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A hybrid numerical simulation of isotropic compressible turbulence
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a b s t r a c t

A novel hybrid numerical scheme with built-in hyperviscosity has been developed to
address the accuracy and numerical instability in numerical simulation of isotropic com-
pressible turbulence in a periodic domain at high turbulent Mach number. The hybrid
scheme utilizes a 7th-order WENO (Weighted Essentially Non-Oscillatory) scheme for
highly compressive regions (i.e., shocklet regions) and an 8th-order compact central finite
difference scheme for smooth regions outside shocklets. A flux-based conservative and for-
mally consistent formulation is developed to optimize the connection between the two
schemes at the interface and to achieve a higher computational efficiency. In addition, a
novel numerical hyperviscosity formulation is proposed within the context of compact
finite difference scheme for the smooth regions to improve numerical stability of the
hybrid method. A thorough and insightful analysis of the hyperviscosity formulation in
both Fourier space and physical space is presented to show the effectiveness of the formu-
lation in improving numerical stability, without compromising the accuracy of the hybrid
method. A conservative implementation of the hyperviscosity formulation is also devel-
oped. Combining the analysis and test simulations, we have also developed a criterion to
guide the specification of a numerical hyperviscosity coefficient (the only adjustable coef-
ficient in the formulation). A series of test simulations are used to demonstrate the accu-
racy and numerical stability of the scheme for both decaying and forced compressible
turbulence. Preliminary results for a high-resolution simulation at turbulent Mach number
of 1.08 are shown. The sensitivity of the simulated flow to the detail of thermal forcing
method is also briefly discussed.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Compressible turbulence is of importance to a large number of industrial applications and natural phenomena, including
high-temperature reactive flows in heat engines, development of transonic and hypersonic aircrafts, inter-planet space
exploration, solar winds, and star-forming clouds in galaxies. With increasing computational resources, direct numerical
simulations of incompressible turbulent flows have been routinely conducted for many canonical boundary conditions
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and geometries. Similar developments for compressible flows are desired in order to provide parameterizations needed for
modeling complex compressible turbulence in relevant applications.

While the pesudo-spectral method for incompressible isotropic homogeneous turbulence in a periodic domain has
been well established [1,2], such a standard method is no longer suitable for compressible turbulence at high Mach
numbers due to discontinuities associated with highly compressed flow regions (i.e., shocklets). Pioneered by Lele [3],
high-order compact finite difference (FD) scheme has gained popularity in computational fluid dynamics [4–8]. Earlier
simulations for weakly compressible turbulence often utilized the compact FD scheme for all regions in the flow field.
For example, Samtaney et al. [9] applied the compact FD scheme to direct numerical simulation of decaying compress-
ible turbulence at low and moderate turbulent Mach numbers. The compact FD algorithm has spectral-like spatial res-
olution and its order can be varied. However, it cannot capture shocklets with typical grid resolution and could lead to
numerical instability due to Gibbs oscillations. One popular and efficient class of numerical schemes to capture shocks
without numerical instability is the ENO (Essentially Non-Oscillatory) scheme and its improved version WENO
(Weighted Essentially Non-Oscillatory) scheme [10–12]. However, for direct numerical simulation of compressible turbu-
lence, WENO is known to be highly dissipative for flow regions outside shocklets leading to unphysical energy spectrum
at small scales [13].

A better approach is then to combine the compact FD and WENO (so-called the hybrid scheme). In such a hybrid ap-
proach, the WENO scheme is only used for a finite region (i.e., the shock region) from a shock front. In the remaining
shock-free (i.e., smooth) regions the compact FD is employed instead. Several general issues arise: (1) How to correctly iden-
tify a shocklet front? (2) How many grid points should be used to cover the shock region or equivalently where to place the
interface between WENO and compact FD treatments? and (3) How to smoothly switch between the WENO and the compact
FD scheme at the interface?

To the authors’ knowledge, there are a very few studies [14–17] in which a hybrid compact FD-WENO scheme had
been applied for numerical simulation of shock–turbulence interaction problems or compressible turbulence containing
shocklets. Adams and Shariff [14] developed a hybrid scheme by combining compact upwind FD and ENO to treat
advection terms and they applied their method to interactions of shocks with prescribed fluctuations in one and
two spatial dimensions. They simply used the magnitude of local gradient of solution variables to capture shocks. Pir-
ozzoli [15] combined compact upwind FD and WENO to handle advection terms for inviscid Euler equation using a con-
servative formulation. In his approach, the resulting matrix could contain abrupt change (i.e., without smooth
transition) at the interface between WENO and compact FD. He used the magnitude of the difference of computed solu-
tion variable on adjacent grid points to capture shocks and applied his method to interaction of a prescribed planar
shock with 3D isotropic turbulence as well as several other 1D and 2D shock wave problems. Ren et al. [16] introduced
a complex weight function to gradually switch between compact upwind FD and WENO at the interface. They com-
bined the differences of solution variables to detect shocks and tested their method for Euler equations and shock–vor-
tex interactions in 1D and 2D. Zhou et al. [17] introduced a new family of compact upwind FD and combined this with
WENO. They refined the shock-capture method of Ren et al. [16] to avoid incorrect inclusion of smooth waves in shock
detection, but their additional shock-capture criterion involved four adjustable parameters. They applied their scheme
to decaying compressible turbulence studied by Samtaney et al. [9]. Larsson et al. [13] demonstrated that a hybrid ap-
proach combining high-order central difference and WENO performed much better than the WENO scheme alone for
decaying compressible isotropic turbulence. There are also several other studies that combine the usual, non-compact
FD scheme and WENO [18,19,13,20], but they have the very similar issues in shock detection and the interface treat-
ments as discussed above.

In this study, we intend to develop further and optimize the hybrid compact FD-WENO scheme in the following areas.
First, we incorporated an efficient and accurate shock-capture scheme initially developed by Samtaney et al. [9] for the
purpose of postprocessing of their compressible turbulence field. This capture scheme is based on the local compression
as determined by the local dilatation magnitude. Physically, we believe that regions of highly negative dilatation are pre-
cisely the regions of severe discontinuity that require the special WENO treatment, as indicated in [13,20]. Previously,
most studies applied a geometric jump condition to capture shocks, which may overestimate shock regions as strong tur-
bulent fluctuations may be incorrectly treated as shocklets. Second, we bridged the compact FD and WENO at the interface
using a conservative formulation to ensure physical conservation principles and numerical stability. Computationally,
WENO is more expensive than compact FD. However, only a small percentage of the physical domain (typically less than
15%) is handled by WENO, the overall computational cost is not significantly increased. We also re-formulated the WENO
scheme so it is formally consistent with the compact FD. Third, in smooth regions, a novel numerical hyperviscousity for-
mulation is proposed to enhance numerical stability without compromising numerical accuracy. These improvements to-
gether will allow us to simulate turbulent compressible flows at relatively high turbulent Mach numbers and turbulent
Reynolds numbers.

The paper is organized as follows. We will first present the physical governing equations and parameters for compressible
turbulence in a periodic domain in Section 2. The main developments of the hybrid schemes are described in Section 3,
including the hybrid formulation, large-scale forcing method, and numerical hyperviscosity formulation. Also shown in Sec-
tion 3 is a thorough and insightful analysis of our hyperviscosity formulation in both Fourier space and physical space. A
series of numerical tests are then shown in Section 4 to illustrate the novelty and capabilities of our hybrid schemes. Finally,
main conclusions are summarized in Section 5.
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2. Governing equations for compressible turbulent flow

In this study we consider a compressible turbulence of an ideal gas driven and maintained by large-scale momentum
forcing and thermal forcing. The kinetic energy cascade from large to small scales requires energy input through forcing
at the large scales, to balance the viscous dissipation at the small scales. At the same time, the viscous dissipation is con-
verted to thermal energy or heating at the small scales, and therefore, we need to remove thermal energy at the large scales
through forcing.

There are strong two-way couplings between the velocity field and thermal or temperature field in compressible turbu-
lent flows. The thermal field affects the density, pressure, and fluid viscosity and therefore influences the local mass and
momentum conservations. At the same time, the velocity field generates convective transport, pressure work, and local vis-
cous heating affecting the evolution of the thermal field. Therefore, the dynamics is more complicated than the much well
studied incompressible fluid turbulence. Specifically, the possible occurrence of localized shocklets in the flow field at mod-
erate to high turbulent Mach numbers is a manifestation of such strong coupling.

