and the particle radii a[1] and a[2].
The long-time, steady state solution is(

V [1]
3

V [2]
3

)
=

(
W [1]

W [2]

)
+

(
1.5φ[1][H 2 − 4] 1.5φ[2] f

(
H, R

a[2]

)
1.5φ[1] f

(
H, R

a[1]

)
1.5φ[2][H 2 − 4]

) (
W [1]

W [2]

)
. (17)

Since the second term on the right-hand side of the above-equation is positive, the particles
settle faster, on average, than their terminal velocities. This results from the net downward
disturbance flow due to all particles in the system.

It is important to recognize that the above-increased settling is computed relative to the mean
motion of the background air turbulence. There is a nonzero mean motion of the system (i.e.,
particles and the air together) due to all the disturbance flows. In appendix B, we show that,
if the similar renormalization procedure of Batchelor [5] is introduced, the known hindered
settling of particles [5, 7] can be recovered, with coupling coefficients comparable to the
classical results of Batchelor and Wen [5, 7].

3.2 Velocity fluctuations without air turbulence

Next we shall develop an approximate theoretical treatment for the long-time, r.m.s. velocity
fluctuations. When a particle enters the AI truncation radius of other particles, its motion will
be affected by the local disturbance flows of the other particles. Its velocity will no longer
be equal to its terminal velocity in the vertical direction, and its horizontal velocities will no
longer be zero. In figure 4, we show the locations from HDNS, as a function of time, in one
of the horizontal directions for a pair of particles that almost collide at t/T AI = 110. Here
T AI is a characteristic time for aerodynamic interactions and is defined as T AI ≡ 10R/�W
with �W = |W [1] − W [2]|. The average location at t = 0, Y pair

2 (0), is used as the reference
position, and the instantaneous location is normalized by the geometric collision radius R.
When they almost collide at about t/T AI = 110, both particles wobble back and forth in this
horizontal direction by a distance on the order of the geometric collision radius. Also note that
the smaller particle experienced two strong AI events with two other particles in the system
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Effects of aerodynamic interactions on the motion of heavy particles 11

Figure 4. Locations, as function of time, in one of the horizontal directions for a pair of particles. Background air
turbulence was not activated.

before that time, as shown by the two spikes at t/T AI = 55 and t/T AI = 71. There are also
a few other weaker interactions between t/T AI = 74 and t/T AI = 106. All of these generate
velocity fluctuations in the horizontal direction.

We first consider the velocity fluctuations in the horizontal directions. The mean velocities
in the horizontal directions are zero due to the inherent symmetry of the problem. Only one
of the horizontal directions needs to be considered as the r.m.s. velocity fluctuations are the
same for the two horizontal directions. Assume the disturbance flow fields due to different
particles are statistically uncorrelated (this is a reasonable assumption as the volume fractions
are low, most of the local AI involve only two particles), then the velocity variance in the
x2 direction for any given size-1 particle would be the sum of the squared value of the x2

component velocity of individual disturbance flows due to all other particles in the system, at
the location of the size-1 particle being considered. Namely,〈(

u[1]
2

)2〉 = 〈
u2

2

〉[11] + 〈
u2

2

〉[12]
, (18)

where 〈u2
2〉[11] is the velocity variance due to all other size-1 particles and 〈u2

2〉[12] is the velocity
variance due to all size-2 particles. 〈u2

2〉[11] can be calculated as

〈
u2

2

〉[11] =
∫ S[1]

2a[1]
dr

∫ π

0
dθ

∫ 2π

0
dφ r2 sin θ︸ ︷︷ ︸

volume containing 1-particles involved in AI

× N [1]

VB︸︷︷︸
mean number density

× [
uS (r; a[1], W [1]) · e2

]2︸ ︷︷ ︸
contribution due to a 1-particle

=
∫ S[1]

2a[1]
dr

∫ π

0
dθ

∫ 2π

0
dφ r2 sin θ

N [1]

VB

{[
3

4

a[1]

r
− 3

4

(
a[1]

r

)3]
W [1] sin θ cos θ cos φ

}2

= 9

80
φ[1](W [1])2 F(H, 2), (19)
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12 L.-P. Wang et al.

where

F(H, β) ≡ H − β + 2

H
− 2

β
− 1

3H 3
+ 1

3β3
. (20)

The expression for 〈u2
2〉[12] would be similar except that the range of integration for θ should

exclude the shaded region in figure 3(b). However, it becomes impossible to carry out the
integration analytically over such a spatial domain. Therefore, as an approximation, we choose
to include the shaded region, then the final approximate expression for 〈u2

2〉[12] is〈
u2

2

〉[12] ≈ 9

80
φ[2](W [2])2 F

(
H,

R

a[2]

)
. (21)

Putting all together, the r.m.s. velocity fluctuation in the horizontal direction can be approxi-
mately written as

(
u[1]

2

)′ ≡
√〈(

u[1]
2

)2〉 ≈
√

9

80

[
φ[1]

(
W [1]

)2
F(H, 2) + φ[2]

(
W [2]

)2
F

(
H,

R

a[2]

)]
. (22)

With the same level of approximation, we can obtain

(
u[2]

2

)′ ≈
√

9

80

[
φ[1]

(
W [1]

)2
F

(
H,

R

a[1]

)
+ φ[2](W [2])2 F(H, 2)

]
. (23)

Similar procedure can be used to derive the velocity variance in the vertical direction. For
any size-1 particle, we can write〈(

u[1]
3

)2〉 = 〈
u2

3

〉[11] + 〈
u2

3

〉[12]
, (24)

where〈
u2

3

〉[11] =
∫ S[1]

