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Cascades of temperature and entropy fluctuations are studied by numerical simulations
of stationary three-dimensional compressible turbulence with a heat source. The
fluctuation spectra of velocity, compressible velocity component, density and pressure
exhibit the −5/3 scaling in an inertial range. The strong acoustic equilibrium
relation between spectra of the compressible velocity component and pressure is
observed. The −5/3 scaling behaviour is also identified for the fluctuation spectra
of temperature and entropy, with the Obukhov–Corrsin constants close to that of a
passive scalar spectrum. It is shown by Kovasznay decomposition that the dynamics of
the temperature field is dominated by the entropic mode. The average subgrid-scale
(SGS) fluxes of temperature and entropy normalized by the total dissipation rates
are close to 1 in the inertial range. The cascade of temperature is dominated by
the compressible mode of the velocity field, indicating that the theory of a passive
scalar in incompressible turbulence is not suitable to describe the inter-scale transfer
of temperature in compressible turbulence. In contrast, the cascade of entropy is
dominated by the solenoidal mode of the velocity field. The different behaviours
of cascades of temperature and entropy are partly explained by the geometrical
properties of SGS fluxes. Moreover, the different effects of local compressibility on
the SGS fluxes of temperature and entropy are investigated by conditional averaging
with respect to the filtered dilatation, demonstrating that the effect of compressibility
on the cascade of temperature is much stronger than on the cascade of entropy.

Key words: compressible turbulence, isotropic turbulence

1. Introduction

Heat transport in compressible turbulence plays an important role in many natural
phenomena and industrial applications, including supersonic combustion, the design
of hypersonic aircraft and star formation in astrophysics. Recently, there have been
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a number of studies on the spectra and inter-scale transfer of kinetic energy in
three-dimensional compressible turbulence (Falkovich, Fouxon & Oz 2010; Aluie
2011; Galtier & Banerjee 2011; Suman & Girimaji 2011; Aluie, Li & Li 2012;
Wagner et al. 2012; Aluie 2013; Kritsuk, Wagner & Norman 2013; Wang et al.
2013; Jagannathan & Donzis 2016; Livescu & Li 2017; Eyink & Drivas 2018; Wang
et al. 2018a,b), which extended the traditional Richardson–Kolmogorov–Onsager
picture of kinetic energy cascade (Frisch 1995; Cardy, Falkovich & Gawedzki 2008;
Sagaut & Cambon 2008) to compressible turbulence. In contrast, the properties of
inter-scale transfer of heat and entropy are much less understood as compared to
those of kinetic energy transfer in compressible turbulence.

Zank & Matthaeus (1990, 1991) made a theoretical analysis on the two distinct
states of weakly compressible turbulence: in the heat-fluctuation-dominated state, due
to the effect of heat source, the classical passive scalar equation for temperature is
recovered; in the heat-fluctuation-modified state, the temperature fluctuation is related
to the acoustic mode or pseudo-sound mode. By an asymptotic analysis, Bayly,
Levermore & Passot (1992) predicted that temperature, entropy and density have
k−5/3 power spectra in the inertial range of weakly compressible turbulent flows with
some heat source. Wang, Gotoh & Watanabe (2017) performed numerical simulations
of solenoidally forced compressible isotropic turbulence without any heat source at
turbulent Mach numbers, Mt, from 0.05 to 1.0. The spectra of pressure, density and
temperature exhibit a k−7/3 scaling for Mt 6 0.3 and a k−5/3 scaling for 0.56Mt 6 1.0.
A theoretical analysis by Drivas & Eyink (2018), Eyink & Drivas (2018) showed that
entropy conservation anomalies occur in compressible turbulence via two mechanisms:
an anomalous input of negative entropy by pressure work and a cascade of negative
entropy to small scales.

In this study, we discuss the spectra and inter-scale transfer of temperature and
entropy fluctuations in numerical simulations of compressible turbulence, with a
specific focus on the effect of compression and expansion motions on the fluxes
of temperature and entropy. The rest of the paper is organized as follows. In § 2,
we describe the governing equations and computational method. In § 3, we provide
the one-point statistics of velocity and thermodynamic variables in the numerical
simulations. In § 4, we study the spectra of velocity, density, pressure, temperature
and entropy. In § 5, we investigate the inter-scale transfer of temperature and entropy
fluctuations. In § 6, we present some discussions about the statistics and inter-scale
transfer of temperature and entropy fluctuations. Finally, conclusions will be given
in § 7.

2. Governing equations and numerical method
The following dimensionless Navier–Stokes equations in conservative form are

solved numerically in this study (Wang et al. 2010, 2018a)

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0, (2.1)

∂(ρui)

∂t
+
∂[ρuiuj + pδij]

∂xj
=

1
Re
∂σij

∂xj
+Fi, (2.2)

∂E
∂t
+
∂[(E + p)uj]

∂xj
=

1
α

∂

∂xj

(
κ
∂T
∂xj

)
+

1
Re
∂(σijui)

∂xj
−Λ+FI +Fjuj, (2.3)

p= ρT/(γM2), (2.4)
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where ρ is the density, ui is the velocity component, p is the pressure and T is the
temperature. The viscous stress σij is defined by

σij =µ

(
∂ui

∂xj
+
∂uj

∂xi

)
−

2
3
µθδij, (2.5)

where, θ = ∂uk/∂xk is the normalized velocity divergence; Fi is a large-scale forcing
to the fluid momentum, FI is a large-scale forcing to the internal energy and Λ is a
large-scale cooling function per unit volume. The total energy per unit volume E is
defined by

E =
p

γ − 1
+

1
2
ρ(ujuj). (2.6)

A set of reference scales can be introduced to normalize the hydrodynamic and
thermodynamic variables in compressible turbulence, including the reference length Lf ,
velocity Uf , density ρf , pressure pf = ρf U2

f , temperature Tf , energy per unit volume
ρf U2

f , viscosity µf and thermal conductivity κf respectively. After normalization, three
reference governing parameters are obtained: the reference Reynolds number Re ≡
ρf Uf Lf /µf , the reference Mach number M =Uf /cf and the reference Prandtl number
Pr≡µf Cp/κf . Here, the speed of sound is defined by cf ≡

√
γRTf ; γ ≡Cp/Cv is the

ratio of specific heat at constant pressure Cp to that at constant volume Cv, which is
assumed to be equal to 1.4, R is the specific gas constant. The parameter α is defined
by α ≡ Pr Re(γ − 1)M2. It is assumed that the parameter Pr is equal to 0.7.

