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Using a simulated highly compressible isotropic turbulence field with turbulent Mach
number around 1.0, we studied the effects of local compressibility on the statistical
properties and structures of velocity gradients in order to assess salient small-scale
features pertaining to highly compressible turbulence against existing theories for
incompressible turbulence. A variety of statistics and local flow structures conditioned
on the local dilatation – a measure of local flow compressibility – are studied. The
overall enstrophy production is found to be enhanced by compression motions and
suppressed by expansion motions. It is further revealed that most of the enstrophy
production is generated along the directions tangential to the local density isosurface
in both compression and expansion regions. The dilatational contribution to enstrophy
production is isotropic and dominant in highly compressible regions. The emphasis
is then directed to the complicated properties of the enstrophy production by the
deviatoric strain rate at various dilatation levels. In the overall flow field, the
most probable eigenvalue ratio for the strain rate tensor is found to be −3:1:2.5,
quantitatively different from the preferred eigenvalue ratio of −4:1:3 reported in
incompressible turbulence. Furthermore, the strain rate eigenvalue ratio tends to be
−1:0:0 in high compression regions, implying the dominance of sheet-like structures.
The joint probability distribution function of the invariants for the deviatoric velocity
gradient tensor is used to characterize local flow structures conditioned on the
local dilatation as well as the distribution of enstrophy production within these
flow structures. We demonstrate that strong local compression motions enhance the
enstrophy production by vortex stretching, while strong local expansion motions
suppress enstrophy production by vortex stretching. Despite these complications, most
statistical properties associated with the solenoidal component of the velocity field are
found to be very similar to those in incompressible turbulence, and are insensitive to
the change of local dilatation. Therefore, a good understanding of dynamics of the
compressive component of the velocity field is key to an overall accurate description
of highly compressible turbulence.

Key words: compressible turbulence, isotropic turbulence, turbulence simulation

† Email addresses for correspondence: jwang.pku@gmail.com, syc@pku.edu.cn

mailto:jwang.pku@gmail.com
mailto:syc@pku.edu.cn


Effect of compressibility on small-scale turbulence structures 589

1. Introduction
The small-scale dynamics in fluid turbulence is characterized by velocity gradients

and is relevant to many important turbulent flow processes, including viscous
dissipation of kinetic energy, intermittency, vortex self-stretching, and enstrophy
production. There have been many studies on statistical properties of the velocity
gradient tensor, vorticity, and strain rate tensor for incompressible turbulent flows:
see e.g. Meneveau (2011) and references therein. Ashurst et al. (1987) pioneered
the investigation of the orientation of vorticity with eigenvectors of the strain rate
tensor in the numerical simulation of incompressible turbulence. They observed
that the vorticity tends to be aligned with the intermediate strain rate eigenvector.
They also reported that the eigenvalues of the strain rate tensor have a preferred
ratio of −4:1:3 in the highly dissipative regions. Tsinober, Kit & Dracos (1992)
reported experimental investigations of velocity gradients in both homogeneous and
inhomogeneous incompressible turbulence. They confirmed this strong tendency for
the vorticity to align with the intermediate strain rate eigenvector and the vortex
stretching vector, and obtained a preferred eigenvalue ratio of −3.8:1.0:3.1. Later,
these behaviours were observed in a wide variety of incompressible turbulence: see
Galanti & Tsinober (2000), Kholmyansky, Tsinober & Yorish (2001), Lüthi, Tsinober
& Kinzelbach (2005) and Meneveau (2011).

Compared to incompressible turbulence, the small-scale features of compressible
turbulence are much less studied. The effects of randomly distributed spatially varying
shocks and compressibility on the dynamics and structures of velocity gradients
represent a complex nonlinear problem. There have been a limited studies of the
vorticity field and the strain rate tensor in compressible turbulent flows. Erlebacher
& Sarkar (1993) investigated the velocity derivatives in a weakly compressible
homogeneous shear turbulence. They reported a preferred strain rate eigenvalue
ratio of −4:1:3 and confirmed the similar alignment of vorticity and the strain rate
eigenvectors as in the incompressible flow. Their results state that the statistics of
velocity gradients are not significantly affected by compressibility when the turbulent
Mach number is less than 0.3. To clearly separate out the compressible effect, they
performed the Helmholtz decomposition on the strain rate tensor. They then found
that the most probable eigenvalue ratio for the compressive strain rate tensor was
−2.2:1:1.2 for high dilatation regions, indicating that sheet-like structures dominate in
strong compression regions. Pirozzoli & Grasso (2004) carried out direct numerical
simulations of decaying isotropic compressible turbulence at various initial turbulent
Mach numbers (0.1–0.8). They found that the eigenvalues of the strain rate tensor
have a preferred ratio of −4:1:3 in all their simulations. They also showed that the
shape of the probability density function (p.d.f.) of the angle between vorticity and
three strain rate eigenvectors is independent of the initial turbulent Mach number.
Later, Lee, Girimaji & Kerimo (2009) performed numerical simulation of isotropic
turbulence with an initial turbulent Mach number up to 0.885. They again found
that the eigenvalue ratio of −4:1:3 is preferred at all turbulent Mach numbers that
they considered, and the alignment of vorticity relative to strain rate eigenvectors is
similar in compressible and incompressible turbulence. Furthermore, they studied the
effect of dilatation level on the preferential alignment between vorticity and strain rate
eigenvectors, and concluded that this alignment is weakened in the strong dilatation
regions.

Investigations of the physical-space local flow structures of small-scale turbulence
have been made over the years. Chong et al. (1990) proposed a topological approach
to classification of elementary three-dimensional flow patterns based on the relations of
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three invariants of the deformation rate tensor in the velocity field. In incompressible
turbulence, the first invariant of the deformation rate tensor is null due to continuity.
Thus the local flow topology can be fully characterized by the second and third
invariants of the deformation rate tensor. A universal teardrop shape of the joint
p.d.f. of the second and third invariants of the deformation tensor was observed for a
wide variety of incompressible turbulence, including mixing layers (Soria et al. 1994),
wall-bounded turbulence (Blackburn, Mansour & Cantwell 1996; Chong et al. 1998),
isotropic turbulence (Ooi et al. 1999), and the turbulence/non-turbulence interface in
the jets (da Silva & Pereira 2008).

Pirozzoli & Grasso (2004) studied the joint p.d.f. of the second and third invariants
of the deviatoric deformation tensor in decaying compressible isotropic turbulence.
They found that the joint p.d.f. at various initial turbulent Mach numbers shares
the same teardrop shape found in incompressible turbulence. They also showed that
the conditional average of the second invariant of the deviatoric deformation rate
tensor always scales with the 1/3 power of the discriminant of that tensor in their
simulations. In the work by Suman & Girimaji (2010), the effect of compressibility on
the topological structures of turbulent flow was demonstrated by the joint p.d.f. of the
normalized second and third invariants of the deformation rate tensor conditioned on
the dilatation levels. They concluded that, at low dilatation levels, local flow topology
is very similar to incompressible turbulence, while at high dilatation levels, the flow
structures are changed dramatically.

In this paper, we use flow fields from a forced isotropic turbulence with turbulent
Mach number around 1.0, simulated on a 10243 grid using a novel computational
approach (Wang et al. 2010), to examine in detail the properties of velocity gradients
and their topology in a highly compressible turbulent flow. A systematic investigation
of the effects of local dilatation is undertaken by means of conditional averages
and conditional probability distribution functions, which separates this study from
most previous studies of compressible turbulence. Furthermore, we analyse the
conditional statistics of solenoidal component and compressive component of the
velocity gradients, in order to better understand and interpret the conditional statistics
of the full velocity gradients and to facilitate comparison with existing knowledge
of incompressible turbulence. A similar approach is used to explore the effect of
compressibility on local flow topological structures and enstrophy production in
these various flow structures. Throughout the paper, a specific focus is placed on
the properties of enstrophy production. We hope that this in-depth comprehensive
analysis will advance our understanding of small-scale features in highly compressible
turbulence. The large amount of conditional statistics to be reported here will serve to
guide the development of accurate models of compressible turbulence in the future.

This paper is part of a systematic study of highly compressible turbulence. In a
companion paper (Wang et al. 2011), we have examined carefully the flow statistics
and structures near shocklets to assess how shocklets modify the small-scale flow field.
We have demonstrated that, even for a highly compressible turbulence, the properties
and structures of the solenoidal component of the velocity gradient tensor are nearly
independent of the shock discontinuities.

In another companion paper (Wang et al. 2012), we have focused on the scaling
properties of velocity increments and the power-law tail of the p.d.f. of the velocity
divergence in high compression regions. We found that the two-point statistics of the
solenoidal component of velocity field are not significantly different from those of
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incompressible turbulence, but the scaling exponents of the velocity structure function
for the compressive component become saturated at ∼0.7 at higher orders. We also
showed that the power-law exponent of the p.d.f. of the velocity divergence is different
from that found for Burgers turbulence. Using an analytical model, we related this
difference to a major contribution from the pressure effect which is absent in the
Burgers turbulence.

This paper is organized as follows. The governing equations and key parameters,
along with the computational approach, are described in § 2. The general statistics of
the simulated flow are provided in § 3. The effects of local dilatation on vorticity,
strain rate tensor, and enstrophy production are analysed in § 4 through conditional
statistics, along with visualization of flow structures in compression and expansion
regions. In § 5 we discuss local flow topology and enstrophy production in various
flow structures as classified by deviatoric velocity gradient invariants. Finally, our main
conclusions are summarized in § 6.

2. Governing equations, system parameters, and simulation method

We consider a stationary compressible turbulence of an ideal gas driven and
maintained by large-scale momentum forcing and thermal forcing. Following
Samtaney, Pullin & Kosovic (2001), we shall introduce a set of reference scales
to normalize the hydrodynamic and thermodynamic variables. Since these variables
together contain four elemental dimensions, we first introduce four elemental reference
scales, namely, a reference length L, velocity U, density ρ0, and temperature T0. The
energy content of an ideal gas is fully specified by two specific heats: the specific heat
at constant pressure Cp and the specific heat at constant volume Cv. These introduce
a fluid property, namely, the specific heat ratio γ ≡ Cp/Cv, which is assumed to
be equal to 1.4 in this study. The specific gas constant R is related to the specific
heats by R = Cp − Cv. The derived reference scales are a reference speed of sound
c0 ≡ √γRT0, energy per unit volume ρ0U2, and pressure ρ0RT0. We then introduce
the first reference governing parameter, the reference Mach number M = U/c0. We
further add a reference viscosity µ0 and thermal conductivity κ0, which introduce
two additional governing parameters of the system: the reference Prandtl number
Pr ≡ µ0Cp/κ0 and the reference Reynolds number Re ≡ ρ0UL/µ0. In this study, Pr is
set to 0.7. Therefore, the flow system has two governing parameters: M and Re.

