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The scaling and statistical properties of three-dimensional compressible turbulence are studied using

high-resolution numerical simulations and a heuristic model. The two-point statistics of the solenoidal

component of the velocity field are found to be not significantly different from those of incompressible

turbulence, while the scaling exponents of the velocity structure function for the compressive component

become saturated at high orders. Both the simulated flow and the heuristic model reveal the presence of a

power-law tail in the probability density function of negative velocity divergence (high compression

regime). The power-law exponent is different from that in Burgers turbulence, and this difference is shown

to have a major contribution from the pressure effect, which is absent in the Burgers turbulence.
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Compressible three-dimensional (3D) fluid turbulence
is of great importance to a large number of industrial
applications and natural phenomena, including high-
temperature reactive flows, transonic and hypersonic air-
crafts, interplanet space exploration, and star-forming
clouds in galaxies [1]. An accurate description (e.g.,
subgrid-scale stress modeling [2]) of small-scale com-
pressible turbulence is desired when modeling complex
compressible turbulence. In this Letter, we study the
effects of compressibility and shock discontinuities on
the statistics of fluid turbulence, with specific attention to
the similarity and difference between 3D compressible
turbulence and one-dimensional Burgers turbulence.

Since it is difficult to analyze 3D compressible turbu-
lence, Burgers [3] first systematically studied a nonlinear
model of fluid turbulence; i.e., the one-dimensional Burgers
equation. Since then, the one-dimensional Burgers turbu-
lence has frequently been investigated theoretically and
numerically [4–13]. According to multifractal theory [4],
isolated shocks connected by smooth ramps lead to bifractal
scaling exponents of the velocity structure function in the
Burgers turbulence. Mitra et al. [5] performed simulations
of one-dimensional Burgers turbulence with up to 220 mesh
points to study the multiscaling of velocity structure func-
tions. They found that scaling exponents asymptotically
saturate to one with increasing orders. Much effort has
also been made to exploit the asymptotic behavior at the
tail of the probability density function (PDF) of the nega-
tive velocity derivative in Burgers turbulence [7–13]. E
et al. [10] predicted that the large negative velocity gra-
dients stem mainly from preshocks, leading to the �7=2
power-law tail in the PDF of negative velocity gradients
(provided that preshocks do not cluster). Bec [11] verified
this result using a novel particle and shock tracking nu-
merical method. Boldyrev, Linde, and Polyakov [12] car-
ried out simulations of random forced Burgers turbulence
using a standard shock capturing scheme. They obtained a

power-law exponent of about �3:4, very close to the
theoretical value of �3:5.
Compared to incompressible turbulence, 3D compress-

ible turbulence is more complex due to nonlinear inter-
actions between solenoidal and compressive modes of
velocity fluctuations and couplings between the velocity
field and pressure field [14]. Besides the vortex-filament
induced intermittency observed in the incompressible tur-
bulence, shock waves in the compressible turbulence add
an intermittent dissipation mechanism of different topo-
logical structures [15]. Schmidt, Federrath, and Klessen
[16] studied the two-point velocity statistics of compress-
ible turbulence at a root-mean-square (rms) Mach number
of 5.5 by numerical simulations of Euler equations.
A universal scaling has been recovered by reformulation
of the refined similarity hypothesis in terms of the mass-

weighted velocity �1=3u. They also reported that the most
intermittent dissipative structures were shocks, due to ex-
treme compressibility of the flow field. Galtier and
Banerjee [17] derived an exact relation for correlation
functions in compressible isothermal turbulence that
mimics the Kolmogorov 4=5 law in the incompressible
isotropic turbulence. Consequently, they theoretically re-
vealed the effect of dilation and compression on the local
energy transfer. By dimensional arguments, they further

obtained a k�5=3 spectrum of the density-weighted velocity

�1=3u.
Here, a forced compressible turbulence is simulated in a

cubic box with periodic conditions at 10243 grid resolu-
tion, using a novel hybrid approach described in [18] [also
see Supplemental Material [19]]. A total of 20 flow fields at
the statistical stationary stage spanning 2:68 � t=Te �
4:63 are extracted to analyze the flow statistics, where t
is time and Te is the large eddy turnover time defined by

Te ¼
ffiffiffi
3

p
L=u0, where L is the integral length scale and u0 is

the rms velocity magnitude. The turbulent Mach number is
Mt ¼ u0=hci ¼ 1:03, where hci is the average sound speed,
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and the Taylor microscale Reynolds number is R� ¼ 254.
The rms velocity divergence is found to be �0 ¼ 0:35!0,
where !0 is the rms vorticity magnitude. It is also found
(not shown in the Letter) that power spectra for velocity u,

and density-weighted velocities �1=3u and �1=2u almost
overlap, indicating a minor effect of density fluctuations on
the velocity spectrum.