We apply Sutherland’s law for the non-dimensional temperature-dependent viscosity
coefficient µ and thermal conductivity coefficient κ (Wang et al. 2010). We apply
large-scale forcing to the solenoidal velocity component and internal energy by fixing
the spectrum within the two lowest wavenumber shells (Chen & Cao 1997; Wang
et al. 2010; Donzis & Maqui 2016). We also employ a uniform thermal cooling Λ
to sustain the internal energy in a statistically steady state (Wang et al. 2010).

We utilize a hybrid numerical method (Wang et al. 2010) to simulate stationary
three-dimensional compressible isotropic turbulence with a heat source in a cubic box
at a 10243 grid resolution. The hybrid scheme combines an eighth-order compact
finite difference scheme (Lele 1992) for smooth regions and a seventh-order weighted
essentially non-oscillatory (WENO) scheme (Balsara & Shu 2000) for shock regions.
Some grid refinement studies of the hybrid scheme for a turbulent Mach number
around 1.0 were performed in previous works (Wang et al. 2011, 2012).

The dynamical equation of temperature T can be derived as (Sagaut & Cambon
2008; Wang et al. 2017):

∂T
∂t
+ uj

∂T
∂xj
=−(γ − 1)Tθ +Dκ +Dµ + fT, (2.7)

where the thermal diffusion term Dκ and the viscous dissipation term Dµ are given by
Dκ = (1/ρcv)(∂/∂xj)(κ(∂T/∂xj)) and Dµ= (1/Re)(σij/ρcv)(∂ui/∂xj), respectively. Here
cv = 1/(γ (γ − 1)M2). The effect of large-scale forcing is represented by fT .

Temperature can be decomposed into a spatially averaged value T0 and a fluctuating
value T1: T = T0+ T1, where T0= 〈T〉. The equation for the root-mean-square (r.m.s.)
value of temperature can be written as:

∂

∂t
〈T2

1 〉 = ε
inj
T − εT, (2.8)
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Resolution Reλ Mt η/1x u′ uS
rms uC

rms εK

10243 247 0.20 1.07 2.31 2.16 0.81 0.68
10243 257 0.60 1.09 2.28 2.22 0.52 0.62

TABLE 1. Simulation parameters and resulting flow statistics.

where, the total dissipation rate of temperature is εT = ε
θ
T + ε

κ
T + ε

µ
T . The dissipation

rates due to dilatation, thermal diffusion and viscous dissipation are, respectively,
εθT =−(3− 2γ )〈T2

1θ〉 + 2(γ − 1)T0〈T1θ〉, εκT = 2〈κ(∂T1/∂xj)(∂/∂xj)(T1/ρcv)〉 and εµT =
−2〈(1/Re)(T1σij/ρcv)(∂ui/∂xj)〉; ε

inj
T = 2〈T1fT〉 represents the injection of temperature

fluctuations by large-scale forcing.
The dynamical equation for the dimensionless entropy per unit mass s =

log(T/ργ−1) can be readily derived as (Bayly et al. 1992; Eyink & Drivas 2018):

∂s
∂t
+ uj

∂s
∂xj
=

1
T

Dκ +
1
T

Dµ +
1
T

fT . (2.9)

Equation (2.9) is similar to the passive scalar transport equation. The equation for the
r.m.s. value of entropy can be written as:

∂

∂t
〈(s1)

2
〉 = ε inj

s − εs, (2.10)

where, s1 = s − s0, s0 = 〈s〉 and the total dissipation rate of entropy is εs =

εθs + ε
κ
s + ε

µ
s . The dissipation rates due to dilatation, thermal diffusion and viscous

dissipation are, respectively, εθs = −〈s
2
1θ〉, ε

κ
s = 2〈κ(∂T/∂xj)(∂/∂xj)(s1/cvρT)〉 and

εµs = −2〈(1/Re)(s1σij/cvρT)(∂ui/∂xj)〉; ε inj
s = 2〈s1fT/T〉 represents the injection of

entropy fluctuations by large-scale forcing.

3. One-point statistics of compressible turbulence
Overall statistics for simulated compressible turbulent flows are given in table 1.

The Taylor microscale Reynolds number Reλ and the turbulent Mach number Mt are
defined, respectively by (Wang et al. 2018a)

Reλ = Re
〈ρ〉u′λ
√

3〈µ〉
, Mt =M

u′

〈
√

T〉
, (3.1a,b)

where 〈 〉 stands for spatial average. The r.m.s. velocity magnitude is u′=
√
〈u2

1+u2
2+u2

3〉

and the Taylor microscale is

λ=

√
〈u2

1 + u2
2 + u2

3〉

〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉
. (3.2)

The Taylor Reynolds numbers Reλ are close to 250 in the numerical simulations. Two
turbulent Mach numbers are considered: Mt = 0.2 and Mt = 0.6.

The Kolmogorov length scale η of compressible turbulence is defined by (Wang
et al. 2018a)

η= [〈µ/(Re ρ)〉3/ε]1/4, (3.3)
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Mt p0 T0 s0 prms/p0 ρrms/ρ0 Trms/T0 srms
√
γρ0p0uC

rms/prms

0.20 92.0 1.02 0.02 0.10 0.18 0.16 0.22 1.00
0.60 10.2 1.02 0.02 0.21 0.21 0.16 0.20 0.92

TABLE 2. Statistics of thermodynamic variables.

where ε is the spatial average of the viscous dissipation rate of kinetic energy per unit
mass:

ε =
1
〈ρ〉

〈
σijSij

Re

〉
. (3.4)

The resolution parameter η/1x is in the range 1.07 6 η/1x 6 1.09 in the numerical
simulations, where 1x denotes the grid length in each direction. Consequently,
the resolution parameter kmaxη is in the range 3.36 6 kmaxη 6 3.42, where the
largest wavenumber kmax is half of the number of grids N in each direction:
kmax = N/2 = π/1x. Previous grid refinement studies showed that grid resolutions
kmaxη > 3.3 are enough for the convergence of flow statistics, including the kinetic
energy spectrum at different wavenumbers and the probability density functions
(PDFs) of velocity divergence and vorticity (Wang et al. 2011, 2012).