2a[1]
dr

∫ π

0
dθ 2πr2 sin θ × N [1]

VB
× [

uS (r; a[1], W [1]) · e3
]2

= N [1]

VB

∫ S[1]

2a[1]
dr

∫ π

0
dθ 2πr2 sin θ

×
{[

3

4

a[1]

r
− 3

4

(
a[1]

r

)3
]

W [1] cos2 θ +
[

3

4

a[1]

r
+ 1

4

(
a[1]

r

)3
]

W [1]

}2

= 63

20
φ[1]

(
W [1]

)2
F(H, 2), (25)

with

F(H, β) ≡ H − β − 11

42H
+ 11

42β
− 1

63H 3
+ 1

63β3
. (26)

Then the r.m.s. fluctuations in the vertical directions are(
u[1]

3

)′ ≡
√〈(

u[1]
3

)2〉 ≈
√

63

20

[
φ[1]

(
W [1]

)2
F(H, 2) + φ[2]

(
W [2]

)2
F

(
H,

R

a[2]

)]
, (27)

(
u[2]

3

)′ ≈
√

63

20

[
φ[1](W [1])2 F

(
H,

R

a[1]

)
+ φ[2](W [2])2 F(H, 2)

]
. (28)

These then provide theoretical estimations of the level of velocity fluctuations in the vertical
direction. It differs from equations (23) and (22), for the horizontal direction.
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Effects of aerodynamic interactions on the motion of heavy particles 13

The above predictions indicate that the velocity fluctuations are linearly proportional to the
terminal velocities, the square root of volume fractions, and the square root of AI truncation
radius. These are consistent with the theoretical predictions of Hinch [34] and Caflisch and
Luke [15]. The above theory also predicts that the r.m.s. fluctuation velocity in the vertical
direction is roughly a factor

√
28 (or 5.3) larger than the r.m.s. fluctuation velocity in the

horizontal direction, so the fluctuation motion is strongly anisotropic.

3.3 Incorporation of background air turbulence

For simplicity, we shall only consider the quasi-steady, mean motion of particles in a turbulent
flow with aerodynamic interactions. According to the equation of motion, the average velocity
for the size-1 particles can be written as

V [1]
3 = W [1] + 〈

U3
(
Y(k), t

)〉 + u[1]
3 , (29)

where 〈U3(Y(k), t)〉 is the average fluid velocity seen by the size-1 particles, and the average
should be taken over all spatial locations occupied by size-1 particles. It is well established
[42, 56, 60] that 〈U3(Y(k), t)〉 is, in general, nonzero even though the turbulent field has no mean
flow (i.e., 〈U(x, t)〉 = 0), due to the preferential sweeping resulting from the combination of
preferential concentration and gravitational settling. Namely, particles are found more likely
to locate themselves in regions with downward air flow, a result that has been confirmed by
experiments [1, 66, 67].

We expect an additional change to the mean motion due to aerodynamic interactions, as
in the case without air turbulence. This additional increase may be described by the theory
developed above with a modification to take into account the non-uniform pair distribution,
namely,

u[1]
3 =

∫ S[1]

2a[1]
dr

∫ π

0
dθ 2πr2 sin θ g11(r )

N [1]

VB
uS (r; a[1], W [1]) · e3∫ S[2]

R
dr

∫ π

0
dθ 2πr2 sin θ g12(r )

N [2]

VB
uS (r; a[2], W [2]) · e3

≈ 3φ[1]W [1]
∫ H

2
g11(r )

r

a[1]
d

r

a[1]
+ 3φ[2]W [2]

∫ H

R/a[2]
g12(r )

r

a[2]
d

r

a[2]
, (30)

where g11(r ) and g12(r ) are radial distribution functions for 1–1 and 1–2 pairs [57, 69]. The
radial distribution functions measure the effect of preferential concentration on the pair number
density at separation r = R. In HDNS, g12 can be computed, at any given time, as

g12(r ) = Npair/Vs

N [1] N [2]/VB
, (31)

where Npair is the total number of 1–2 pairs detected with separation distance falling within
a thin spherical shell of average radius r , and Vs is the volume of the spherical shell. The
monodisperse radial distribution functions, g11(r ) and g22(r ), can be computed similarly.

The main approximation for equation (30) is the inclusion of the shaded region due to the
non-overlap for the 1–2 interaction, as discussed previously. Since g11(r ) and g12(r ) can be
larger than 1, we then expect that the additional increase in the mean velocity due to AI is
larger than that without turbulence. This coupling between the preferential concentration and
aerodynamic interactions is also noted in the experimental work of Aliseda et al. [1].
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14 L.-P. Wang et al.

Figure 5. The increased average settling velocities of the droplets as a function of time.

4. Results and discussions

4.1 Still background air

We first discuss results without air turbulence. In figure 5, the differences between the mean
velocities of the particles and their respective terminal velocity are shown for a case involving
50 000 droplets of 25 µm in radius and 50 000 droplets of 20 µm in radius in a simulation box
of size equal to 6.283 cm. The terminal velocity and inertial response time for 25 µm droplets
are 8.0147 cm/s−1 and 0.00816 s, and those for 20 µm are 5.1294 cm/s−1 and 0.00523 s. This
corresponds to a number density of 202 cm−3 for each size in clouds and a total liquid water
content of 20.0 g/m3 (or a total volume fraction of 2×10−5). Since the dependence on volume
fractions is known, the liquid water content was purposely made about one order of magnitude
higher than in real clouds in order to show the finite effects discussed in section 3, but at a
reasonable computational cost. The simulation was run for 0.9 s, only the data for the first 0.1
s were shown as we here focus on the transition to steady state. The data for t > 0.1 s retain
the quasi-steady values. The same AI truncation radius of H = 50 was used in HDNS and
the theory. The mean velocities increase with time initially and then reach the quasi-steady
values, the relative increases are roughly the same (≈ 0.544 cm/s) for the two sizes, and are
about 6.8% of the terminal velocity for 25 µm droplets and 10.6% of the terminal velocity
for 20 µm droplets.