In order to reveal the underlying physics in the com-
pressible turbulence, we employ the Helmholtz decompo-
sition [14]; namely, the fluid velocity u is decomposed into
a solenoidal component us and a compressive component
uc: u ¼ us þ uc, where r � us ¼ 0 and r� uc ¼ 0. In
our simulated flow, the ratio of rms fluctuations, uc0=us0, is
found to be 0.22, comparable to 0.18 reported in Porter,
Pouquet, and Woodward [20] at a similar turbulent Mach
number.

Figure 1 shows the normalized PDFs of the longitudinal
increments, �usðrÞ � �usðrÞ � r=r, of the solenoidal ve-
locity component at different separations, where r is the
separation vector and r ¼ jrj. The PDFs exhibit stretched
exponential tails at small spatial separations and approach
Gaussian as the separation increases. These trends are very
similar to those found in incompressible turbulence [21].
Figure 2 shows the normalized PDFs of the longitudinal
increments, �ucðrÞ � �ucðrÞ � r=r, of the compressive
velocity component. The shapes of the PDFs are highly
skewed at small separations and always have a longer tail
than Gaussians for all separations. In addition, at the one-
grid-length separation the PDF has a power-law tail with an
exponent of �2:5 on the left side. We note that, due to the
power-law behavior of the PDF tail, when the viscosity
asymptotically approaches zero, special care is required
since the variance of the velocity increment may become
unbounded. Similar results have been reported for Burgers
turbulence. In the random-force driven Burgers turbulence,
the PDFs of velocity increments have an algebraic tail on
the left side, leading to strong intermittency and bifractal-
ity of the scaling exponents [8].

We plot the normalized PDFs of the pressure increments
�p in Fig. 3. The shapes of these PDFs are nearly

symmetric and have longer tails at small spatial separations
than those in the incompressible turbulence at the same
Taylor Reynolds number (also see [22]). The pressure
changes drastically in the high compression regime, lead-
ing to intensive pressure increments at small separations.
Power-law tails are also found in the pressure-increment
PDF at the one-grid-length separation, with a power-law
exponent of �3.
The scaling exponents for the longitudinal structure

functions in the inertial subrange are defined as

SLs;nðrÞ � hj�usðrÞjni � r�
L
s;n ; (1)

SLc;nðrÞ � hj�ucðrÞjni � r�
L
c;n ; (2)

where �Ls;n and �Lc;n are the scaling exponents for the two

velocity components, respectively. Our results show that
�Ls;n agrees well with those from the incompressible turbu-

lence [23,24]. This implies that at Mt � 1, the two-point
statistics of the solenoidal velocity component are insensi-
tive to the presence of shocks. In addition, similar to results
in [20,25], we find that the scaling exponents of the full
velocity u are also the same as those in the incompressible
turbulence. However, the scaling exponents of the com-
pressive velocity component, shown in the inset of Fig. 4, is
drastically different. A saturation of �Lc;n is observed for

n � 5, and the saturated value is estimated to be �Lc;1 �
0:7. The compensated longitudinal structure functions at
orders 5 and 6 are shown in Fig. 4, where the separation is
normalized by the Kolmogorov length �. According to the
multifractal theory, the saturation of exponents is caused
by the domination of frontlike structures [25]. Benzi et al.
[25] observed that the density field displays frontlike
structures, leading to saturation of the scaling exponents
for density structure functions in a weakly compressible
turbulence at rms Mach number 0.3. However, for the
velocity field, they did not find any difference between
weakly compressible turbulence and incompressible

FIG. 1. Normalized probability density functions of �us.

FIG. 2. Normalized probability density functions of �uc.
Inset: log-log plot of the same PDF for the negative �uc at the
one-grid-length separation.
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turbulence. On the other hand, due to a relatively higher
turbulent Mach number in our simulated flow, shocks
produce a significant number of frontlike structures in the
compressive velocity field, causing saturation of scaling
exponents �Lc;n. Furthermore, substantial uncertainties in

the exponents at high orders are associated with large
temporal fluctuations, which ascribe to instability of inter-
mittency structures [26].

