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The effects of flow topology on the subgrid-scale (SGS) kinetic energy flux in
compressible isotropic turbulence is studied. The eight flow topological types based
on the three invariants of the filtered velocity gradient tensor are analysed at different
scales, along with their roles in the magnitude and direction of kinetic energy transfer.
The unstable focus/compressing (UFC), unstable node/saddle/saddle (UN/S/S) and
stable focus/stretching (SFS), are the three predominant topological types at all
scales; they account for at least 75 % of the flow domain. The UN/S/S and SFS
types make major contributions to the average SGS flux of the kinetic energy from
large scales to small scales in the inertial range. The unstable focus/stretching (UFS)
topology makes a contribution to the reverse SGS flux of kinetic energy from small
scales to large scales. In strong compression regions, the average contribution of the
stable node/saddle/saddle (SN/S/S) topology to the SGS kinetic energy flux is positive
and is predominant over those of other flow topologies. In strong expansion regions,
the UFS topology makes a major contribution to the reverse SGS flux of the kinetic
energy. As the turbulent Mach number increases, the increase of volume fraction of
the UFS topological regions leads to the increase of the SGS backscatter of kinetic
energy. The SN/S/S topology makes a dominant contribution to the direct SGS flux
of the compressible component of the kinetic energy, while the UFS topology makes
a dominant contribution to the reverse SGS flux of the compressible component of
the kinetic energy.

Key words: compressible turbulence, isotropic turbulence

1. Introduction

Knowledge of flow topology is crucial to the understanding of various turbulence
processes, including kinetic energy transfer, vortex dynamics, material element

† Email addresses for correspondence: wangjc@sustech.edu.cn, chensy@sustech.edu.cn
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883 A11-2 J. Wang and others

deformation and turbulent mixing. Continuous efforts have been devoted over the
years to addressing the statistics and structures of the velocity gradient tensor and
local flow topology in incompressible turbulence (Meneveau 2011). In the pioneering
work by Chong, Perry & Cantwell (1990), a general topological classification of
three-dimensional flow pattern was proposed based on the three invariants of the
velocity gradient tensor. A universal teardrop shape of the joint probability density
function (PDF) of the second and third invariants of the velocity gradient tensor was
identified in different types of incompressible turbulence, including time-developing
mixing layers (Soria et al. 1994), turbulent channel flow (Blackburn, Mansour &
Cantwell 1996), turbulent boundary layers (Chong et al. 1998; Chacin & Cantwell
2000), isotropic turbulence (Ooi et al. 1999; Elsinga & Marusic 2010), homogeneous
sheared turbulence (Nomura & Diamessis 2000), turbulent plane jets (Da Silva &
Pereira 2008) and single-square grid-generated turbulence (Zhou et al. 2015). It
was shown that local flow topology has important effects on various properties of
turbulence, including turbulent kinetic energy and dissipation in the turbulent boundary
layer (Chacin & Cantwell 2000), interaction of the vorticity and rate-of-strain tensor
in homogeneous sheared turbulence (Nomura & Diamessis 2000), the entrainment in a
turbulent jet (Da Silva & Pereira 2008), the dynamics of streamlines and vortex lines
(Boschung et al. 2014) and the stability of local flows undergoing strain, rotation,
convergence, divergence and swirl (Mishra & Girimaji 2015).

It is worth noting that the velocity gradient tensor is mainly related to the turbulence
dynamics near the Kolmogorov length scale. The coarse-grained or filtered velocity
gradient tensor can be used to study the flow topology at larger scales of turbulence
(Borue & Orszag 1998; Chertkov, Pumir & Shraiman 1999; Meneveau 2011). It
was found that the joint PDF of the second and third invariants of the filtered
velocity gradient tensor exhibit the teardrop shape at scales of the inertial range in
incompressible turbulence (Borue & Orszag 1998; van der Bos et al. 2002; Lüthi et al.
2007). Some phenomenological models of turbulent fluctuations revealed that the joint
PDF becomes increasingly symmetric as the filter width increases (Chertkov et al.
1999; Naso & Pumir 2005; Naso, Chertkov & Pumir 2006; Naso, Pumir & Chertkov
2007; Pumir & Naso 2010; Johnson & Meneveau 2017). Recently, Lozano-Durán,
Holzner & Jiménez (2016) studied the invariants of the filtered velocity gradient
tensor in incompressible turbulent channel flow. They showed that the dynamics
of the flow is not self-similar in the inertial range due to the effect of the mean
shear. However, the self-similarity of inertial range dynamics was identified for the
filtered gradient tensor of the fluctuating velocity field. Danish & Meneveau (2018)
investigated the statistics of the filtered velocity gradient tensor and the population
fractions of various flow topologies of the filtered field in incompressible isotropic
turbulence. They observed the well-known teardrop shape of the joint PDF of the
second and third invariants of the filtered velocity gradient tensor. They further
addressed the different mechanisms for the evolution of the joint PDF at various
scales, and pointed out that different approaches are required to model the dynamics
of the filtered velocity gradient in the inertial range and in the viscous range.

The flow structures and statistical features of compressible turbulence are more
complex than those of incompressible turbulence, due to the nonlinear couplings of
the solenoidal mode, compressible mode and thermodynamic mode in compressible
turbulence (Samtaney, Pullin & Kosovic 2001; Pirozzoli & Grasso 2004; Aluie 2011;
Ryu & Livescu 2014; Danish, Sinha & Srinivasan 2016a; Jagannathan & Donzis 2016;
Quadros, Sinha & Larsson 2016; Yang et al. 2016; Dai et al. 2017; Pan & Johnsen
2017; Parashar et al. 2017; Sciacovelli, Cinnella & Grasso 2017; Wang, Gotoh &

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f D

el
aw

ar
e,

 o
n 

27
 N

ov
 2

01
9 

at
 0

0:
07

:3
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
86

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.867


Effect of flow topology on the kinetic energy flux 883 A11-3

Watanabe 2017a; Wang et al. 2018a, 2019). The local flow-field topology based
on the three invariants of velocity gradient tensor was investigated in a wide range
of compressible turbulence, including decaying compressible isotropic turbulence
(Suman & Girimaji 2010; Danish, Suman & Girimaji 2016b), compressible turbulent
boundary layers (Wang & Lu 2012; Chu & Lu 2013; Bechlars & Sandberg 2017a,b),
compressible turbulent mixing layers (Vaghefi & Madnia 2015; Mathew, Ghosh &
Friedrich 2016), supersonic turbulent pipes, nozzle and diffuser flows (Kumari et al.
2018) and compressible turbulent flames (Cifuentes et al. 2014, 2016; Wacks &
Chakraborty 2016a; Wacks, Chakraborty & Klein 2016b; Papapostolou et al. 2017;
Lai, Wacks & Chakraborty 2018; Wacks, Konstantinou & Chakraborty 2018). The
teardrop shape of the joint PDF of the second and third invariants of the velocity
gradient tensor was identified in locally nearly incompressible regions of compressible
turbulence. It was also found that the joint PDF of the second and third invariants of
the anisotropic part of the velocity gradient tensor exhibits a similar teardrop shape
in compressible isotropic turbulence (Pirozzoli & Grasso 2004; Wang et al. 2012;
Sciacovelli et al. 2017). To our knowledge, a relevant study of the flow topology of
the filtered velocity gradient at scales in the inertial range of compressible turbulence
has never been performed.

The filtering method is an effective and convenient approach to understanding
the multi-scale properties of turbulence. The filtered velocity field is used in large
eddy simulation (LES) to reduce the effective degrees of freedom of the flow system
and to isolate the dynamics of fluid turbulence above the filter width. The effect
of small-scale flow structures on the large-scale flow dynamics is modelled by the
subgrid-scale (SGS) stress in the dynamical equation of the filtered velocity. The
filtering method has also been widely applied to study inter-scale transfer of kinetic
energy in turbulence, revealing various spatial structures and statistical features of
the SGS flux of kinetic energy (Eyink 2005; Aluie & Eyink 2009; Eyink & Aluie
2009; Aluie 2011; Wang et al. 2013, 2018a). Eyink (2005) proposed a smooth
filtering approach to resolve the turbulent flows both in space and in scale. He
theoretically established sufficient conditions for locality of the energy cascade in
incompressible turbulence by an exact analysis of the filtered flow equations. The
localness of the energy cascade in three-dimensional incompressible turbulence was
further demonstrated by both smooth and sharp spectral filters, and verified by direct
numerical simulations (Aluie & Eyink 2009; Eyink & Aluie 2009). Aluie (2011,
2013) applied the filtering approach to prove that inter-scale transfer of kinetic energy
in compressible turbulence is dominated by local interactions, under the assumption
that the pressure-dilatation cospectrum decays at a sufficiently rapid rate. Aluie, Li
& Li (2012) further verified the result by numerical simulations of both forced and
decaying compressible isotropic turbulence. Wang et al. (2013) performed numerical
simulations of compressible isotropic turbulence by applying a large-scale force
to both the solenoidal and compressible components of the velocity field. They
found that the SGS kinetic energy flux is dominated by the compressible mode
of the velocity in the inertial range, due to the effect of large-scale shock waves
in the simulated flow. Wang et al. (2018a) studied the kinetic energy transfer in
compressible isotropic turbulence by numerical simulations with solenoidal forcing.
They applied the filtering method to show that with the increase of the turbulent
Mach number, compression motions enhance the positive SGS flux of kinetic energy,
and expansion motions enhance the negative SGS flux of kinetic energy. They found
that the compressible mode persistently absorbs kinetic energy from the solenoidal
mode through nonlinear advection. Moreover, the kinetic energy of compressible
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883 A11-4 J. Wang and others

mode cascades from large scales to small scales through the compressible SGS flux,
and is dissipated by viscosity at small scales. Aluie (2013) pointed out that the sharp
spectral filter is not positive in physical space, and a filtered density using the sharp
spectral filter can have negative values in space, which would violate fundamental
conservation laws. Different from the sharp spectral filter, the top-hat filter and the
Gaussian filter are positive in physical space, and can be interpreted as a local spatial
average. Wang et al. (2018a) showed that the behaviours of kinetic energy transfer
using the top-hat filter are similar to those using the Gaussian filter, and are consistent
with the theoretical analysis by Aluie (2013).

In large eddy simulation of turbulence, the SGS stress is usually reconstructed
from the filtered velocity gradient, giving rise to a variety of eddy-viscosity models
and algebraic models (Meneveau & Katz 2000). Thus, study of the filtered velocity
gradient is of direct importance to the physical understanding of kinetic energy
transfer and development of SGS models. Recently, machine learning has frequently
been used to help develop more accurate turbulence models, but this does not
usually help with physical interpretation (Duraisamy, Iaccarino & Xiao 2019). It was
shown that embedding more invariance properties into turbulence models does indeed
improve the resulting models for closure terms in the Reynolds-averaged turbulence
statistics (Ling, Jones & Templeton 2016a; Ling, Kurzawski & Templeton 2016b).
Moreover, an artificial neural network was applied to develop SGS stress models
from the filtered velocity gradient for large eddy simulation of turbulence (Gamahara
& Hattori 2017; Wang et al. 2018; Xie et al. 2019). In the development of the SGS
models, each component of SGS stress was trained separately, and the invariance
properties and physical realizability of the SGS stress were not considered. We
believe that knowledge of the invariance properties of the filtered velocity gradient
is crucial to developing more accurate and efficient SGS stress models. The flow
topology derived from invariance properties is expected to be directly related to the
local spatial structure of the filtered velocity and can play an important role in the
development of LES models.