The governing equations are written in dimensionless form, by introducing the following scales, U for velocity, L for
length, L/U for time, T0 for temperature, q0 for density, c0 for the speed of sound, q0U2 for energy per unit volume,
p0 � q0c2

0=c for pressure, l0 for dynamic viscosity, and j0 for conductivity. Here c � Cp/Cv is the ratio of specific heat at con-
stant pressure Cp to that at constant volume Cv. We shall assume that both specific heats are independent of the temperature,
which is a reasonable assumption for air for the temperature range encountered in this study (see below for further detail).
For an ideal gas, the speed of sound c0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
cRT0

p
, where R is the specific gas constant. The system is then governed by five

dimensionless parameters: a Reynolds number Re � q0UL/l0, a Prandtl number Pr � l0Cp/j0, a Mach number M � U/c0, c,
and CpT0=c2

0. However, for an ideal gas, R = Cp � Cv, the last parameter is equal to 1/(c � 1) and thus is not independent.
The dimensionless field variables, density q, pressure p, temperature T, and vector velocity ui, are solved by the mass,

momentum, and energy equations for a compressible fluid, plus the ideal gas equation of state. They can be written as

@q
@t
þ @ðqujÞ

@xj
¼ 0; ð1Þ

@ðquiÞ
@t

þ
@ quiuj þ pmdij
� �

@xj
¼ 1

Re
@rij

@xj
þ F i; ð2Þ

@E
@t
þ
@ ðE þ pmÞuj
� �

@xj
¼ 1

a
@

@xj
j
@T
@xj

� �
þ 1

Re
@ðrijuiÞ
@xj

�Kþ F juj; ð3Þ

p ¼ qT; ð4Þ

where the modified pressure pm, viscous stress rij, and total energy (internal plus kinetic energy) per unit volume E are

pm �
p

cM2 ; rij ¼ l @ui

@xj
þ @uj

@xi

� �
� 2

3
lhdij; ð5Þ

E ¼ p

ðc� 1ÞcM2 þ
1
2
qðujujÞ: ð6Þ

Here h � @uk/@xk is the dilatation. In writing the above momentum equation, the Stokes assumption relating the bulk viscos-
ity to the shear viscosity has been applied. The dimensionless large-scale forcing per unit volume to the fluid momentum is
denoted by F i, and the dimensionless large-scale heat sink or cooling function per unit volume is denoted by K. The coef-
ficient a comes from nondimensionalization and is equal to PrRe(c � 1)M2. The system shall be completed by specifying the
dimensionless viscosity l and dimensionless thermal conductivity j.

For an ideal gas, the viscosity increases with temperature, which introduces an additional effect of thermal field on the
velocity field. A reasonable power-law approximation for this temperature dependence, in dimensionless form, is [9]

l ¼ T0:76: ð7Þ

For the simulations considered in this study, the dimensionless temperature varies in the range of 0.55–3. Take air, for exam-
ple, with reference dimensional viscosity l0 = 1.716 � 10�5 kg/(m s) at the reference temperature of T0 = 273.15 K, it is
straightforward to verify that the above power-law approximation has a maximum relative error of about 5% for the extreme
cases of T ? 0.55 and T ? 3.0. A better relation for an ideal gas would be the Sutherland’s law [21], which can be written in
dimensionless form using the same reference temperature and viscosity as

l ¼ 1:4042T1:5

T þ 0:40417
: ð8Þ

Again using measured viscosity data for air, it can be shown that this second relation has a maximum relative error of 2.0% at
T = 3 and less than 0.52% at T = 0.55. Since the Sutherland’s law is more accurate, we shall adopt the Sutherland’s law in this
study, instead of the power-law relation used in the previous work of Samtaney et al. [9].
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To consider the temperature dependence of conductivity, we shall further assume that the actual Prandtl number ll0Cp/
(jj0) = Prl/j is not sensitive to temperature change, which is reasonable for air for the range of temperature considered in
this study. It follows then that the dimensionless conductivity can be described by the same Sutherland’s law as

j ¼ 1:4042T1:5

T þ 0:40417
: ð9Þ

In this study, we set the reference Prandtl number Pr = l0Cp/j0 to 0.7 and ratio of specific heats c = 1.4.
For later discussions, it would be useful to separate the kinetic energy EK � qujuj=2 and internal energy

EI � qT=½ðc� 1ÞcM2�. The governing equation for EK is

@EK

@t
þ @ðEK ujÞ

@xj
¼ �uj

@pm

@xj
þ 1

Re
ui
@rij

@xj
þ F juj; ð10Þ

where terms on the right hand side represent rate of work due to pressure gradient and viscous stress gradient, and the en-
ergy input due to forcing. The governing equation for EI takes the form

@EI

@t
þ @ðEIujÞ

@xj
¼ �pmhþ 1

a
@

@xj
j
@T
@xj

� �
þ 1

Re
rij
@ui

@xj
�K; ð11Þ

where the terms on the right hand side are the pressure compression work, heat diffusion, the viscous dissipation, and the
cooling rate.

In this study an isotropic homogeneous flow in a periodic domain is considered. If the spatial average, denoted by h� � �i,
over the periodic domain is applied to the above energy equations, we would have

@hEKi
@t
¼ hpmhi � 1

Re
rij
@ui

@xj

� �
þ hF juji; ð12Þ

@hEIi
@t
¼ �hpmhi þ 1

Re
rij
@ui

@xj

� �
� hKi; ð13Þ

In the wavenumber space, the essential dynamics of the simulated compressible flow involves transfer of kinetic energy
from large to small scales, and, at the same time, transfer of internal energy, primarily through the viscous dissipation, from
small to large scales. It is important to note that the viscous dissipation is always positive and thus converting local kinetic
energy to internal energy. On the other hand, the pressure term in the internal energy equation is positive in regions where
the fluid is compressed but is negative when the local fluid volume expands. For the whole system, if both velocity and ther-
mal fields are statistically stationary, we must have

hF juji � hKi ¼ 0; ð14Þ

where the overline represents time average. Namely, the kinetic energy added to the velocity field is balanced by the cooling
rate.

We now briefly define important parameters characterizing the compressible turbulence. The r.m.s. component fluctuat-
ing velocity u0 and the three-dimensional energy spectrum are defined as

3
2

u02 ¼ 1
2
huðx; tÞ � uðx; tÞi ¼

Z 1

0
EðkÞdk: ð15Þ

The kinetic energy spectrum E(k) can be computed by summing the modal kinetic energy jûj2(k, t)/2 from all modes with
wavevector in a unit spherical shell in the wavevector space, defined by k � 0.5 < jkj 6 k + 0.5. Likewise, the energy spectrum
per unit volume is defined as

hEKi ¼
1
2
hquðx; tÞ � uðx; tÞi ¼

Z 1

0
EKðkÞdk: ð16Þ

The longitudinal integral length scale Lf, namely, the integral time for radial two-point velocity correlation, can be computed
in terms of E(k), as [22]

Lf ¼
p

2u02

Z 1

0

EðkÞ
k

dk: ð17Þ

The transverse Taylor microscale k and Taylor microscale Reynolds number Rek are defined as:

k ¼ u0

h½ð@u1=@x1Þ2 þ ð@u2=@x2Þ2 þ ð@u3=@x3Þ2�=3i1=2 ; Rek ¼
u0khqi
hli ; ð18Þ

where the longitudinal average gradient squared is averaged over the three spatial directions to improve its statistical esti-
mate. The average normalized viscous dissipation rate is computed as
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� ¼ 1
Re

rij

q
@ui

@xj

� �
: ð19Þ

Kolmogorov length scale is defined as

g ¼ ½hl=qi3=��1=4
: ð20Þ

Finally, the turbulent Mach number Mt is given as [9]

Mt ¼ M
hu2

1 þ u2
2 þ u2

3i
1=2

h
ffiffiffi
T
p
i

: ð21Þ

3. The hybrid computational approach

3.1. The consistent conservative formulation

Specifically, we combined an eighth-order compact central FD scheme [3] for smooth regions with a seventh-order WENO
scheme [12] for the shock regions to treat the advection terms in the governing equations. To begin this process, we identify
the shock front by spatial points with highly negative local dilatation as defined by h < �Rhh

0
[9], where Rh is set to 3.0 unless

otherwise noted.1 Then the shock region treated by WENO includes the shock front and additional six2 grid points on both left
and right in each spatial direction immediately outside the front. Then the grid points starting from the seventh point on from
the shock front define the smooth region. The half grid location between the sixth and the seventh grid points is referred to as
the joint or the interface location. Since the fluxes (to be introduced below) will be defined at half grid points, this joint will
require a special treatment.