For the parameter setting used here, equations (14) and (15) in cm–g–s units are

u[1]
3 = 0.04939

(
V [1]

3 − u[1]
3

) + 0.02516
(
V [2]

3 − u[2]
3

)
, (32)

u[2]
3 = 0.04925

(
V [1]

3 − u[1]
3

) + 0.02529
(
V [2]

3 − u[2]
3

)
. (33)

Solving for u[1]
3 and u[2]

3 and substituting into the equations of motion, we obtain(
dV [1]

3 /dt

dV [2]
3 /dt

)
=

(
−116.9 2.869

8.763 − 186.7

) (
V [1]

3

V [2]
3

)
+

(
980.0

980.0

)
. (34)

It is important to note that the mean motions for the two droplet sizes are coupled because of
the aerodynamic interactions; the degree of coupling depends on the droplet concentrations
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Effects of aerodynamic interactions on the motion of heavy particles 15

and the AI truncation radius. The solution with the initial conditions mentioned before is(
V [1]

3 (t) − W [1]

V [2]
3 (t) − W [2]

)
=

(
−0.5436

−0.0679

)
exp

(
− t

0.008583

)

+
(

0.01867

−0.4565

)
exp

(
− t

0.005346

)
+

(
0.5249

0.5244

)
. (35)

The coupling is further indicated by the fact that the time scales for the transient behavior
of each sizes are related to the inertial response times for both sizes and the coefficients in
equations (32) and (33). While the exponential coefficient in the first term is close to the
inverse of τ (1)

p , it is not exactly the same as 1/τ (1)
p . The exponential coefficient in the second

term is also slightly different from 1/τ (2)
p .

The above theoretical predictions are also shown in figure 5. It is remarkable that the
theory predicts very well the transition to the quasi-steady state. The long-time values are also
predicted well.

In figure 6, we show the long-time average mean velocities of droplets from four HDNS
runs, for a bidisperse system containing N [1] 25 µm droplets and N [2] 20 µm droplets. We set
N [1] = N [2] for each run but used different total number of droplets for different runs, so four
different total number concentrations are represented here. The total volume fraction is roughly
the value of the total number concentration in cm−3 multiplied by 10−7. The theoretical results
from equation (17) are also shown. The theory well predicts the HDNS data, showing that
the relative increases in mean settling are about the same for the two droplet sizes and are
linearly dependent on the volume fraction. Aliseda et al. [1] also found experimentally that
the increased settling rate increases roughly linearly with the volume fraction.

Next we show the r.m.s. velocity fluctuations in both vertical and horizontal directions for
the same four runs (figure 7). In the vertical direction, the fluctuations are about the same
for the two sizes and are well predicted by the theory given by equations (26) and (27), note
that the two equations give almost the same result. In the horizontal direction, the HDNS data

Figure 6. The difference between the quasi-steady average settling velocity and the terminal velocity, < V (α)
3 >

−W (α), as a function of total average number density used. The number density for each droplet size is half the total
number density.
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16 L.-P. Wang et al.

Figure 7. The r.m.s. velocity fluctuations as a function of total average number density used: (a) vertical direction,
(b) horizontal direction.

show that the fluctuations for 25 µm droplets are slightly higher, while the theory based on
equations (22) and (23) gives almost identical results. The theory indicates that the velocity
fluctuations are proportional to the square root of number concentration, and also that the
r.m.s. velocity fluctuations in the vertical direction is about 5.3 times larger than those in the
horizontal direction, both well supported by the DNS results. The theory does overpredict
the data in the horizontal direction, perhaps due to the inclusion of the shaded region which
should be excluded due to the non-overlap condition.

Several other simulations were performed where both the AI truncation radius and the
total concentration were varied, again keeping N [1] = N [2] for each run. The results for the
increased mean velocity due to AI are shown in figure 8. Again the theoretical predictions
agree well with the data, showing that the relative increase is roughly proportional to H 2.
The physical interpretation here is that, while the disturbance flow velocity decays as O(r−1),
the number of droplet pairs for AI considered increases as O(r3), leading to the net effect
proportional to H 2. The results for the r.m.s. velocity fluctuations are displayed and compared
with the theory in figure 9.

The above results consider only one size combination. In table 1, several other size combina-
tions are considered. The simulated settling velocities are compared with the theory, showing a
reasonable agreement. The difference between the theory and the simulation tends to increase
with the particle volume fraction.
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Effects of aerodynamic interactions on the motion of heavy particles 17

Figure 8. The difference between the quasi-steady average settling velocity and the terminal velocity, 〈V (α)
3 〉−W (α),

as a function of AI truncation radius. The theory essentially predicts a same value for this increase for the two sizes.

Figure 9. The r.m.s. velocity fluctuations as a function of AI truncation radius: (a) vertical direction, (b) horizontal
direction.
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18 L.-P. Wang et al.