In this study, we investigate the flow topology of the filtered velocity gradient
and its impact on kinetic energy flux in solenoidally forced compressible isotropic
turbulence at turbulent Mach numbers ranging from 0.6 to 1.0 and at a Taylor
Reynolds number of approximately 250. The rest of the paper is organized as
follows. The governing equations and numerical method are provided in § 2. The
simulation parameters and one-point statistics of the simulated flow are shown in § 3.
A filtering approach is introduced to perform a multiscale analysis of turbulence in
§ 4. Definitions of flow topologies based on the three invariants of the filtered velocity
gradient tensor are given in § 5. Numerical results for the effect of flow topology
on the kinetic energy flux in compressible isotropic turbulence are presented in § 6.
Main conclusions are summarized in § 7.

2. Governing equations and numerical method
We study compressible isotropic turbulence of an ideal gas governed by the

following dimensionless Navier–Stokes equations in the conservative form (Samtaney
et al. 2001; Wang et al. 2018a,b):

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (2.1)

∂(ρui)

∂t
+
∂[ρuiuj + pδij]

∂xj
=

1
Rer

∂σij

∂xj
+F i, (2.2)
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Effect of flow topology on the kinetic energy flux 883 A11-5

∂E
∂t
+
∂[(E + p)uj]

∂xj
=

1
α

∂

∂xj

(
κ
∂T
∂xj

)
+

1
Rer

∂(σijui)

∂xj
−Λ+Fjuj, (2.3)

p= ρT/(γM2
r ), (2.4)

where ui, ρ, p and T are the velocity component, density, pressure and temperature,
respectively. Here, E is the total energy per unit volume, which is given by

E =
p

γ − 1
+

1
2
ρ(ujuj). (2.5)

The viscous stress σij is defined by

σij =µ

(
∂ui

∂xj
+
∂uj

∂xi

)
−

2
3
µθδij, (2.6)

where θ = ∂uk/∂xk is the velocity divergence. Moreover, Fi is a large-scale forcing,
and Λ is a large-scale cooling function.

The variables in the governing equations of compressible turbulence have been
already normalized by a set of reference scales, including the reference length Lr,
velocity Ur, density ρr, pressure pr = ρrU2

r , temperature Tr, energy per unit volume
ρrU2

r , viscosity µr and thermal conductivity κr (Samtaney et al. 2001; Wang et al.
2010, 2018a,b). The reference speed of sound is defined by cr =

√
γRTr, where

R is the specific gas constant; γ = Cp/Cv is the ratio of specific heat at constant
pressure Cp to that at constant volume Cv. It is assumed that γ = 1.4. There are three
reference governing parameters: the reference Reynolds number Rer = ρrUrLr/µr, the
reference Mach number Mr = Ur/cr and the reference Prandtl number Pr = µrCp/κr.
It is assumed that Pr = 0.7. The parameter α is given by α = Pr Rer(γ − 1)M2

r .
The Prandtl number Pr signifies the relative importance of momentum diffusivity
and thermal diffusivity: a small value of the Prandtl number indicates that the
thermal diffusivity predominates over momentum diffusivity, where the fluctuations
of temperature are suppressed; in contrast, in the situation of large Prandtl number,
the fluctuations of temperature are enhanced.

We solve the governing equations of compressible isotropic turbulence numerically
in a cubic box with side lengths 2π, using a uniform grid with 10243 grid points.
Periodic boundary conditions are employed in all three spatial directions. We apply
a hybrid compact-weighted essentially non-oscillatory (WENO) scheme (Wang et al.
2010), which combines an eighth-order compact finite difference scheme (Lele 1992)
in smooth regions and a seventh-order WENO scheme (Balsara & Shu 2000) in
shock regions. The numerical simulations essentially resolve flow fields above the
Kolmogorov length scale, while the discontinuities around shock waves are captured
by the WENO scheme. Grid-refinement convergence studies of compressible isotropic
turbulence for the convergence of small-scale statistics have been performed at
turbulent Mach number Mt = 1.0 previously (Wang et al. 2011, 2012).

We use Sutherland’s law to obtain the non-dimensional temperature-dependent
viscosity coefficient µ and thermal conductivity coefficient κ (Wang et al. 2010):

µ=
1.4042T1.5

T + 0.40417
, (2.7)

κ =
1.4042T1.5

T + 0.40417
. (2.8)
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883 A11-6 J. Wang and others

It has been shown that Sutherland’s law for the viscosity coefficient of air has
a maximum relative error of 2.0 % at T = 3 and less than 0.52 % at T = 0.55
as compared to the measured viscosity data, with reference dimensional viscosity
µr = 1.716× 10−5 kg (m s)−1 at the reference temperature of Tr = 273.15 K (Wang
et al. 2010).

The velocity field is forced by fixing the energy spectrum within the two lowest
wavenumber shells (Wang et al. 2010). The force is only applied to the solenoidal
component of the velocity field. The internal energy is sustained in a statistically
steady state by a spatially uniform thermal cooling Λ. Similar to the situation of
incompressible isotropic turbulence, the forcing field is constructed in Fourier space,
which is performed as follows (Wang et al. 2010). The velocity field u(x, t) is first
transformed into Fourier space to yield û(k, t), where k represents wave vector in
Fourier space. Then, û(k, t) is decomposed into a solenoidal component ûs

(k, t) and
a compressible component ûc

(k, t),

û(k, t)= ûs
(k, t)+ ûc

(k, t), (2.9)

where

ûs
(k, t)= û(k, t)−

kk · û(k, t)
k2

, (2.10)

ûc
(k, t)=

kk · û(k, t)
k2

. (2.11)

The kinetic energy per unit mass associated with each wave vector can be decomposed
in a similar manner:

1
2 |û(k, t)|2 = 1

2 |û
s
(k, t)|2 + 1

2 |û
c
(k, t)|2. (2.12)

The kinetic energy in each of the first two wavenumber shells can be calculated by
summing over all modes belonging to a given wavenumber shell,

E(0.5 6 k< 1.5)=
∑

0.56|k|<1.5

(
1
2
|û(k, t)|2

)
, (2.13)

E(1.5 6 k< 2.5)=
∑

1.56|k|<2.5

(
1
2
|û(k, t)|2

)
. (2.14)

It is straightforward to derive the following relations:

E(0.5 6 k< 1.5)= Es(0.5 6 k< 1.5)+ Ec(0.5 6 k< 1.5), (2.15)
E(1.5 6 k< 2.5)= Es(1.5 6 k< 2.5)+ Ec(1.5 6 k< 2.5). (2.16)

The force is constructed by amplifying the solenoidal component of the velocity field,
to maintain the total kinetic energy in the first two shells to prescribed levels E0(1)
and E0(2), respectively. The forced velocity ûf

(k, t) is given by

ûf
(k, t)= βf û

s
(k, t)+ ûc

(k, t), (2.17)

where

βf (0.5 6 k< 1.5)=

√
E0(1)− Ec(0.5 6 k< 1.5)

Es(0.5 6 k< 1.5)
, (2.18)
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Effect of flow topology on the kinetic energy flux 883 A11-7

Resolution Reλ Mt η/1x LI/η S3 θ ′ ω′ θ ′/ω′ S′/ω′

10243 262 0.60 1.02 231 −0.53 2.8 25.3 0.11 0.715
10243 261 0.79 1.05 229 −0.83 4.8 23.7 0.20 0.736
10243 250 1.02 1.04 226 −1.95 8.2 23.7 0.35 0.793

TABLE 1. Simulation parameters and flow statistics.

βf (1.5 6 k< 2.5)=

√
E0(2)− Ec(1.5 6 k< 2.5)

Es(1.5 6 k< 2.5)
. (2.19)

Typically, E0(1) = 1.242477 and E0(2) = 0.391356 are used in the numerical
simulation. There are several previous studies on solenoidally forced compressible
isotropic turbulence at turbulent Mach numbers up to 1.0, revealing that the overall
statistical properties of the solenoidal velocity component are similar to those of the
velocity field in incompressible isotropic turbulence, including the spectrum and the
structure function of the solenoidal velocity and the statistics of vorticity (Wang et al.
2011, 2012, 2017a; Wang, Gotoh & Watanabe 2017c). It was also shown that the
ratio of compressible kinetic energy to its solenoidal counterpart is always smaller
than 5 % (Wang et al. 2017a). Moreover, the compressible mode persistently absorbs
kinetic energy from the solenoidal mode through nonlinear advection, and exhibits
energy cascade from large scales to small scales through the compressible SGS flux
(Wang et al. 2018a).

3. Simulation parameters and one-point statistics
One-point statistics for three simulated compressible isotropic turbulent flows are

summarized in table 1. The Taylor microscale Reynolds number Reλ is given by
(Wang et al. 2012)

Reλ =
(ρr〈ρ〉)(Uru′/

√
3)(Lrλ)

(µr〈µ〉)
= Rer

〈ρ〉u′λ
√

3〈µ〉
, (3.1)

where 〈〉 stands for spatial average and the reference Reynolds number Rer =

ρrUrLr/µr. The root mean square (r.m.s.) value of the velocity magnitude is defined
as u′ =

√
〈u2

1 + u2
2 + u2

3〉, and the Taylor microscale is calculated by

λ=

√
〈u2

1 + u2
2 + u2

3〉

〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉
. (3.2)

The Taylor microscale Reynolds number is close to 250 in our numerical simulations.
The turbulent Mach number Mt is defined by

Mt =
(Uru′)

〈
√
γR(TrT)〉

=Mr
u′

〈
√

T〉
, (3.3)

where the reference Mach number Mr = Ur/cr. Three different turbulent Mach
numbers are considered: 0.6, 0.8 and 1.0, corresponding to the different levels of
compressibility.
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883 A11-8 J. Wang and others

The Kolmogorov length scale η is defined by η = [〈µ/(Rerρ)〉
3/ε]1/4, where ε

is the spatial average of the dissipation rate of kinetic energy per unit mass: ε =
〈σijSij/(Rerρ)〉. Here, the strain-rate tensor Sij is given by Sij = (∂ui/∂xj + ∂uj/∂xi)/2.
It is shown that the resolution parameter η/1x is in the range 1.02 6 η/1x 6 1.05,
where 1x is the grid length in each direction. Consequently, the resolution parameter
kmaxη is in the range 3.2 6 kmaxη6 3.3, where the largest wavenumber kmax is half of
the number of grids N in each direction: kmax=N/2=π/1x. Previous grid-refinement
convergence studies of compressible isotropic turbulence at turbulent Mach number
Mt = 1.0 (Wang et al. 2011, 2012) showed that resolutions of kmax > 3.2 are enough
for the convergence of small-scale statistics, including the kinetic energy spectrum at
different wavenumbers and the PDFs of the velocity divergence and vorticity.