In terms of these normalization scales, the governing equations of the compressible
flow system, in dimensionless form, are written as

∂ρ

∂t
+ ∂(ρuj)

∂xj
= 0, (2.1)

∂(ρui)

∂t
+ ∂

[
ρuiuj + pδij/γM2

]
∂xj

= 1
Re

∂σij

∂xj
+Fi, (2.2)

∂E

∂t
+ ∂

[
(E + p/γM2)uj

]
∂xj

= 1
α

∂

∂xj

(
κ
∂T

∂xj

)
+ 1

Re

∂(σijui)

∂xj
−Λ+Fjuj, (2.3)

p= ρT, (2.4)

where α ≡ Pr Re(γ −1)M2. The primary variables of the system are the velocity vector
ui, density ρ, temperature T , and pressure p. The viscous stress σij, and total energy
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(internal plus kinetic energy) per unit volume E are defined by

σij ≡ µ
(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
µθδij, (2.5)

E ≡ p

(γ − 1)γM2
+ 1

2
ρ(ujuj), (2.6)

where θ ≡ ∂uk/∂xk is the normalized velocity divergence or dilatation, a flow variable
that measures the local rate of expansion (if θ > 0) or compression (if θ < 0).

The compressible flow system is completed by specifying a temperature-dependent
dimensionless viscosity µ and thermal conductivity κ , as well as forcing methods
used for Fi and Λ. These details are described in Wang et al. (2010). The system
is solved numerically by using a hybrid approach in a cubic box with periodic
boundary conditions. The hybrid scheme utilizes a seventh-order weighted essentially
non-oscillatory (WENO) scheme (Balsara & Shu 2000) for shocklet regions and an
eighth-order compact central finite difference scheme (Lele 1992) for smooth regions
outside shocklets. Further details of the computational approach have been described
in Wang et al. (2010).

In order to assess any dependence of small-scale statistics of the flow field on
the grid resolution, three grid resolutions (5123, 7683 and 10243) were considered
in this paper. After the system reached the statistically stationary state, a total of
20 flow fields spanning the time period of 2.68 6 t/Te 6 4.63 were used to obtain
statistical averages of interested quantities, where Te is the large eddy turnover time.
The simulated compressible turbulence is governed by two important parameters,
namely, the Taylor microscale Reynolds number Reλ and the turbulent Mach number
Mt (Samtaney et al. 2001). They are related to the two reference governing parameters
Re and M by

Reλ = Re
u′λ〈ρ〉√

3〈µ〉 , Mt =M
u′

〈√T〉 , (2.7)

where the r.m.s. fluctuation velocity magnitude is computed by u′ ≡√〈u2
1 + u2

2 + u2
3〉,

and the normalized Taylor microscale λ is defined by

λ=
√

u′2

〈(∂u1/∂x1)
2+ (∂u2/∂x2)

2+ (∂u3/∂x3)
2〉 . (2.8)

By setting Re = 1000 and M = 0.45, we obtained an average turbulent Mach number
around Mt = 1.0 and Taylor microscale Reynolds number around Reλ = 250 for all
simulations.

3. General statistics of the simulated flow
Table 1 summarizes some overall statistics of the flow fields for all simulations.

The resolution parameters kmaxη are, respectively, 1.65, 2.47 and 3.33, where the
Kolmogorov length scales η = [〈µ/ (Reρ)〉3 /〈ε/ρ〉]1/4 are all around 0.0065 and the
largest wavenumbers kmax are, respectively, 256, 384 and 512. The statistics shown in
table 1 imply that the small-scale flow is well resolved in the 10243 simulation. The
integral length scale Lf is computed by

Lf = 3π

2 (u′)2

∫ ∞
0

E(k)

k
dk, (3.1)
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Resolution Reλ Mt kmaxη u′ Lf Lf /η 〈ε〉 θ ′ ω′ S3

5123 256 1.02 1.65 2.15 1.45 224 0.529 7.3 22.9 −1.4
7683 258 1.00 2.47 2.13 1.46 226 0.533 7.7 22.5 −1.9
10243 254 1.03 3.33 2.16 1.46 225 0.535 7.9 22.8 −2.2

TABLE 1. Simulation parameters and resulting flow statistics.

Mrms (us)′ (uc)′ uc′/us′ θ ′/ω′ ρ ′/ρ 〈εs〉/〈ε〉 〈εc〉/〈ε〉 Ek EI 〈pθ/(γM2)〉
1.01 2.11 0.46 0.22 0.35 0.28 88.2 % 13.8 % 2.11 8.12 −0.0175

TABLE 2. Parameters and resulting flow statistics for 10243 simulation.

where E(k) is the spectrum of kinetic energy per unit mass, namely,
∫∞

0 E(k) dk =
(u′)2 /2. The ratio Lf /η represents the range of scales in the simulated flow. The
average dissipation rate 〈ε〉 ≡ 〈σijSij/Re〉 represents the rate of conversion of kinetic
energy to internal energy by viscous effects. The r.m.s. vorticity magnitude is

computed by ω′ =
√〈

ω2
1 + ω2

2 + ω2
3

〉
. The r.m.s. dilatation is found to be θ ′/ω′ = 0.34,

indicating that the compressibility effect makes a significant contribution to velocity
gradient statistics. This is further demonstrated by the magnitude of the velocity
derivative skewness which is defined by

S3 =
[〈
(∂u1/∂x1)

3+ (∂u2/∂x2)
3+ (∂u3/∂x3)

3
〉]
/3{〈

(∂u1/∂x1)
2+ (∂u2/∂x2)

2+ (∂u3/∂x3)
2
〉
/3
}3/2 . (3.2)

Values of S3 = −1.4, S3 = −1.9 and S3 = −2.2 are obtained in our three simulations;
these are much larger than typical values of −0.4 to −0.6 found in the incompressible
turbulence (Ishihara et al. 2007). The deviation is caused by the frequent formation of
shocklets in the compressible turbulence.

In summary, the overall statistics of the flow field at the 10243 grid resolution are
all well converged. Further details will be shown later in the paper. Unless indicated
otherwise, the results shown in the rest of the paper are based on the 10243 flow
simulation.

To help clarify the underlying physics in the compressible turbulence and
specifically the effects of local compressibility, we shall employ the well-known
Helmholtz decomposition (Erlebacher & Sarkar 1993; Samtaney et al. 2001) to the
velocity field

u= us + uc, (3.3)

where the solenoidal component us satisfies ∇ ·us = 0, and the compressive component
uc is irrotational, i.e. ∇ × uc = 0.

In table 2, we compile relevant statistics related to the flow compressibility
and the Helmholtz decomposition. The r.m.s. Mach number, Mrms =√〈M2

loc〉, was
found to be 1.01, which is very close to the turbulent Mach number, where
Mloc = M

√
u2

1 + u2
2 + u2

3/
√

T is the local Mach number. The ratio of the r.m.s.
fluctuations of the two velocity components, uc′/us′, is equal to 0.22, implying that the
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compressible component contributes to a small but finite fraction of the total kinetic
energy. The ratio 0.22 is comparable to 0.18 reported in Porter, Pouquet & Woodward
(2002) for a very similar turbulent Mach number (0.97) in driven supersonic flows.
The ratio θ ′/ω′ is equal to 0.35, significantly larger than uc′/us′. This implies that
the compressive effect plays a more significant role at small scales. The normalized
density fluctuation ρ ′/ρ was 0.28, where ρ ′ ≡

√
〈ρ2 − 〈ρ〉2〉.

The kinetic energy is governed by the following equation (Andreopoulos, Agui &
Briassulis 2000):

ρ
D
Dt

(
1
2

uiui

)
= ∂

∂xj

(
− 1
γM2

puj + σijui

)
+ 1
γM2

pθ − µ

Re
ωiωi

− 4
3
µ

Re
θ 2 − 2

µ

Re

(
∂ui

∂xj

∂uj

∂xi
− θ 2

)
+Fjuj. (3.4)

Taking the volume average and observing periodic boundary conditions, we obtain

d
dt

〈
1
2
ρuiui

〉
= 1
γM2
〈pθ〉 − 1

Re

〈
µω2

〉− 4
3Re

〈
µθ 2

〉
− 2

Re

〈
µ

(
∂ui

∂xj

∂uj

∂xi
− θ 2

)〉
+ 〈Fjuj

〉
. (3.5)

The first term on the right-hand side is the average pressure work, and we found
that 〈(1/γM2)pθ〉 = −0.0175. The local pressure work pθ/(γM2) is positive in the
expansion region and negative in the compression region; when combined, however,
the net contribution to the kinetic energy appears to be small. This indicates that the
pressure work locally causes energy exchanges between kinetic energy and internal
energy, but the total energy transfer by the pressure work in the whole field is
insignificant.

The net viscous dissipation rate is much larger, with 〈ε〉 = 〈σijSij/Re〉 = 0.535.
This net dissipation is decomposed into three components, the solenoidal dissipation
εs = (µ/Re)ωiωi, the dilatational dissipation εc = (4/3)(µ/Re)θ 2, and the mixed
term εm = (2µ/Re)((∂ui/∂xj)(∂uj/∂xi) − θ 2), which represents the contributions to
the dissipation rate by the purely non-homogeneous part of the flow (Andreopoulos
et al. 2000). The mixed term is zero for an incompressible turbulence with constant
viscosity. We found that 〈εc〉/〈εs〉 = 0.157 and 〈εm〉/〈εs〉 = −0.023. The ratio of
kinetic energy to internal energy per unit volume is about Ek/EI = 0.260, where
Ek = 〈ρujuj〉/2 and EI = 〈p〉/[(γ − 1)γM2]. This ratio depends on the turbulent Mach
number. An estimation by Ek/EI ≈ (γ − 1)γM2

t /2 would give a value of 0.30. These
data suggest that the contributions due to the compressibility effect are significant. The
forcing term has an average value

〈
Fjuj

〉 = 0.52, so the main balance is between the
forcing and the viscous dissipation.