Table 1. Comparison of the simulated settling velocity with theory in still air, for H = 50

(a[1], a[2])(µm) (20,25) (20,30) (20,50) (30,50)
φ[1] 4.33 ×10−6 3.46 ×10−6 4.33 ×10−6 1.46 ×10−5

φ[2] 8.45e ×10−6 1.17 ×10−5 6.76 ×10−5 ×10−5

V [1]
3 (cm/s) 5.478 ± 0.018 5.721 ± 0.003 13.421 ± 0.004 20.300 ± 0.005

V [2]
3 (cm/s) 8.370 ± 0.023 12.173 ± 0.002 41.212 ± 0.046 41.973 ± 0.041

V [1]
3 − W [1] (cm/s) 0.348 ± 0.018 0.591 ± 0.003 8.290 ± 0.004 8.754 ± 0.005

V [2]
3 − W [2] (cm/s) 0.354 ± 0.023 0.631 ± 0.002 9.149 ± 0.046 9.910 ± 0.041

V [1]
3 − W [1] (cm/s), theory 0.336 0.570 8.189 8.870

V [2]
3 − W [2] (cm/s), theory 0.336 0.571 8.198 8.742

4.2 Turbulent background air

We shall now discuss selected results for the turbulent flow case. In figure 10, we display
results from three runs.

(i) Case NT-AI. A base case with aerodynamic interactions but no air turbulence.
(ii) Case T-NAI. Another base case with air turbulence but no aerodynamic interactions.

(iii) Case T-AI. Both aerodynamic interactions and air turbulence are activated.

Again, 25 µm and 20 µm droplets are considered. The air turbulence has a dissipation rate
ε = 400 cm2/s−3. The computation domain size was 8.329 cm and 50 000 droplets were used
for each size, giving volume fractions φ[1] = 5.66 × 10−6 and φ[2] = 2.90 × 10−6. The flow
simulation grid was 643 and the resulting Taylor microscale Reynolds number was Rλ = 43.04.
The normalized AI truncation radius H was 50. The Stokes numbers for the two droplet sizes
are 0.396 and 0.254, while the non-dimensional terminal velocities W/vk are 2.791 and 1.786.

The long-time average statistics are shown in table 2. It is clear from both figure 10 and
table 2, that the increased settling for case T-AI contains both the contribution due to the
preferential sweeping (case T-NAI) and the contribution from aerodynamic interactions. The
contribution due to aerodynamic interactions for case T-AI is larger than the relative increase

Figure 10. The difference between the quasi-steady average settling velocity and the terminal velocity, 〈V (α)
3 〉−W (α),

as a function of time for ε = 400 cm2/s−3.
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Effects of aerodynamic interactions on the motion of heavy particles 19

Table 2. Results for the increased settling velocities (cm/s−1). All HDNS data were averaged over time from
t = 0.25 s to t = 2.20 s. ε = 400 cm2/s−3.

Case NT-AI Case T-NAI Case T-AI

〈V [1]
3 〉 − W [1]: HDNS 0.2309 1.0941 1.5226

〈V [1]
3 〉 − W [1]: theory 0.2240 – –

〈V [2]
3 〉 − W [2]: HDNS 0.2315 0.9114 1.2641

〈V [2]
3 〉 − W [2]: theory 0.2238 – –√
〈(V [1]

3 − 〈V [1]
3 〉)2〉: HDNS 0.2648 9.62171 9.63413√

〈(V [1]
3 − 〈V [1]

3 〉)2〉: theory 0.2574 – –√
〈(V [2]

3 − 〈V [2]
3 〉)2〉: HDNS 0.2560 9.73207 9.73594√

〈(V [2]
3 − 〈V [2]

3 〉)2〉: theory 0.2580 – –

in case NT-AI, due to the preferential concentration effect, namely, the enhanced near-field
pair density as quantified by the radial distribution functions.

Figure 11(a) shows the three radial distribution functions, for case T-AI, for R[αβ] < r <

10R[αβ], where R[αβ] = a[α] + a[β], with α, β = 1, 2. We note that for this range of r , g[12]

varies from 1.38 to 1.65, g[11] from 6.74 to 2.70, and g[22] varies from 3.04 to 1.96. Note that
g[αβ] will continue to decrease with r for r > 10R[αβ] but always be larger than 1. g[11] is the
largest due to the larger Stokes number for 25 µm droplets [61]. g[12] is the smallest because
droplets of different sizes tend to occupy different locations relative to small-scale flow vortical
structures [69]. The different terminal velocities tend to further reduce the spatial correlation of

Figure 11. (a) Radial distribution functions as a function of r/R[αβ], where R[αβ] = a[α] + a[β]; (b) Radial distri-
bution functions as a function of r/η on a log-log plot. The lines represent asymptotic model predictions from Chun
et al. [17].
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20 L.-P. Wang et al.

local concentrations, and therefore the value of g[12]. The same data are plotted in figure 11(b)
on a log–log scale to compare with the recent model predictions of Chun et al. [17] who
developed an asymptotic theory for the radial distribution functions of non-settling particles
at small Stokes numbers, without aerodynamic interactions. For a monodisperse system, Chun
et al. [17] showed that g[11](r ) ≈ c0(η/r )6.56St2

when the flow Reynolds number Rλ = 47.1
(very close to Rλ = 43.04 in our simulations here). Here c0 is an unknown constant. For a
bidisperse system, they showed that g[12](r ) ≈ c0[(η2 + r2

c )/(r2 + r2
c )]c1/2 with c1 ≈ 0.25 and

rc/η ≈ 5(St1 − St2). Their theoretical curves are shown in figure 11(b) with the value of c0

chosen to match our data at r/R = 10. Some evidence of the power-law scaling exists for the
monodisperse radial distribution function, but with at least two deviations: (a) the power-law
slope is significantly less for the larger size particles, and (b) the power-law scaling breaks
down for r/R ≤ 4. The magnitudes of g11 and g22 level off at small separations. The shape
of g12 also appears to be more complex than the model of Chun et al. [17]. These differences
could be caused by the large St numbers, gravitational settling, and aerodynamic interactions
that are considered here.