By applying the Helmholtz decomposition, we decompose the velocity field u into
a solenoidal component uS and a compressible component uC (Samtaney, Pullin &
Kosovic 2001; Sagaut & Cambon 2008; Wang et al. 2012):

u= uS
+ uC, (3.5)

where ∇ · uS
= 0 and ∇ × uC

= 0. The r.m.s. values of the solenoidal and
compressible velocity components are defined by uS

rms =
√
〈(uS

1)
2 + (uS

2)
2 + (uS

3)
2〉 and

uC
rms=

√
〈(uC

1 )
2 + (uC

2 )
2 + (uC

3 )
2〉, respectively. It is shown that uS

rms is close to u′, while
uC

rms is significantly smaller than uS
rms, implying that the solenoidal velocity component

is predominant over its compressible counterpart.
The total dissipation rate of kinetic energy per unit mass is given by

εK =
1
〈ρ〉

[
−〈pθ〉 +

〈
σijSij

Re

〉]
, (3.6)

namely, the total conversion rate of kinetic energy into internal energy by the pressure
dilatation −〈pθ〉/〈ρ〉 and the viscous dissipation ε. It is found that the magnitude of
−〈pθ〉/〈ρ〉 is much smaller than that of ε, and the value of ε is very close to that
of εK .

The dimensionless entropy is given by s = log(T/ργ−1). The average values of
pressure, density, temperature and entropy are given by p0 = 〈p〉, ρ0 = 〈ρ〉, T0 = 〈T〉,
s0= 〈s〉. The average density is ρ0= 1 in the numerical simulations. The r.m.s. values
of pressure, density, temperature and entropy are defined by: prms =

√
〈(p− p0)2〉,

ρrms =
√
〈(ρ − ρ0)2〉, Trms =

√
〈(T − T0)2〉 and srms =

√
〈(s− s0)2〉, respectively. The

one-point statistics of thermodynamic variables are given in table 2. We observe that
prms/p0 increases rapidly with the turbulent Mach number, while ρrms/ρ0, Trms/T0 and
srms are insensitive to the change of turbulent Mach number. Previous studies showed
that if the compressible velocity component is dominated by acoustic waves, there are
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equipartition relations between pressure and the compressible velocity component in
weak and strong forms (Sarkar et al. 1991; Sagaut & Cambon 2008; Jagannathan &
Donzis 2016; Wang et al. 2017; Chen et al. 2018; Wang et al. 2018b). The weak
acoustic equilibrium can be expressed as

prms ≈ ρ0c0uC
rms, (3.7)

where, c0 =
√
γ p0/ρ0 is the speed of sound. The above relation is equivalent to

√
γρ0p0uC

rms

prms
≈ 1. (3.8)

As shown in table 2,
√
γρ0p0uC

rms/prms is close to 1 in the numerical simulations,
implying that the compressible velocity component is dominated by acoustic waves.

4. Spectra of velocity and thermodynamic variables

The compensated spectrum Eu(k)ε−2/3k5/3 of the velocity field is plotted in
figure 1(a). The velocity spectrum Eu(k) satisfies

∫
∞

0 Eu(k) dk = 〈u2
〉/2. An inertial

range of the velocity spectrum is observed, namely, Eu(k)k5/3ε−2/3k5/3
≈ CK , where

the Kolmogorov constant CK is approximately 1.6, which is similar to the previous
results of the velocity spectrum in compressible isotropic turbulence (Wang et al.
2012; Jagannathan & Donzis 2016; Wang et al. 2017). The compensated spectrum
Eu,C(k)ε−2/3k5/3 of the compressible velocity component is depicted in figure 1(b).
The spectrum of compressible velocity Eu,C(k) satisfies

∫
∞

0 Eu,C(k) dk=〈(uC)2/2〉. It is
found that Eu,C(k)k5/3ε−2/3

≈ 0.2 and 0.1 respectively for Mt = 0.2 and 0.6 for a short
range of wavenumbers 0.015 6 kη6 0.05. The k−5/3 scaling of compressible velocity
spectrum Eu,C(k) was also observed at Mt > 0.6 in solenoidally forced stationary
compressible isotropic turbulence without any heat source, where the acoustic mode
dominates the dynamics of the compressible velocity component (Wang et al. 2017).
In the previous study, the k−3 scaling of the compressible velocity spectrum was
identified in the range of wavenumber where the pseudosound mode is predominant
over the acoustic mode at Mt = 0.2 (Wang et al. 2017). In contrast, we observe the
k−5/3 scaling of the compressible velocity spectrum at Mt = 0.2 in this study. The
different scaling behaviour of the compressible velocity spectrum can be attributed
to the fact that the heat source can generate acoustic waves which dominate the
dynamics of the compressible velocity component at Mt = 0.2.

The normalized density fluctuation spectrum Eρ(k)/(ρrms)
2 and normalized pressure

fluctuation spectrum Ep(k)/(prms)
2 are plotted in figure 2, where Eρ(k) and Ep(k)

satisfy
∫
∞

0 Eρ(k) dk = (ρrms)
2 and

∫
∞

0 Ep(k) dk = (prms)
2, respectively. It is shown

that the spectra of density and pressure exhibit the k−5/3 scaling for both turbulent
Mach numbers Mt = 0.2 and 0.6. The effect of the turbulent Mach number on the
normalized spectra is weak. The k−5/3 scaling of spectra of density and pressure was
also identified at Mt > 0.5 in solenoidally forced stationary compressible isotropic
turbulence without any heat source (Wang et al. 2017). In the previous study, the
k−7/3 scaling of the spectra of density and pressure was identified at Mt = 0.2 where
the solenoidal component of pressure is predominant over the compressible pressure
component (Wang et al. 2017). In contrast, the spectra of density and pressure exhibit
the k−5/3 at Mt = 0.2 in this study, which can be attributed to the acoustic waves
generated by the heat source.
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FIGURE 1. (Colour online) Compensated spectra of velocity and compressible velocity
component at Mt = 0.2, 0.6: (a) Eu(k)k5/3ε−2/3; (b) Eu,C(k)k5/3ε−2/3.
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FIGURE 2. (Colour online) Normalized spectra of density and pressure at Mt = 0.2, 0.6:
(a) Eρ(k)/(ρrms)

2; (b) Ep(k)/(prms)
2.