The integral length scale LI is calculated by (Wang et al. 2012)

LI =
3π

2(u′)2

∫
∞

0

E(k)
k

dk, (3.4)

where E(k) is the spectrum of kinetic energy per unit mass, namely,
∫
∞

0 E(k) dk =
(u′)2/2. It is found that 226 6 LI/η6 231 in the numerical simulations.

The velocity derivative skewness S3 is defined by

S3 =
[〈(∂u1/∂x1)

3
+ (∂u2/∂x2)

3
+ (∂u3/∂x3)

3
〉]/3

{〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉/3}3/2
. (3.5)

It is shown that S3 = −0.53 at Mt = 0.6, which is close to typical values of −0.6
to −0.4 in incompressible turbulence (Ishihara et al. 2007). Due to the effect of
shocklets, the magnitude of S3 increases as the turbulent Mach number becomes
larger, for Mt = 0.8 and Mt = 1.0 (Wang et al. 2011; Wang, Gotoh & Watanabe
2017b; Wang et al. 2017c).

The r.m.s. value of vorticity ω=∇×u is calculated by ω′=
√
〈ω2

1 +ω
2
2 +ω

2
3〉. The

r.m.s. values of velocity divergence and strain-rate tensor are obtained by θ ′ =
√
〈θ 2〉

and S′ =
√
〈SijSij〉, respectively. It is found that ω′ is insensitive to the change of

turbulent Mach number. Due to the significant effect of compressibility, θ ′ increases
rapidly with the increase of Mt (Jagannathan & Donzis 2016; Wang et al. 2017b,c). It
is shown that 0.715 6 S′/ω′ 6 0.793 in the numerical simulations, compared to 0.707
for the incompressible turbulence.

4. Multiscale analysis of turbulence by a filtering approach

A filtering technique (Martin, Piomelli & Candler 2000; Meneveau & Katz 2000;
Aluie 2011; Wang et al. 2013) can be applied to perform a multiscale analysis of
compressible turbulence. For a given field f , a filtered field f is defined by

f (x)≡
∫

d3 rGl(r)f (x+ r), (4.1)

where Gl(r) ≡ l−3G(r/l) is the filter function, and G(r) is a normalized window
function. Here, l is the filter width associated with the wavelength of the smallest
scale retained by the filtering operation. The Favre filtered field is defined as f̃ ≡ρf /ρ.
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A top-hat filter is used in our numerical analysis, which is calculated in one dimension
by (Martin et al. 2000)

f i =
1

4n

(
fi−n + 2

i+n−1∑
j=i−n+1

fj + fi+n

)
, (4.2)

where the filter width is l= 2n1x.
The filtered equation for the momentum is

∂(ρũi)

∂t
+
∂[ρũiũj + pδij]

∂xj
=−

∂(ρτ̃ij)

∂xj
+

1
Re
∂σ ij

∂xj
, (4.3)

where the SGS stress is ρτ̃ij = ρ(ũiuj − ũiũj). The appearance of the SGS stress is
caused by the nonlinear effect of eliminated scales below l. The equation for the
average of large-scale kinetic energy 〈ρũ2

i /2〉 can be derived as (Aluie 2011, 2013;
Wang et al. 2013, 2018a)

∂

∂t

〈
1
2
ρũ2

i

〉
=−〈Φl〉 − 〈Πl〉 − 〈Dl〉. (4.4)

Here, Φl is the large-scale pressure-dilatation term; Πl is the SGS kinetic energy flux;
Dl is the viscous dissipation term. These terms are defined as

Φl =−p
∂ ũi

∂xi
, (4.5)

Πl =−ρτ̃ij
∂ ũi

∂xj
=−ρτ̃ijS̃ij, (4.6)

and

Dl =
σ ij

Re
∂ ũi

∂xj
, (4.7)

where the filtered strain-rate tensor S̃ is defined as S̃ij = (∂ ũi/∂xj + ∂ ũj/∂xi)/2.
A filtered density-weighted variable can be introduced as w̃ =

√
ρũ. Helmholtz

decomposition on w̃ yields w̃ = w̃s
+ w̃c, where w̃s and w̃c are the solenoidal

and compressible components, respectively (Wang et al. 2013, 2018a). The two
components of the filtered density-weighted variable satisfy the following relations:
∇ · w̃s

= 0 and ∇× w̃c
= 0.

The SGS flux of kinetic energy Πl can be decomposed into a solenoidal component
Π s

l and a compressible component Π c
l : Πl =Π

s
l +Π

c
l (Wang et al. 2018a), where

Π s
l ≡−ρτ̃ij

∂

∂xj

(
w̃s

i
√
ρ

)
(4.8)

and

Π c
l ≡−ρτ̃ij

∂

∂xj

(
w̃c

i
√
ρ

)
. (4.9)

The filtered vorticity and filtered velocity divergence are defined by ωl = ∇ × ũ
and θl = ∇ · ũ, respectively. The r.m.s. values of filtered vorticity, filtered velocity
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FIGURE 1. Normalized r.m.s. values of filtered vorticity, filtered velocity divergence and
filtered strain-rate tensor: (a) ω′l/ω

′; (b) θ ′l /θ
′; (c) θ ′l /ω

′

l; (d) S′l/ω
′

l.

divergence and filtered strain-rate tensor are calculated by ω′l =
√
〈ωl ·ωl〉, θ ′l =

√
〈θ 2

l 〉

and S′l=
√
〈S̃ijS̃ij〉, respectively. Figure 1 plots the normalized r.m.s. values of filtered

vorticity, filtered velocity divergence and filtered strain-rate tensor at turbulent Mach
numbers Mt = 0.6, 0.8, 1.0. Both ω′l/ω

′ and θ ′l /θ
′ decrease monotonically with the

filter width l, which is close to 1 at l/η= 4 and close to 0 at l/η= 512. The effect
of turbulent Mach number on ω′l/ω

′ is negligibly small. For a fixed filter width l,
θ ′l /θ

′ is slightly smaller at a larger turbulent Mach number. Thus, the effect of filter
width on the r.m.s. values of vorticity and velocity divergence is similar, and is nearly
independent of turbulent Mach number, implying that the coupling between the effects
of length scale and compressibility is quite weak. At a given filter width l, ω′l and θ ′l
represent the overall strength of the solenoidal and compressible components of the
filtered velocity gradient, respectively. The ratio θ ′l /ω

′

l gives the relative importance
of the compressibility effect on the filtered velocity gradient; θ ′l /ω

′

l increases rapidly
with an increase of the turbulent Mach number, similar to the behaviour of θ ′/ω′.
It is also found that S′l/ω

′

l becomes larger as the turbulent Mach number increases.
Moreover, the dependence of both θ ′l /ω

′

l and S′l/ω
′

l on the filter width l is relatively
weak at 10 6 l/η 6 100, as compared to ω′l/ω

′ and θ ′l /θ
′. It is well known that

the flow statistics exhibit some scale-independent properties or power law scaling
behaviours in the inertial range of incompressible turbulence. The study of scaling
behaviours of θ ′l /ω

′

l and S′l/ω
′

l in the inertial range is critical to understanding the
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Effect of flow topology on the kinetic energy flux 883 A11-11

compressibility effect on the inertial dynamics of turbulence, and requires further
numerical simulations at higher Reynolds numbers.

5. Local flow topology of filtered velocity gradient
The flow topology at small scales of a compressible flow field can be studied by the

method of topological classification (Chong et al. 1990) based on the three invariants
of the velocity gradient tensor Aij = ∂uj/∂xi. Similarly, the flow topology at a typical
scale l (l > η) of compressible turbulence can be investigated based on the three
invariants of the filtered velocity gradient tensor Ãij = ∂ ũj/∂xi, where l is the filter
width.

The three eigenvalues of the filtered velocity gradient tensor are denoted by ξi
(i= 1, 2, 3), which satisfy the following characteristic equation:

ξ 3
i + Plξ

2
i +Qlξi + Rl = 0. (5.1)

where Pl, Ql and Rl denote the first, second and third invariants of Ãij, respectively,
which are defined by

Pl =−(ξ1 + ξ2 + ξ3)=−θl, (5.2)
Ql = ξ1ξ2 + ξ2ξ3 + ξ3ξ1 =

1
2(P

2
l − S̃ijS̃ij + W̃ ijW̃ ij), (5.3)

Rl =−ξ1ξ2ξ3 =
1
3(−P3

l + 3PlQl − S̃ijS̃jkS̃ki − 3W̃ ijW̃ jkS̃ki), (5.4)

where S̃ij = (Ãij + Ãji)/2 and W̃ ij = (Ãij − Ãji)/2 are the filtered strain-rate tensor and
filtered rotation-rate tensor, respectively.

The discriminant ∆l of the filtered velocity gradient tensor is given by

∆l = 27R2
l + (4P3

l − 18PlQl)Rl + (4Q3
l − P2

l Q2
l ). (5.5)

If ∆l < 0, the three eigenvalues of Ãij are all real: ξ1 6 ξ2 6 ξ3. On the other hand,
if ∆l > 0, only one eigenvalue is real, and the two other eigenvalues are complex
conjugate pairs: ξ1,2= ξr± iξi, and ξ3 is real, where ξr and ξi are real numbers (Chong
et al. 1990); ∆l < 0 and ∆l > 0 correspond to the non-focal regions and focal regions
of filtered velocity field, respectively. The surface ∆l=0 can be split into two surfaces
r(1a) and r(1b), given by

Pl(9Ql − 2P2
l )− 2(−3Ql + P2

l )
3/2
− 27Rl = 0, (5.6)

Pl(9Ql − 2P2
l )+ 2(−3Ql + P2

l )
3/2
− 27Rl = 0. (5.7)

The two surfaces r(1a) and r(1b) osculate each other to form a cusp. In the region
∆l > 0, there is another surface r(2) which contains the points associated with purely
imaginary eigenvalues

PlQl − Rl = 0. (5.8)

The surfaces r(1a), r(1b), r(2) and Rl=0 divide the Pl – Ql – Rl space into different spatial
regions (Chong et al. 1990).

The flow topology of the filtered velocity field can be investigated conveniently on
the Ql – Rl plane for a given value of Pl or θl (Suman & Girimaji 2010; Wang & Lu
2012). The surfaces r(1a), r(1b), r(2) and Rl = 0 appear as curves on the Ql – Rl plane,
dividing the plane into different regions corresponding to different topologies. The
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S(3)

S(3) S(4)

Rl RlRl

Ql

(a) (b) (c)

S(2) S(3)

S(1) S(2)

S(1)

r(1b)
S(1)

r(1a)

r(1a) r(1a)
r(2)

S(2)

S(4)
S(4)

S(7)S(6) S(8)S(5)

r(2)

r(2)

r(1b)

r(1b)

FIGURE 2. The topological classifications of three representative Ql – Rl planes: (a) Pl= 0,
(b) Pl>0 and (c) Pl<0. A description of the cases for various flow topologies is provided
in table 2.

Sector Acronym Description Property

S(1) UFC Unstable focus/compressing ξr > 0 and ξ3 < 0
S(2) UN/S/S Unstable node/saddle/saddle ξ1 < 0, ξ2 > 0, and ξ3 > 0
S(3) SN/S/S Stable node/saddle/saddle ξ1 < 0, ξ2 < 0, and ξ3 > 0
S(4) SFS Stable focus/stretching ξr < 0 and ξ3 > 0
S(5) SFC Stable focus/compressing ξr < 0 and ξ3 < 0
S(6) SN/SN/SN Stable node/stable node/stable node ξ1 < 0, ξ2 < 0, and ξ3 < 0
S(7) UFS Unstable focus/stretching ξr > 0 and ξ3 > 0
S(8) UN/UN/UN Unstable node/unstable node/unstable node ξ1 > 0, ξ2 > 0, and ξ3 > 0

TABLE 2. Description of cases of various flow topological types.

topological classifications of three representative Ql – Rl planes are shown in figure 2:
Pl = 0, Pl > 0 and Pl < 0. A description of the cases for various flow topologies is
listed in table 2 (Suman & Girimaji 2010; Wang & Lu 2012).