Using the values shown in table 2, we obtain the following relationships between the
increased settling due to AI for turbulent flow and the increased settling due to AI without air
turbulence:[〈

V [1]
3

〉 − W [1]
]T−AI − [〈

V [1]
3

〉 − W [1]
]T−NAI = 1.856

[〈
V [1]

3

〉 − W [1]
]NT−AI

, (36)[〈
V [2]

3

〉 − W [2]
]T−AI − [〈

V [2]
3

〉 − W [2]
]T−NAI = 1.524

[〈
V [2]

3

〉 − W [2]
]NT−AI

. (37)

The proportionality coefficients are comparable to the range of values for g[αβ] shown in figure
11. The proportionality coefficient for 25 µm droplets is larger than that for 20 µm, this can
be explained by the fact that g[11] > g[22].

Similarly, we could relate the increased velocity variance in the vertical direction due to AI
for the turbulent flow case to the result for the no-turbulence case:〈(

V [1]
3 − 〈

V [1]
3

〉)2〉T−AI − 〈(
V [1]

3 − 〈
V [1]

3

〉)2〉T−NAI ≈ 3.41
〈(

V [1]
3 − 〈

V [1]
3

〉)2〉NT−AI
,〈(

V [2]
3 − 〈

V [2]
3

〉)2〉T−AI − 〈(
V [2]

3 − 〈
V [2]

3

〉)2〉T−NAI ≈ 1.15
〈(

V [2]
3 − 〈

V [2]
3

〉)2〉NT−AI
.

Since the velocity fluctuations of droplets due to turbulent transport are much larger than the
velocity fluctuations caused by AI alone, it should be noted the variances involve subtracting
two large numbers so possibly a large statistical uncertainty as well. Nevertheless, the coeffi-
cients are consistent with the range of magnitude for the radial distribution functions. Again,
the proportionality coefficient for 25 µm is larger due to larger g[11].

As yet another demonstration of the degree of coupling between AI and preferential con-
centration, more runs were performed at another air flow dissipation rate of 100 cm2/s−3.
As before, 25 µm and 20 µm droplets were considered. The computation domain size was
11.796 cm. With 50 000 droplets for each size, the volume fractions were φ[1] = 1.99 × 10−6

and φ[2] = 1.02×10−6. The normalized AI truncation radius H was still 50. The Stokes num-
bers for the two droplet sizes became 0.198 and 0.127, while the non-dimensional terminal
velocities W/vk were 3.947 and 2.526. We found that[〈V3〉[1] − W [1]

]T−AI − [〈V3〉[1] − W [1]
]T−NAI = 1.42

[〈V3〉[1] − W [1]
]NT−AI

, (38)[〈V3〉[2] − W [2]
]T−AI − [〈V3〉[2] − W [2]

]T−NAI = 1.11
[〈V3〉[2] − W [2]

]NT−AI
. (39)

The coefficients are smaller when compared to equations (36) and (37), due to the smaller
Stokes numbers and thus lower g[αβ] [69]. All of these demonstrate that it would be possible
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Table 3. Simulated settling velocites in a turbulent air, for H = 50. The volume fractions are identical to the cases
considered in table 1

(a[1], a[2])(µm) (20,25) (20,30) (20,50) (30,50)
φ[1] 4.33 × 10−6 3.46 × 10−6 4.33 × 10−6 1.46 × 10−5

φ[2] 8.45 × 10−6 1.17 × 10−5 6.76 × 10−5 6.76 × 10−5

(V [1]
3 − W [1])NT−AI (cm/s) 0.348 ± 0.018 0.591 ± 0.003 8.290 ± 0.004 8.754 ± 0.005

(V [2]
3 − W [2])NT−AI (cm/s) 0.354 ± 0.023 0.631 ± 0.002 9.149 ± 0.046 9.910 ± 0.041

(V [1]
3 − W [1])T−NAI (cm/s) 0.921 ± 0.018 0.944 ± 0.018 0.946 ± 0.018 0.835 ± 0.027

(V [2]
3 − W [2])T−NAI (cm/s) 1.105 ± 0.023 0.970 ± 0.024 0.095 ± 0.023 −0.088 ± 0.025

(V [1]
3 − W [1])T−AI (cm/s) 1.442 ± 0.021 1.658 ± 0.020 9.065 ± 0.008 9.907 ± 0.017

(V [2]
3 − W [2])T−AI (cm/s) 1.772 ± 0.027 2.217 ± 0.032 11.882 ± 0.052 12.585 ± 0.042

(g[11])T−AI 2.419 ± 0.281 2.112 ± 0.267 0.864 ± 0.319 2.365 ± 0.199
(g[22])T−AI 6.476 ± 0.359 9.398 ± 0.406 4.799 ± 0.197 4.240 ± 0.129
(g[12])T−AI 1.504 ± 0.065 1.220 ± 0.050 0.988 ± 0.078 1.110 ± 0.049

to predict the relative increase in settling due to AI in a turbulent flow if analytical predictions
of g[αβ] become available and are incorporated into equation (30).

Finally, three other droplet-pair size combinations are considered and the results are com-
piled in Table 3. In almost all cases, the enhanced settling is the largest when both the turbulence
and AI are considered. The results can be qualitatively understood with the similar reasoning
presented above for the first size combination of 20 µm and 25 µm droplets.