The strong acoustic equilibrium can be expressed as (Sarkar et al. 1991; Sagaut
& Cambon 2008; Jagannathan & Donzis 2016; Wang et al. 2017; Chen et al. 2018;
Wang et al. 2018b)

Ep(k)≈ 2ρ2
0 c2

0Eu,C(k). (4.1)

Equation (4.1) is equivalent to

Ep(k)/(prms)
2
≈ 2Eu,C(k)/(uC

rms)
2. (4.2)

Both the normalized pressure fluctuation spectrum Ep(k)/(prms)
2 and the normalized

spectrum of the compressible velocity component 2Eu,C(k)/(uC
rms)

2 are depicted in
figure 3. It is found that Ep(k)/(prms)

2 is very close to 2Eu,C(k)/(uC
rms)

2 at Mt = 0.2,
0.6 in the numerical simulations. The observation confirms that the dynamics of the
compressible velocity and the pressure is dominated by acoustic waves.

It is well known that the Kovasznay decomposition can be used to decompose a
small-amplitude motion of a compressible fluid into vorticity, acoustic and entropic
modes under the assumption that the effects of compressibility are very small
(Kovasznay 1953; Sagaut & Cambon 2008). In compressible turbulent flow, the
acoustic modes (or isentropic modes) of thermodynamic variables can be calculated
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FIGURE 3. (Colour online) Normalized spectra of pressure and compressible velocity
component at Mt = 0.2, 0.6: (a) Mt = 0.2; (b) Mt = 0.6.

by (Chassaing et al. 2002; Gauthier 2017)

pI
= p− p0, (4.3)

ρI
=
ρ0 pI

γ p0
, (4.4)

T I
=
(γ − 1)T0 pI

γ p0
, (4.5)

and the entropic modes can be given by (Chassaing et al. 2002; Gauthier 2017)

pE
= 0, (4.6)

ρE
= ρ − ρ0 − ρ

I, (4.7)
TE
= T − T0 − T I. (4.8)

It was shown that the spectra of the entropic modes of density, pressure and
temperature are much smaller than those of the isentropic modes of density, pressure
and temperature at Mt 6 1 in solenoidally forced stationary compressible isotropic
turbulence without any heat source (Wang et al. 2017), and at Mt 6 0.65 in stationary
compressible isotropic turbulence driven by both solenoidal and compressible forces
without any heat source (Wang et al. 2018b).

The normalized spectra of the isentropic and entropic modes of density Eρ,I(k)/
(ρrms)

2 and Eρ,E(k)/(ρrms)
2 are shown in figure 4, where the spectra Eρ,I(k) and

Eρ,E(k) satisfy
∫
∞

0 Eρ,I(k) dk = 〈(ρI)2〉 and
∫
∞

0 Eρ,E(k) dk = 〈(ρE)2〉, respectively. It is
found that the spectrum of the entropic mode of density is comparable to that of the
isentropic mode of density at Mt = 0.6. Moreover, the spectrum of the entropic mode
of density is much larger than that of the isentropic mode of density at Mt= 0.2. The
observations are different from those in compressible isotropic turbulence without any
heat source (Wang et al. 2017, 2018b), which can be attributed to the generation of
the entropic modes of thermodynamic variables by the heat source.

Figure 5 shows that both the temperature fluctuation spectrum ET(k) and the entropy
fluctuation spectrum Es(k) exhibit the k−5/3 scaling behaviour in an inertial range of
0.026 kη6 0.08 at Mt = 0.2, 0.6, where η is the Kolmogorov length scale. Moreover,
the compensated fluctuation spectra of temperature and entropy are nearly constant in
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FIGURE 4. (Colour online) Normalized spectra of the entropic and isentropic modes of
density at Mt = 0.2, 0.6: (a) Mt = 0.2; (b) Mt = 0.6.
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FIGURE 5. (Colour online) Compensated spectra of temperature and entropy fluctuations
at Mt = 0.2, 0.6: (a) ET(k)k5/3ε−1

T ε
1/3
K ; (b) Es(k)k5/3ε−1

s ε
1/3
K .

the inertial range, i.e. ET(k)k5/3ε−1
T ε

1/3
K ≈ CT and Es(k)k5/3ε−1

s ε
1/3
K ≈ Cs. The constants

CT = 0.60 and Cs = 0.68 are close to the typical Obukhov–Corrsin constant 0.7 of
a passive scalar spectrum (Obukhov 1949; Corrsin 1951; Sreenivasan 1996; Yeung,
Donzis & Sreenivasan 2005; Gotoh & Watanabe 2015). This observation indicates that
the fluctuation spectra of both temperature and entropy can be well described by the
Obukhov–Corrsin theory of a passive scalar (Obukhov 1949; Corrsin 1951).

The compensated spectra of the isentropic and entropic modes of temperature
ET,I(k)k5/3ε−1

T ε
1/3
K and ET,E(k)k5/3ε−1

T ε
1/3
K are plotted in figure 6. It is shown that

the spectrum of the entropic mode of temperature is much larger than that of the
isentropic mode of temperature at Mt = 0.2, 0.6. The spectrum of the isentropic
mode of temperature decreases rapidly with the decrease of turbulent Mach number,
while the spectrum of the entropic mode of temperature increases slightly with the
decrease of turbulent Mach number. Moreover, the compensated fluctuation spectrum
of the entropic mode of temperature is nearly constant in the inertial range, i.e.
ET,E(k)k5/3ε−1

T ε
1/3
K ≈ 0.6 and 0.5 for turbulent Mach numbers Mt = 0.2 and 0.6,

respectively.
The k−5/3 scaling behaviours of the spectra of the compressible velocity component,

density, pressure, temperature and entropy are observed in our numerical simulations.
To further confirm these scaling behaviours, we perform numerical simulations
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FIGURE 6. (Colour online) Compensated spectra of the isentropic and entropic modes of
temperature at Mt = 0.2, 0.6: (a) Mt = 0.2; (b) Mt = 0.6.