Next, to illustrate our reformulation of the hybrid scheme, we express the eighth-order compact central FD scheme as [3]:

a1f 0j�1 þ f 0j þ a1f 0jþ1 ¼ a1
fjþ1 � fj�1

h
þ b1

fjþ2 � fj�2

h
þ c1

fjþ3 � fj�3

h
; ð22Þ

where the prime indicates spatial derivative in a given direction, h is the grid spacing, and

a1 ¼
3
8
; a1 ¼

25
32

; b1 ¼
1

20
; c1 ¼ �

1
480

: ð23Þ

In the conservative formulation, we can recast Eq. (22) as follows [15]

a1f 0j�1 þ f 0j þ a1f 0jþ1 ¼
FCompact

jþ1=2 � FCompact
j�1=2

h
; ð24Þ

where

FCompact
jþ1=2 ¼ c1ðfjþ3 þ fj�2Þ þ ðb1 þ c1Þðfjþ2 þ fj�1Þ þ ða1 þ b1 þ c1Þðfjþ1 þ fjÞ: ð25Þ

On the other hand, a seventh-order WENO scheme can be formally written as

f 0j ¼
f WENO
jþ1=2 � f WENO

j�1=2

h
: ð26Þ

Further details can be found in [12]. To make it completely consistent to the compact FD formulation in Eq. (24), we can re-
write Eq. (26) as

a1f 0j�1 þ f 0j þ a1f 0jþ1 ¼
FWENO

jþ1=2 � FWENO
j�1=2

h
ð27Þ

with

FWENO
jþ1=2 � a1f WENO

jþ3=2 þ f WENO
jþ1=2 þ a1f WENO

j�1=2 : ð28Þ

This then naturally allows us to use one single formulation in the whole domain, namely,

a1f 0j�1 þ f 0j þ a1f 0jþ1 ¼
FHybrid

jþ1=2 � FHybrid
j�1=2

h
ð29Þ

1 It will be shown in Section 4.6 that the results are rather insensitive to the value of Rh chosen when 1 6 Rh 6 4.
2 This number can be reduced to three, as three grid points are adequate to support the compact FD schemes used for the smooth region just outside the

joint. Our test simulations show no difference if the number of grid points on each side of the shock front used to define the shock region varies from three to
six.
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with,

FHybrid
jþ1=2 �

FCompact
jþ1=2 for smooth regions;

FWENO
jþ1=2 for shock regions;

1
2 ðF

Compact
jþ1=2 þ FWENO

jþ1=2 Þ at the joint:

8>><>>: ð30Þ

Here the flux at the joint is naturally taken as the average of the fluxes on two sides of the joint. The above reformulation
greatly simplifies the coding and allows us to take full advantage of the periodic boundary conditions. In each spatial direc-
tion, the computation of spatial derivatives amounts to solving N2 tridiagonal systems in parallel, where N is the grid reso-
lution in each direction.

For computational efficiency, the viscous term in the momentum equation was handled by a non-compact sixth-order
central FD scheme since the non-compact FD scheme is fully explicit. This does not affect the accuracy of the numerical solu-
tion since the viscous term is typically smaller than the advection term by 3 orders of magnitude. The same method was used
for the viscous dissipation term in the energy equation.

Since the thermal diffusion term in the energy equation carries several other parameters, see Eq. (3), it is treated by a non-
hybrid but higher-order (eighth-order) compact FD scheme [3].

Finally, the time marching is performed by an explicit low storage second-order Runge–Kutta technique [10,23]. The
third-order Runge–Kutta scheme was also tested and no significant difference in results was found. The time step size
was determined based on a conservative CFL number criterion, following the definition of Adam and Shariff [14] for com-
pressible flow simulation. Namely,

Dt ¼ CFL� Dx
½maxðju1j þ cÞ þmaxðju2j þ cÞ þmaxðju3j þ cÞ� : ð31Þ

Typically, we have a CFL number of 0.2 or less for decaying turbulence simulation and 0.5 or less for forced turbulence sim-
ulation. It will be shown later that doubling the time step size does not alter the results.

3.2. Large-scale forcing

Previous studies of compressible homogeneous isotropic turbulence considered both decaying compressible turbulence
[9,24,25] and forced stationary compressible turbulence [26,27]. Since both energy and momentum must be considered to-
gether, a stationary flow requires a separate forcing scheme for the thermal field in addition to the more conventional forcing
applied to the velocity field.

As indicated above, we consider a compressible turbulence with kinetic energy input at the large scales and this energy is
converted into the internal energy at the small viscous scales. This will have to be removed by large-scale thermal cooling.

Similar to forcing incompressible turbulence [28], the momentum forcing field is constructed in the Fourier space by
fixing the kinetic energy E(k) per unit mass within the two lowest wave number shells, 0.5 < jkj 6 1.5 and 1.5 < jkj 6 2.5,
to prescribed values consistent with the k�5/3 kinetic energy spectrum. This is performed as follows. First, we transform
the velocity field u(x, t) into the Fourier space to yield v(k, t). Next, we decompose this field into a divergence-free field (part
I) and divergence-containing field (part II) as

vðk; tÞ ¼ vIðk; tÞ þ vIIðk; tÞ; ð32Þ

where

vIðk; tÞ ¼ vðk; tÞ � kk � v
k2 ; ð33Þ

vIIðk; tÞ ¼ kk � v
k2 : ð34Þ

Clearly the kinetic energy associated with each wave vector is also decomposed such that

jvðk; tÞj2

2
¼ jv

Iðk; tÞj2

2
þ jv

IIðk; tÞj2

2
: ð35Þ

By summing over all modes belong to a given wavenumber shell, one can then calculate the kinetic energy in each of the first
two wavenumber shells as

Eð0:5 6 k < 1:5Þ ¼ EIð0:5 6 k < 1:5Þ þ EIIð0:5 6 k < 1:5Þ;
Eð1:5 6 k < 2:5Þ ¼ EIð1:5 6 k < 2:5Þ þ EIIð1:5 6 k < 2:5Þ:

To maintain the total kinetic energy in the first two shells to prescribed levels E(1) and E(2), respectively, we amplify the
divergence-free part of the velocity field such that, after the forcing,

vðk; tÞ ¼ avIðk; tÞ þ vIIðk; tÞ; ð36Þ
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where, for example, a for all the modes in the first wavenumber shell is set to

að0:5 6 k < 1:5Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1Þ � EIIð0:5 6 k < 1:5Þ

EIð0:5 6 k < 1:5Þ

s
: ð37Þ

In this manner, the velocity field after forcing has a total kinetic energy in the first wavenumber shell equal to the prescribed
value of E(1). The same procedure is applied to determine a for all the modes in the second wavenumber shell. This deter-
ministic forcing maintains the energy levels in the two low wavenumber shells without changing the large-scale divergence
field. Typically, we set E(1) = 1.242477 and E(2) = 0.391356. Therefore, the forcing field per unit mass in the physical space,
namely, F i=q in terms of the notation of Eq. (2), is then the inverse Fourier transform of (a � 1)vI(k, t).

In addition, a thermal cooling function K is added to the energy equation, Eq. (3), at every time step to prevent the inter-
nal energy from increasing. This is more clearly shown in Eq. (11). We have considered three types of cooling function fol-
lowing Passot et al. [27]:

KI ¼ rIT
0; KII ¼ rIIT

2; KIII ¼ rIIIT
4; ð38Þ

where the first represents a uniform cooling in space, the third represents radiative cooling, and the second is somewhat in
between. Our simulations show that the results are not sensitive to the type of cooling applied.

3.3. A novel model for numerical hyperviscosity

3.3.1. Motivation and formulation
During the development of our simulation code, we encountered a numerical instability problem due to occurrence of

small scale fluctuations. Such small-scale fluctuations could originate from two sources. First, it is known that central FD
scheme is not dissipative and tends to generate random fluctuations at small scales [6]. Second, even when two stable
numerical schemes are patched together, small oscillations (noise) may be generated due to potential sharp transition of
the two schemes at the interface [20]. For example, our experience indicates that, due to numerical issues at the interface,
a hybrid treatment using compact upwind scheme and WENO can be unstable for moderate to high turbulent Mach
numbers.