5. Conclusions and Remarks

In this paper, we have investigated the motion of aerodynamically interacting particles in both
turbulent and non-turbulent bidisperse suspensions. The motion of individual particles was
simulated by a hybrid direct numerical simulation approach in which a three-dimensional dy-
namically evolving background air turbulence was generated and maintained at large scales,
and local small-scale disturbance flows induced by the presence of other particles were imbed-
ded analytically using an improved superposition method [62, 63]. The mean settling velocities
and velocity fluctuations of particles were studied by both hybrid direct numerical simulations
and by a theoretical approach. The HDNS approach does not provide an exact treatment of
the near-field aerodynamic interactions [62], and should be viewed as a first step toward a
rigorous treatment of turbulent dispersed flows with aerodynamically interacting particles, a
subject that has never been theoretically studied previously. We have demonstrated that the
HDNS can provide valuable results that can help building an improved understanding of the
aerodynamic interactions on the sedimentation of bidisperse particles.

In the theoretical approach, we were able to sum up the contributions from all disturbance
flows, pair by pair, over spherical shells centered on a test particle being considered. This
approach was applied to bidisperse suspensions without and with background air turbulence.
Both mean and fluctuation velocities have been derived, and compare well with HDNS results.
Although the analysis was applied here to a bidisperse system of same density, it can be equally
applied to a bidisperse system of different densities and sizes. Without air turbulence, it was
found that the particles settle at a faster rate than their respective terminal velocity, relative to
the undisturbed air mass in an infinite space. The relative increase is linearly dependent on the
terminal velocities of the particles, the volume fractions of particles, and approximately on
the squared AI truncation radius, all of which were supported by HDNS results. The theory
demonstrates explicitly the coupling between the motion of two sizes within the suspension and
predicts well the transition from the initial condition to the quasi-steady condition. The r.m.s.
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velocity fluctuations were also successfully predicted by the theory. The observed velocity
fluctuations imply that the collision efficiencies between droplets in atmospheric clouds could
depend on the presence of all other droplets in the suspension. We note that, although the mean
velocity of the particles depends on the truncation radius, the relative motion of particles is
not sensitive to the truncation radius, as shown in Wang et al. [63].

When the normalization of Batchelor [5] is applied or the mean motion of the full system
due to all the disturbances are subtracted out, then the particles settle at a slower velocity than
their respective terminal velocity, consistent with the theory of hindered settling [5, 7]. We also
demonstrate that the sedimentation coefficients in a bidisperse system vary greatly depending
on the size ratio, in qualitative agreement with the theoretical results of Batchelor and Wen [6,
7]. Our study also reveals the need to further improve the superposition method for near-field
interactions to obtain better quantitative results of sedimentation rates. The theoretical result
for the velocity fluctuation is consistent with previous results for homogeneous suspensions
[15, 34], and shows a strong anisotropy of the fluctuation motion.

In a turbulent suspension, particles of finite inertia can settle faster than their terminal
velocities for two reasons. First, the preferential sweeping effect [60] biases the trajectories
of particles toward regions with downward local air velocity due to the combined effect of
preferential concentration and gravitational settling. Second, the aerodynamic interactions by
the disturbance flows introduce net downward velocity on particles. Here we demonstrated,
both numerically and theoretically, that the additional increased settling due to the AI was also
augmented by the preferential concentration effect which depends on the dissipation rate of
the background air turbulence. The observed coupling between aerodynamic interactions and
preferential concentration as well as its effect on the sedimentation rate in a turbulent flow are
consistent with the experimental results of Aliseda et al. [1].

The assumption of Stokes disturbance flows used in this study is invalid in the far field,
implying that the theory becomes inaccurate as the AI truncation radius grows. In reality, for
any given particle Reynolds number Rep, no matter how small it may be, the Stokes disturbance
flow due to a particle of radius a, will break down at a distance larger than r > aRe−1

p [37].
In other words, the far-field disturbance flow should decay faster than O(r−3) so the integrals
might converge if the AI truncation radius is increased indefinitely. The cumulative long-range
aerodynamic interactions [54] further accelerate the finite-Reynolds number effect; the same
argument applies to a cluster of particles as the size of cluster grows [45]. On the other hand,
since the results remain qualitatively the same for different AI truncation radii, we expect that
the results illustrated in this paper be qualitatively valid for a wider range of particle Reynolds
numbers. The screening mechanism related to the fluid inertia [10, 38, 40] implies that, if the
inter-particle separation is larger than the flow Kolmogorov scale, the truncation radius will
depend on the flow Kolmogorov scale. We speculate that, for a dilute turbulent suspension
considered in our paper, the truncation radius will depend on both the particle size and the
flow Kolmogorov scale, the exact nature of these dependences is a topic for future research.