On the Ql – Rl plane with Pl = 0, the curves r(1a) and r(1b) are symmetric to each
other with respect to the Ql-axis, and the curve r(2) is coincident with the Ql-axis.
Four different topologies can be identified: UFC, UN/S/S, SN/S/S and SFS, which are
denoted by S(1), S(2), S(3) and S(4), respectively. The UN/S/S and SN/S/S are non-focal
structures associated with ∆l < 0, while UFC and SFS are focal structures associated
with ∆l > 0.

On the Ql – Rl plane with Pl > 0, the curves r(1a) and r(1b) are no longer symmetric
to each other, and the curve r(2) intersects with the curve r(1b) at Ql = 0 and Rl = 0.
Six different topologies can be identified: UFC, UN/S/S, SN/S/S, SFS, SFC and
SN/SN/SN, which are denoted by S(1), S(2), S(3), S(4), S(5) and S(6), respectively.

On the Ql – Rl plane with Pl < 0, the curve r(2) intersects with the curve r(1a) at
Ql = 0 and Rl = 0. Six different topologies can be identified: UFC, UN/S/S, SN/S/S,
SFS, UFS and UN/UN/UN, which are denoted by S(1), S(2), S(3), S(4), S(7) and S(8),
respectively.

6. Effect of flow topology on the kinetic energy flux
6.1. Statistical properties of the invariants of the filtered velocity gradient tensor

We investigate the joint PDF of the second and third invariants PDF(Ql, Rl) of the
filtered velocity gradient tensor for three filter widths l/η= 4, 16, 64, for three ranges
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of filtered velocity divergence: (i) −0.056 θl/θ
′

l 60.05; (ii) −3.156 θl/θ
′

l 6−2.85; and
(iii) 2.856 θl/θ

′

l 63.15, approximately corresponding to three values of the normalized
first invariant: (i) Pl/P′l≈0; (ii) Pl/P′l≈3; and (iii) Pl/P′l≈−3, respectively. Here, P′l=√
〈P2

l 〉= θ
′

l . The second and third invariants of the filtered velocity gradient tensor can
be normalized as Ql/〈Ql,W〉 and Rl/〈Ql,W〉

3/2, respectively, where Ql,W is the second
invariant of the filtered rotation-rate tensor, defined by Ql,W = W̃ ijW̃ ij/2= (1/4)(ω̃l)

2.
Figure 3 plots the iso-contour lines of the joint PDF of the second and third

invariants of the filtered velocity gradient tensor at Mt= 0.6, 1.0, for three filter widths
l/η = 4, 16, 64, in the range of filtered velocity divergence −0.05 6 θl/θ

′

l 6 0.05. It
is shown that the iso-contour lines of the joint PDF for the nearly incompressible
region −0.05 6 θl/θ

′

l 6 0.05 (Pl/P′l ≈ 0) at l/η= 4 exhibit teardrop shapes, which are
similar to those of the velocity gradient tensor in compressible isotropic turbulence
(Suman & Girimaji 2010) and a compressible turbulent boundary layer (Wang & Lu
2012). The iso-contour lines of the joint PDF at l/η= 16, 64 are qualitatively similar
to those at l/η = 4, in the nearly incompressible region −0.05 6 θl/θ

′

l 6 0.05. It is
observed that as l/η is increased from 4 to 64, the shape of the joint PDF becomes
broader and shorter, suggesting that the fractions of the S(1) and S(4) topological types
increase and that of S(2) decreases. These observations are consistent with a previous
analysis on the joint PDF of the invariants of the filtered velocity gradient tensor
in incompressible isotropic turbulence (Danish & Meneveau 2018). Therefore, in the
nearly incompressible region −0.056 θl/θ

′

l 6 0.05, we conclude that the effect of the
turbulent Mach number on the joint PDF of the second and third invariants of the
filtered velocity gradient tensor is weak.

Figure 4 depicts the iso-contour lines of the same joint PDF at Mt = 0.6, 0.8, 1.0,
for three filter widths l/η= 4, 16, 64, in the compression range −3.156 θl/θ

′

l 6−2.85.
The irregular fluctuation of iso-contour lines of the joint PDF at l/η = 64 is due
to the lack of samples. As compared to the situation of the nearly incompressible
region −0.056 θl/θ

′

l 6 0.05, the iso-contour lines of the joint PDF of the second and
third invariants in the compression region (Pl/P′l≈ 3) become wider, and the fractions
of the iso-contour lines occupying the first and third quadrants become larger. This
observation implies that the S(3) and S(5) topological types take a larger fraction in the
compression region than those in the nearly incompressible region. It is also shown
that these S(3) and S(5) fractions can be enhanced by an increase of the turbulent Mach
number in the compression region.

Figure 5 shows the iso-contour lines of the same joint PDF at Mt= 0.6, 0.8, 1.0, for
three filter widths l/η = 4, 16, 64, in the expansion range 2.85 6 θl/θ

′

l 6 3.15. Again
the irregular fluctuation of the iso-contour lines of the joint PDF at l/η= 64 is due to
the lack of samples. The iso-contour lines of the joint PDF in the expansion region
(Pl/P′l ≈−3) at l/η = 4 have a tendency to occupy the second and fourth quadrants,
and exhibit more skewed shapes as compared to those of the nearly incompressible
region −0.056 θl/θ

′

l 60.05. This observation indicates that, for the filter width l/η=4,
the fractions of S(2) and S(7) topological types are larger in the expansion region than
those in the nearly incompressible region. In addition, the fraction of S(7) topology
at l/η = 4 in the expansion region can be enhanced by an increase of the turbulent
Mach number. It is revealed that, as the filter width l increases, the fractions of the
joint PDF in the third and fourth quadrants become smaller in the expansion region.

6.2. Statistical relation between the invariants of the filtered velocity gradient tensor
and SGS kinetic energy flux

In order to examine the statistical relation between the invariants of filtered velocity
gradient tensor and SGS kinetic energy flux, we consider the relative contribution of
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FIGURE 3. Logarithm of joint PDF of the second and third invariants of the filtered
velocity gradient tensor log10 PDF(Ql, Rl), at Mt = 0.6, 1.0, for three filter widths l/η =
4, 16, 64, in the range of filtered velocity divergence −0.05 6 θl/θ

′

l 6 0.05: (a,b) l/η= 4,
(c,d) l/η= 16 and (e, f ) l/η= 64. (a,c,e) Mt = 0.6; (b,d, f ) Mt = 1.0. The second and third
invariants are normalized as Ql/〈Ql,W〉 and Rl/〈Ql,W〉

3/2, respectively.
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FIGURE 4. Logarithm of the joint PDF of the second and third invariants of the filtered
velocity gradient tensor log10 PDF(Ql, Rl), at Mt = 0.6, 0.8, 1.0, for three filter widths
l/η = 4, 16, 64, in the range of filtered velocity divergence −3.15 6 θl/θ

′

l 6 −2.85:
(a–c) l/η = 4, (d–f ) l/η = 16 and (g–i) l/η = 64. (a,d,g) Mt = 0.6; (b,e,h) Mt =

0.8; (c, f,i) Mt = 1.0. The second and third invariants are normalized as Ql/〈Ql,W〉 and
Rl/〈Ql,W〉

3/2, respectively.

each region in the Ql – Rl plane to the SGS kinetic energy flux for a given range of
filtered velocity divergence θl,1 6 θl 6 θl,2, which is defined by (Wang et al. 2012)

FKEF(Ql, Rl)=
fKEF(Ql, Rl)PDF(Ql, Rl)∫

∞

−∞

∫
∞

−∞

fKEF(Ql, Rl)PDF(Ql, Rl) dQl dRl

, (6.1)

where PDF(Ql, Rl) is the joint PDF of (Ql, Rl) for θl,1 6 θl 6 θl,2; fKEF(Ql, Rl) is the
average of SGS kinetic energy flux Πl conditioned on (Ql, Rl) for θl,1 6 θl 6 θl,2. The
function FKEF(Ql, Rl) has the following property:∫

∞

−∞

∫
∞

−∞

FKEF(Q, R) dQ dR= 1. (6.2)
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FIGURE 5. Logarithm of joint PDF of the second and third invariants of the filtered
velocity gradient tensor log10 PDF(Ql,Rl), at Mt= 0.6, 0.8, 1.0, for three filter widths l/η=
4, 16, 64, in the range of filtered velocity divergence 2.85 6 θl/θ

′

l 6 3.15: (a–c) l/η = 4,
(d–f ) l/η= 16 and (g–i) l/η= 64. (a,d,g) Mt = 0.6; (b,e,h) Mt = 0.8; (c, f,i) Mt = 1.0. The
second and third invariants are normalized as Ql/〈Ql,W〉 and Rl/〈Ql,W〉

3/2, respectively.

Figure 6 plots the relative contribution of each region of the Ql – Rl plane to
the SGS kinetic energy flux FKEF(Ql, Rl), at Mt = 0.6, 0.8, 1.0, for the filter width
l/η = 16, in three ranges of filtered velocity divergence: −0.05 6 θl/θ

′

l 6 0.05,
−3.15 6 θl/θ

′

l 6 −2.85 and 2.85 6 θl/θ
′

l 6 3.15. The contour lines of FKEF(Ql, Rl)

in the nearly incompressible region −0.05 6 θl/θ
′

l 6 0.05 exhibit a butterfly-like
shape. The contour lines of positive FKEF(Ql,Rl) are found to exhibit teardrop shapes
with a statistical preference for the second and fourth quadrants, similar to those
of PDF(Ql, Rl). The positive part of FKEF(Ql, Rl) predominates over its negative
counterpart, indicating that kinetic energy has a tendency to be transferred from large
scales to small scales by the SGS flux Πl. Moreover, the S(2) and S(4) topological

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f D

el
aw

ar
e,

 o
n 

27
 N

ov
 2

01
9 

at
 0

0:
07

:3
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
86

7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.867


Effect of flow topology on the kinetic energy flux 883 A11-17

Rl/¯Ql,w˘3/2 Rl/¯Ql,w˘3/2 Rl/¯Ql,w˘3/2

Q
l/¯

Q
l,w

˘
Q

l/¯
Q

l,w
˘

Q
l/¯

Q
l,w

˘
(a)

(d)

(b) (c)

(e) (f)

(g) (h) (i)