Figure 1 shows compensated power spectra of the velocity field u from all
resolutions. The power spectra from the 7683 resolution and the 10243 resolution
overlap in almost all scale ranges, implying the convergence of the velocity power
spectra under this grid refinement. Further, there is a narrow inertial subrange with
a Kolmogorov constant around 2.1, which is slightly higher than values (1.5–2.0)
typically observed in incompressible turbulence (Wang et al. 1996). Figure 2 shows
the compensated power spectra for the velocity field u and its two components us and
uc. The energy spectra for u and us almost overlap, except at high wavenumbers where
the compressive component dominates the energy content. The compensated energy
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FIGURE 1. Compensated energy spectra of the velocity field at three grid resolutions.
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FIGURE 2. Compensated energy spectra for the velocity field and its two components.

level in the inertial subrange for the compressive component is roughly one order of
magnitude smaller, but it decays much more slowly in the dissipative subrange.

The p.d.f.s of the normalized vorticity magnitude from three grid resolutions are
shown in figure 3. The p.d.f.s of the vorticity magnitude for the 7683 resolution
and the 10243 resolution overlap almost everywhere. All of these p.d.f.s exhibit a
well-defined exponential tail, qualitatively similar to the exponential tail of the vorticity
magnitude p.d.f. reported for a similar turbulent Mach number (0.97) in Porter et al.
(2002). A p.d.f. of the normalized vorticity magnitude (triangle) in an incompressible
turbulent flow at Taylor Reynolds number Reλ = 168 (Moisy & Jiménez 2004) is
also plotted, where a longer stretched-exponential tail is observed. Donzis, Yeung
& Sreenivasan (2008) indicate that the tail becomes longer as the Taylor Reynolds
number is increased. We note that the Taylor Reynolds number in our simulation is
Reλ = 254, which is larger than Reλ = 168 in the incompressible turbulent flow (Moisy
& Jiménez 2004). Therefore, based on the comparison between two p.d.f.s in figure 3,
we conclude that the intense vorticity is suppressed in the compressible turbulent flow,
which is consistent with the observation in the weakly compressible turbulence (Miura
2004).

The p.d.f.s of the normalized dilatation from three grid resolutions are provided in
figure 4. The p.d.f.s of the dilatation for the 7683 and 10243 resolutions overlap almost
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FIGURE 3. The p.d.f.s of the normalized vorticity magnitude at three grid resolutions.

Resolution
10–1

10–2

10–3

10–6

10–5

10–4

100

10–7
–30 –20 –10 0–40 10

5123
7683
10243

p.
d.

f.

FIGURE 4. The p.d.f.s of the normalized dilatation at three grid resolutions.

everywhere, except for extremely strong compression regions (θ/θ ′ < −30). There is
a strong tendency for the p.d.f. of the dilatation to be skewed to the negative value:
the left tail of the p.d.f. falls very slowly, while its right tail is very short. The
skewed shape for the p.d.f. of the dilatation has already been observed in weakly and
moderately compressible turbulent flows (Porter et al. 2002; Pirozzoli & Grasso 2004).
It was also shown in Pirozzoli & Grasso (2004) that the p.d.f. became more skewed
towards the negative value as the turbulent Mach number was increased. Therefore,
the p.d.f. of the dilatation in our simulated flow displays a longer left tail than others
reported in previous simulations, due to the relatively higher turbulent Mach number
and Taylor Reynolds number that we have achieved. A theoretical analysis of the left
tail is provided separately to examine the similarities and differences between three-
dimensional Navier–Stokes compressible turbulence and Burgers turbulence (Wang
et al. 2012).

Here, we would like to emphasize that the results presented in this paper are not
a direct numerical simulation study in some strict sense, since strong shocks with a
thickness less than the grid length are certainly not directly resolved but modelled
through numerical subgrid dissipation inherent in the WENO scheme. However, the
fact that all dynamics are directly resolved in smooth regions makes our scheme
essentially a direct numerical simulation for scales of the order of a few Kolmogorov
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FIGURE 5. Compensated energy spectra of the velocity field for two different WENO region
criteria, Rθ =−3 and Rθ =−10.

scales and larger. On the other hand, the WENO scheme introduces low-order errors at
the shock front, and the errors at the shock front could propagate outside to potentially
contaminate the bulk flow. That is exactly why we would like to carry out some
careful grid refinement studies to ensure the convergence of small-scale statistics in
our simulations.

Since the turbulent Mach number for the simulated flows in our study is not very
high, many of the shocklets have finite thickness at the scales typically comparable
to the Kolmogorov length scale (Samtaney et al. 2001). In order to resolve most
of the shocklets, we simulated compressible turbulence with lower Taylor microscale
Reynolds number compared to that in incompressible turbulence at the same grid
resolution. The resolution parameter kmaxη in our simulation is ∼3.33, much higher
than kmaxη ≈ 1.0 which is required in direct numerical simulation of incompressible
isotropic turbulence. For regions of strong shocklets that are not directly resolved,
the conservation laws across the shocks are still exactly satisfied (WENO preserves
shock relations). As indicated in Wang et al. (2010), as long as the thickness of the
shocklets is kept reasonably small, the total amount of dissipation across the shocks
is, for small viscosity, independent of viscosity, and dependent only on the jump
conditions across the shocks. Therefore, while numerical viscosity smears the shock
discontinuity (within 2–3 grid lengths), it does not alter the total amount of dissipation
when integrated across the shock.

We note that in our hybrid method (Wang et al. 2010), the WENO scheme is used
in the high compression regions according to a criterion θ/θ ′ <−Rθ , where Rθ = 3. To
assess the effect of numerical dissipation by WENO, we have also performed a similar
simulation with Rθ = 10 in the 10243 grid resolution. The percentages of the WENO
region in space are respectively 4.6 and 0.9 % for these two different criteria. We
find that the energy spectra of the velocity field and the p.d.f.s of vorticity magnitude
and dilatation for these two different criteria are closely matched (see figures 5–7),
implying that general small-scale statistics are well resolved in the 10243 simulation
presented in the paper.

4. Effect of dilatation on the vorticity and strain rate tensor
Our primary objectives are to study how the local compressibility alters the

small-scale flow features relative to those of incompressible turbulence and to find
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FIGURE 7. The p.d.f. of the normalized dilatation for two different WENO region criteria,
Rθ =−3 and Rθ =−10.

ways to describe these alterations. To systematically quantify the effects of local
compressibility, we divided the overall flow region into six subregions according to
the level of local dilatation: (i) strong compression region with θ/θ ′ ∈ [−∞,−2.0];
(ii) moderate compression region with θ/θ ′ ∈ [−2.0,−1.0]; (iii) weak compression
region with θ/θ ′ ∈ [−1.0,−0.0]; (iv) weak expansion region with θ/θ ′ ∈ [0.0, 1.0];
(v) moderate expansion region with θ/θ ′ ∈ [1.0, 2.0]; (vi) strong expansion region
with θ/θ ′ ∈ [2.0,+∞]. Table 3 summarizes the percentage of spatial domain taken
by each region. The weak compression and weak expansion regions occupy most
volume in the flow field. The strong compression region (2.5 %) associated with
shocks occurs much more frequently than the strong expansion region (0.2 %), and this
is balanced by the more frequent appearance of the weak expansion region (57.8 %)
when compared to the weak compression region (31.6 %). The moderate compression
region and moderate expansion region each account for ∼4 % of the domain.

4.1. Correlations of vorticity, dilatation and deviatoric strain rate tensor
For the sake of clarifying the similarities to the incompressible turbulence, it
is convenient to consider the deviatoric (or anisotropic) strain rate tensor S∗ij =
Sij − Skkδij/3 (Erlebacher & Sarkar 1993; Pirozzoli & Grasso 2004), where Sij =(
∂ui/∂xj + ∂uj/∂xi

)
/2. By using the Helmholtz decomposition, the deviatoric strain
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θ/θ ′ [−∞,−2.0] [−2.0,−1.0] [−1.0,−0.0] [0.0, 1.0] [1.0, 2.0] [2.0,+∞]
Fractions 2.5 % 4.2 % 31.6 % 57.8 % 3.7 % 0.2 %

TABLE 3. Percentage of volume occupied by flow regions with various dilatation levels.

ω2 S∗ijS
∗
ij Ss

ijS
s
ij Sc∗

ij Sc∗
ij

θ 2 0.012 0.79 0.006 0.97
ω2 1.00 0.42 0.68 0.017

TABLE 4. Correlation factors between some pairs of variables relevant to the velocity
gradients.

rate tensor is further decomposed into a solenoidal part and a compressive part
(Erlebacher & Sarkar 1993): S∗ij = Ss

ij+Sc∗
ij . Then, the vortex stretching vector Wi = ωjS∗ij

is decomposed as Wi = Ws
i + Wc

i , where Ws
i = ωjSs

ij and Wc
i = ωjSc∗

ij . Consequently,
the enstrophy is governed by the following evolution equation (Erlebacher & Sarkar
1993): (

∂

∂t
+ uj

∂

∂xj

)
ω2

2
= ωiωjS

s
ij + ωiωjS

c∗
ij −

2
3
θω2 + ωi

εijk

γM2

1
ρ2

∂ρ

∂xj

∂p

∂xk

+ωi
εijk

Re

∂

∂xj

(
1
ρ

∂σmk

∂xm

)
, (4.1)

where ωiωjSs
ij and ωiωjSc∗

ij represent the vortex stretching or vortex compression by the
solenoidal and compressive parts of the deviatoric strain rate tensor, respectively. The
dilatational term −(2/3)θω2 represents the direct effect of compression motions and
expansion motions on enstrophy generation.

Erlebacher & Sarkar (1993) showed that in the compressible homogeneous
turbulence, vorticity and dilatation are statistically independent. They further
demonstrated the statistical correlation between vorticity and strain rate by calculating
their correlation coefficient

Corr(f , g)= 〈(f − 〈f 〉)(g− 〈g〉)〉√〈
(f − 〈f 〉)2〉 〈(g− 〈g〉)2〉 , (4.2)

where the angle brackets denote an ensemble average.
The corresponding correlation coefficients in our simulated flow are compiled in

table 4. Indeed, the vorticity and dilatation, each derived respectively from the
solenoidal part and the compressive part of the velocity, are nearly uncorrelated since
the correlation coefficient between the squared dilatation and enstrophy is very small
(0.012). The correlation coefficient between θ 2 and Ss

ijS
s
ij is only 0.006. These results

are in excellent agreement with the results of Erlebacher & Sarkar (1993), who found
that the correlation coefficient between dilatation and any variable constructed from
the solenoidal velocity was less than 0.01. We also observe that ω2 (or θ 2) strongly
correlates with Ss

ijS
s
ij (or Sc∗

ij Sc∗
ij ). Specifically, Corr(θ 2, Sc∗

ij Sc∗
ij ) is very close to 1.
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FIGURE 8. The p.d.f.s of the vorticity magnitude conditioned on the local dilatation.