The results presented in this paper should be viewed as a first step toward a better under-
standing of the sedimentation in turbulent suspension for atmospheric cloud droplets and other
related applications. When scaled with the realistic mass loading or liquid water content (i.e.,
1 g/m−3) in atmospheric clouds, the relative increase in the settling rate is about 2%–3% and
should be viewed as a small change. Since there is a distinct difference in the Reynolds num-
ber between the HDNS airflow and the atmospheric turbulence, the question of whether this
change increases with flow Reynolds number should be studied in the future. This Reynolds
number dependence is related to the issue of the Reynolds number dependence of the radial
distribution function (e.g., [20]). The results of Yang and Shy [67] on the increased settling
rate of solid particles in turbulent air appear to suggest a strong flow Reynolds number depen-
dence. In engineering applications where the volume fractions of droplets and flow dissipation
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rates are much higher, the level of increase in the settling rate could be much more significant
[1, 67]. For example, in the experiments of Aliseda et al. [1] the flow dissipation rates are one
to two orders of magnitude higher. Under a similar level of volume fractions, Alidesa et al. [1]
found a much higher level of increased settling. The underlying mechanisms are essentially
the same as these discussed in this paper, and the theoretical predictions developed here appear
to provide a better understanding of their observations. A direct comparison with the data of
Aliseda et al. [1] would require a further parametric study of the turbulent sedimentation for
different droplet size combinations and flow dissipation rates as well as the use of a poly-
disperse size distribution. Given the level of the particle volume fraction (5 × 10−5) in the
study of Yang and Shy [67], we speculate that part of the significant increase in the settling
velocity of solid particles in turbulent air, that they observed experimentally, could be due to
the aerodynamic interactions discussed in this paper.

Finally, we note that analytical and numerical methods using Stokesian dynamics simula-
tions, multipole techniques at large separations, and lubrication expansion for small separa-
tions [9,16,24,36] are the logical next step to improve our approach. When the minimum sep-
aration between two particles approaches the mean free path of fluid medium, non-continuum
effects [35, 58] also need to be considered. The recent work by Chun and Koch [16] is partic-
ularly relevant in this regard.
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Appendices

A. Appendix Derivations of average disturbance motion, u[1]
3 and u[2]

3

The cummulative effect of all disturbance flows at the location of a size-1 particle can be
decomposed as

u[1]
3 = u[11]

3 + u[12]
3 , (A.1)

where u[11]
3 denotes the sum of all disturbance flows due to all other size-1 particles located

within a radius of S[1] ≡ Ha[1] from the size-1 particle being considered and is given as

u[11]
3 =

∫ S[1]

2a[1]
dr

∫ π

0
dθ 2πr2 sin θ︸ ︷︷ ︸

volume containing 1-particles involved in AI

× N [1]

VB︸︷︷︸
mean number density

× uS (r; a[1], (V [1]
3 − u[1]

3 )e3) · e3︸ ︷︷ ︸
contribution due to a 1-particle

.

(A.2)

Here H is the normalized AI truncation radius. In writing the above equation, the contributions
are summed over infinitesimal spherical shells (figure 3a). Physical interpretations of the
different parts in the above equation are indicated by the text underneath them. Substituting
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the expression for the Stokes disturbance flow uS as given by equation (5), we obtain

u[11]
3 = 1.5φ[1]

[(
S[1]

a[1]

)2

− 4

] (
V [1]

3 − u[1]
3

)
. (A.3)

Similarly, u[12]
3 denotes the sum of disturbance flows due to all size-2 particles located with a

radius of S[2] ≡ Ha[2] from the size-1 particle being considered. u[12]
3 can be expressed as

u[12]
3 =

∫ S[2]

R=a[1]+a[2]
dr

∫ π−sin−1 R
r

0
dθ 2πr2 sin θ︸ ︷︷ ︸

accessible volume to 2−particles involved in AI

× N [2]

VB︸︷︷︸
mean number density

× uS

(
r; a[2],

(
V [2]

3 − u[2]
3

)
e3

) · e3︸ ︷︷ ︸
contribution due to a 2-particle

. (A.4)

Here the range of integration over the polar angle θ is modified due to the non-overlap condition
(figure 3b) which is discussed in detail in [63]. The shaded region in figure 3b indicates the
region where no size-2 particles are found relative to the size-1 particle considered. Performing
the integration with the Stokes disturbance flow gives

u[12]
3 = 1.5φ[2] f

(
S[2]

a[2]
,

R

a[2]

)(
V [2]

3 − u[2]
3

)
, (A.5)

where

f (α, β) = 0.5(α2 − β2) + 0.75α
√

α2 − β2

−0.25

(
1

α
− 1

3α3

)
(α2 − β2)1.5 − 0.75β2 cosh−1

(
α

β

)
. (A.6)

To be complete, we should note that the above equation applies when α > β. If α ≤ β or
S[2] ≤ R which means that the radius of size-1 particles is much larger than the radius of
size-2 particles such that it is impossible to find the center of any size-1 particle being within
the AI truncation radius from any size-2 particle, then f (α, β) = 0.

When H � R/a[2], we have

f

(
S[2]

a[2]
,

R

a[2]

)
≈

(
S[2]

a[2]

)2

. (A.7)

Therefore, for very large AI truncation radius, both equations (A.7) and (A.3) indicate that the
effect of aerodynamic interaction increases with the square of the truncation radius, implying
that the integrals represented by equations (A.2) and (A.4) will not converge if the truncation
radii are made indefinite. This property has been noted, for example, by Batchelor [5], and is
due to the very slow decay (i.e., O(r−1)) of the Stokes disturbance flow at large distance.