-15

15

10

0.01
0.001
0.0003
-0.00003
-0.0001
-0.001

0.01
0.001
0.0003
-0.00003
-0.0001
-0.001

0.01
0.001
0.0003
-0.00003
-0.0001
-0.001

0.1
0.01
0.001
-0.0001

0.1
0.01
0.001
-0.0001

0.1
0.01
0.001
-0.0001

0.001
-0.001
-0.010
-0.100

0.0001
-0.001
-0.010
-0.100

0.0001
-0.001
-0.010
-0.100

5

0

-5

-10

-10 -5 0 5 10 15 -15

15

10

5

0

-5

-10

-10 -5 0 5 10 15 -15

15

10

5

0

-5

-10

-10 -5 0 5 10 15

-15 -10 -5 0 5 10 15

15

10

5

0

-5

-10

-15 -10 -5 0 5 10 15

15

10

5

0

-5

-10

-15 -10 -5 0 5 10 15

15

10

5

0

-5

-10

-15 -10 -5 0 5 10 15

15

10

5

0

-5

-10

-15 -10 -5 0 5 10 15

15

10

5

0

-5

-10

-15 -10 -5 0 5 10 15

15

10

5

0

-5

-10

FIGURE 6. The relative contribution of each region of the Ql – Rl plane to the SGS kinetic
energy flux FKEF(Ql,Rl), at Mt= 0.6, 0.8, 1.0, for the filter width l/η= 16, in three ranges
of filtered velocity divergence: (a–c) −0.05 6 θl/θ

′

l 6 0.05, (d–f ) −3.15 6 θl/θ
′

l 6 −2.85
and (g–i) 2.85 6 θl/θ

′

l 6 3.15. (a,d,g) Mt = 0.6; (b,e,h) Mt = 0.8; (c, f,i) Mt = 1.0. The
second and third invariants of the velocity gradient tensor are normalized as Ql/〈Ql,W〉

and Rl/〈Ql,W〉
3/2, respectively.

types, corresponding to the second and fourth quadrants, make major contributions
to the positive SGS kinetic energy flux Πl in the nearly incompressible region. The
effect of turbulent Mach number on FKEF(Ql, Rl) is shown to be weak in the nearly
incompressible region (−0.05 6 θl/θ

′

l 6 0.05).
In the compression region (−3.15 6 θl/θ

′

l 6 −2.85), only contour lines of positive
FKEF(Q, R) can be observed, and exhibit wider shapes as compared to the situation
of the nearly incompressible region. This observation implies that the direct SGS flux
of kinetic energy from large scales to small scales can be enhanced by compression
motions. The contour lines of positive FKEF(Q, R) are quite similar to those of
PDF(Ql, Rl). As the turbulent Mach number increases, the contour lines of positive
FKEF(Q, R) become wider, due to the stronger effect of compressibility.
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It is found that the contour lines of negative FKEF(Q, R) are predominant over
those of positive FKEF(Q, R) in the expansion region (2.85 6 θl/θ

′

l 6 3.15). Thus,
expansion motions can enhance the reverse SGS flux of kinetic energy from small
scales to large scales, which are opposite to compression motions. The contour lines
of negative FKEF(Q, R) become wider with the increase of turbulent Mach number in
the expansion region, suggesting that the reverse SGS flux of kinetic energy becomes
more significant at higher turbulent Mach numbers.

6.3. Statistical properties of kinetic energy flux in various flow topologies
The multiscale statistical properties of the velocity field can be characterized
conveniently by the volume fractions V (k)

f of various flow topological types S(k) of the
filtered velocity gradient tensor in compressible isotropic turbulence. Figure 7 shows
the volume fractions V (k)

f of various flow topologies S(k) at turbulent Mach numbers
Mt = 0.6, 0.8, 1.0. The volume fractions of S(1), S(2) and S(4) topological types are
always larger than those of the other five, similar to the results for incompressible
isotropic turbulence (Danish & Meneveau 2018), decaying compressible isotropic
turbulence (Suman & Girimaji 2010) and a compressible turbulent boundary layer
(Wang & Lu 2012).

At the small scale l/η = 2, more than half of flow field can be characterized by
the S(2) or S(4) topological types, and the volume fraction of the S(1) topology is
smaller than those of S(2) and S(4). As the filter width becomes larger, the volume
fractions of S(1) and S(4) topological types increase slightly, while the S(2) volume
fraction decreases. At large scale l/η = 512, the S(2) volume fraction is significantly
smaller than those of S(1) and S(4). It is found that the volume fraction of the S(4)
topology decreases with the increase of the turbulent Mach number. The volume
fraction of the S(4) topology is always the largest at all scales for Mt = 0.6, but is
no longer the largest at small scale l/η = 2 and large scale l/η = 512 for Mt = 1.0.
The volume fraction of the S(3) topology is close to 10 % at scales l/η 6 200, and
slightly increases as the filter width l/η is increased further above 200. The effect
of turbulent Mach number on the volume fraction of the S(3) topology is negligibly
small. These observations are similar to the results on the population fractions of
various topologies for the filtered velocity field in incompressible isotropic turbulence
(Danish & Meneveau 2018).

The topologies S(5), S(6), S(7) and S(8) can be identified only for compressible flows.
Due to the effect of compressibility, the volume fractions of S(5), S(6), S(7) and S(8)
topological types increase significantly with the increase of the turbulent Mach number.
It is found that the total volume fraction of S(5), S(6), S(7) and S(8) types is smaller
than 15 % at turbulent Mach numbers Mt = 0.6, 0.8, 1.0. The effect of filter width
on the volume fractions of S(5), S(6), S(7) and S(8) is very weak when l/η 6 100. As
the filter width l/η increases further above 100, the volume fractions of S(5) and S(7)
decrease slightly, while the volume fractions of S(6) and S(8) decrease rapidly. The
volume fractions of S(6) and S(8) are always much smaller than those of S(5) and S(7)
at the three turbulent Mach numbers considered here.

In order to investigate the effect of flow topology on the SGS kinetic energy flux,
we define the contribution Πl,k from the type-k (S(k)) topology to the SGS kinetic
energy flux Πl as follows: Πl,k = Πl if the point is located in the S(k) topological
region; otherwise, we set Πl,k = 0. Similarly, the contribution Π s

l,k to the solenoidal
component of the SGS kinetic energy flux Π s

l from the S(k) flow topology is defined
by Π s

l,k =Π
s
l if the point is located in the S(k) topological region; otherwise, Π s

l,k = 0.
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FIGURE 7. Volume fractions V (k)
f of various flow topologies S(k). (a,b) Mt = 0.6;

(c,d) Mt = 0.8; (e, f ) Mt = 1.0.

Likewise, Π c
l,k represents the contribution to the compressible component of the SGS

kinetic energy flux Π c
l from the S(k) flow topology.

Figure 8 depicts the average contributions 〈Πl,k〉/εT of various flow topological
types to the normalized SGS kinetic energy flux Πl/εT at the three turbulent Mach
numbers. The total dissipation per unit volume is εT = −〈pθ〉 + ε0, i.e. the total
conversion rate of kinetic energy into internal energy by the pressure dilatation
−〈pθ〉 and the viscous dissipation ε0 = 〈σijSij/Rer〉 (Wang et al. 2018a). It is shown
that the average contributions from the S(1), S(2), S(3) and S(4) topological types to the
normalized SGS kinetic energy flux are positive. The contributions from S(2) and S(4)

to the normalized SGS kinetic energy flux are much larger than those of the other six
in the scale range 106 l/η6 200. The value of 〈Πl,2〉/εT is close to that of 〈Πl,4〉/εT
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FIGURE 8. The average of contributions 〈Πl,k〉/εT of various flow topologies S(k) to the
normalized SGS kinetic energy flux Πl/εT . (a,b) Mt = 0.6; (c,d) Mt = 0.8; (e, f ) Mt = 1.0.

at all scales, even though the volume fraction of the S(2) topology is significantly
smaller than that of the S(4) topology. The contribution of the S(3) topology is smaller
than that of the S(1) topology at Mt = 0.6, 0.8. As turbulent Mach number increases,
the values of 〈Πl,2〉/εT and 〈Πl,4〉/εT decrease, while the value of 〈Πl,3〉/εT increases.
The contribution of the S(3) topology to the normalized SGS kinetic energy flux is
larger than that of the S(1) topology for l/η6 30 at Mt = 1.0.

The average contribution of the S(5) flow topology to the normalized SGS kinetic
energy flux is positive, while the average contribution of the S(7) flow topology
is negative. This observation suggests that the S(5) flow topology makes a net
contribution to the direct SGS flux of kinetic energy from large scales to small
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scales, while the S(7) flow topology makes a net contribution to the reverse SGS flux
of kinetic energy from small scales to large scales. Due to the effect of compressibility,
the magnitudes of 〈Πl,5〉/εT and 〈Πl,7〉/εT increase rapidly with the increase of the
turbulent Mach number. The average contributions of the S(6) and S(8) flow topologies
to the normalized SGS kinetic energy flux are negligibly small.

We decompose the SGS kinetic energy flux Πl into two parts Π−l and Π+l : Πl =

Π−l +Π
+

l . Here, Π−l =Πl if Πl 6 0; otherwise Π−l = 0. In a similar fashion, Π+l =Πl
if Πl > 0; otherwise Π+l = 0. The positive part Π+l represents the direct transfer of
kinetic energy from large scales to small scales. In contrast, the negative part Π−l
represents the reverse transfer of kinetic energy from small scales to large scales,
i.e. the backscatter of kinetic energy. The local kinetic energy backscatter represents a
challenge in SGS modelling due to the fact that underestimation of the kinetic energy
backscatter can give rise to excessive SGS dissipation, while overestimation of the
kinetic energy backscatter can lead to numerical instability. Thus, the study of kinetic
energy backscatter is of great importance in developing advanced SGS models in LES
of turbulence.

In order to investigate the effect of flow topology on the SGS kinetic energy
backscatter, we define the contribution Π−l,k from the type-k (S(k)) topology to the
negative component of the SGS kinetic energy flux Π−l as follows: Π−l,k =Π

−

l if the
point is located in the S(k) topological region; otherwise, we set Π−l,k= 0. Similarly, we
define the contribution Π+l,k from the type-k (S(k)) topology to the positive component
of the SGS kinetic energy flux Π+l as follows: Π+l,k=Π

+

l if the point is located in the
S(k) topological region; otherwise, we set Π+l,k = 0. Therefore, Πl,k =Π

−

l,k +Π
+

l,k. We
plot the normalized average of the negative component of the SGS kinetic energy flux
〈Π−l,k〉/(|〈Π

−

l,k〉| + |〈Π
+

l,k〉|) for the flow topology S(k) in figure 9. It is observed that the
magnitude of 〈Π−l,k〉/(|〈Π

−

l,k〉| + |〈Π
+

l,k〉|) in the S(1) topological region is larger than
those in the S(2), S(3) and S(4) topological regions, implying that the S(1) flow topology
can induce more significant backscatter of kinetic energy than the S(2), S(3) and S(4)
flow topologies. Moreover, the value of 〈Π−l,k〉/(|〈Π

−

l,k〉| + |〈Π
+

l,k〉|) is close to 0 in the
S(5) and S(6) topological regions, and is close to −1 in the S(7) and S(8) topological
regions. These observations suggest that most kinetic energy transfer is from large
scales to small scales in the S(5) and S(6) topological regions, while most kinetic
energy transfer is from small scales to large scales in the S(7) and S(8) topological
regions. In a previous study, we showed that the SGS backscatter of kinetic energy
becomes more important as the turbulent Mach number becomes larger (Wang et al.
2018a). Here, we infer that the increase of volume fraction of the S(7) topological
regions with the increase of turbulent Mach number causes the increase of the SGS
backscatter of kinetic energy.