To further examine the weak statistical dependence between vorticity and dilatation,
we plot the p.d.f.s of vorticity magnitude conditioned on the local dilatation in figure 8.
We find that with increasing dilatation in the expansion regions, the shape of the p.d.f.
of vorticity magnitude becomes broader and the peak p.d.f. value drops slightly. This
means some level of dependence of vorticity magnitude on the local dilatation. On the
other hand, independence of the distribution of vorticity magnitude on dilatation was
observed by Erlebacher & Sarkar (1993) in their simulations. The difference could be
due to the much higher turbulent Mach number in our simulation relative to those in
Erlebacher & Sarkar (1993). In fact, in our simulated flow, vorticity is substantially
amplified when being advected through shocklets, leading to the concentration of
intense vorticity downstream of the shocklets (Wang et al. 2011). In these regions,
the flow is characterized by over-compression in shocklets, followed by an expansion
downstream of the shocklets. In addition, as the strength of the shocklet is increased,
both the expansion motion and the vorticity amplification increase downstream of the
shocklet (Wang et al. 2011), leading to the positive correlation between dilatation and
vorticity magnitude in high expansion regions.

In figure 9, the average vorticity magnitude conditioned on the local dilatation
is plotted. It is clearly observed that the vorticity magnitude is independent of the
local dilatation in the compression regions. However, the vorticity magnitude increases
linearly with the dilatation in the expansion regions, yielding a small but positive
correlation between the two. The behaviour of Ss =√Ss

ijS
s
ij conditioned on θ is almost

identical to that of the vorticity magnitude shown in figure 9. We therefore suspect that
these features are shared by all small-scale variables constructed from the solenoidal
component of the velocity field. In contrast, the conditional average of Sc∗ =√Sc∗

ij Sc∗
ij

is linearly dependent on the dilatation in both compression and expansion regions.
Furthermore, the correlation is much stronger in compression regions than in the
expansion regions.

4.2. Dilatation effect on the enstrophy generation
In compressible turbulence, local enstrophy generation includes contributions from
the strain rate effect, dilatational effect and baroclinic effect. Wang et al. (2011)
reported that the effect of the baroclinic term on enstrophy generation is negligible in
a compressible isotropic turbulence at a similar turbulent Mach number. Therefore, the
emphasis of our discussion will be placed on the strain rate term ωiWi, the dilatation
term ωiWD

i , and their sum ωiWT
i , where WD

i =−(2/3)ωiθ and WT
i = ωjS∗ij − (2/3)ωiθ .
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Figure 10 shows average enstrophy generation ωiWT
i conditioned on the dilatation,

as a function of the dilatation. It is found that in compression regions, ωiWT
i is

always positive and increases linearly as dilatation is decreased, implying enhancement
of enstrophy generation by compression motions. However, in strong expansion
regions, ωiWT

i becomes negative and decreases drastically as dilatation is increased,
implying massive destruction of enstrophy by strong expansion motions. To connect
the dilatational effect on enstrophy generation with the shocklets effect discussed in
Wang et al. (2011), we introduce the direction of density gradient as

ni = ∂ρ/∂xi√
(∂ρ/∂x1)

2 + (∂ρ/∂x2)
2 + (∂ρ/∂x3)

2
. (4.3)

Normal and tangential components of vorticity relative to the local density isosurface
are defined by ωn,i = (ωjnj)ni and ωt,i = ωi − (ωjnj)ni, respectively. Similarly, WT is
decomposed into a normal component WT

n,i and a tangential component WT
t,i. Figure 10

shows the conditional average of both normal and tangential components of enstrophy
generation. The normal component of enstrophy generation is negligible as compared
to its tangential counterpart in both strong compression regions and strong expansion
regions. Since the normal direction of a shocklet (in strong compression regions) is
aligned with the density gradient, the above observations are consistent with the result
that only the tangential component of the vorticity is increased across the shocklet
(Wang et al. 2011).

Figure 11 shows the conditional average of dilatational enstrophy generation
ωiWD

i = −(2/3)θω2 and its two components ωn,iWD
n,i = −(2/3)θω2cos2(n,ω) and

ωt,iWD
t,i = −(2/3)θω2sin2(n,ω). The direct interaction between dilatation and vorticity

is isotropic, and negative (or positive) dilatation makes positive (or negative)
contributions to enstrophy generation. In expansion regions, ωiWD

i decreases quickly as
dilatation becomes larger due to positive correlation between enstrophy and dilatation
in these regions. In the inset of figure 11 we plot average cos2(n,ω) conditioned on
the dilatation. The average cos2(v,w) is equal to 1/3 if the two vectors v and w are
distributed independently. We found that the average cos2(n,ω) is smaller than 1/3 in
both compression regions and expansion regions. Thus, there is a tendency for vorticity
to be perpendicular to the density gradient, consistent with the previous observation
that the tangential component of the overall enstrophy generation dominates
over its normal counterpart. Consequently, the average value of the tangential
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t,i conditioned on the dilatation.

component ωt,iWD
t,i of dilatational enstrophy generation is more than twice its normal

counterpart, as shown in figure 11.
After briefly discussing the effect of the dilatational term −(2/3)θω2 on enstrophy

generation, we shall now focus on enstrophy generation by the deviatoric strain rate
tensor via the vortex stretching and tilting mechanism. In incompressible turbulence,
the predominance of vortex stretching over vortex compression and the dynamic
alignment between the vorticity and vortex stretching vector cause self-amplification
of local vorticity and redistribution of vorticity over smaller scales (Galanti & Tsinober
2000; Kholmyansky et al. 2001). Consequently, ωiωjS∗ij is the positive production
term in the enstrophy equation. For compressible turbulence, we must consider the
effects of dilatation. Figure 12 shows average ωiWi = ωiωjS∗ij conditioned on the
dilatation, as a function of the dilatation. We find that the magnitude of ωiωjS∗ij
increases roughly linearly with the level of dilatation in compression regions. In
expansion regions, ωiωjS∗ij shows rather complicated variations: it first increases with
dilatation, then decreases from positive to highly negative. Therefore, the compression
enhances the production of enstrophy from the vortex stretching term ωiωjS∗ij. But high
expansion weakens this production mechanism, and in extreme expansion regions,
ωiωjS∗ij can even become a destruction term for enstrophy. Furthermore, in high
compression regions, the normal component ωn,iWn,i of the vortex stretching term is
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i , ωn,iWs

n,i and ωt,iWs
t,i conditioned on the dilatation.

negative, leading to substantial destruction of enstrophy. The negative average value of
ωn,iWn,i also balances positive contributions from the normal component ωn,iWD

n,i of the
dilatational enstrophy generation in high compression regions. In expansion regions,
the average ωn,iWn,i makes significant positive contributions to enstrophy generation.
These observations will be further investigated via the strain rate tensor later in the
paper.

Interestingly, figure 13 shows that the solenoidal vortex stretching term ωiWs
i =

ωiωjSs
ij is not affected by compression motions. The effect of expansion motions is

to enlarge ωiωjSs
ij. These features are similar to those of the conditional average of

vorticity magnitude and the solenoidal strain rate. In addition, the average value of the
normal component ωn,iWs

n,i is small compared to its tangential component. Otherwise,
according to figure 14, the compressive component of the vortex stretching term is
enhanced by compression motions, which is the reason for the overall enhancement
of the enstrophy production of ωiωjS∗ij. In expansion regions, the conditional average
of ωiωjSc∗

ij is always negative, and its magnitude increases rapidly with the dilatation.
The magnitude of the conditional average of ωiωjSc∗

ij exceeds that of ωiωjSs
ij starting at

θ/θ ′ = 4, leading to the net destruction of enstrophy by the term ωiωjS∗ij for θ/θ ′ > 4.
Furthermore, in both compression and expansion regions, the average value of the
normal component ωn,iWc

n,i is significant, and plays the opposite role in enstrophy
generation as compared to its tangential counterpart.
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Figure 15 shows the average enstrophy generation terms ωiWT
i , ωiWD

i and ωiWi

conditioned on the dilatation at three grid resolutions. There is a substantial deviation
of the average values for the 5123 resolution from those for the 10243 resolution
where dilatation magnitude is large. However, the difference of average values from
the 7683 resolution and the 10243 resolution is small in almost all ranges of dilatation
shown in the figure, implying the convergence of enstrophy generation under this grid
refinement.

In figure 16 we plot the p.d.f. and conditional p.d.f.s of the cosine of the
angle between vorticity and the vortex stretching vector Wi. Similar to the case of
incompressible turbulence (Kholmyansky et al. 2001), there is a definite positive
alignment between the vorticity and the vortex stretching vector. In addition, this
alignment is somewhat enhanced by compression and is significantly reduced by
expansion. Figure 17 shows that the effect of the dilatation on the alignment between
vorticity and the solenoidal vortex stretching vector is negligible, and only strong
expansion slightly weakens this alignment.

The alignment between the vorticity and the vortex stretching vector associated with
the compressive velocity component is displayed in figure 18, showing that the effect
of dilatation is significant. Without conditioning on the dilatation, there is no clear
alignment of ω and W c. Parallel alignment is observed for θ < 0, and this alignment
is enhanced as the compression is increased. For expansion regions, a tendency for
anti-parallel alignment between ω and W c is observed, which is responsible for the
weakening of enstrophy production from the vortex stretching term.

In figure 19, the isosurfaces of dilatation at θ = −3θ ′ and θ = θ ′ are displayed
in a 2563 subdomain (i.e. 1/64 of the full domain). These isosurfaces are coloured
based on the local enstrophy production of the deviatoric strain rate ωiωjS∗ij and its
solenoidal and compressive components. At θ = −3θ ′, the isosurfaces are random
sheet-like shock waves of a thickness typically smaller than the inertial subrange
scales. The width of these shock fronts spans over a wide scale range. The local
enstrophy production of the deviatoric strain rate tensor ωiωjS∗ij is typically positive
on these shock fronts. After the Helmholtz decomposition, it is observed that the
compressive component of the deviatoric strain rate makes more contributions to the
local enstrophy production or destruction than its solenoidal component. Still, the
solenoidal component of the deviatoric strain rate tensor is more likely to produce
the enstrophy than to destroy it. In contrast, the expansion regions formed by θ = θ ′
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FIGURE 16. The p.d.f. and conditional p.d.f.s of the cosines of the angle between vorticity ω
and the vortex stretching vector W .

take blob- or tube-like structures. The length scales of these expansion structures
are relatively small when compared to the shock waves. In addition, many of the
structures resemble the shape of vortex tubes familiar from incompressible turbulence.
After the Helmholtz decomposition, it is revealed that, in these expansion regions,
the solenoidal component of the deviatoric strain rate contributes mostly to strong
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FIGURE 18. The p.d.f. and conditional p.d.f.s of the cosines of the angle between vorticity ω
and the compressive vortex stretching vector W c.

enstrophy production, but the compressive component of the deviatoric strain rate
gives rise mostly to enstrophy destruction.