Here we propose a natural numerical viscosity treatment, in line with compact FD schemes, that will dissipate the un-
wanted small-scale fluctuations without compromising the accuracy of the scheme. The novel aspect of our implementation
is that the numerical viscosity term has a high-order spatial structure similar to the discretization error of the overall numer-
ical method. This is accomplished by taking the difference of two compact FD algorithms of second-order spatial derivatives.
The first is based on a compact central FD applied to the first-order spatial derivatives, but applied twice to yield the second-
order derivatives, while the second is a compact central FD applied directly to the second-order derivatives. The procedure
we describe below can be applied to any compact central FD provided that the two algorithms for the first and second-order
spatial derivatives share a same stencil width.

As a specific example, we first recognize the following eighth-order compact central FD scheme for the first-order spatial
derivative [3]

b2f 0j�2 þ a2f 0j�1 þ f 0j þ a2f 0jþ1 þ b2f 0jþ2 ¼ a2
fjþ1 � fj�1

h
þ b2

fjþ2 � fj�2

h
; ð39Þ

where

a2 ¼
4
9
; b2 ¼

1
36

; a2 ¼
20
27

; b2 ¼
25

216
: ð40Þ

We then recognize the following compact FD scheme for the second-order derivative [3]

b3f 00j�2 þ a3f 00j�1 þ f 00j þ a3f 00jþ1 þ b3f 00jþ2 ¼ a3
fjþ1 � 2f j þ fj�1

h2 þ b3
fjþ2 � 2f j þ fj�2

h2 ; ð41Þ

where

a3 ¼
344

1179
; b3 ¼

38a3 � 9
214

;

a3 ¼
696� 1191a3

428
; b3 ¼

1227a3 � 147
1070

:

ð42Þ

It is important to note that a same stencil width of five is used on both sides of Eqs. (39) and (41). For the reason of numer-
ical stability, we will apply an implicit time-marching scheme to include numerical hyperviscosity term.

Before deriving the numerical viscosity formulation, we shall first apply the discrete Fourier transformation to both Eqs.
(39) and (41). Consider a periodic domain in one dimension of size 2p and assume this domain is divided into N equal inter-
vals with grid coordinates xj = 2pj/N with j = 0,1,2, . . . ,N. Denote fk = 2pk/N, the discrete Fourier transform is
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f ðxjÞ � fj ¼
1
N

XN=2

k¼�N=2þ1

f̂ k exp
2pıkj

N

� �
¼ 1

N

XN=2

k¼�N=2þ1

f̂ k expðıjfkÞ: ð43Þ

It is important to recognize that the spatial derivative obtained from Eq. (39) is not the exact spatial derivative, but rather
one of the possible numerical approximations. For clarity, we now denote the numerical approximation of the first-order
spatial derivative as f 0n, with the subscript n indicating a numerical approximation. The Fourier transform of the approxima-
tion f0 from Eq. (39) is denoted by bf 0n . Then in the Fourier space, Eq. (39) becomes

bf 0n ;k ¼ ıkf̂ k � s1ðfkÞ; ð44Þ

where

s1ðfkÞ �
2a2 sin fk þ 2b2 sinð2fkÞ

fk 1þ 2a2 cos fk þ 2b2 cosð2fkÞ½ � : ð45Þ

Likewise, denote the approximation f00 from Eq. (41) as f 00n and its Fourier transform as bf 00n , then we have

bf 00n ;k ¼ �k2 f̂k � s2ðfkÞ; ð46Þ

where

s2ðfkÞ ¼
2a3½1� cos fk� þ 2b3½1� cosð2fkÞ�
f2

k ½1þ 2a3 cos fk þ 2b3 cosð2fkÞ�
: ð47Þ

The spectral-like accuracy of the compact FD schemes, Eqs. (39) and (41), can be stated equivalently as s1(fk) � 1 and
s2(fk) � 1. This is the case for fk < 2, as shown in Fig. 1. Fig. 1 also shows that the direct calculation by scheme 2 is more accu-
rate than the indirect scheme 1 for fk > 2. It is interesting to recast the above observation in the context of spectral simulation
without explicit de-aliasing. In such a case, one normally applies the simple 2/3 rule and resolves the wavenumber up to
k = 2/3kmax = 2/3 � N/2 = 0.667kmax. The location fk = 2 corresponds to k = N/p = 2/p � kmax = 0.637kmax. This demonstrates
that the eighth-order central compact FD yields essentially the same spectral accuracy as the pseudo-spectral method with-
out explicit de-aliasing.

Fig. 1 also provides a novel mechanism for adding numerical hyperviscosity. Image that we add a term of the following
form to the right hand side of a governing equation in Fourier space

df̂ k

dt
¼ other terms� mnk2 f̂k � ½s2ðfkÞ � s2

1ðfkÞ�; ð48Þ

where the coefficient mn is an adjustable constant. The novelty of this numerical hyperviscosity-like term is connected to the
following two observations: (1) ½s2ðfkÞ � s2

1ðfkÞ� � 0 for fk < 2, meaning that there is no numerical diffusion for almost all re-
solved scales, and (2) ½s2ðfkÞ � s2

1ðfkÞ� is positive definite for all k. In other words, our numerical viscosity scheme introduces a
scale-dependent viscosity that is equal to mn½s2ðfkÞ � s2

1ðfkÞ�. Thus this numerical viscosity is negligible for almost all resolved
scales and is always positive and increases monotonically with k at high wavenumbers. These observations clearly demon-
strate that our proposed numerical viscosity scheme can efficiently remove any unphysical numerical oscillations at high
wavenumbers without compromising the accuracy of the overall scheme.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

Fig. 1. Demonstration of spectral-like accuracy of the compact central FD schemes. Solid line represents the exact result which is equal to f2
k ; dash line is

f2
k s2; dash dotted line is (fks1)2.
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3.3.2. Analysis and implications of the proposed model
To further understand the structure of the proposed numerical hyperviscosity formulation, we shall examine its limiting

behaviors. First, as fk ? 0, we can rewrite s1 and s2 in the following format:

s1ðfkÞ ¼
½2a2 sin fk þ 2b2 sinð2fkÞ�=fk

1þ 2a2 cos fk þ 2b2 cosð2fkÞ½ � ¼
P0 � P2f

2
k þ P4f

4
k � P6f

6
k þ Q 8f

8
k � Q10f

10
k þ � � �

P0 � P2f
2
k þ P4f

4
k � P6f

6
k þ P8f

8
k � P10f

10
k þ � � �

; ð49Þ

and

s2ðfkÞ ¼
f2a3½1� cos fk� þ 2b3½1� cosð2fkÞ�g=f2

k

1þ 2a3 cos fk þ 2b3 cosð2fkÞ
¼ P00 � P02f

2
k þ P04f

4
k � P06f

6
k þ Q 08f

8
k � Q 010f

10
k þ � � �

P00 � P02f
2
k þ P04f

4
k � P06f

6
k þ P08f

8
k � P010f

10
k þ � � �

; ð50Þ

Note that for both s1 and s2, the first four terms in the numerator and the denominator (i.e., up to term f6
k) are identical in

each case by design. In addition, the coefficients decrease quickly with the order and more precisely, they are P0 = 1.94444,
P2 = 5.55556e�1, P4 = 7.40741e�2, P6 = 6.17284e�3, P8 = 3.74780e�4, P10 = 1.59220e�5, Q8 = 3.30688e�4, Q10 =
1.19137e�5, P00 ¼ 1:60305; P02 ¼ 3:30789e�1; P04 ¼ 3:73198e� 2; P06 ¼ 2:54453e� 3; P08 ¼ 1:38334e�4; P010 ¼ 5:66573e�6;
Q 08 ¼ 1:117439e� 4; Q 010 ¼ 3:37598e� 6. These imply that for small fk, the leading order expansion for the effective viscos-
ity is

mn½s2 � s2
1� ¼ mnCðfkÞf8

k � mnCð0Þf8
k ; ð51Þ

where C(fk) is a dimensionless parameter and C(0) � C(fk = 0) = 2.876e�5. Numerically we found that C(fk) changes from
2.876e�5 to 3.128e�5 when fk is varied from fk = 0 to fk = 0.5.