Figure 10 shows the average contributions 〈Π s
l,k〉/εT , from various flow topological

types, to the solenoidal component of the normalized SGS kinetic energy flux Π s
l /εT

at the three turbulent Mach numbers. The average contributions of the S(1), S(2), S(3)
and S(4) types to the solenoidal component of the normalized SGS kinetic energy
flux are positive. The contributions from S(2) and S(4) to the solenoidal component of
the normalized SGS kinetic energy flux are much larger than those from the other
six topological types in the range of scales 10 6 l/η 6 200. The values of 〈Π s

l,2〉/εT
and 〈Π s

l,4〉/εT decrease with the growth of the turbulent Mach number. The value of
〈Π s

l,2〉/εT is larger than that of 〈Π s
l,4〉/εT at scales l/η6 100, revealing the significant

effect of the S(2) flow topology on the solenoidal component of the normalized
SGS kinetic energy flux. The average contribution of the S(5) flow topology to the
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FIGURE 9. Normalized average of the negative component of SGS kinetic energy flux
〈Π−l,k〉/(|〈Π

−

l,k〉| + |〈Π
+

l,k〉|) for the flow topology S(k). (a,b) Mt = 0.6; (c,d) Mt = 0.8;
(e, f ) Mt = 1.0.

solenoidal component of the normalized SGS kinetic energy flux is positive, while
the average contributions of the S(6), S(7) and S(8) flow topologies are negligibly small.

Figure 11 plots the average contributions 〈Π c
l,k〉/εT , from various flow topological

types, to the compressible component of the normalized SGS kinetic energy flux
Π c

l /εT at the three turbulent Mach numbers. The average contribution of the S(3) flow
topology to the compressible component of the normalized SGS kinetic energy flux
is positive, and increases significantly with the turbulent Mach number. The average
contribution of the S(4) flow topology is positive at scales l/η 6 100, and increases
with the turbulent Mach number. In contrast, the average contribution of the S(2) flow
topology is negative, implying that the S(2) flow topology makes a net contribution
to the reverse SGS flux of the compressible component of the kinetic energy. The
average contribution of the S(1) flow topology to the compressible component of
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FIGURE 10. The average of contributions 〈Π s
l,k〉/εT of various flow topologies S(k) to the

solenoidal component of the normalized SGS kinetic energy flux Π s
l /εT . (a,b) Mt = 0.6;

(c,d) Mt = 0.8; (e, f ) Mt = 1.0.

the normalized SGS kinetic energy flux is always small at the three turbulent Mach
numbers considered here.

The value of 〈Π c
l,5〉/εT is positive, indicating that the flow topology S(5) makes a net

contribution to the forward SGS flux of the compressible component of the kinetic
energy. In contrast, the value of 〈Π c

l,7〉/εT is negative, demonstrating that the S(7)

flow topology makes a net contribution to the reverse SGS flux of the compressible
component of the kinetic energy. The magnitudes of 〈Π c

l,5〉/εT and 〈Π c
l,7〉/εT increase

rapidly as the turbulent Mach number increases. The average contributions of the S(6)
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FIGURE 11. The average of contributions 〈Π c
l,k〉/εT of various flow topologies S(k) to the

compressible component of the normalized SGS kinetic energy flux Π c
l /εT . (a–b) Mt=0.6;

(c–d) Mt = 0.8; (e–f ) Mt = 1.0.

and S(8) flow topological types to the compressible component of the normalized SGS
kinetic energy flux are negligibly small.

6.4. Effect of filtered velocity divergence on the kinetic energy flux in various flow
topological regions

In order to clarify the effect of compression and expansion motions on the flow
topology of the filtered velocity field, we calculate the conditionally averaged volume
fractions of various flow topological types. Figure 12 plots the volume fractions V (k)

f
of various flow topological regions, conditioned on the normalized filtered velocity
divergence for the filter width l/η = 16 at the three turbulent Mach numbers. In the
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FIGURE 12. Volume fractions V (k)
f of various flow topologies S(k) conditioned on the

normalized filtered velocity divergence for the filter width l/η = 16. (a,b) Mt = 0.6;
(c,d) Mt = 0.8; (e, f ) Mt = 1.0.

compression regions (θl < 0), as the magnitude of the filtered velocity divergence
increases, the volume fraction of the S(3) flow topology increases rapidly, while the
volume fractions of the S(1), S(2) and S(4) topological types decrease significantly.
Moreover, the volume fraction of the S(3) flow topology increases with the increase
of turbulent Mach number in the compression regions. The volume fraction of
the S(3) topology is larger than those of the other seven flow topologies in the
strong compression regions (θl/θ

′

l < −3) at relatively high turbulent Mach numbers
Mt = 0.8, 1.0. The volume fraction of the S(5) flow topology is larger than 15 % in
strong compression regions. The volume fraction of the S(6) flow topology increases as
the magnitudes of the filtered velocity divergence and turbulent Mach number increase,
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in the strong compression regions (θl/θ
′

l < −3). Therefore, the strong compression
regions are characterized by the stable-node/saddle/saddle topological structure.

In the expansion regions θl > 0, the volume fractions of the S(1), S(3) and
S(4) topological types decrease significantly with the increase of filtered velocity
divergence. The volume fraction of the S(2) flow topology is larger than those of S(1),
S(3) and S(4) in strong expansion regions (θ/θ ′ > 3). The volume fraction of the S(7)
flow topology increases rapidly with the increase of the filtered velocity divergence
and turbulent Mach number in the expansion regions, and is much larger than those
of the other seven flow topologies in the strong expansion regions (θl/θ

′

l > 3) at
relatively high turbulent Mach numbers Mt = 0.8, 1.0. The volume fraction of flow
topology S(8) increases as the filtered velocity divergence and turbulent Mach number
increase, in the strong expansion regions (θl/θ

′

l > 3). Therefore, the strong expansion
regions are typically unstable foci with stretching in the direction normal to the focal
plane.

In order to address the compressibility effect on the SGS kinetic energy flux in
various flow topological regions, we calculate the conditionally averaged contributions
from various flow topological regions to the normalized SGS kinetic energy flux.
Figure 13 depicts the average contributions Πl,k/εT of various flow topological types
to the normalized SGS kinetic energy flux Πl/εT conditioned on the normalized
filtered velocity divergence for the filter width l/η = 16 at the three turbulent Mach
numbers. In the compression regions (θl < 0), the conditionally averaged values of
Πl,1, Πl,2, Πl,3, Πl,4, Πl,5 and Πl,6 are positive, indicating that the corresponding
flow topological types, S(1), S(2), S(3), S(4), S(5) and S(6), make a net contribution
to the forward SGS flux of kinetic energy from large scales to small scales. Due
to the effect of compressibility, the conditionally averaged values of Πl,3, Πl,5 and
Πl,6 increase significantly with the increase of magnitudes of the filtered velocity
divergence and turbulent Mach number. It is found that the contribution of the S(3)
flow topology to the normalized SGS kinetic energy flux is much larger than those
of the other seven flow topological types in the strong compression regions at high
turbulent Mach numbers Mt = 0.8, 1.0.

In the expansion regions (θl > 0), the magnitudes of the conditionally averaged
values of Πl,3, Πl,4 and Πl,8 are smaller than those of Πl,1, Πl,2 and Πl,7. In the strong
expansion regions (θl/θ

′

l > 3), the conditionally averaged values of Πl,1, Πl,2 and Πl,7
are negative, implying that the S(1), S(2) and S(7) flow topological types make a net
contribution to the reverse SGS flux of kinetic energy. It is shown that the contribution
of the S(7) flow topology to the reverse SGS flux of kinetic energy is much larger than
those of the other seven flow topological types in the strong expansion regions at high
turbulent Mach numbers Mt = 0.8, 1.0.

We show the normalized conditional average value of negative component of SGS
kinetic energy flux 〈Π−l,k|θl/θ

′

l 〉/〈Π
+

l,k−Π
−

l,k|θl/θ
′

l 〉 in the flow topology S(k) for the filter
width l/η= 16 in figure 14. The conditional average value at k= 5, 6 is plotted only
for θl/θ

′

l < 0 since the S(5) and S(6) flow topologies only exist in compression regions.
Similarly, the conditional average value at k = 7, 8 is plotted only for θl/θ

′

l > 0. We
find that the value of 〈Π−l,k|θl/θ

′

l 〉/〈Π
+

l,k −Π
−

l,k|θl/θ
′

l 〉 is always close to 0 for θl/θ
′

l 6
−2.0, indicating that most kinetic energy transfer is from large scales to small scales
in strong compression regions. We also observe that the value of 〈Π−l,k|θl/θ

′

l 〉/〈Π
+

l,k −

Π−l,k|θl/θ
′

l 〉 tends to be −1 as θl/θ
′

l becomes larger in strong expansion regions. Thus,
the effect of strong expansion motions on the SGS kinetic energy flux is opposite to
that of strong compression motions. The effects of both expansion and compression
motions become more significant with the increase of turbulent Mach number. It is
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FIGURE 13. The average of contributions Πl,k/εT of various flow topologies S(k) to the
normalized SGS kinetic energy flux Πl/εT conditioned on the normalized filtered velocity
divergence for the filter width l/η= 16. (a,b) Mt = 0.6; (c,d) Mt = 0.8; (e, f ) Mt = 1.0.

worth noting that in expansion regions, the S(1) and S(3) flow topologies can cause
more significant backscatter of kinetic energy than the S(2) and S(4) flow topologies.

In order to investigate the relation between the large-scale strain and the SGS stress,
we introduce the following geometrical variable for the SGS kinetic energy flux:

ξl =
τ̃ijS̃ij

|τ̃ ||S̃|
, (6.3)

where |τ̃ | =
√
τ̃ijτ̃ij and |S̃| =

√
S̃ijS̃ij. We depict the average value of ξl conditioned

on the normalized velocity divergence and the flow topology S(k) for the filter width
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FIGURE 14. Normalized conditional average of the negative component of SGS kinetic
energy flux 〈Π−l,k|θl/θ

′

l 〉/〈Π
+

l,k − Π
−

l,k|θl/θ
′

l 〉 in the flow topology S(k) for the filter width
l/η= 16. (a,b) Mt = 0.6; (c,d) Mt = 0.8; (e, f ) Mt = 1.0.

l/η = 16 in figure 15. The irregular fluctuations of the conditional average values at
k= 3, 4 for large positive normalized velocity divergence are due to the lack of data
samples, since the conditional volume fractions of the S(3) and S(4) flow topologies
are very small for large positive normalized velocity divergence. We show that the
conditional average of ξl is close to −1 for θl/θ

′

l 6 −4.0, indicating the antiparallel
alignment between the large-scale strain and the SGS stress in strong compression
regions. Thus, the SGS kinetic energy flux is maximized by the antiparallel alignment
between the large-scale strain and the SGS stress in strong compression regions. We
also find that the conditional average of ξl is larger than 0.5 for θl/θ

′

l > 4.0, giving
rise to the reverse SGS flux of kinetic energy from small scales to large scales in
strong expansion regions. The conditional average of ξl exhibits qualitatively similar
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FIGURE 15. Average of ξl conditioned on the normalized velocity divergence and the flow
topology S(k) for the filter width l/η= 16. (a,b) Mt = 0.6; (c,d) Mt = 0.8; (e, f ) Mt = 1.0.

behaviours in different flow topologies. The effect of compression and expansion
motions on the conditional average of ξl is more significant for S(6) and S(8) flow
topologies, as compared to other six flow topologies.