Resolution Mt u′ uS
rms uC

rms

5123 0.20 2.32 2.17 0.81
5123 0.61 2.32 2.25 0.54

TABLE 3. Statistics of velocity and its two components in hyperviscosity simulations.

Mt p0 T0 s0 prms/p0 ρrms/ρ0 Trms/T0 srms

0.20 92.2 1.03 0.03 0.10 0.17 0.16 0.22
0.61 10.2 1.01 0.01 0.22 0.21 0.16 0.20

TABLE 4. Statistics of thermodynamic variables in hyperviscosity simulations.

of Euler equations with an eighth-order hyperviscosity (Wang et al. 2010, 2013),
at the same turbulent Mach numbers Mt = 0.2, 0.6 and at 5123 grid resolution.
Statistics of velocity, solenoidal velocity component, compressible velocity component
and thermodynamic variables in hyperviscosity simulations are summarized in
tables 3–4. The r.m.s. values of velocity, solenoidal velocity component, compressible
velocity component and thermodynamic variables are close to those in the numerical
simulations of the Navier–Stokes equations as shown in tables 1–2.

Normalized spectra of the velocity, compressible velocity component, density,
pressure, temperature and entropy in the hyperviscosity simulations are plotted
in figures 7–9. The spectra exhibit the k−5/3 scaling more clearly for a range of
0.02 6 k∆ 6 0.2, as compared to the situation of the numerical simulations of the
Navier–Stokes equations. Provided that the inertial-range statistics are independent
of the dissipation mechanism (Benzi et al. 2008), the spectra of the velocity and
thermodynamic variables will exhibit clearer k−5/3 scaling behaviours at higher
Reynolds numbers in compressible isotropic turbulence with a heat source by the
numerical simulations of the Navier–Stokes equations.

5. Inter-scale transfer of temperature and entropy fluctuations
We apply the Favre filtering approach (Aluie 2011, 2013; Eyink & Drivas 2018;

Wang et al. 2018a) to study the inter-scale transfer of temperature and entropy.
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FIGURE 7. (Colour online) Normalized spectra of velocity and compressible velocity
component at Mt=0.2, 0.6 in hyperviscosity simulations: (a) Eu(k)/(u′)2; (b) Eu,C(k)/(u′)2.
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FIGURE 8. (Colour online) Normalized spectra of density and pressure at Mt = 0.2, 0.6
in hyperviscosity simulations: (a) Eρ(k)/(ρrms)
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FIGURE 9. (Colour online) Normalized spectra of temperature and entropy at Mt = 0.2,
0.6 in hyperviscosity simulations: (a) ET(k)/(Trms)

2; (b) Es(k)/(srms)
2.

A classically filtered field f is defined as f (x) =
∫

d3rGl(r)f (x + r). Here, Gl(r) =
l−3G(r/l) is the filter function, G(r) is a normalized window function and l is the
filter width. The Favre filtered field f̃ is defined as f̃ = ρf /ρ. The equation for the
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r.m.s. value of the filtered temperature reads:

∂

∂t
〈T̃2

1 〉 =−〈Φ
T
l +Π

T
l +DT

l + FT
l 〉, (5.1)

where, ΦT
l is the dilatation term, ΠT

l is the subgrid-scale (SGS) term, DT
l represents

the effect of thermal diffusion and viscous dissipation and FT
l represents the effect

of large-scale forcing. Here, ΦT
l = −(3 − 2γ )T̃2

1θl + 2(γ − 1)T0T̃1θl, θl = ∂ ũj/∂xj,
ΠT

l = Π
T,1
l + Π

T,2
l , DT

l = −2T̃1(D̃κ + D̃µ) and FT
l = −2T̃1 f̃T . ΠT,1

l = −2[ρ(T̃1uj −

T̃1ũj)](∂/∂xj)(T̃1/ρ), and ΠT,2
l = 2(γ − 1)T̃1(T̃1θ − T̃1θl). Π

T,1
l and ΠT,2

2 represent the
SGS fluxes induced by the correlation between temperature and velocity, and by the
correlation between temperature and velocity divergence, respectively.

The equation for the r.m.s. value of filtered entropy can be written as:

∂

∂t
〈 s̃2

1〉 =−〈Φ
s
l +Π

s
l +Ds

l + Fs
l 〉, (5.2)

where, Φs
l is the dilatation term, Π s

l is the subgrid-scale (SGS) term, Ds
l represents

the effect of thermal diffusion and viscous dissipation and Fs
l represents the effect

of large-scale forcing. Here, Φs
l =−s̃2

1θl, Π s
l =−2[ρ(s̃1uj − s̃1ũj)](∂/∂xj)(̃s1/ρ), Ds

l =

−2̃s1(D̃κ/T + D̃µ/T), and Fs
l =−2̃s1 f̃T/T .

We plot spatial average values of 〈ΦT
l + Π

T
l + DT

l 〉/εT , 〈ΦT
l 〉/εT , 〈ΠT

l 〉/εT and
〈DT

l 〉/εT at Mt = 0.2, 0.6 in figure 10. We also plot spatial average values of
〈Φs

l + Π s
l + Ds

l 〉/εs, 〈Φs
l 〉/εs, 〈Π s

l 〉/εs and 〈Ds
l 〉/εs at Mt = 0.2, 0.6 in figure 11.

The filter width l has been normalized by the Kolmogorov length scale η. It is
shown that 〈ΦT

l + Π
T
l + DT

l 〉/εT ≈ 1 and 〈Φs
l + Π

s
l + Ds

l 〉/εs ≈ 1 for l/η 6 120,
indicating that the effects of large-scale forcing on inter-scale transfer processes of
temperature and entropy fluctuations are localized to the large scales. 〈ΠT

l 〉/εT and
〈Π s

l 〉/εs are nearly constant and are close to 1.0, over an inertial range 306 l/η6 120.
Moreover, 〈ΠT

l 〉/εT and 〈Π s
l 〉/εs decrease slightly with the increase of turbulent Mach

number. It is found that terms 〈ΦT
l 〉, 〈D

T
l 〉, 〈F

T
l 〉, 〈Φ

s
l 〉, 〈D

s
l 〉 and 〈Fs

l 〉 are small in the
inertial range. It is also found that 〈ΠT,1

l 〉/εT is much larger than 〈ΠT,2
l 〉/εT . These

observations indicate the existence of direct cascades of temperature and entropy
fluctuations from large scales to small scales through the inertial range.