Fig. 2 confirms that ½s2ðfkÞ � s2
1ðfkÞ� is almost identical to Cð0Þf8

k ¼ 2:876e� 5f8
k for the region fk < 0.5. The limiting behav-

ior, in fact, is a reasonable approximation even for fk = 1.0 due to the rapid decrease of expansion coefficients in Eqs. (49) and
(50). Note that the magnitude in Fig. 2 changes by 18 orders, a special care must be taken to compute the exact value of
½s2 � s2

1� at small fk, namely, the leading order term in s1 and s2 must be dropped analytically before computing the difference.
This large magnitude contrast implies the effectiveness of the hyperviscosity model on removing noises at the high wave-
numbers without introducing much numerical viscosity at low and moderate wavenumbers. In the physical space the above
asymptotic behavior implies, for large scales,

mn½f 00n � ðf 0nÞ
0
n� � mnCð0ÞðDxÞ8ðr2Þ5f ; ð52Þ

which explicitly indicates the approximate form of the numerical hyperviscosity term in the physical space. Since we solve
the governing equations, Eqs. (1)–(4), in dimensionless form, the values mn should be interpolated as having been normalized
by LU. Such a formulation introduces negligible viscosity for fk 6 1 as long as

mnCð0Þ
l=Re

� 1: ð53Þ

The fact that the effective viscosity at the high wavenumber end is larger than the asymptotic line in Fig. 2 demonstrates that
our formulation is more effective than the usual hyperviscosity model of the type given by Eq. (52). It should be noted that,
even one specifies a hyperviscosity model according to Eq. (52) in the physical space, there is no guarantee that its numerical
implementation will preserve the form due to numerical discretization errors. Such problem is avoided here since a related
advantage of our formulation is that it is completely in line with the highly accurate compact FD schemes used to solve the
governing equations.
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10-20
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Fig. 2. The variation of effective numerical viscosity ½s2ðfkÞ � s2
1ðfkÞ� with normalized wavenumber fk, as indicated by the solid line. Dashed line represents

Cð0Þf8
k , see Eq. (51).
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The above asymptotic analysis also implies that our hyperviscosity formulation can be generalized to compact central FD
schemes of any other even orders.

In the other limit of fk ? p, s1 ? 0 and

s2 !
4a3

p2½1� 2a3 þ 2b3�
¼ 0:757; ð54Þ

which shows the effective viscosity applied to the highest wavenumber is 0.757mn.

3.3.3. Implementation
The numerical hyperviscosity term is simply implemented in physical space as

@f
@t
¼ other termsþ mn½f 00n � ðf 0nÞ

0
n�: ð55Þ

Numerical tests shown in Table 1, Figs. 3 and 4 will demonstrate that, as long as Eq. (53) is observed, results are insen-
sitive to the value of mn used, even when mn is varied by more than two orders of magnitude. This is consistent with the earlier
observation that the numerical hyperviscosity term makes a negligible contribution to the well resolved large scales. The
overall accuracy of our numerical method will be demonstrated in Section 4 when comparing with the published results
by Samtaney et al. [9] and those of standard pseudo-spectral simulations.

Since the main purpose of the numerical hyperviscosity term is to smooth out unwanted fluctuations at small scales that
are not designed to be resolved, we add this numerical hyperviscosity term directly to five primary variables: density q, three
components of velocity u, v, w, temperature T at the end of every five time steps with a step size of 5dt, where dt is the time
step size used for all physical terms. A same mn value was used for all these variables.

For the three-dimensional compressible flow, we implemented the numerical hyperviscosity term as follows:

@f
@t
¼ mnf½fn;xx � ðfn;xÞn;x� þ ½fn;yy � ðfn;yÞn;y� þ ½fn;zz � ðfn;zÞn;z�g; ð56Þ

where the subscript n again denotes numerical approximations and subscripts x, y, z denote spatial derivatives. For better
numerical stability, the three terms fn,xx, fn,yy, and fn,zz in Eq. (56) are handled by the implicit Euler scheme. While for the other
three terms with negative sign, it is not feasible to apply an implicit scheme so we simply used an explicit Euler scheme. Each
term on the right hand side of Eq. (56) was added sequentially and in the same order as appeared in Eq. (56). Here the accu-
racy of time integration scheme is not relevant as the resolved large-scale fluctuations are not affected.

It must be pointed out that the numerical hyperviscosity term should not be applied to shock fronts. This is because shock
fronts contain jumps and any compact FD scheme will cause Gibbs oscillations which will unfavorably affect the stability of
WENO. We developed a consistent and conservative formulation to selectively omit numerical hyperviscosity in shock re-
gions. To begin, we write Eqs. (39) and (41) in matrix form as

AF 0n ¼ BF; AðF 0nÞ
0
n ¼ BF 0n;

or F 0n ¼ A�1BF; ðF 0nÞ
0
n ¼ A�1BF 0n;

ð57Þ

and

CF 00n ¼ DF or F 00n ¼ C�1DF; ð58Þ

respectively, where A, B, C, and D are penta-diagonal matrices. For example, A is a penta-diagonal matrix with b2, a2, 1, a2, b2

as entries, with the third entry placed on the diagonal line, along with periodic wrapping in any given direction; B has �b2/h,
�a2/h, 0, a2/h, b2/h as entries, and so on. Next, the B matrix can be splitted into two tetra-diagonal matrices B+1/2 and B�1/2,
centered at jþ 1

2 and j� 1
2, respectively. Here j denotes the diagonal line of the matrix. The entries for B+1/2 and B�1/2 are the

same and equal to b2/h, (a2 + b2)/h, (a2 + b2)/h, b2/h. The similar decomposition can be done for D. Therefore, we have

ðF 0nÞ
0
n ¼ A�1ðBþ1=2 � B�1=2ÞF 0n � A�1ðGþ1=2 � G�1=2Þ ð59Þ

and

Table 1
Runs and parameters for decaying compressible turbulence.

Run no. Method Rek(0) Mt(0) mn dt/s

128DC1 Compact 72 0.30 0.05 0.001
128DC2 Compact 72 0.30 0.05 0.002
128DC3 Compact 72 0.30 10.0 0.001
128DC4 Compact 72 0.56 0.05 0.001
128DH1 Hybrid 72 0.56 0.05 0.001
128DW1 WENO 72 0.56 – 0.001
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Fig. 3. Solutions to 1D viscous Burgers’ equation with an unresolved standing shock wave at x = 0 and t = 0.5: (a) compact FD solution without any
hyperviscosity, (b) compact FD solution with mn = 1.0, (c) the hybrid scheme with seven grid points defining the shock region. In all plots, the thick smooth
solid line represents the exact analytical solution at the same time. Note that, for this particular example, due to the smooth nature of the solution outside
the shock wave, the WENO alone gives a good solution for all regions.

Fig. 4. Comparison of simulated kinetic energy spectrum with standard pseudo-spectral simulation for a forced isotropic turbulence at small turbulent
Mach number Mt = 0.236 and Rk = 64.6.
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F 00n ¼ C�1ðDþ1=2 � D�1=2ÞF � A�1ðHþ1=2 � H�1=2Þ; ð60Þ

where

Gþ1=2 � Bþ1=2F 0n; G�1=2 � B�1=2F 0n;

Hþ1=2 ¼ AC�1Dþ1=2F; H�1=2 ¼ AC�1D�1=2F:
ð61Þ

The above decomposition provides a conservative flux-like formulation, similar to Eq. (24). This flux formulation is further
evidenced through the following shifting relations:

ðG�1=2Þj ¼ ðGþ1=2Þj�1; ðH�1=2Þj ¼ ðHþ1=2Þj�1: ð62Þ

A simple switch is now introduced to seamlessly erase the hyperviscosity term in the shock region. The switch modifies G as
follows:

ðGþ1=2Þj �
ðGþ1=2Þj; smooth regions;
ðHþ1=2Þj; shock regions;
1
2 ½ðGþ1=2Þj þ ðHþ1=2Þj�; at the joint:

8><>: ð63Þ

Note that different j indices correspond to different locations relative to the shock region, so the switch may be turned on
(shock regions) or off (smooth regions) depending on the value of j. The same switch is also applied to G�1/2. With these mod-
ified G+1/2 and G�1/2, the numerical hyperviscosity term mn½F 00n � ðF

0
nÞ
0
n� is unchanged in the smooth regions but reduces to zero

in the shock regions.

4. Results and verification

In this section, we will present a series of numerical tests to demonstrate the capabilities of our hybrid method, especially
the accuracy and numerical stability of our method.

4.1. Rigorous test results for 1D problem

We first test our hybrid scheme for a standard 1D viscous Burgers’ equation

@u
@t
þ u

@u
@x
¼ m

@2u
@x2 ð64Þ

in a periodic domain of �1 6 x 6 1, with an initial condition of u(x, t = 0) = �sin(x). The physical viscosity is set to m = 0.01/p
and the 1D domain is discretized by only 30 equal intervals (grid spacing Dx = 1/15). In the above, we implicitly assume that
all properties have been normalized. A standing shock wave will appear at x = 0 due to compression from both sides. The flow
outside the shock wave is rather smooth. The thickness of the shock wave scaled roughly with m, which is much less than Dx.
Therefore, the shock wave is not resolved by the grid and Gibbs oscillations will occur if WENO is not employed.