The PDF of velocity divergence (Fig. 5) exhibits a
power-law tail for large negative divergences and a super-
exponential tail for large positive divergences, both quali-
tatively similar to the PDF of the velocity derivative in
Burgers turbulence [13]. In Burgers turbulence with infini-
tesimal viscosity, the large negative velocity gradients
stem mainly from preshocks, leading to the power-law
tail in the PDF of negative velocity gradients [10]. In the

compressible turbulence, through studying the contours of
velocity divergence (not shown here), we have identified
that the power-law regime of velocity divergence has a
major contribution from preshocks and weak shocklets
rather than strong shock waves. Otherwise, the power-
law exponent for the PDF of velocity divergence is �2:5,
the same as that for the PDF of the longitudinal increments
of the compressive velocity component at the one-grid-
length separation but qualitatively different from the
power-law exponent (�3:5) for the PDF of the velocity
gradient in one-dimensional Burgers turbulence. To under-
stand this difference, we write down the equation of the
velocity derivative in Burgers turbulence [9]:

@�

@t
þ u

@�

@x
¼ ��2 þ �

@2�

@x2
þ @f

@x
; (3)

where uðx; tÞ is the velocity and �ðx; tÞ is the velocity
gradient. The forcing fðx; tÞ is used to maintain the
Burgers turbulence to be statistically stationary. In con-
trast, the governing equation for velocity divergence in 3D
Navier-Stokes flow is

@�

@t
þuj

@�

@xj
¼�@uj

@xi

@ui
@xj

� 1

�M2

@

@xi

�
1

�

@p

@xi

�
þ 4�0

3Re

@2�

@x2i
: (4)

To simplify the discussions, we have neglected the effect of
density fluctuations on the viscous term. It is seen that there

are some similarities between the term
@uj
@xi

@ui
@xj

in Eq. (4) and

�2 in Eq. (3), the former causing strong skewness of the
PDF of velocity divergence provided that the turbulent
Mach number is larger than 0.3 [27].
Below, we demonstrate how the pressure term alters

the power-law exponent of the PDF of velocity divergence
in the high compression regime. Following the similar
procedure provided by Gotoh and Kraichnan [6], we can
derive the Liouville equation for the PDF of velocity diver-
gence Pð�Þ as follows (see Supplemental Material [19]):

@P

@t
� @ð�2PÞ

@�
� �PþD ¼ F; (5)

FIG. 4. Compensated structure functions for n ¼ 5 and n ¼ 6
as a function of normalized separation. Inset: scaling exponents
�Lc;n as a function of n. The separation r is normalized by the

Kolmogorov length scale � ¼ ½h�i3=		1=4, where � is the kine-
matic viscosity and 	 is the average kinetic energy dissipation
rate [14].

FIG. 3. Normalized probability density functions of �p. Thin
dash-dotted line is the corresponding PDF at the one-grid-length
separation for incompressible turbulence (ITurb) at the same
Taylor Reynolds number. Inset: log-log plot of the PDF for
positive �p in compressible turbulence at the one-grid-length
separation.

FIG. 5. Probability density function of velocity divergence.
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where the dissipation term is

Dð�Þ ¼ 4�0

3Re

@

@�

��
@2�

@x2i

���������
�
P

�
(6)

and the forcing term, including effects of pressure and
anisotropic straining, is

F¼ @

@�

��
1

�M2

@

@xi

�
1

�

@p

@xi

�
þ
�
@uj
@xi

@ui
@xj

��2
����������

�
P

�
: (7)

This equation is written formally the same as the PDF
equation of velocity derivative in Burgers turbulence but
with a different dissipation term and forcing term [13]. It
has been argued previously [7–13] that Burgers turbulence
has a power-law tail in the PDF of � for the high compres-
sion regime. If Burgers turbulence is driven by large scale
white-in-time random forcing, this tail is believed to be
universal with an exponent �3:5 in the limit of vanishing
viscosity. Other exponents are possible if Burgers turbu-
lence is driven by forcing with prescribed power-law
spectra [8].