The SGS fluxes of temperature due to the solenoidal and compressible modes of
the velocity are, respectively,

Π
T,S
l =−2

[
ρ(T̃1uS

j − T̃1ũS
j )
] ∂

∂xj

(
T̃1

ρ

)
, (5.3)

and,

Π
T,C
l =−2

[
ρ(T̃1uC

j − T̃1ũC
j )
] ∂

∂xj

(
T̃1

ρ

)
+Π

T,2
l . (5.4)

Similarly, the SGS fluxes of entropy due to the solenoidal and compressible modes of
the velocity are, respectively,

Π
s,S
l =−2

[
ρ(s̃1uS

j − s̃1ũS
j )
] ∂

∂xj

(
s̃1

ρ

)
, (5.5)
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FIGURE 10. (Colour online) Average values of 〈ΦT
l +Π

T
l +DT

l 〉/εT , 〈ΦT
l 〉/εT , 〈ΠT

l 〉/εT
and 〈DT

l 〉/εT at Mt = 0.2, 0.6: (a) Mt = 0.2; (b) Mt = 0.6.
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FIGURE 11. (Colour online) Average values of 〈Φs
l +Π

s
l +Ds

l 〉/εs, 〈Φs
l 〉/εs, 〈Π s

l 〉/εs and
〈Ds

l 〉/εs at Mt = 0.2, 0.6: (a) Mt = 0.2; (b) Mt = 0.6.

and,

Π
s,C
l =−2

[
ρ(s̃1uC

j − s̃1ũC
j )
] ∂

∂xj

(
s̃1

ρ

)
. (5.6)

Here, ũS and ũC are the solenoidal and compressible components of the filtered
velocity field ũ, respectively.

We plot spatial average values of SGS fluxes of temperature and entropy due to
the solenoidal and compressible modes of velocity at Mt = 0.2, 0.6 in figure 12.
It is found that 〈ΠT,S

l 〉/εT ≈ 0 and 〈Π s,C
l 〉/εs ≈ 0, namely, 〈ΠT,C

l 〉/εT ≈ 〈Π
T
l 〉/εT

and 〈Π s,S
l 〉/εs ≈ 〈Π

s
l 〉/εs. Thus, the average SGS flux of temperature is dominated

by the compressible mode of the velocity field, indicating that the theory of a
passive scalar in incompressible turbulence, which was often used for the temperature
field in compressible turbulence, is not suitable to describe the inter-scale transfer
of temperature in compressible turbulence. The average SGS flux of entropy is
dominated by the solenoidal mode of the velocity field, which is similar to that of a
passive scalar in incompressible turbulence.

The probability density functions (PDFs) of the SGS fluxes of temperature and
entropy for l/η = 16, 32, 64 at Mt = 0.2, 0.6 are depicted in figure 13. It is shown
that the PDFs of SGS fluxes exhibit a skewness toward the positive side, suggesting
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FIGURE 12. (Colour online) Average values of SGS fluxes of temperature and entropy
due to the solenoidal and compressible modes of velocity at Mt = 0.2, 0.6: (a) 〈ΠT,S

l 〉/εT

and 〈ΠT,C
l 〉/εT ; (b) 〈Π s,S

l 〉/εs and 〈Π s,C
l 〉/εs.
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FIGURE 13. (Colour online) PDFs of SGS fluxes of temperature and entropy for l/η= 16,
32, 64 at Mt = 0.2, 0.6: (a) PDFs of ΠT

l /εT at Mt = 0.2; (b) PDFs of Π s
l /εs at Mt = 0.2;

(c) PDFs of ΠT
l /εT at Mt = 0.6; (d) PDFs of Π s

l /εs at Mt = 0.6.

that the SGS fluxes of temperature and entropy have a tendency to direct from large
scales to small scales. The tails of PDFs become longer as the filter width l decreases.
The tails of PDFs of ΠT

l /εT are slightly shorter than those of Π s
l /εs at Mt = 0.2. As

turbulent Mach number increases to Mt = 0.6, the tails of PDFs of ΠT
l /εT become

longer while the tails of PDFs of Π s
l /εs become shorter. This observation indicates

that the extremely high magnitude of the SGS temperature flux is enhanced and the
extremely high magnitude of the SGS entropy flux is suppressed with the increase of
turbulent Mach number. The tails of the PDFs of ΠT

l /εT are significantly longer than
those of Π s

l /εs at Mt = 0.6.
Figure 14 shows the PDFs of the SGS fluxes of temperature and entropy due to

two components of the velocity for l/η = 16 at Mt = 0.2, 0.6. It is found that the
PDF of ΠT,C

l /εT is similar to that of ΠT
l /εT , which is consistent with the previous
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FIGURE 14. (Colour online) PDFs of SGS fluxes of temperature and entropy due to two
components of the velocity for l/η = 16 at Mt = 0.2, 0.6: (a) PDFs of ΠT,C

l /εT and
Π

T,S
l /εT at Mt = 0.2; (b) PDFs of Π s,S

l /εs and Π s,C
l /εs at Mt = 0.2; (c) PDFs of ΠT,C

l /εT

and ΠT,S
l /εT at Mt = 0.6; (d) PDFs of Π s,S

l /εs and Π s,C
l /εs at Mt = 0.6.

observation that the average SGS flux of temperature is dominated by the compressible
velocity component. The right tail of the PDF of ΠT,S

l /εT is significantly shorter than
that of ΠT,C

l /εT , implying that the contribution of the solenoidal velocity component to
the average SGS temperature flux is significantly smaller than that of the compressible
velocity component. Similarly, the PDF of Π s,S

l /εs is similar to that of Π s
l /εs, giving

rise to the fact that the average SGS flux of entropy is dominated by the solenoidal
velocity component. The right tail of the PDF of Π s,C

l /εT is much shorter than that
of Π s,S

l /εT , suggesting that the contribution of the compressible velocity component
to the average SGS entropy flux is much smaller than that of the solenoidal velocity
component.