The analytical solution for this 1D problem is

uðx; tÞ ¼ �
R1
�1 sin½pðx� gÞ�f ðx� gÞ expð�g2=4mtÞdgR1

�1 f ðx� gÞ expð�g2=4mtÞdg
; ð65Þ

where f(y) � exp[ � cos(py)/2pm]. The Gauss–Hermite integration with up to 30 terms are used to compute the above exact
solution, which is shown in Fig. 3 by the thick smooth solid line.

In Fig. 3 we compare solutions from different numerical methods with the analytical solution at t = 0.5 when the shock
has been fully formed. Clearly, at this resolution, the compact FD scheme without any numerical hyperviscosity is unstable,
with Gibbs oscillations first generated at the shock front at earlier times (not shown) and then propagating out to contam-
inate the solution over the whole domain. The oscillations continue to grow and eventually render the solution meaningless
for t > 0.6. With a numerical hyperviscosity mn = 1.0, the Gibbs oscillations are suppressed near the shock front and decay
with distance from the shock front. This remains so at later times. Note that this numerical viscosity is rather small in terms
of the nondimensional ratio mnC(0)/m, which is 0.0090. The best scheme is the hybrid scheme: due to the application of WENO
to the shock region, no oscillation appears in the numerical solution. For these 1D calculations, we used a third-order total
variation diminishing Runge–Kutta scheme [23].

The above confirms the necessity of using numerical viscosity in the central compact FD scheme and the effectiveness of
our hyperviscosity formulation. It must be noted that the oscillations here are originated only from the Gibbs phenomenon,
as no turbulent fluctuations exist in the region outside the shock. Not plotted here, we found that, for this particular problem,
if the domain is resolved by more grid points (e.g., 500), then all schemes are stable and give an acceptable solution.
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4.2. Comparison with pseudo-spectral simulation in the nearly incompressible limit

As part of a systematic validation, we now briefly consider the nearly incompressible limit. A forced isotropic turbulence
is simulated with M = 0.1125 and Re = 70, leading to a quasi-steady flow Reynolds number Rek = 64.6 and Mt = 0.238. Here the
compact FD scheme is used for all regions in the flow, namely, WENO is switched off. The forcing function was made sole-
noidal to minimize the compressibility effect. At the statistically stationary stage, we indeed found that the compressibility
effect is very small, as shown by the following ratios: q0/q0 = 0.019, h0/x0 = 0.015, and (uc)0/u0 = 0.098, where all properties
with 0 indicate rms component fluctuation level, uc is the compressible component of the velocity field according to the
Helmholtz decomposition [9]. Therefore, the flow may be viewed as nearly incompressible. Fig. 4 shows the average kinetic
energy spectrum during the time interval of 7.3 6 t/Te 6 14.6 when the flow is statistically stationary. Also shown is the aver-
age energy spectrum from a standard pseudo-spectral simulation of incompressible turbulence, under the identical initial
condition and flow Reynolds number. The excellent agreement shows that our compact FD scheme for compressible turbu-
lence can reproduce the results of incompressible turbulence at small Mach number. We also found that the instantaneous
flow fields from the two simulations are almost identical for t < 3s and the instantaneous volume-averaged flow statistics are
the same for t < 3s (plots not shown here). Here s � Lf/u0 is the large-eddy turnover time. These observations validate our
compact FD code and confirm its near spectral accuracy as indicated in Section 3.3.1.

4.3. Tests with compact FD for low turbulent Mach number

We now discuss results related to test simulations for three-dimensional compressible turbulence at relatively low tur-
bulent Mach numbers when there are no shocks and as such it is natural to apply just the compact FD to treat all regions.
This ensures a uniform eighth-order accuracy and avoids issues related to the interfaces in the hybrid treatment. Here we
consider a decaying compressible turbulence previously simulated by Samtaney et al. [9] using 10th-order central compact
FD scheme. Following Samtaney et al. [9], the velocity field was initialized using a random field with a prescribed energy
spectrum that is identical to Eq. (2.9) in Samtaney et al. [9] for their Run D4. The normalized temperature and density were
simply initialized to one at all spatial points. The dimensionless parameters were Re = 520 and M = 0.31, yielding the initial
turbulent Mach number Mt is 0.3 and the initial Taylor microscale Reynolds number Rek is 72. This corresponds exactly to
Run D4 in Samtaney et al. [9]. For decaying compressible turbulence, as time evolves, both Mt and Rek decrease with time.
Therefore, there is essentially no shocks in this flow. A 1283 grid was applied.

Three runs were performed, as shown in the first three rows in Table 1. To mimic the work of Samtaney et al. [9], we also
apply only the compact FD scheme to all regions. We found that, without any numerical hyperviscosity, our code became
unstable after a few hundred steps. However, with a small numerical hyperviscosity (mn = 0.05), our code was stable. Run
128DC1 in Table 1 is the base case. Run 128DC2 doubled the time step size relative Run 128DC1. Run 128DC3 is designed
to test the sensitivity of the simulated flow on the level of numerical hyperviscosity, where mn is increased by a factor of 200
compared to that used in Run 128DC1.

Fig. 5 compares the longitudinal velocity derivative skewness and the dilatation from these three runs. The results of Run
D4 from Samtaney et al. [9] are also shown for comparison. The results from Run 128DC1 and 128DC2 are indistinguishable,
showing that the time steps used are indeed small enough and the 2nd-order Runge–Kutta time integration is accurate. Run
128DC3 produces essentially the same results in terms of the average dilatation, except that the skewness is slightly smaller
in magnitude. All the results are in excellent agreement with those of Samtaney et al. [9]. The above demonstrate that our
eighth-order central compact FD scheme was correctly implemented and its accuracy is comparable to the 10th-order cen-
tral compact FD scheme used in Samtaney et al. [9]. Since central compact FD without any numerical dissipation is likely to
be unstable [15,6]. The fact that a variation of mn by a factor 200 did not significantly alter the results shows that our numer-
ical hyperviscosity scheme is highly effective yet has little effect on the overall accuracy of the method.

The above insensitivity to mn can be explained by the criterion given in Eq. (53). For mn = 0.05 and mn = 10, the ratio
mnC(0)Re/l is roughly equal to 0.0001 and 0.02, respectively, based on the reference temperature. Therefore the criterion,
Eq. (53), is well satisfied and as such the dynamics of large scales should not be noticeably affected by the numerical hyper-
viscosity term. Indeed, the criterion, Eq. (53) should be used to set up the value of mn and we recommend that the ratio
mnC(0)Re/l be kept less than 1%. It is important to note that the criterion requires that the numerical hyperviscosity coeffi-
cient mn be decreased as Re is increased. The tests above show that our hyperviscosity formulation is very effective, namely,
even a very small mn, as measured in terms of the ratio mnC(0)Re/l, can ensure stability of the numerical method.

On the other hand, the effective viscosity applied to the highest wavenumber (i.e., numerical noises resulting from the
compact central FD itself) is 0.757mn. The ratio 0.757mn/(l/Re) for mn = 0.05 and mn = 10 is 2.65 and 530, respectively. This, to-
gether with the ratio for most other small to moderate wavenumbers shown above, shows that the effective viscosity is a
very strong function of scales of the fluctuations. This is precisely the reason for the effectiveness of our hyperviscosity
formulation.

4.4. Comparison of the hybrid scheme with compact FD and WENO

Next, we performed three runs for decaying compressible turbulence (128DC4, 128DH1, 128DW1 in Table 1) at the initial
turbulent Mach number of 0.56 and initial Taylor microscale Reynolds number of 72 by setting Re = 520 and M = 0.58. Other
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setting and the initialization method are identical to the three runs discussed above. Again all were performed with 1283

resolution. Run 128DC4 used the compact FD only for all regions, Run 128DH1 used the hybrid scheme, and Run
128DW1 used WENO for all grid points. In run 128DH1, about 10% of the grid points are treated with WENO, indicating
occurrence of shocklets. It is assumed here, however, because of the relatively low flow Reynolds number which decreases
with time, the shock regions have a thickness on the order of flow Kolmogorov scale [9] which increases with time. These
conditions imply that the shock regions can be adequately resolved by the compact FD method alone as long as it is stable at
early times. Because of the uniform eighth-order accuracy, the results from 128DC4 are then used as benchmark for other
runs. A small hyperviscosity coefficient mn = 0.05 was used in Run 128DC4 and 128DH1, no numerical viscosity was present
in Run 128DW1. It is noted that this is about the highest Mt that our compact FD scheme alone can handle without numerical
instability. We found that our compact FD alone could not simulate this decaying compressible turbulence at Mt(0) = 0.6
with the use of mn = 0.05 due to numerical instability.