4.3. Dilatation effect on the strain rate tensor
Let the three eigenvectors of the strain rate tensor Sij be denoted by Λ1, Λ2 and
Λ3, with corresponding eigenvalues λ1, λ2 and λ3, arranged in ascending order, i.e.
λ1 6 λ2 6 λ3. Then the three eigenvectors of the deviatoric part of strain rate tensor S∗ij
are Λ1, Λ2 and Λ3 respectively, and the corresponding eigenvalues are λ∗k = λk − θ/3
(k = 1, 2, 3). The eigenvalues λ∗k satisfy the following condition as in incompressible
turbulence:

λ∗1 + λ∗2 + λ∗3 = 0. (4.4)

Figure 20 displays the p.d.f.s and conditional p.d.f.s of the normalized eigenvalues βk

of the strain rate tensor Sij, where

βk = λk√
λ2

1 + λ2
2 + λ2

3

. (4.5)
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In the overall flow field, the most probable eigenvalue ratio for the strain rate tensor
is −3:1:2.5, quantitatively different from the preferred eigenvalue ratio of −4:1:3
reported in incompressible turbulence (Ashurst et al. 1987) and weakly compressible
turbulence (Erlebacher & Sarkar 1993; Pirozzoli & Grasso 2004; Lee et al. 2009). In
compression regions, the peak value of the p.d.f. of β2 shifts to the left side as the
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compression level increases. In high compression regions, values of both β2 and β3

are very small compared to the value of β1, and the p.d.f. of β1 has a peak value
very close to −1. Therefore, most of the eigenvalue ratios are approximately −1:0:0
in high compression regions, implying that strong compression regions are dominated
by sheet-like structures (i.e. shocklets). On the other hand, in strong expansion regions,
the peak value of the p.d.f. of β3 is located near 1, indicating that the local expansion
motion along the third strain rate eigenvector is dominant.

Figure 21(a) shows the p.d.f.s and conditional p.d.f.s of the ratio λs
2/λ

s
1 of the

intermediate to the minimum eigenvalues of the solenoidal strain rate tensor Ss
ij. This

ratio peaks at λ∗2/λ
∗
1 = −0.27, corresponding to the most likely eigenvalue ratio of

−3.7:1:2.7, in good agreement with the result of −4:1:3 in incompressible turbulence
(Ashurst et al. 1987). In addition, the p.d.f. shape of λs

2/λ
s
1 is barely changed by

dilatation, except that strong expansion motions slightly broaden this p.d.f. shape and
shift the peak location to the right. Figure 21(b–d) displays p.d.f.s and conditional
p.d.f.s of the normalized eigenvalues βc

k of the compressive strain rate tensor Sc
ij. In

strong compression regions, the p.d.f. shape of βc
1 becomes rather sharp, so that almost

all of the ratios βc
1:βc

2:βc
3 concentrate near −1:0:0, demonstrating sheet-like structures

of compressive velocity component generated by intensive compression motions. On
the other hand, in strong expansion regions, the peak value of the p.d.f. of βc

2 is close
to 0.5, far from zero, implying that strong expansion motions are multidirectional. Due
to distinctive properties of βc

k in compression and expansion regions, the p.d.f. shape
of βc

k for the overall flow field is very broad and complicated.
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Figure 22 shows the conditional averages of squares of cosines of angles
between density gradient and eigenvectors of the strain rate tensor Λk, Λs

k and Λc
k.

The conditional average value of cos2(n,Λ1) approaches 1 with the increase of
compression level, indicating that the eigenvector corresponding to the most negative
eigenvalue of strain rate tensor tends to be aligned with the density gradient in
high compression regions. In fact, in the vicinity of a shocklet, both the density
gradient and the first strain rate eigenvector are perpendicular to the shock surface
(Wang et al. 2011). In expansion regions, there are obvious tendencies for the third
strain rate eigenvector to be aligned with the density gradient and the first strain
rate eigenvector to be perpendicular to the density gradient. These trends are more
obvious for the eigenvectors of the compressive-velocity-component strain rate tensor
as shown in figure 22(c). For the solenoidal-velocity-component strain rate tensor, the
conditional average values of cos2(n,Λs

k) (k = 1, 2, 3) are close to 1/3, indicating that
the alignments between these eigenvectors and the density gradient are not clear.

In terms of the eigenvalues of the deviatoric strain rate tensors and the cosines of
angles between the vorticity and the eigenvectors, the vortex stretching terms can be
written as

ωiωjS
∗
ij = ω2

[
λ∗1cos2(Λ1,ω)+ λ∗2cos2(Λ2,ω)+ λ∗3cos2(Λ3,ω)

]
, (4.6)

ωiωjS
s
ij = ω2

[
λs

1cos2(Λs
1,ω)+ λs

2cos2(Λs
2,ω)+ λs

3cos2(Λs
3,ω)

]
, (4.7)

ωiωjS
c∗
ij = ω2

[
λc∗

1 cos2(Λc
1,ω)+ λc∗

2 cos2(Λc
2,ω)+ λc∗

3 cos2(Λc
3,ω)

]
. (4.8)
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These equations show that the first eigenvalue always makes a negative contribution
to the enstrophy production, while the third eigenvalue always makes a positive
contribution to the enstrophy production. The role of the second eigenvalue depends
on its sign and magnitude. In incompressible turbulence, it is known to be positively
skewed, leading to net enstrophy production. In addition, the orientations of vorticity
relative to the strain rate eigenvectors are also essential to the enstrophy production.
The tendency of the vorticity to be aligned with the second eigenvector causes
a substantial enstrophy production in incompressible turbulence. In the following
discussions, we shall first examine the local compressibility effect on the alignment
statistics between vorticity and strain rate eigenvectors. Then we investigate the
statistical properties of the strain rate eigenvalues. Finally, we will combine these
results together to quantify the contributions to the enstrophy production of the vortex
stretching along each principal direction of the strain rate tensor, at different dilatation
levels.

Figure 23 shows alignment statistics between the vorticity and strain rate
eigenvectors, conditioned on the local dilatation. The overall alignment behaviours
of the vorticity relative to the strain rate eigenvectors are quite similar to those found
in the incompressible turbulence (Ashurst et al. 1987; Galanti & Tsinober 2000;
Kholmyansky et al. 2001) and in the weakly compressible turbulence (Erlebacher
& Sarkar 1993; Pirozzoli & Grasso 2004; Lee et al. 2009): (i) there is a strong
tendency for the vorticity to align with the intermediate eigenvector; (ii) there is
also a noticeable tendency for vorticity to be perpendicular to the first eigenvector
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FIGURE 23. The p.d.f.s and conditional p.d.f.s of the cosines of the angle between vorticity
ω and the eigenframe Λi.

corresponding to the most negative eigenvalue; (iii) the distribution of the angle
between the vorticity and the third eigenvector (the one with the most positive
eigenvalue) is almost uniform. In our simulated highly compressible turbulence,
we observe diverse influences of the dilatation on the angle of vorticity relative
to different eigenvectors. For the first strain rate eigenvector, positive or negative
dilatation both weaken its perpendicular alignment with vorticity. The effect of positive
dilatation on the alignment between the vorticity and the intermediate eigenvector
is negligible while the negative dilatation substantially weakens this alignment.
Furthermore, as the dilatation shifts from negative to positive, the alignment between
the vorticity and the third eigenvector changes from being more likely parallel to
somewhat perpendicular.

After performing the Helmholtz decomposition, we found that there is a negligible
effect of the dilatation on the angle between the vorticity and the solenoidal-velocity-
component strain rate eigenvectors. The alignments between the vorticity and this
solenoidal strain rate eigenvectors are identical to that of incompressible turbulence.
Therefore, the geometrical statistics of the solenoidal component of the turbulent flow
is insensitive to the local compressibility effect in our simulated flow. However, for
the angle between the vorticity and the compressive-velocity-component strain rate
eigenvectors, the most remarkable feature is that high expansion causes ω to be
strongly aligned with Λc

1 and perpendicular to Λc
2.

Average eigenvalues of the deviatoric strain rate tensor conditioned on the dilatation
are plotted in figure 24. In strong compression regions, the magnitude of the first
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conditioned on the dilatation.

(smallest) eigenvalue is much larger than either of the other two eigenvalues. In
expansion regions, as the dilatation increases, the first and third eigenvalues increase
simultaneously, while the magnitude of the intermediate eigenvalue remains relatively
small. The eigenvalue ratio approaches −1:0:1 in strong expansion regions. Although
relatively small, the intermediate eigenvalue is essential in determining the enstrophy
production by vortex stretching. Betchov (1956) proved that in incompressible flow,
the positive sign of the intermediate eigenvalue of the strain rate tensor is necessary
for ωiωjS∗ij to produce enstrophy. In our simulation, the conditional mean of the
intermediate eigenvalue decreases monotonically, from being positive to negative, as
the dilatation is increased. The zero crossing occurs at θ/θ ′ ≈ 4, precisely where
the conditional mean of ωiωjS∗ij changes its sign (from being a production term to a
destruction term). This coincidence further stresses the important role played by the
intermediate eigenvalue.

After the decomposition, we find that expansion motions enlarge the minimum
and maximum eigenvalues of the solenoidal deviatoric strain rate tensor, while the
intermediate eigenvalue is unchanged by the increasing dilatation. For the compressive
component, the conditional mean of the intermediate eigenvalue λc∗

2 changes from a
positive value to a negative value when the dilatation is changed from negative to
positive. The conditional average of eigenvalue ratio λc∗

1 : λc∗
2 : λc∗

3 changes from close to
−2:1:1 when θ < 0 to roughly −1:0:1 when θ > 0.