A similar procedure can be used to derive u[2]
3 . Putting all together, the average cumulative

disturbance flow magnitudes can be solved by the following linear set of equations:

u[1]
3 = 1.5φ[1][H 2 − 4]

(
V [1]

3 − u[1]
3

) + 1.5φ[2] f
(
H,

R

a[2]

)(
V [2]

3 − u[2]
3

)
, (A.8)

u[2]
3 = 1.5φ[1] f

(
H,

R

a[1]

)(
V [1]

3 − u[1]
3

) + 1.5φ[2][H 2 − 4]
(
V [2]

3 − u[2]
3

)
. (A.9)
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Appendix B. A renormalization to recover the hindered settling

The increased settling discussed in section 3.1 is computed relative to the mean motion of the
background air turbulence. There is a nonzero mean motion of the system (i.e., particles and
the air together) due to all the disturbance flows, assuming that no external inverse pressure
gradient exists to counter balance the mean motion. This total mean motion at the long-time,
quasi-steady stage can be written as

u[ f p]
3 = u[ f p1]

3 + u[ f p2]
3 , (B.1)

where the superscript [ f p] denotes all space occupied by both the fluid and the particles. Here
u[ f p1]

3 denotes all contributions due to size-1 particles and can be expressed as

u[ f p1]
3 = 1

VB

∫ S[1]

a[1]
dr

∫ π

0
dθ 2πr2 sin θ uS (�r ; a1, W [1]e3) · e3︸ ︷︷ ︸

contribution due to flow outside a single 1−particle

×N [1]

+ φ[1]
(
W [1] + u[1]

3

)
,︸ ︷︷ ︸

contribution due to 1−particles within their own space

(B.2)

yielding

u[ f p1]
3 = 1.5φ[1]

[
H 2 − 1

]
W [1] + φ[1]

(
W [1] + u[1]

3

)
. (B.3)

A similar expression can be obtained for u[ f p2]. Therefore,

u[ f p]
3 = (1.5H 2 − 0.5)

(
φ[1]W [1] + φ[2]W [2]

) + φ[1]u[1]
3 + φ[2]u[2]

3 . (B.4)

The last two terms on the right-hand side may be neglected as they represent second-order
terms in volume fractions. Following the renormalization of Batchelor [5], the mean velocities
of the particles relative to this mean motion of the system are then

u[1]
3 − u[ f p]

3 = W [1] − 5.5φ[1]W [1] − β [12]φ[2]W [2] − φ[1]u[1]
3 − φ[2]u[2]

3 , (B.5)

u[2]
3 − u[ f p]

3 = W [2] − 5.5φ[2]W [2] − β [21]φ[1]W [1] − φ[1]u[1]
3 − φ[2]u[2]

3 , (B.6)

where

β[12] ≡ 1.5H 2 − 0.5 − 1.5 f

(
H,

R

a[2]

)
, (B.7)

β[21] ≡ 1.5H 2 − 0.5 − 1.5 f

(
H,

R

a[1]

)
, (B.8)

The values of β[12] and β [21] are listed in table B1 for several different H and a[2]/a[1].
Several interesting observations can be made. After the mean flux of the system is subtracted

out, the hindered settling of particles [5, 7] is recovered. The coefficient 5.5, in equations (B.5)

Table B1. The value of the coupling coefficients: the first value is β[12] and the second is β[21]

a[2]/a[1] 0.1 0.5 0.9 0.99

H = 10 149.5, 4.233 25.35, 7.623 14.00, 11.65 12.86, 12.63
H = 20 265.8, 5.175 32.36, 9.375 17.47, 14.46 16.00, 15.72
H = 30 321.1, 5.726 36.46, 10.40 19.50, 16.10 17.84, 17.52
H = 50 390.6, 6.422 41.63, 11.69 22.06, 18.18 20.17, 19.80
H = 100 484.9, 7.365 48.65, 13.45 25.54, 20.99 23.32, 22.88
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Table B2. Comparison of resulting sedimentation coefficients as defined in [7], for H = 25.

a[2]/a[1] 0.1 0.5 0.9 0.99
S12, Eqn (B.10) −15.06 −8.65 −5.18 −3.38
S12, Batchelor and Wen [7] −5.29 −4.29 −3.83 −3.68
S21, Eqn (B.11) −18.97 −39.76 −112.5 −366.5
S21, Bactchelor and Wen [7] −5.95 −9.81 −24.32 −78.53

and (B.6), of the leading-order effect of aerodynamic interactions due to all other particles of
same size compares reasonably well with Batchelor’s exact result of 6.55 for Stokes disturbance
flows [5, 7]. The difference is due to the non-exact treatment of the boundary conditions on
the surface of particles in our superposition method.

The more interesting result is perhaps the effect of aerodynamic interactions due to the
other-size particles, namely, the level of aerodynamic interactions in a bidisperse system. The
coefficients listed in table B1 can be viewed as a measure of the magnitude of cross-size
aerodynamic interactions. These coefficients are usually larger than 5.5 for the monodisperse
system, due to the additional inaccessible region (i.e., shown as the gridded region in figure 3)
caused by the non-overlap condition for unequal-size pairs [63]. If the AI truncation radius is
made very large, the volume of this inaccessible region increases linearly with the truncation
radius and the disturbance velocity decays as 1/r , then the integral effect would imply that
β [12] should linearly depend on ln(S[2]/R). Indeed, when S[2] � R, the asymptotic expression
for β[12] is

β [12] =
[

1.125 ln
2S[2]

R
+ 1.3125

] (
R

a[2]

)2

− 0.625. (B.9)

This explains why β[12] in table B1 continues to increase as H is increased, when a[2]/a[1] is
close to one.

In table B2, we compare directly the bidisperse sedimentation coefficients resulting from
equations (B.5) and (B.6), but using the definition of Batchelor and Wen [7],

S12 ≡ −β [12] ×
(

a[2]

a[1]

)2

, (B.10)

S21 ≡ −β [21] ×
(

a[1]

a[2]

)2

. (B.11)

Although the quantitative values differ from the exact values given in [7] due to the inexact
treatment of the boundary conditions here [62], the qualitative behavior is nevertheless very
similar. It is possible to improve the quantitative comparison here by adding lubrication effects
of near-field interactions to our superposition method, following, for example, the methods of
Revay and Higdon [50] and Dance and Maxey [23].
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