Fig. 6 displays the time evolution of longitudinal velocity derivative skewness and the dilatation for these three runs.
Compared to results at Mt(t = 0) = 0.3 shown in Fig. 5, a much higher compressibility effect is observed in terms of the aver-
age dilatation. The velocity derivative skewness shows a stronger overshoot before settling down to a stationary state value.
The average velocity derivative skewnesses for the time interval 3 < t/s < 8 are �0.437, �0.435, �0.430, respectively, for runs
128DC4, 128DH1, 128DW1. Again s � Lf/u0 is the large-eddy turnover time. The compact FD yields the highest dilatation,
while WENO has the smallest dilatation. The hybrid scheme gives a dilatation very close to the compact scheme, except dur-
ing a period of about 2 eddy turnover times immediately after the peak dilatation where the hybrid method predicts a dila-
tation about 7.0–5.0% smaller than that of the compact FD method; at longer times (t/s > 3), this difference is reduced to 5.0–
3.0%. WENO, on the other hand, underpredicts the dilatation by 15.5–12.0% at long times, relative to the compact FD method.

A much clear demonstration of the advantage of our hybrid scheme over WENO is shown in Fig. 7 where we compare the
simulated kinetic energy spectra from the three runs. Our hybrid scheme yields a kinetic energy spectrum very close to the
compact FD scheme, but WENO, due to its highly dissipative nature, gives a much faster decay of energy at higher wavenum-
bers. This is consistent with the observation made in Larsson et al. [13].

Lastly, we compare the probability density distributions of two selected quantities in Fig. 8. Again assuming the results of
the compact FD run (128DC4) can be used as a benchmark, it is evident that the hybrid method is more accurate in capturing
the large amplitude fluctuations than the WENO method alone. Probability density distributions of other variables (not
shown here) also lead to the similar conclusion.
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Fig. 5. Evolution of (a) longitudinal velocity derivative skewness and (b) dilatation for the decaying compressible turbulence at the initial Mt = 0.3.
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In summary, the compact FD has the best overall accuracy but is the least stable, while WENO is the most stable scheme
but has excessive dissipation. Our hybrid scheme appears to combine the best features of the two to yield a relatively accu-
rate and stable scheme for compressible turbulence simulations.

4.5. Forced compressible turbulence and the effect of cooling function

Now we shall consider a few simulations for forced compressible turbulence with even higher turbulent Mach numbers
by setting Re = 70 and M = 0.6. First we consider the three runs at 1283 resolutions shown in Table 2. Here Rek and Mt rep-
resent, respectively, the Taylor microscale Reynolds number and turbulent Mach number averaged over time when the flow
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Fig. 6. Evolution of (a) longitudinal velocity derivative skewness and (b) dilatation for the decaying compressible turbulence at the initial Mt = 0.56.
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reaches the statistically stationary stage. At Mt = 1.27, only the hybrid scheme is the viable approach. The three runs 128FI,
128FII, and 128FIII correspond to the three cooling functions shown in Eq. (38). The velocity field is forced by fixing the total
kinetic energy in the first two wavenumber shells to EK(1) = 1.242477 and EK(2) = 0.391356 and the forcing field is made
incompressible. An identical initial flow was used and was generated by first running 128FI for about 10 eddy turnover
times. The time was then reset to zero and the three different cooling functions were applied to generate the results for
the three runs.

It was found that for these runs at Mt = 1.27, up to 13% of the grid points fall into the shock regions. Fig. 9 compares the
time evolution of space-averaged longitudinal velocity derivative skewness and the dilatation. The normalized dilatation has
a rather high mean value of around 0.55 and the skewness has a mean value around �2.0. Such a large magnitude of velocity
derivative skewness is not possible for incompressible turbulence, and results from very strong compression across the shoc-
klets. Fig. 9 shows that the stronger the nonuniformity in the cooling rate (type III cooling is most nonuniform and type I is
completely uniform), the weaker the discontinuity across the shocklets as indicated by the somewhat smaller magnitudes in
dilatation and skewness. The average skewness for runs 128FI, 128FII, and 128FIII in 3 < t/s < 5 are �2.00, �1.85, �1.71,
respectively. This can be qualitatively explained by the reduction in jumps across the shock associated with the nonuniform
cooling: stronger cooling on the lower speed/high temperature side (the rear of shock) and weaker cooling on the higher
speed/lower temperature side (the front of shock).

Nevertheless, the relative differences in the dilatation and skewness among these three cooling functions are typically
less than 15%. Furthermore, the resulting kinetic energy spectra are almost identical, as shown in Fig. 10. We thus conclude
that the results are not very sensitive to the exact form of the cooling function used.
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time considered is t/s = 1.0.

Table 2
Runs and parameters for forced compressible turbulence.

Run no. Method Rek Mt mn dt/s

128FI Hybrid 61.1 1.27 0.05 0.001
128FII Hybrid 61.7 1.27 0.05 0.001
128FIII Hybrid 62.1 1.27 0.05 0.001
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4.6. Sensitivity to the threshold value Rh used to define the shock region

In this section, we shall vary the threshold value Rh used to define the shock region to examine if the statistics of the sim-
ulated compressible turbulence is sensitive to Rh. Table 3 shows the different Rh values used and the key resulting flow sta-
tistics including the average Taylor microscale Reynolds number Rek, the turbulent Mach number Mt, the velocity derivative
skewness S, and the rms fluctuation level of the dilatation normalized by the rms vorticity at the initial time. In all these runs,
the hybrid method is used. Note that Run 128R3 listed in Table 3 is identical to Run 128F1 listed in Table 2, namely, the
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settings for dt and mn follow those of Run 128F1. Each simulation is done for 5 eddy turnover times starting from an identical,
developed flow field, and the averaged statistics are obtained using the time window from 3 to 5 eddy turnover times.

As Rh is raised from 1 to 5, the percentage of spatial region treated by WENO is reduced from 38.0% to 5.46%. However, the
resulting flow statistics are rather insensitive to the value of Rh for the range of Rh tested here.

Fig. 11 compares the velocity derivative skewness and the r.m.s. value of velocity divergence. Only a very minor deviation
is seen for Run 128R5 from other runs, indicating that a value of Rh = 5 is perhaps a bit too larger and some of the strong
shock regions may not be treated by WENO. The same conclusion is reached when the energy spectra are compared in
Fig. 12.

In conclusion, the results are insensitive to Rh for 1 6 Rh 6 4, showing that Rh needs not to be optimized for our hybrid
method. A value of Rh = 2 or Rh = 3 is recommended, which is consistent to Rh = 3 chosen by Samtaney et al. [9] in their post
processing of shock regions.

4.7. High-resolution simulation at high turbulent Mach number

As yet another demonstration of our hybrid method, we conducted a run (Run 512FI in Table 2) at both relatively high
Reynolds number (Rek = 177) and Mach number (Mt = 1.08), at 5123 grid resolution with Re = 500 and M = 0.45. To our

Table 3
Setting and results with different threshold values used to define the shock region.

Run no. (Rh) WENO region (%) Rek Mt S hrms/xrms(0)

128R1 (Rh = 1) 38.0 61.3 1.27 �2.00 0.554
128R2 (Rh = 2) 17.4 61.2 1.27 �1.99 0.553
128R3 (Rh = 3) 11.2 61.1 1.27 �2.00 0.557
128R4 (Rh = 4) 7.75 61.0 1.27 �2.02 0.559
128R5 (Rh = 5) 5.46 60.8 1.27 �2.05 0.562
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knowledge, this is the highest turbulent Mach number ever simulated at this resolution using a hybrid approach of the type
discussed here. In this simulation, the forcing field is defined using the complete Fourier modes (namely, no projection is
applied to the forcing function) in low wavenumber shells. This has the tendency of enlarging velocity divergence and as
such leads to more intense and a larger number of shock front regions. To save computational time, we first performed a
forced compressible turbulence at grid resolution of 2563. After about five eddy turnover times, the 2563 flow was then used
to initialize the 5123 simulation. The first type of cooling function was used. The time step size and the numerical viscosity
were set to dt = 0.0003 and mn = 0.02.