In figure 25(a) we plot the conditional averages of cos2(ω,Λk). We note that the
average of cos2(v,w) is equal to 1/3 if the two vectors v and w are distributed
independently and uniformly. When θ > 0, cos2(ω,Λ2) is nearly constant and is
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average value for two randomly distributed vectors.

significantly larger than 1/3, consistent with the result of figure 23(b) that the
alignment between ω and Λ2 is not affected by expansion. Therefore, the contribution
to the enstrophy production by the second strain rate eigenvector, ω2λ∗2cos2(Λ2,ω),
is significant (see figure 26a) in the expansion regions, even though the magnitude
of the second strain rate eigenvalue is quite small. When θ < 0, as the compression
rate increases, cos2(ω,Λ2) decreases, implying that the alignment between ω and
Λ2 is weakened by compression, as clearly shown in figure 23. Nevertheless,
ω2λ∗2cos2(Λ2,ω) is still amplified by compression due to the enlarged second strain
rate eigenvalue. In the weak compression and weak expansion regions, we find that
ω2λ∗2cos2(Λ2,ω) is comparable to or even slightly larger than ω2λ∗3cos2(Λ3,ω). In
contrast, in the strong expansion or strong compression regions, the third eigenvector
corresponding to the largest positive eigenvalue makes the dominant contribution to the
enstrophy production.

Figure 25(b) provides the conditional average of cos2(ω,Λs
k). This figure

demonstrates again that the angles between the vorticity and the solenoidal strain
rate eigenvectors are insensitive to the change of the dilatation. Another interesting
observation is that the enstrophy production by the second solenoidal strain
rate eigenvalue is always comparable to that by the third solenoidal strain rate
eigenvalue (see figure 26b). Specifically, as the expansion level increases, the average
ω2λs

2cos2(Λs
2,ω) also increases. Since both λs

2 and cos2(ω,Λs
2) remain nearly constant,

this enhancement of enstrophy production is ascribed primarily to the more intensive
vorticity field in the expansion regions.
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Finally, figure 25(c) shows the conditional average of cos2(ω,Λc
k). In the

compression regions, cos2(ω,Λc
k) are close to 1/3, the value for a random field. As the

expansion level increases, cos2(ω,Λc
1) increases rapidly, indicating a strong tendency

for the vorticity to be aligned with the first compressive strain rate eigenvector in
the strong expansion regions. Therefore, the magnitude of average ω2λc∗

1 cos2(Λc
1,ω)

is much larger than that of average ω2λc∗
3 cos2(Λc

3,ω) (see figure 26c) in the strong
expansion regions.

In order to include the effect of the dilatational term on the enstrophy generation,
we define the modified eigenvalues ζk of the strain rate tensor as ζk = λk − θ according
to the equation ωiωjS∗ij − (2/3)θω2 = ωiωj(Sij − δijθ). Consequently, the sum of the
dilatational term and vortex stretching terms can be written as

ωiωjS
∗
ij − 2

3θω
2 = ω2

[
ζ1cos2(Λ1,ω)+ ζ2cos2(Λ2,ω)+ ζ3cos2(Λ3,ω)

]
, (4.9)

ωiωjS
s
ij = ω2

[
ζ s

1 cos2(Λs
1,ω)+ ζ s

2 cos2(Λs
2,ω)+ ζ s

3 cos2(Λs
3,ω)

]
, (4.10)

ωiωjS
c∗
ij − 2

3θω
2 = ω2

[
ζ c

1 cos2(Λc
1,ω)+ ζ c

2 cos2(Λc
2,ω)+ ζ c

3 cos2(Λc
3,ω)

]
. (4.11)

Figure 27 shows the conditional averages of ζk and ζ c
k . In high compression regions,

averages of ζ2 and ζ3 are all positive and significant, while average ζ1 is small
and negligible. The ratio ζ1: ζ2: ζ3 is found to be very close to 0:1:1. Consequently,
the overall enstrophy production is enhanced by compression motions and has major
contributions from the second and third strain rate eigenvectors rather than the first
eigenvector corresponding to the largest compression motion (see figure 28). These
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observations are reasonable since the largest local compression motion along the first
eigenvector dominates in compression regions, which gives rise to drastic amplification
of perpendicular vorticity components relative to this eigenvector. However, vorticity
being strongly compressed along its own direction does not change its magnitude,
leading to little effect of local straining on the vorticity component parallel to the first
eigenvector in high compression regions.

In high expansion regions, all of the averaged ζk become negative, leading to
enstrophy destruction by expansion motions (see figure 28). In particular, the largest
local expansion motion along the third eigenvector dominates in these regions,
indicating the substantial decrease of perpendicular vorticity components relative to
this eigenvector. On the other hand, the effect of high expansion motions on the
vorticity component parallel to the third strain rate eigenvector is relatively small.
Thus, the overall enstrophy destruction has major contributions from the first and
second strain rate eigenvectors in high expansion regions (see figure 28).

After Helmholtz decomposition, we observe that the behaviours of ζ c
k are similar

to those of ζk, particularly in compression regions. From figure 28, we notice that
most of the enstrophy production comes from the compressive velocity component.
In expansion regions, enstrophy production ζ2cos2(Λ2,ω) from the intermediate
eigenvector is larger than ζ1cos2(Λ1,ω) from the first eigenvector, due to strong
alignment of vorticity with the intermediate eigenvector Λ2. Otherwise, for the
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θ/θ ′ Focal (%) Non-focal
(%)

[−∞,+∞] 61.7 38.3
[−∞,−2.0] 38.6 61.4
[−2.0,−1.0] 52.9 47.1
[−1.0,−0.0] 60.5 39.5
[0.0, 1.0] 63.6 36.4
[1.0, 2.0] 66.5 33.5
[2.0,+∞] 67.8 32.2

TABLE 5. Fractions of the focal and non-focal regions at various dilatation levels.

compressive velocity component, ζ c
1 cos2(Λc

1,ω) is dominant due to strong alignment
of vorticity with the first eigenvector Λc

1, in high expansion regions.

5. Effect of compressibility on the local flow topology
We have so far focused on quantifying the effects of local compressibility on

volume-averaged statistics and conditional statistics associated with velocity gradients.
In this section, we shall instead explore the local flow structures of velocity gradients
and how these structures are modified by local compressibility effects. We hope that
the structural analysis will complement the statistical results and provide a better
understanding of the observed local compressibility effects.

5.1. Invariants of the velocity gradients
According to the topological classification of Chong et al. (1990), the generalized local
flow patterns are fully characterized by three invariants of the velocity gradient tensor
Aij = ∂uj/∂xi. Let P, Q, R, respectively, denote the first, second and third invariants of
Aij, which are defined by

P=−(ξ1 + ξ2 + ξ3)=−θ, (5.1)

Q= ξ1ξ2 + ξ2ξ3 + ξ3ξ1 = 1
2

(
P2 − SijSij +ΩijΩij

)
, (5.2)

R=−ξ1ξ2ξ3 = 1
3

(−P3 + 3PQ− SijSjkSki − 3ΩijΩjkSki

)
, (5.3)

where Sij = (Aij+Aji)/2, Ωij = (Aij−Aji)/2, respectively, are the strain rate and rotation
rate tensors, and ξi are the three eigenvalues of the velocity gradient tensor. The
discriminant ∆ of the velocity gradient tensor is

∆= 27R2 + (4P3 − 18PQ
)

R+ (4Q3 − P2Q2
)
. (5.4)

The three eigenvalues of Aij are all real if ∆ < 0, corresponding to the non-focal
regions. On the other hand, in focal regions, ∆ > 0; only one eigenvalue is real, and
two other eigenvalues are complex conjugate pairs.

Relative fractions of the focal and non-focal regions are shown in table 5. The
focal regions fill ∼62 % of the total volume, very close to the 2/3 obtained by
Pirozzoli & Grasso (2004) in a decaying compressible isotropic turbulence with initial
turbulent Mach number 0.1–0.8. In addition, we have estimated percentages of the
focal and non-focal regions conditioned on the local dilatation. From table 5, we find
that compression motion significantly enhances the formation of non-focal structures.
On the other hand, expansion motion slightly suppresses the formation of non-focal
regions.
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θ/θ ′ Eddy (%) Shear (%) Convergence (%)

[−∞,+∞] 16.1 45.7 38.2
[−∞,−2.0] 2.5 18.1 79.4
[−2.0,−1.0] 8.6 37.8 53.6
[−1.0,−0.0] 14.5 45.9 39.6
[0.0, 1.0] 17.7 47.4 34.9
[1.0, 2.0] 20.6 46.6 32.8
[2.0,+∞] 22.0 45.2 32.8

TABLE 6. Fractions of the eddy, shear and convergence flow structures at various dilatation
levels.

Kevlahan, Mahesh & Lee (1992) introduced the deviatoric part of the strain rate
tensor S∗ij = Sij − (Skkδij/3) and the antisymmetric velocity gradient (or rotation rate)
tensor Ωij ≡ (∂uj/∂xi − ∂ui/∂xj)/2 to define three types of flow regions. These
are (i) the eddy-dominated region with ΩijΩij > 2S∗ijS

∗
ij, (ii) the shear zone with

S∗ijS
∗
ij/2 6ΩijΩij 6 2S∗ijS

∗
ij, and (iii) the convergence zone with ΩijΩij < S∗ijS

∗
ij/2.

In table 6, we present the relative fractions of these flow regions conditioned on
the local dilatation. Overall, eddy regions, shear zones, and convergence zones occupy
∼16, 46 and 38 %, respectively, in rough agreement with the results (21, 44 and 35 %)
reported by Pirozzoli & Grasso (2004) for a compressible isotropic turbulence. Due to
the higher turbulent Mach number in this study, eddy zones are reduced slightly while
convergence zones take up slightly more space. When conditioned on dilatation, we
find that eddy zones are increased in expansion regions, but are dramatically decreased
in compression regions. These tendencies are nearly identical to those of the focal
structures since eddy structures occur only in the focal zones as shown in Pirozzoli
& Grasso (2004). In contrast, the convergence zones dominate in strong compression
regions, but only occupy 33 % in expansion regions. Pirozzoli & Grasso (2004) had
already reported that convergence regions are essentially non-focal. Thus, compression
motions enlarge the percentages of both the non-focal zones and the convergence
zones. Shear zones dominate in weak compression and weak expansion regions. The
relative fraction of the shear zones is almost independent of the dilatation in expansion
regions, but it reduces to only 18 % in strong compression regions.