Now we define the following geometrical variables for the SGS fluxes of
temperature and entropy: φT

l = QT
· GT/(|QT

| |GT
|), and φs

l = Qs
· Gs/(|Qs

| |Gs
|),

where QT
j = ρ(T̃1uj − T̃1ũj), GT

j = (∂/∂xj)(T̃1/ρ), Qs
j = ρ(s̃1uj − s̃1ũj) and Gs

j =

(∂/∂xj)(̃s1/ρ). Similarly, we can define the geometrical variables for SGS fluxes of
temperature and entropy due to two components of the velocity as follows: φT,X

l =

QT,X
·GT/(|QT,X

| |GT
|), and φs,X

l =Qs,X
·Gs/(|Qs,X

| |Gs
|), where QT,X

j = ρ(T̃1uX
j − T̃1ũX

j ),

Qs,X
j = ρ(s̃1uX

j − s̃1ũX
j ) and X = S, C. We plot the PDFs of φT

l , φT,S
l , φT,C

l , φs
l , φ

s,S
l

and φs,C
l at Mt = 0.2, 0.6 in figure 15. Both geometrical variables φT

l and φs
l have a

tendency to be negative, in agreement with the overall direct cascade of temperature
and entropy from large scales to small scales. It is found that the geometrical variable
φ

T,C
l has a tendency to be −1, while the PDF of geometrical variable φT,S

l is nearly
symmetrical with respect to φ

T,S
l = 0. This observation partly explains why the

cascade of temperature is dominated by the compressible mode of the velocity field.
In contrast, the PDF of the geometrical variable φ

s,C
l is nearly symmetrical with

respect to φs,C
l = 0, while the PDF of the geometrical variable φs,S

l is almost identical
to that of φs

l . The observation is consistent with the fact that the cascade of entropy
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FIGURE 15. (Colour online) PDFs of geometrical variables for SGS fluxes of temperature
and entropy, and their compressible and solenoidal components at Mt= 0.2, 0.6: (a) PDFs
of φT

l , φT,S
l and φT,C

l at Mt = 0.2; (b) PDFs of φs
l , φ

s,S
l and φs,C

l at Mt = 0.2; (c) PDFs of
φT

l , φT,S
l and φT,C

l at Mt = 0.6; (d) PDFs of φs
l , φ

s,S
l and φs,C

l at Mt = 0.6.

is dominated by the solenoidal mode of the velocity field. The effect of turbulent
Mach number on the statistics of the geometrical variables is negligibly small.

To clarify the impact of local compression and expansion motions on the inter-scale
transfer of temperature and entropy, we plot the average of SGS fluxes of temperature
and entropy conditioned on the normalized filtered dilatation θl/θ

′

l for l/η = 16 at
Mt = 0.2, 0.6 in figure 16. Here, θ ′l =

√
〈θ 2

l 〉 is the r.m.s. value of the filtered
dilatation. The fluctuations of the conditional average curves for θl/θ

′

l > 6 are
due to the lack of samples. It is shown that the conditional average SGS fluxes
〈ΠT

l /εT | θl/θ
′

l 〉 and 〈Π s
l /εs | θl/θ

′

l 〉 increase with the increase of magnitude of the
filtered dilatation in compression regions θl/θ

′

l < 0, and decrease with the increase of
magnitude of the filtered dilatation in expansion regions θl/θ

′

l > 0. The observation
indicates that compression motions enhance the direct SGS flux of temperature
and entropy, while expansion motions suppress the direct SGS flux of temperature
and entropy. Moreover, 〈ΠT

l /εT | θl/θ
′

l 〉 becomes negative for θl/θ
′

l > 5, giving rise
to the reverse SGS flux of temperature from small scales to large scales in very
strong expansion regions. It is worth noting that the magnitude of the conditional
average SGS flux of the temperature in strong compression regions is much higher
than that in strong expansion regions, demonstrating that the effect of compression
motions on the inter-scale transfer of temperature is significantly larger than that of
expansion motions. Moreover, the effect of compressibility on the inter-scale transfer
of temperature is much stronger than on the inter-scale transfer of entropy, due to the
explicit effect of velocity divergence term in the dynamical equation of temperature.

It is interesting to see that the conditional average 〈ΠT,S
l /εT | θl/θ

′

l 〉 decreases
with the increase of magnitude of the filtered dilatation in compression regions,
and increases with the increase of magnitude of the filtered dilatation in expansion
regions. The local compressibility effect on the SGS temperature flux due to the
solenoidal velocity component ΠT,S

l is opposite to the local compressibility effect on
the overall SGS temperature flux ΠT

l . It is shown that the conditional average of the
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FIGURE 16. (Colour online) Conditional average SGS fluxes of temperature and entropy,
and their compressible and solenoidal components for l/η = 16 at Mt = 0.2, 0.6:
(a) 〈ΠT

l /εT | θl/θ
′

l 〉, 〈Π
T,S
l /εT | θl/θ

′

l 〉 and 〈ΠT,C
l /εT | θl/θ

′

l 〉 at Mt = 0.2; (b) 〈Π s
l /εs | θl/θ

′

l 〉,
〈Π

s,S
l /εs | θl/θ

′

l 〉 and 〈Π s,C
l /εs | θl/θ

′

l 〉 at Mt = 0.2; (c) 〈ΠT
l /εT | θl/θ

′

l 〉, 〈Π
T,S
l /εT | θl/θ

′

l 〉 and
〈Π

T,C
l /εT | θl/θ

′

l 〉 at Mt = 0.6; (d) 〈Π s
l /εs | θl/θ

′

l 〉, 〈Π
s,S
l /εs | θl/θ

′

l 〉 and 〈Π s,C
l /εs | θl/θ

′

l 〉 at
Mt = 0.6.

SGS temperature flux due to the compressible velocity component ΠT,C
l is similar

to the conditional average of the overall SGS temperature flux ΠT
l . In addition,

the magnitude of the conditional average of the SGS temperature flux due to the
compressible velocity component is much larger than that of the SGS temperature
flux due to the solenoidal velocity component in strong compression regions.