In Fig. 6, we plot the average normalized straining 1
�02 �

@uj
@xi

@ui
@xj

conditioned on the velocity divergence as a function

of velocity divergence. For the compression regime (i.e.,
� < 0), we find that the straining term can be well approxi-

mated by �2

�02 , implying that the effect of stretching-tilting

dynamics on the PDF of velocity divergence is small. In

addition, its compressive component 1
�02

@ucj
@xi

@uci
@xj

dominates

the overall straining term. These interesting approxima-
tions are consistent with the numerical simulations that
show that intensive velocity gradients are dominated by
variations in one spatial direction during compression in

the shock waves [14,28]. Therefore, the solenoidal velocity
component has very limited contribution to the PDF equa-
tion of velocity divergence in the compression regime. In
contrast, in the expansion regime (i.e., � > 0), the straining
term is no longer close to the square of the divergence.
Based on dimensional analysis, the anisotropic straining

term [ 1
�02

@uj
@xi

@ui
@xj

� ð��0Þ2] can be represented by the square of
the divergence multiplied by a nondimensional constant.
Figure 6 shows that this nondimensional constant is around
�0:8 in the expansion regime instead of almost zero in the
compression regime. The conditional straining is always
positive, implying that the magnitude of the velocity di-
vergence is increased by the straining when � < 0, but it is
decreased by the straining when � > 0. However, the mag-
nitude of the conditional straining for � > 0 is only about
1=5 of the values for � < 0, indicating that the effect of
straining on the velocity divergence is substantially weaker
in the expansion regime. Therefore, the role of the straining
term in Eq. (4) is similar to that of the �2 term in Eq. (3) in
the compression regime due to shock structures, but in the
expansion regime it is weakened by relaxation of multi-
directional advection and by the solenoidal velocity dy-
namics, where the flow is dominated by vortex structures.
We now focus our discussion on the PDF equation in the

strong compression regime where the power-law tail ap-
pears. In Fig. 6, we show average values of the viscous term
and pressure term conditioned on � in the PDF equation.
As also shown in the figure, the anisotropic staining effect
is small compared with the other two terms and may be
neglected. The viscous term is well fitted by a parabola

�ð��0Þ2 þ ��

�
�0 with 
� ¼ 0:4 and �� ¼ 0:5. A similar

procedure was suggested by Gotoh and Kraichnan [9]
based on an analysis of the viscous term inside an equilib-
rium single shock in Burgers turbulence. The pressure term
can also be approximated by a parabola with coefficients

p ¼ 1:2 and �p ¼ 5:3. With these approximations, we

obtain the following solution at the stationary stage:

Pð�Þ ¼ C0�
�1

�
�þ ð�� � �pÞ

1þ 
p � 
�

��1�½1=ð1þ
p�
�Þ	
: (8)

It follows that, for large negative �, Pð�Þ / ��q, where
q ¼ 2þ 1

1þ
p�
�
. Using the fitting values for 
p and 
�,

we then obtain q ¼ 2:56. This is very close to the value of
2.5 shown in Fig. 5. An exponent of�3 is obtained without
considering the pressure term and viscous term, which is
consistent with the case of Burgers turbulence [13]. The
viscous term enlarges the exponent as in Burgers turbu-
lence [13]. The key difference here is the modification of
the power-law exponent from the pressure term. We note
that the role of the pressure is opposite to that of the
viscosity in determining this exponent, and the effect of
pressure predominates.
Finally, we emphasize that the viscosity is small, but

finite, in our discussion on the PDF of velocity divergence.

FIG. 6. Conditional average of h 1
�02

@uj
@xi

@ui
@xj

j ��0i (squares), h 1
�02 �@ucj

@xi

@uci
@xj

j ��0i (plusses), h 1
�02

@uj
@xi

@ui
@xj

� ð��0Þ2j ��0i (triangles), h 1
�02

4�0

3Re �
@2�
@x2i

j ��0i (diamonds) and h 1
�02

1
�M2

@
@xi

ð1� @p
@xi
Þj ��0i (circles). The lines

represent 
ð��0Þ2 þ � �
�0 with ð
;�Þ ¼ ð1:0; 0:0Þ (dashed line),

ð
;�Þ ¼ ð0:6; 0:0Þ (solid line), ð
;�Þ ¼ ð�0:8; 0:0Þ (dash-
dotted line), ð
;�Þ ¼ ð0:4; 0:5Þ (dash-dot-dotted line) and
ð
;�Þ ¼ ð1:2; 5:3Þ (long dashed line).
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Several issues require further investigations, including the
relative contributions of preshocks and weak shocklets to
the power-law tail of the PDF at higher Reynolds numbers,
the asymptotic behavior of the power-law exponent in the
limit of vanishing viscosity, and the effect of Mach number
on the power-law behavior.
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