Following Pirozzoli & Grasso (2004), in order to facilitate the discussions of local
topological flow structures and clarify the similarities to incompressible turbulence, we
introduce the second and third invariants of the deviatoric part of the velocity gradient
tensor (A∗ij = Aij − θδij/3) as follows:

Q∗ = ξ ∗1 ξ ∗2 + ξ ∗2 ξ ∗3 + ξ ∗3 ξ ∗1 =− 1
2

(
S∗ijS
∗
ij −ΩijΩij

)= Q− 1
3 P2, (5.5)

R∗ =−ξ ∗1 ξ ∗2 ξ ∗3 =− 1
3

(
S∗ijS
∗
jkS
∗
ki + 3ΩijΩjkS

∗
ki

)= R− 1
3 PQ+ 2

27 P3, (5.6)

where ξ ∗i are the three eigenvalues of A∗ij. It follows that ξ ∗i = ξi − θ/3, where ξi are
the three eigenvalues of Aij. In addition, ξ ∗i satisfy the following constraint as in the
incompressible turbulence:

ξ ∗1 + ξ ∗2 + ξ ∗3 = 0. (5.7)

The discriminant of the velocity gradient tensor introduced previously can now be
expressed by the new second and third invariants as

∆= 27R∗2 + 4Q∗3. (5.8)
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Figure 29 shows the contour lines of the joint p.d.f. of the second and third
invariants (Q∗,R∗). The second invariants of the rotation rate tensor QΩ =ΩijΩij/2 is
used to scale the R∗ and Q∗, as in the case of incompressible turbulence. Similar to the
results by Pirozzoli & Grasso (2004), here we confirm the teardrop shape of the joint
p.d.f. of (Q∗,R∗) in compressible turbulence with turbulent Mach number around 1.0.
Furthermore, a pronounced longer tail of the joint p.d.f. shape in the fourth quadrant
is observed as compared with that in weakly and moderately compressible turbulence
(Pirozzoli & Grasso 2004). This behaviour coincides with the enhancement of the
convergence zones by the compressibility effect.

Figure 30 displays the contour lines of the joint p.d.f. of (Q∗,R∗) conditioned on
the dilatation. The shape of the joint p.d.f. in weak compression and weak expansion
regions is almost identical to that in the weakly compressible turbulence (Pirozzoli &
Grasso 2004). It is further observed that the statistical preference for points in the
second and fourth quadrants is enhanced by the compression motion. In particular,
the shape of the joint p.d.f. becomes rather sharp with an extended tail around the
right branch of the null-discriminant curve (indicated by the thick solid line) in strong
compression regions (figure 30a), leading to the longer tail of the joint p.d.f. of
(Q∗,R∗) for the overall flow field when compared with incompressible turbulence. By
definition of Q∗ = −(S∗ijS∗ij − ΩijΩij)/2, large negative values of Q∗ correspond to the
regions dominated by the deviatoric strain rate tensor over the rotation rate tensor.
Thus, when θ/θ ′ < −2, most of the flow volume is occupied by intensive dissipation
structures rather than vortex structures. We note that, contrary to our result, a teardrop
shape with a normal tail within the shocklets (θ/θ ′ <−3) was reported by Pirozzoli &
Grasso (2004). The difference between our results and theirs can be primarily ascribed
to the more pronounced compressibility effect in our simulations. In fact, we anticipate
that in very high compression regions, many of the eigenvalue ratios ξ1: ξ2: ξ3 of the
velocity gradient tensor are well approximated by −1:0:0. Consequently, we find that
Q∗ ≈ −P2/3� 0, R∗ ≈ (2/27)P3 � 0 and ∆ = 27R∗2 + 4Q∗3 ≈ 0, leading to a long
tail of the joint p.d.f. around the right branch of the null-discriminant curve in high
compression regions.
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FIGURE 30. Isocontour lines of log10 PDF (Q∗,R∗) at various dilatation levels of θ/θ ′. Four
contour lines at −1,−2,−3,−4 are shown.

On the other hand, the joint p.d.f. becomes more round in shape in expansion
regions. Its bottom-right tail is substantially shortened by strong expansion, leading to
a nearly symmetric p.d.f. shape with respect to the line R∗ = 0 when θ/θ ′ > 2. The
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θ/θ ′ [−∞,−2.0] [−2.0,−1.0] [−1.0,−0.0] [0.0, 1.0] [1.0, 2.0] [2.0,+∞]
Fractions 5.3 % 5.0 % 32.3 % 53.7 % 3.6 % 0.1 %

TABLE 7. Percentage of the enstrophy production ωiωjS∗ij in flow regions with various
dilatation levels.

substantial noise in the joint p.d.f. for strong expansion regions is due to the lack of
sufficient sample points since strong expansion regions occupy only 0.2 % of the total
volume.

5.2. Enstrophy production in various topological structures
We now examine the enstrophy production by vortex stretching term ωiωjS∗ij in various
topological structures. Table 7 summarizes percentages of the enstrophy production
of the vortex stretching term in flow regions with various dilatation levels. In
weakly and moderately compressible regions, the percentage of the vortex stretching
enstrophy production is nearly equal to the percentage of the volume occupied by
the corresponding value of velocity divergence. In the strong compression regions,
however, the percentage of the vortex stretching enstrophy production (5.3 %) is about
twice the percentage of the volume (2.5 %) occupied by these regions, due to the
enhancement of the vortex stretching by strong compression motion. On the other
hand, in the strong expansion regions, the percentage of the vortex stretching term
(0.1 %) is about half the percentage of the volume (0.2 %) occupied by these regions,
due to the suppression of vortex stretching by strong expansion motions.

The relative contribution of each region in the (Q∗,R∗) plane to the enstrophy
production by the vortex stretching term ωiωjS∗ij can be expressed as

Fens(Q
∗,R∗)= fens(Q∗,R∗) PDF (Q∗,R∗)∫ ∞

−∞

∫ ∞
−∞

fens(Q
∗,R∗) PDF (Q∗,R∗) dQ∗ dR∗

, (5.9)

and ∫ ∞
−∞

∫ ∞
−∞

Fens(Q
∗,R∗) dQ∗ dR∗ = 1, (5.10)

where fens(Q∗,R∗)= 〈ωiωjS∗ij | Q∗,R∗
〉
, i.e. the average of vorticity-stretching enstrophy

production conditioned on (Q∗,R∗). In figure 31 we plot the contour lines of
Fens(Q∗,R∗). A butterfly-like shape of Fens(Q∗,R∗) is observed with a skewed long
tail around the right branch of the null-discriminant curve (indicated by the thick solid
line). The left part of this Fens(Q∗,R∗) shape is quite similar to the teardrop shape of
PDF (Q∗,R∗), and both of them reveal a statistical preference for points in the second
and fourth quadrants. These observations reveal that flow structures corresponding to
the second and fourth quadrants make substantial contributions to enstrophy production
by ωiωjS∗ij. We note that the left contour levels representing enstrophy production are
typically ten times larger than the right contour lines indicating enstrophy destruction.
Therefore this figure clearly demonstrates the predominance of vorticity stretching over
vorticity compression by the deviatoric strain rate tensor. It also illustrates that the
teardrop shape of PDF (Q∗,R∗) is linked to the self-amplification of the vorticity field
by the vorticity stretching mechanism.
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FIGURE 31. Isocontour lines of Fens(Q∗,R∗). Three contour lines of 0.1, 0.01, 0.001 and
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Figure 32 shows contour lines of Fens(Q∗,R∗) at various dilatation levels. The shape
of Fens(Q∗,R∗) is strongly correlated with that of PDF (Q∗,R∗). We have already
observed the enhancement of the statistical preference in the second and fourth
quadrants by strong compression motions (see figure 30). Consequently, the enstrophy
production ωiωjS∗ij is amplified by strong compression motions, consistent with the
result for strong compression regions in table 7. In contrast, in strong expansion
regions, the symmetric shape of PDF (Q∗,R∗) gives rise to a tendency of the shape
of Fens(Q∗,R∗) to be symmetric. Therefore, the enstrophy destruction by ωiωjS∗ij in the
first quadrant tends to be of similar magnitude to the enstrophy production by ωiωjS∗ij
in the second quadrant. Figure 32 helps clarify why the vorticity-stretching enstrophy
production ωiωjS∗ij is suppressed by strong expansions as shown in table 7.

To include the effect of the dilatational term −2θω2/3 on enstrophy production,
we introduce the distribution function of the overall enstrophy production by
ωiωjS∗ij − 2θω2/3 in the (Q∗,R∗) plane as

FT
ens(Q

∗,R∗)= f T
ens(Q

∗,R∗) PDF (Q∗,R∗)∫ ∞
−∞

∫ ∞
−∞

f T
ens(Q

∗,R∗) PDF (Q∗,R∗) dQ∗ dR∗
, (5.11)

and ∫ ∞
−∞

∫ ∞
−∞

FT
ens(Q

∗,R∗) dQ∗ dR∗ = 1, (5.12)

where f T
ens(Q

∗,R∗) = 〈ωiωjS∗ij − 2θω2/3 | Q∗,R∗
〉
, i.e. the average of the overall

enstrophy production by the stretching term and the dilatational term conditioned
on (Q∗,R∗). Figure 33 shows the contour lines of the FT

ens(Q
∗,R∗) in the (Q∗,R∗)

plane. We find that the contour lines of the FT
ens(Q

∗,R∗) are very similar but have
slightly broader shapes and longer tails as compared to those in figure 31, implying
that the enstrophy-production contribution from the dilatational effect is small relative
to that from the vorticity stretching effect in the overall flow field.
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FIGURE 33. Isocontour lines of FT
ens(Q

∗,R∗). Three contour lines of 0.1, 0.01, 0.001 and
three contour lines of −0.01,−0.001,−0.0001 are shown.

Figure 34 shows the contour lines of FT
ens(Q

∗,R∗) at various dilatation levels. It is
seen that in strong and moderate compression regions, there are no negative levels of
the contour lines for FT

ens(Q
∗,R∗), implying that the conditional average of enstrophy

production is positive in all topological structures in the (Q∗,R∗) plane. In weak
compression regions, the negative part of the FT

ens(Q
∗,R∗) shape is severely suppressed

as compared to the Fens(Q∗,R∗) shape (see figure 32). In contrast, in expansion
regions, the positive part of the FT

ens(Q
∗,R∗) shape is substantially suppressed as

compared to the Fens(Q∗,R∗) shape. In strong expansion regions in particular, all the
contour lines for FT

ens(Q
∗,R∗) are negative. These observations are consistent with the

previous observation that the overall enstrophy production is enhanced by compression
motions and suppressed by expansion motions.

5.3. Invariants of the solenoidal velocity gradients

We now probe the structures of the solenoidal component of the velocity field. The
question here is if the solenoidal component of the velocity field shares similar local
topological structures to those of incompressible turbulence. If compressibility has a
negligible effect on the solenoidal part of the flow, then we may apply incompressible
turbulence models directly to the solenoidal velocity field in highly compressible
turbulence, transforming the modelling of compressible turbulence to a somewhat
simpler task of modelling only the compressive part of the velocity field.