Figure 16 shows the average contributions Π s
l,k/εT , from various flow topological

types, to the solenoidal component of the normalized SGS kinetic energy flux Π s
l /εT ,

conditioned on the normalized filtered velocity divergence for the filter width l/η= 16
at the three turbulent Mach numbers. The behaviours of conditionally averaged Π s

l,k
are quite similar to those of Πl,k. In the compression regions (θl< 0), the conditionally
averaged values of Π s

l,1, Π s
l,2, Π s

l,3, Π s
l,4, Π s

l,5 and Π s
l,6 are positive. The conditionally

averaged values, Π s
l,3, Π s

l,5 and Π s
l,6, increase significantly as the magnitudes of the
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FIGURE 16. The average contributions Π s
l,k/εT of various flow topologies S(k) to the

solenoidal component of the normalized SGS kinetic energy flux Π s
l /εT conditioned on

the normalized filtered velocity divergence for the filter width l/η = 16. (a,b) Mt = 0.6;
(c,d) Mt = 0.8; (e, f ) Mt = 1.0.

filtered velocity divergence and turbulent Mach number increase. The contribution of
the S(3) flow topology to the solenoidal component of normalized SGS kinetic energy
flux is much larger than those of the other seven flow topological types in the strong
compression regions at high turbulent Mach numbers Mt = 0.8, 1.0. In the strong
expansion regions (θl/θ

′

l > 3), the conditionally averaged values of Π s
l,1, Π s

l,2 and Π s
l,7

are negative. The contribution of the S(7) flow topology to the reverse SGS flux of
the solenoidal component of kinetic energy is much larger than those of the other
seven flow topologies in strong expansion regions at high turbulent Mach numbers
Mt = 0.8, 1.0.
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FIGURE 17. The average contributions Π c
l,k/εT of various flow topologies S(k) to the

compressible component of normalized SGS kinetic energy flux Π c
l /εT conditioned on

the normalized filtered velocity divergence for the filter width l/η = 16. (a,b) Mt = 0.6;
(c,d) Mt = 0.8; (e, f ) Mt = 1.0.

Figure 17 shows the average contributions Π c
l,k/εT , from various flow topological

regions, to the compressible component of the normalized SGS kinetic energy flux
Π c

l /εT , conditioned on the normalized filtered velocity divergence for the filter width
l/η = 16. The behaviours of conditionally averaged Π c

l,k are quite similar to those
of Πl,k and Π s

l,k. In the strong compression regions, the contribution of the S(3) flow
topology to the compressible component of the normalized SGS kinetic energy flux
is predominant over the other seven flow topologies at high turbulent Mach numbers
Mt = 0.8, 1.0. In the strong expansion regions, the contribution of the S(7) flow
topology to the reverse SGS flux of the compressible component of kinetic energy
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FIGURE 18. Volume fractions V (3)
f and V (7)

f of flow topologies S(3) and S(7) conditioned
on the normalized filtered velocity divergence. (a,b) Mt = 0.8; (c,d) Mt = 1.0.

is predominant over the other seven flow topologies at high turbulent Mach numbers
Mt = 0.8, 1.0.

Due to the importance of the S(3) and S(7) topological types in the strong
compression and strong expansion regions, we plot the volume fractions V (3)

f and
V (7)

f , conditioned on the normalized filtered velocity divergence, for the filter widths
l/η = 16, 24, 32, 48, 64 in figure 18. The volume fraction V (3)

f increases rapidly
with the increase of magnitude of the filtered velocity divergence in the compression
regions θl/θ

′

l 6 0, and is larger than 30 % for θl/θ
′

l 6−4 at turbulent Mach numbers
Mt = 0.8, 1.0. The volume fraction V (7)

f increases rapidly with the increase of filtered
velocity divergence in the expansion regions, and is larger than 40 % for θl/θ

′

l > 4
at turbulent Mach numbers Mt = 0.8, 1.0. Due to the lack of samples, the data are
quite scattered when the magnitude of the filtered velocity divergence and the filter
width are large. It is shown that numerical results for the conditionally averaged
volume fractions nearly collapse onto one another for different filter widths when
|θl/θ

′

l | 6 2, implying that the dependency of the conditionally averaged volume
fractions on the filter width is quite weak. As the filter width l/η increases from 16
to 64, V (3)

f decreases slightly in strong compression regions (θl/θ
′

l 6 −3), while V (7)
f

increases in the strong expansion regions (θl/θ
′

l > 3). According to the Kolmogorov
theory in the inertial range of turbulence, the flow dynamics of the inertial range
is nearly independent of both the external scale and dissipation scale, and exhibits
self-similarity properties, which is statistically signified by the power-law scaling
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FIGURE 19. The average of contributions Πl,3/εT and Πl,7/εT of flow topologies S(3)
and S(7) to the normalized SGS kinetic energy flux Πl/εT conditioned on the normalized
filtered velocity divergence. (a,b) Mt=0.8; (c,d) Mt=1.0. Here, α3=0.1,0.23 for turbulent
Mach numbers Mt = 0.8, 1.0, respectively; α7 = 0.1, 0.18 for turbulent Mach numbers
Mt = 0.8, 1.0, respectively.

behaviours of the velocity spectrum and velocity structure functions. Here, we
show that the statistical relations between the filtered velocity divergence and the
volume fractions V (3)

f and V (7)
f are also nearly independent of filter width, and exhibit

nearly self-similarity properties in the inertial range. We infer that the Kolmogorov
turbulence theory of the inertial range can be extended to describe a variety of
statistical properties of compressible turbulence, and such observations may be used
to simplify the development of SGS models for LES of compressible turbulence.
The slight dependence of volume fractions V (3)

f and V (7)
f on the filter width in

strong compression regions and strong expansion regions can be attributed to the
intermittency of turbulence.

Figure 19 plots the averaged Πl,3/εT and Πl,7/εT , from the S(3) and S(7) flow
topological types, to the normalized SGS kinetic energy flux Πl/εT conditioned on
the normalized filtered velocity divergence, for the filter widths l/η=16,24,32,48,64.
The conditionally averaged values of Πl,3/εT and Πl,7/εT are nearly independent of
filter width l/η, for 16 6 l/η 6 64 at Mt = 0.8, 1.0. When the magnitude of the
filtered velocity divergence θl/θ

′

l and the filter width l/η is large, the data are quite
scattered due to the lack of samples. We propose simple algebraic relations for the
conditionally averaged Πl,3/εT in the compression regions (θl 6 0) and Πl,7/εT in the
expansion regions (θl > 0),

〈Πl,3/εT |θl/θ
′

l 〉 = α3(θl/θ
′

l )
2, θl 6 0, (6.4)
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where α3 = 0.1, 0.23 for turbulent Mach numbers Mt = 0.8, 1.0, respectively. Here

〈Πl,7/εT |θl/θ
′

l 〉 =−α7(θl/θ
′

l )
2, θl > 0, (6.5)

where α7 = 0.1, 0.18 for turbulent Mach numbers Mt = 0.8, 1.0, respectively.
The numerical results for the conditionally averaged Πl,3/εT and Πl,7/εT are in
good agreement with (6.4) and (6.5). The algebraic relations indicate that strong
compression motions induce direct SGS flux of kinetic energy from large scales to
small scales in the S(3) flow topology regions, while strong expansion motions lead
to reverse SGS flux of kinetic energy from small scales to large scales in the S(7)
flow topology regions. In addition, the magnitude of the SGS flux of kinetic energy
increases linearly with the square of the filtered velocity divergence, demonstrating
the significant effect of compressibility on the SGS flux of kinetic energy in the
S(3) and S(7) flow topology regions. Previous studies showed that strong compression
motions can be identified in sheet-like shocklets (Wang et al. 2011, 2017b), where
kinetic energy is dissipated by viscosity quickly and the viscous dissipation of kinetic
energy is proportional to the square of the velocity divergence. Shocklet regions can
be viewed as kinetic energy sinks which absorb kinetic energy persistently from
large-scale flows through direct cascade of kinetic energy (Wang et al. 2013, 2018a).
The magnitude of the kinetic energy flux in the inertial range should be proportional
to the local average of the dissipation rate of the shocklet at the scale of the filter
width, based on the assumption of the locality of kinetic energy transfer (Aluie
2011). Thus, the conditionally averaged SGS kinetic energy flux is proportional to
the square of the filtered velocity divergence in strong compression regions (Wang
et al. 2013, 2018a). In strong expansion regions with the S(7) flow topology, kinetic
energy transfers from small scales to large scale, which is opposite to the situation
of strong compression regions with the S(3) flow topology. Moreover, the magnitude
of the conditionally averaged SGS kinetic energy flux also increases linearly with the
square of the filtered velocity divergence, demonstrating the quantitative similarity
between the effects of strong expansion motions and compression motions on the
kinetic energy transfer. The observation suggests that strong expansion regions with
the S(7) flow topology can be viewed as kinetic energy sources which inject kinetic
energy to large-scale flows through reverse cascade of kinetic energy.

According to the usual kinetic energy cascade scenario, in the statistical sense, the
kinetic energy is injected at the integral length scale, transferred from large scales
to small scales and dissipated at the Kolmogorov length scale. In the inertial range
between the integral length scale and the Kolmogorov length scale, the SGS flux
of kinetic energy exhibits some scale-invariant properties: (i) the spatial average of
SGS flux is nearly constant; (ii) the average of SGS flux conditioned on the filtered
velocity divergence is independent of filter scales (Wang et al. 2013, 2018a). Here,
it is shown that the average values of SGS fluxes Πl,3/εT and Πl,7/εT , conditioned
on the filtered velocity divergence, are also nearly scale invariant in the strong
compression or expansion regions during the kinetic energy cascade in solenoidally
forced compressible isotropic turbulence. We believe that scale-invariant properties are
quite general in turbulence regardless of the complex effects of compression motions
and expansion motions, which are critical to developing efficient SGS models for
LES of compressible turbulence (Meneveau & Katz 2000).

A previous study showed that the conditionally averaged SGS kinetic energy
flux is proportional to θ 1.2

l in the strong expansion regions at turbulent Mach
numbers Mt = 0.6, 0.8, 1.0 in solenoidally forced compressible isotropic turbulence
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FIGURE 20. Iso-surfaces of filtered velocity divergence for l/η = 16, 32 at Mt = 1.0.
(a) θl/θ

′

l =−3.0 and l/η= 16; (b) θl/θ
′

l = 2.0 and l/η= 16; (c) θl/θ
′

l =−3.0 and l/η= 32;
(d) θl/θ

′

l = 2.0 and l/η= 32.

(Wang et al. 2018a). Here, it is found that the conditionally averaged SGS kinetic
energy flux Πl,7/εT from the S(7) flow topology is proportional to θ 2

l in the strong
expansion regions at turbulent Mach numbers Mt = 0.8, 1.0, demonstrating the strong
effect of compressibility on the inverse SGS flux of kinetic energy in the S(7)
flow topology. We note that the compressibility effect is weakened by other flow
topological types, leading to the θ 1.2

l scaling of overall SGS kinetic energy flux in
the strong expansion regions.