In Figs. 13 and 14, we show the density contours and dilatation contours on an arbitrarily selected x � y slice at a time
instant when the flow is stationary. Severe discontinuities (red-blue interfaces) in the density contour plot represent shoc-
klets. The sheetlike, narrow blue regions where the dilatation is largely negative (Fig. 14) also imply shocklets. Figs. 14 shows
the existence of both relatively flat shocklets and highly curved shock fronts. In sharp contrast, the expansion regions (po-
sitive dilatation) tend to be bloblike round regions. These compressible flow structures are qualitatively similar to what had
been observed in previous studies [29,9,30].

While it is beyond the scope of the current paper to discuss in depth the flow structure and dynamics associated with
compressible turbulence, we shall very briefly explore the jump conditions across moving and unsteady shocklets in run
512F1. It has been postulated [9] that the Rankine–Hugoniot jump conditions for a normal plane shock apply to the shocklets
in compressible turbulence. For example, the pressure jump and density jump across an inviscid, normal, plane shock are
related by

qr ¼
ðcþ 1Þpr þ c� 1
ðc� 1Þpr þ cþ 1

; ð66Þ
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Fig. 13. Density contours on a slice for a forced compressible turbulence at Mt = 1.08 and Rk = 177, simulated with 5123 grid resolution.
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where qr = q2/q1 and pr = p2/p1, with the subscripts ‘‘1” and ‘‘2” refer to the front and rear of the shock, respectively. The
velocity jump in the direction normal to the shock front, across a normal shock, can be written as

ju2n � u1nj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp2 � p1Þ

2

q1½ðcþ 1Þp2 þ ðc� 1Þp1�

s
: ð67Þ

The normal direction is directed from the rear side to the front side of a shocklet.
To examine whether the above conditions apply to the shocklets in the compressible turbulence, we need to extract the

shocklets and also identify the exact location of the shocklet front. We follow the method of Samtaney et al. [9] that defines
the shock surface by the following two conditions:

r2q ¼ 0 and � h > 3h0: ð68Þ

Note that the second condition defines the shock front of finite width, while the first condition precisely specifies a center
surface in the front region.

Fig. 15 shows a scatter plot of qr � 1 versus pr � 1 for 2000 line elements passing through shocklets in the normal direc-
tion. The line represents the theoretical relation given by Eq. (66). The figure shows a high degree of agreement between the
data and the Rankine–Hugoniot relation, although the viscous and curvature effects [31] are not considered in this Rankine–
Hugoniot relation.

We also compare the normal velocity jump across the shocklets from the simulation to that predicted by Eq. (67) using a
scatter plot in Fig. 16. On average, they are in reasonable agreement and the correspondence improves with the shocklet
strength.

The above discussions reveal that the compressible turbulence we have simulated at relatively high Mach numbers and
Reynolds numbers are consistent with known physical descriptions associated with shocklets in isotropic turbulence.

Fig. 14. Dilatation contours on the same slice used for Fig. 13.
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Fig. 15. Density ratio versus pressure ratio in the direction normal to the extracted shocklets. 2000 points were used in the scatter plot.
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5. Summary and conclusions

Numerical simulation of compressible turbulence presents new challenges due to molecular-scale discontinuities (i.e.,
shocklets) associated with strong local compression, as well as their interactions with intermittent small-scale turbulent
structures. Often it is not computationally feasible to directly resolve the physical scales of shocklets. Due to physical con-
servation laws, it is usually assumed that the dynamics of shocklets is basically unchanged as long as the thickness of shoc-
klets are kept reasonably small. Indeed, it can be shown that the total amount of dissipation across the shock is, for small
viscosity, independent of viscosity, and dependent only on the jump conditions across the shock [32]. Put it another way,
while numerical viscosity smears the shock discontinuity, it does not alter the total amount of dissipation when integrated
across the shock. WENO is known to preserve shock relations [10–12], although the thickness of shock is 2–3 grid lengths in
numerical simulations. We have also found that most of our results are not sensitive to grid refinement, except local differ-
ences in the shock regions as expected due to different effective shock thicknesses for different grid resolutions. Further-
more, at moderate Mach numbers, our hybrid results reproduce central FD (without the WENO treatment), implying that
the shock region treatment has negligible effect on the dynamics of flow outside shock regions. These observations combined
with the fact that all dynamics are directly resolved in smooth regions make our scheme essentially a direct numerical sim-
ulation for scales of the order of a few Kolmogorov scales and larger. While we did not use the term DNS here, we note that
others did use it previously when WENO was used to treat the shock regions [33–35].

The general idea of combining compact FD scheme and WENO to form a hybrid scheme is not new, and has been inves-
tigated by others [14–17]. But the development to date has not met the desire to simulate compressible turbulence at both
relatively high turbulent Mach numbers and Reynolds numbers. This is because there are several subtle physical and numer-
ical issues associated with combining the two schemes. In this paper, we have developed a hybrid compact FD and WENO
scheme for compressible turbulence using a flux-based conservative and formally consistent formulation. The conservative
form preserves rigorous flux conditions across the interface leading to physically correct jump conditions across a shock, and
the consistent formulation makes it computationally more efficient as the whole computational domain can be treated to-
gether. They together ensure an optimal connection between the shock regions and the smooth regions at the interface.

Furthermore, a novel numerical hyperviscosity treatment is developed to dissipate unwanted small-scale fluctuations in
the smooth regions without affecting the accuracy of the overall approach in the smooth regions. A thorough and insightful
analysis of the hyperviscosity formulation in both Fourier space and physical space is presented to show the effectiveness of
the formulation in improving numerical stability, without compromising the accuracy of the hybrid method. Finally, this
hyperviscosity term is implemented in a way that is consistent with the conservative formulation and makes no contribution
to the shock regions treated by WENO. The theoretical analysis is confirmed by numerical tests for both one dimensional
problem and 3D compressible turbulence. Combining the analysis and test simulations, we also developed a criterion to
guide the specification of numerical hyperviscosity coefficient (the only adjustable coefficient in the formulation). While
it is not shown in this paper, we found that the hyperviscosity formulation can also be applied to compact central FD
schemes at other even orders.

Test simulations demonstrated that the advantages of the high-order compact FD and WENO are preserved in our hybrid
scheme, making it possible to simulate accurately compressible turbulence at a turbulent Mach number larger than one. We
have successfully simulated a forced compressible turbulence at Mt = 1.08 and Rek = 177 on a 5123 grid. This will allow a sys-
tematic analysis of the statistics and dynamics of the simulated compressible turbulence in terms of turbulent Mach num-
bers and flow Reynolds numbers, which will be documented in forthcoming papers. Our hybrid scheme retains the
dissipative feature of WENO for shock fronts but is essentially non-dissipative away from the shock regions. To our knowl-
edge, compressible turbulence at 5123 grid resolution with larger than one turbulent Mach number has not been attempted
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with the type of hybrid scheme we proposed here. Previously, PPM (Piecewise Parabolic Method) has been used to simulate
flows at high turbulent Mach numbers [36,37], but it is known that PPM is very dissipative and the physical flow Reynolds
number cannot be precisely defined due to excessive level of numerical dissipation.

We also briefly studied the effect of large-scale thermal forcing (both spatially uniform and nonuniform cooling) and con-
cluded that the overall dynamics of the flow is not so sensitive to the type of cooling function used.

In this study we have chosen to design our hybrid scheme by combing an eighth-order compact FD and a seventh-order
WENO. Certainly, other orders of compact FD and WENO can be employed, along with a similar approach for the numerical
viscosity formulation. Our experience shows that, provided that an adequate grid resolution is used, a similar accuracy may
be obtained by lower-order methods for simulations at moderate turbulent Mach numbers and low flow Reynolds numbers
when the shock fronts have a thickness comparable to Kolmogorov scales [9]. For small turbulent Mach numbers, say
Mt < 0.3, reduction of the orders could make the representation of the thermodynamic quantities less accurate, simply
due to the relatively small magnitude of fluctuations of thermodynamic variables. For high Mach-number and high Rey-
nolds-number flows, the shock fronts are not directly resolved, a higher-order WENO would capture more accurately the
jumps across shock fronts.

Finally, we should note that an implicit assumption for all hybrid simulation methods of the kind used here is that the
structure and dynamics of compressible turbulence are not sensitive to the local dissipative nature of WENO at shock fronts.
In other words, since the grid spacing is on the order of the Kolmogorov scale of turbulence and the effective thickness of
shocklets is also similar to grid spacing, the underlying assumption is the dynamics of compressible turbulence is unaltered
even when the shock thickness is made as large as the flow Kolmogorov scale. At the current stage, the question whether
such an underlying working assumption is valid or not remains to be investigated.
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