It is found that the conditional average 〈Π s,S
l /εT | θl/θ

′

l 〉 is close to 1.0 and is
insensitive to the change of filtered dilatation, implying that the effect of local
compressibility on the SGS entropy flux due to the solenoidal velocity component
Π

s,S
l is very weak. In compression regions, the conditional average 〈Π s,C

l /εT | θl/θ
′

l 〉

is positive, and increases with the increase of magnitude of the filtered dilatation. In
expansion regions, the conditional average 〈Π s,C

l /εT | θl/θ
′

l 〉 is negative, and decreases
with the increase of magnitude of filtered dilatation. The observation suggests that
compression motions induce the direct SGS entropy flux due to the compressible
velocity component Π s,C

l from large scales to small scales, which is balanced by
the reverse SGS entropy flux due to the compressible velocity component Π s,C

l from
small scales to large scales induced by expansion motions.

6. Discussion
Previous studies showed that the r.m.s. value of compressible velocity component

is decreasing monotonically with the decrease of turbulent Mach number in
solenoidally forced stationary compressible isotropic turbulence without any heat
source (Jagannathan & Donzis 2016; Wang et al. 2017). Specifically, a M4

t scaling
of the energy of compressible velocity component was identified at low turbulent
Mach numbers where the pseudosound mode dominates the compressible dynamics
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(Wang et al. 2017). However, the statistics of the compressible velocity component
in compressible turbulence is not uniquely dependent on the turbulent Mach number.
Another previous study showed that the ratios of r.m.s. values of the compressible
velocity component to the solenoidal velocity component are insensitive to the
change of turbulent Mach number, and are always larger than 0.64, at turbulent
Mach numbers from 0.30 to 0.65 in the stationary compressible isotropic turbulence
driven by both solenoidal and compressible forces (Wang et al. 2018b). We also
found that the ratios of r.m.s. values of the compressible velocity component to the
solenoidal velocity component can be larger than 0.64 at smaller turbulent Mach
numbers Mt 6 0.1 in the stationary compressible isotropic turbulence driven by both
solenoidal and compressible forces. In this study, we observe that the r.m.s. value of
the compressible velocity component is not decreasing with the decrease of turbulent
Mach number in stationary compressible isotropic turbulence, which can be attributed
to the acoustic waves generated by the heat source.

Bayly et al. (1992) predicted that entropy fluctuations obey the passive scalar
transport equation in the inertial range, and the fluctuation spectrum of entropy is
proportional to k−5/3. Our numerical result on the entropy spectrum is consistent
with the theoretical prediction made by Bayly et al. (1992). Pan & Scannapieco
(2010, 2011) investigated the statistics and structures of a passive scalar in supersonic
turbulence. They found that the compressible mode of velocity is less efficient in
mixing the passive scalar than the solenoidal mode of velocity. They also showed
that the degree of intermittency of the passive scalar increases only slightly as the
flow changes from transonic to highly supersonic, which is due to the absence of
shock-like discontinuities in the scalar field. Our numerical study shows that the
inter-scale transfer of entropy is dominated by the solenoidal mode of the velocity
field and is insensitive to the change of local compressibility, similar to the results
of a passive scalar in compressible turbulence (Pan & Scannapieco 2010, 2011).

Eyink & Drivas (2018) recalled that the thermodynamic entropy per unit volume
s is an analytic concave function of the internal energy per unit volume and the
particle number per unit volume: s = s(eI, n), where eI was defined as the internal
energy per unit volume and n was defined as the particle number per unit volume.
The large-scale or resolved entropy was defined by s = s(eI, n), and the small-scale
or unresolved entropy was given by 1s = s − s, where s = s(eI, n). It was shown
that 1s 6 0, indicating that spatial coarse graining increases entropy. They showed
an anomalous input of negative entropy by pressure work and a cascade of negative
entropy to small scales with a rigorous detailed analysis provided in the companion
paper (Drivas & Eyink 2018). Eyink & Drivas (2018) pointed out that the entropy in
compressible turbulence is not at all a passive scalar due to their prediction of the
inverse cascade of the entropy as a nonlinear function of eI and n. It is worth noting
that the definition of large-scale or resolved entropy is not unique. In this study, we
have investigated numerically the inter-scale transfer of entropy fluctuations through
the dynamical equation of the r.m.s. value of Favre filtered entropy s̃, which differs
from the large-scale entropy studied by Eyink & Drivas (2018). This difference and
the specific flow forcing details could contribute to the different conclusions noted
here. The numerical analysis method on the entropy transfer in this study can be
applied directly to analyse the inter-scale transfer of other scalar variables, including
temperature, passive scalar and pressure. We have also addressed the similarity and
difference between the inter-scale transfer processes of temperature and entropy
fluctuations.
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7. Conclusions
In this paper, we have performed numerical simulations of stationary three-

dimensional compressible isotropic turbulence with a heat source at turbulent Mach
numbers Mt = 0.2, 0.6. We have shown that the spectra of velocity, compressible
velocity component, density, pressure, temperature and entropy exhibit the −5/3
scaling in the inertial range. The strong acoustic equilibrium relation between spectra
of the compressible velocity component and the pressure has been verified. Moreover,
the spectra of the isentropic modes and entropic modes of thermodynamic variables
have been studied by Kovasznay decomposition. The dynamics of the temperature
field is dominated by the entropic mode due to the effect of heat source. The
compensated fluctuation spectra of temperature and entropy are nearly constant in the
inertial range, with the Obukhov–Corrsin constants close to that of a passive scalar
spectrum.

We have applied a filtering method to investigate the inter-scale transfer of
temperature and entropy. We have shown that both temperature and entropy
fluctuations cascade from large scales to small scales. The cascade of temperature is
dominated by the compressible mode of velocity field, while the cascade of entropy
is dominated by the solenoidal mode of the velocity field. The geometrical properties
of the SGS fluxes are reported to partly explain the difference between the cascades
of temperature and entropy. The effect of local compressibility on the inter-scale
transfer of temperature and entropy are studied through conditional averaging with
respect to the filtered dilatation. It is shown that the effect of compressibility on the
cascade of temperature is much stronger than on the cascade of entropy, due to the
explicit effect of velocity divergence term in the dynamical equation of temperature.

Several issues require further investigation, including the connection between
structures and the statistics of temperature and entropy, the interactions between
thermodynamic variables and velocity field and the compressibility effects at higher
turbulent Mach numbers.
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