Figure 20 displays the iso-surfaces of filtered velocity divergence for l/η = 16, 32
at Mt = 1.0. The iso-surfaces are coloured based on the normalized flux of kinetic
energy Πl/Π

′

l , where Π ′l denotes the r.m.s. value of kinetic energy flux Πl. The iso-
surfaces of θl/θ

′

l = −3.0 associated with strong compression motions are sheet-like,
which can be attributed to the generation of shocklets at Mt= 1.0. The kinetic energy
flux is positive on the iso-surfaces of θl/θ

′

l =−3.0, suggesting that strong compression
motions cause the direct flux of kinetic energy from large scales to small scales. The
iso-surfaces of θl/θ

′

l = 2.0, associated with strong expansion motions, are blob-like,
with smaller length scales as compared to iso-surfaces of θl/θ

′

l =−3.0. Moreover, the
spatial distributions of iso-surfaces of θl/θ

′

l = 2.0 are more uniform than those of iso-
surfaces of θl/θ

′

l = −3.0. The kinetic energy flux is negative on the iso-surfaces of
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FIGURE 21. The average of contributions Π s
l,3/εT and Π s

l,7/εT of flow topologies S(3)

and S(7) to the solenoidal component of the normalized SGS kinetic energy flux Π s
l /εT

conditioned on the normalized filtered velocity divergence. (a,b) Mt = 0.8; (c,d) Mt =

1.0. Here, αs
3 = 0.052, 0.11 for turbulent Mach numbers Mt = 0.8, 1.0, respectively;

αs
7 = 0.042, 0.075 for turbulent Mach numbers Mt = 0.8, 1.0, respectively.

θl/θ
′

l = 2.0, indicating that strong expansion motions induce the reverse flux of kinetic
energy. It is also observed that the iso-surfaces of θl/θ

′

l =−3.0 and θl/θ
′

l = 2.0 exhibit
geometrical self-similarities at different filter widths l/η= 16, 32. As the filter width
increases, iso-surfaces of θl/θ

′

l = −3.0 have a larger thickness but with almost the
same spanwise scale, while iso-surfaces of θl/θ

′

l = 2.0 show a larger diameter. In a
previous study, we plotted the iso-surfaces of the normalized flux of kinetic energy
Πl/Π

′

l (Wang et al. 2018a). It is worth noting that the iso-surfaces of Πl/Π
′

l = 2.0
are similar to the iso-surfaces of θl/θ

′

l =−3.0, while the iso-surfaces of Πl/Π
′

l =−0.5
are similar to the iso-surfaces of θl/θ

′

l = 2.0. Thus, strong compression motions and
expansion motions can give rise to the different spatial patterns of locally direct or
reverse transfer of kinetic energy. Moreover, the scale-invariant properties of kinetic
energy flux can be related to the geometrical self-similarities of strong compression
motions and expansion motions.

In figure 21, we show the averaged Π s
l,3/εT and Π s

l,7/εT , from the S(3) and S(7)
flow topological types, to the solenoidal component of the normalized SGS kinetic
energy flux Π s

l /εT , conditioned on the normalized filtered velocity divergence, for the
filter widths l/η = 16, 24, 32, 48, 64. Similar to the conditionally averaged values
of Πl,3/εT and Πl,7/εT , the conditionally averaged values of Π s

l,3/εT and Π s
l,7/εT are

nearly independent of filter width l/η. In addition, similar algebraic relations for the
conditionally averaged Π s

l,3/εT in the compression regions (θl 6 0) and Π s
l,7/εT in the
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FIGURE 22. The average of contributions Π c
l,3/εT and Π c

l,7/εT of flow topologies S(3)

and S(7) to the compressible component of normalized SGS kinetic energy flux Π c
l /εT

conditioned on the normalized filtered velocity divergence. (a,b) Mt = 0.8; (c,d) Mt =

1.0. Here, αc
3 = 0.050, 0.12 for turbulent Mach numbers Mt = 0.8, 1.0, respectively;

αc
7 = 0.058, 0.10 for turbulent Mach numbers Mt = 0.8, 1.0, respectively.

expansion regions (θl > 0) can be introduced:

〈Π s
l,3/εT |θl/θ

′

l 〉 = α
s
3(θl/θ

′

l )
2, θl 6 0, (6.6)

where αs
3 = 0.052, 0.11 for turbulent Mach numbers Mt = 0.8, 1.0, respectively. Here

〈Π s
l,7/εT |θl/θ

′

l 〉 =−α
s
7(θl/θ

′

l )
2, θl > 0, (6.7)

where αs
7 = 0.042, 0.075 for turbulent Mach numbers Mt = 0.8, 1.0, respectively. We

find that the numerical results are in good agreement with (6.6) and (6.7), as shown
in figure 21. The algebraic relations suggest the strong influences of compressible
motions on the inter-scale transfer of the solenoidal component of kinetic energy,
through the couplings of the compressible velocity component and the solenoidal
velocity component in the SGS stress tensor. Thus, it is necessary to consider the
compressibility effects explicitly on the SGS models in LES of highly compressible
turbulence.

In figure 22, we plot the averaged Π c
l,3/εT and Π c

l,7/εT , from the S(3) and S(7)
flow topological types, to the compressible component of the normalized SGS kinetic
energy flux Π c

l /εT , conditioned on the normalized filtered velocity divergence, for
the filter widths l/η = 16, 24, 32, 48, 64, at turbulent Mach numbers Mt = 0.8, 1.0.
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The conditionally averaged values of Π c
l,3/εT and Π c

l,7/εT are nearly independent of
filter width l/η, which are similar to the behaviours of Π s

l,3/εT and Π s
l,7/εT . Again,

we present similar algebraic relations for these conditionally averaged values in the
compression regions and the expansion regions, respectively,

〈Π c
l,3/εT |θl/θ

′

l 〉 = α
c
3(θl/θ

′

l )
2, θl 6 0, (6.8)

where αc
3 = 0.050, 0.12 for turbulent Mach numbers Mt = 0.8, 1.0, respectively. Here

〈Π c
l,7/εT |θl/θ

′

l 〉 =−α
c
7(θl/θ

′

l )
2, θl > 0, (6.9)

where αc
7 = 0.058, 0.10 for turbulent Mach numbers Mt = 0.8, 1.0, respectively. The

numerical results on the conditionally averaged Π c
l,3/εT and Π c

l,7/εT are in good
agreement with (6.8) and (6.9). It is found that αc

3 is close to αs
3, implying that the

local SGS flux of the compressible kinetic energy of the S(3) flow topology in the
strong compression regions is comparable to its solenoidal counterpart. It is worth
noting that αc

7 > α
s
7, which suggests that the local SGS flux of compressible kinetic

energy in the S(7) flow topology is more significantly affected by the strong expansion
motions, as compared to its solenoidal counterpart in the S(7) flow topology. To sum
up, strong compression regions with the S(3) flow topology can absorb both solenoidal
and compressible components of kinetic energy from large-scale flows through the
direct cascade of kinetic energy; while strong expansion regions with the S(7) flow
topology can inject both solenoidal and compressible components of kinetic energy
to large-scale flows through the reverse cascade of kinetic energy. Moreover, the
magnitudes of inter-scale transfer of both solenoidal and compressible components
of kinetic energy are proportional to the square of the filtered velocity divergence,
and exhibit scale invariance in the inertial range. These observations are valuable in
developing advanced SGS models for LES of compressible turbulence.

7. Summary and conclusions
In this paper, the statistical properties of SGS kinetic energy flux for various local

flow topological structures in solenoidally forced compressible isotropic turbulence
are investigated at turbulent Mach numbers from 0.6 to 1.0. The flow topology of
different length scales can be analysed conveniently using the three invariants of the
filtered velocity gradient tensor. The iso-contour lines of joint PDF of the second and
third invariants of the filtered velocity gradient tensor in the nearly incompressible
regions exhibit the teardrop shapes, and are insensitive to the change of filter width
and turbulent Mach number, which are similar to those of incompressible turbulence.

The iso-contour lines of joint PDF of the second and third invariants of the filtered
velocity gradient tensor become wider and exhibit a stronger preference for the
first quadrant in the compression regions as compared to the situation of nearly
incompressible regions. This preference becomes stronger as the filter width increases
in the compression regions. In contrast, the iso-contour lines of joint PDF of the
second and third invariants of filtered velocity gradient tensor exhibit more skewed
shapes and have a stronger preference for the second quadrant in the expansion
regions as compared to those for the nearly incompressible regions. The fractions of
the joint PDF in the third and fourth quadrants become smaller as the filter width
increases in the expansion regions.

Statistical properties of the eight distinct flow topological types based on the three
invariants of filtered velocity gradient tensor are investigated. The flow topologies
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UFC, UN/S/S and SFS are predominant flow patterns at all scales, including viscous
scales, inertial scales and integral scales; they account for at least 75 % of the flow
domain. As the filter width increases, the volume fractions of the UFC and SFS
topological types increase slightly, while the volume fraction of the UN/S/S topology
decreases. As the turbulent Mach number becomes higher, the volume fraction of the
SFS topology decreases, while the volume fractions of the SFC, SN/SN/SN, UFS
and UN/UN/UN flow topological types increase. The effect of filter width on the
volume fractions of SFC, SN/SN/SN, UFS and UN/UN/UN topological types is weak
at l/η6 100. The SN/S/S flow topology dominates in the strong compression regions,
while the UFS flow topology dominates in strong expansion regions.

The various flow topological types exhibit different effects on the average SGS
kinetic energy flux. The UN/S/S and SFS flow topologies make major contributions
to the average SGS flux of kinetic energy from large scales to small scales in the
inertial range. The UFS flow topology makes a contribution to the reverse SGS flux
of kinetic energy, transferring energy from small scales to large scales. The effect
of flow topology on the solenoidal and compressible components of SGS kinetic
energy flux is further investigated by the Helmholtz decomposition. It is shown that
the SN/S/S flow topology makes a dominant contribution to the direct SGS flux of
the compressible component of kinetic energy, while the UFS flow topology makes
a dominant contribution to the reverse SGS flux of the compressible component of
kinetic energy.

The effects of compression and expansion motions on the SGS kinetic energy flux
for various flow topological structures are studied by conditional averages. In the
strong compression regions, the average contribution of the SN/S/S flow topology to
the SGS kinetic energy flux is positive and is predominant over those of the other flow
topologies. In the strong expansion regions, the UFS flow topology makes a major
contribution to the reverse SGS flux of kinetic energy. Simple algebraic relations are
proposed for the conditionally averaged values of SGS kinetic energy flux associated
with the SN/S/S and UFS flow topologies. It is shown that the conditionally averaged
SGS kinetic energy flux associated with the SN/S/S flow topology exhibits the θ 2

l
scaling in the strong compression regions, while the conditionally averaged SGS
kinetic energy flux associated with the UFS flow topology exhibits the θ 2

l scaling in
the strong expansion regions.

In conclusion, a variety of effects of different flow topologies on the SGS flux of
the kinetic energy are revealed by numerical simulations of stationary compressible
isotropic turbulence. Particularly, the SGS backscatter of kinetic energy is investigated
in different flow regions. It is found that the SGS backscatter of kinetic energy is
significant in expansion regions, and increases with the increase of turbulent Mach
number, which can be attributed to the increase of volume fraction of the UFS
topological regions. These new features can be used to develop more accurate SGS
models in LES of compressible turbulence.
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