The solenoidal component of the velocity gradient tensor is denoted by As
ij = ∂us

j/∂xi.
By definition, the three eigenvalues of As

ij satisfy the incompressibility condition

ξ s
1 + ξ s

2 + ξ s
3 = 0. (5.13)

The second and third invariants of As
ij are

Qs = ξ s
1ξ

s
2 + ξ s

2ξ
s
3 + ξ s

3ξ
s
1 =− 1

2

(
Ss

ijS
s
ij −ΩijΩij

)
, (5.14)

Rs =−ξ s
1ξ

s
2ξ

s
3 =− 1

3

(
Ss

ijS
s
jkS

s
ki + 3ΩijΩjkS

s
ki

)
, (5.15)
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θ/θ ′ Focal (%) Non-focal
(%)

[−∞,+∞] 64.5 35.5
[−∞,−2.0] 67.2 32.8
[−2.0,−1.0] 66.7 33.3
[−1.0,−0.0] 64.9 35.1
[0.0, 1.0] 63.9 36.1
[1.0, 2.0] 66.5 33.5
[2.0,+∞] 69.6 30.4

TABLE 8. Fractions of the focal and non-focal regions of the solenoidal velocity field at
various dilatation levels.

θ/θ ′ Eddy (%) Shear (%) Convergence (%)

[−∞,+∞] 19.7 46.1 34.2
[−∞,−2.0] 22.4 45.2 32.4
[−2.0,−1.0] 21.1 46.0 32.9
[−1.0,−0.0] 19.7 46.4 33.9
[0.0, 1.0] 19.4 46.0 34.6
[1.0, 2.0] 21.8 45.0 33.2
[2.0,+∞] 25.1 43.9 31.0

TABLE 9. Fractions of the eddy, shear and convergence flow structures of the solenoidal
velocity field at various dilatation levels.

where Ss
ij is the solenoidal part of the strain rate tensor. The formulation of the

discriminant for As
ij is identical to that in incompressible turbulence,

∆s = 27Rs2 + 4Qs3. (5.16)

In table 8, we present percentages of the volume occupied by focal structures
(∆s > 0) and non-focal structures (∆s < 0) in the solenoidal velocity field. Comparing
these data to those shown in table 5, we conclude that the impact of dilatation on these
volume fractions is insignificant. A very slight increase of focal region is observed
as the dilatation magnitude becomes high. The distribution of focal and non-focal
structures is always nearly identical to that in the weakly compressible turbulence
(Pirozzoli & Grasso 2004) regardless of the dilatation level.

Table 9 shows the distribution of the flow volume fraction occupied by eddy, shear
and convergence structures in the solenoidal part of the velocity field. These data
should be compared to the data shown in table 6. Again the dilatation effect is almost
negligible. The percentages (20, 46 and 34 %) of the three zones are very close to
those (16, 46 and 38 %) found in weakly compressible turbulence (Pirozzoli & Grasso
2004). The dilatation has a weak effect in that it increases slightly the fraction of the
eddy zones.

Figure 35 depicts the joint p.d.f. of (Qs,Rs). The shape of the joint p.d.f. is exactly
identical to that of the overall velocity field reported in the weakly compressible flows
(Pirozzoli & Grasso 2004). In addition, the joint p.d.f. of (Qs,Rs) conditioned on the
dilatation is shown in figure 36. As indicated by table 9, the p.d.f. shape of (Qs,Rs)
remains nearly unchanged in both strong compression regions and strong expansion
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FIGURE 35. Isocontour lines of log10 PDF (Qs,Rs). Four contour lines of −1,−2,−3,−4
are shown.

regions. Therefore, we conclude that the direct effect of local compressibility on the
local topology of the solenoidal component of velocity field is indeed negligible.

6. Summary and conclusions
In this paper, a systematic investigation of the statistics and structures of velocity

gradients was performed in a simulated, highly compressible turbulence. The turbulent
Mach number was 1.03, higher than most previous studies of a similar focus. To
evaluate the impact of local fluid compression and expansion, a variety of statistics
and geometric structures conditioned on the local dilatation – a measure of local flow
compressibility – were analysed. Several important effects of local compressibility
were identified, most of which were shown to be associated with the compressive
component of the velocity, and some of which significantly impacted the overall flow
field.

We discussed the effect of local compressibility on the enstrophy production from
a deviatoric strain rate term and a dilatational term using the conditional average.
We observed that the overall enstrophy production is enhanced by compression
motions and suppressed by expansion motions. In high expansion regions in particular,
enstrophy is destroyed very effectively. When enstrophy production was decomposed
into a normal component and a tangential component relative to the local density
isosurface, we found that the normal component of enstrophy production is negligible
in both compression and expansion regions. The effect of the dilatational term is
isotropic and makes a major contribution to enstrophy production at high dilatation
levels. The enstrophy production from the deviatoric strain rate term is also significant
and has much more complex behaviours in various compressible regions. Conditional
statistics showed that the enstrophy production from the deviatoric straining, ωiωjS∗ij,
is enhanced by local compression motions and weak expansion motions. However,
in strong expansion regions, the net enstrophy production of the deviatoric straining
is drastically reduced as the intensity of expansion motions increases. After applied
Helmholtz decomposition, it was revealed that the deviatoric straining from the
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FIGURE 36. Isocontour lines of log10 PDF (Qs,Rs) at various dilatation levels of θ/θ ′. Four
contour lines of −1,−2,−3,−4 are shown.

solenoidal velocity component always makes a positive contribution to enstrophy
production regardless of dilatation levels.

Various properties of the strain rate tensor conditioned on the dilatation were
investigated. It was found that in the overall flow field, the most probable eigenvalue
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ratio for the strain rate tensor is −3:1:2.5, quantitatively different from the preferred
eigenvalue ratio of −4:1:3 reported in incompressible turbulence (Ashurst et al. 1987)
and weakly compressible turbulence (Erlebacher & Sarkar 1993; Pirozzoli & Grasso
2004; Lee et al. 2009). Furthermore, the strain rate eigenvalue ratio tends to be
−1:0:0 in high compression regions, implying that sheet-like structures dominate in
these regions. It was also shown that in high compression regions, the first strain
rate eigenvector (i.e. the one with the most negative eigenvalue) tends to be strongly
aligned with the density gradient vector, while in high expansion regions, the third
strain rate eigenvector (i.e. the one with the most positive eigenvalue) tends to be
aligned with the density gradient vector. These tendencies are more obvious for
the strain rate eigenvectors of the compressive velocity component, and for higher
dilatation levels.

We further investigated the enstrophy production from the deviatoric straining along
three principal directions of the strain rate tensor. The alignment between vorticity
and the intermediate eigenvector of the deviatoric strain rate tensor was shown
to be almost identical to that in incompressible turbulence. The same alignment
was found in expansion regions, but was weakened by strong compression motions.
Consequently, we observed that the intermediate strain rate eigenvector makes a
significant contribution to the enstrophy production of the deviatoric straining in
weakly compressible regions. We also found that, in expansion regions, the vorticity
develops a strong tendency to align with the first eigenvector (i.e. the one with
the most negative eigenvalue) of the deviatoric strain rate tensor associated with
the compressive velocity component, and this tendency becomes stronger as the
expansion rate increases. Therefore, the first strain rate eigenvector makes a significant
contribution to the enstrophy destruction of the deviatoric straining in high expansion
regions. After Helmholtz decomposition, we found that the relative orientations of
vorticity with the strain rate eigenvectors of the solenoidal velocity component is
insensitive to the change of dilatation levels. We also showed that the enstrophy
production from deviatoric straining of the solenoidal velocity component along the
intermediate eigenvector is always comparable with that along the third eigenvector.

The effect of local compressibility on local flow structures was analysed using
several structure characterization methods. First, the flow topological classification of
Chong et al. (1990) was employed to partition the flow field into focal and non-
focal regions. Second, based on the relative magnitudes of vorticity and deviatoric
strain rate, the flow volume was partitioned into eddy, shear, and convergence zones
(Kevlahan et al. 1992). Third, the joint p.d.f.s of the second and third invariants of the
deviatoric velocity gradient tensor, conditioned on the local dilatation, were obtained.
We found that compression motions increased the percentages of both non-focal zones
and convergence zones. The joint p.d.f. of the second and third invariants exhibited
a teardrop shape with a more extended tail in the fourth quadrant, when compared
to that for incompressible turbulence. This extended tail was shown to be caused
by shock waves in highly compressible turbulence. In contrast, the joint p.d.f. in
expansion regions takes a more rounded shape with a shortened bottom-right tail. A
nearly symmetric joint p.d.f. was observed in strong expansion regions.

The enstrophy production by vortex stretching term ωiωjS∗ij in various topological
structures was then quantified. Different structures in the (Q∗,R∗) plane were shown to
yield positive and negative vorticity-stretching enstrophy production. The distribution
of positive contributions mimics the teardrop shape of the joint p.d.f. of (Q∗,R∗),
with both of them having a statistical preference in the second and fourth quadrants.
The region of negative contributions lies mostly in the first quadrant of the (Q∗,R∗)
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plane, with a magnitude a factor of 10 smaller than that of the positive contribution
region. This finding provided a topological demonstration of the predominance of
vorticity stretching over vorticity compression. Strong compression enhances the
contributions from the second and fourth quadrants, leading to the amplification of
the vorticity-stretching enstrophy production. On the other hand, in strong expansion
regions, the distribution function is nearly symmetric, and as such the net vorticity-
stretching enstrophy generation is significantly suppressed. We also discussed the
overall enstrophy production by both the vortex stretching term ωiωjS∗ij and the
dilatational term −2θω2/3 in various topological structures. The distribution function
was found to be very similar to that of the vortex stretching term for the overall flow
field. When conditioned on different levels of velocity divergence, we observed strong
tendencies to enhancement of enstrophy production by high compression motions, and
again suppression of enstrophy production by high expansion motions.

The universal teardrop shape found in incompressible and weakly compressible
turbulent flows was recovered when the invariants were computed using the solenoidal
velocity component, which was found to be insensitive to the local dilatation.

The current study, together with our companion papers (Wang et al. 2011, 2012),
reveals a variety of unique small-scale features in highly compressible turbulence,
relative to the usual statistical properties and structures of incompressible turbulence.
These new features and departures can be largely understood through the effects
associated with the compressive component of the flow. Together we show that the
Helmholtz decomposition provides a convenient and logical theoretical framework to
model highly compressible turbulence.
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