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Kinematic descriptions of the rate of collision between two groups of particles are central to a
variety of problems in cloud microphysics, engineering applications, and statistical mechanics.
When particles are uniformly distributed, the collision kernelG depends on the statistics of relative
velocities among colliding particles. In the pioneering work by Saffman and Turnerf“On the
collision of drops in turbulent clouds,” J. Fluid Mech.1, 16s1956dg, two different formulations were
used to calculateG between two arbitrary particle size groups in a turbulent flow. The first or
spherical formulation is based on the radial or longitudinal componentwr of the relative velocityw
between two particles at contact:Gsph=2pR2kuwrul, whereR is the geometric collision radius. The
second or cylindrical formulation is based on the vector velocity itself:Gcyl=pR2kuwul. It was shown
previously by Wanget al. f“Statical mechanical descriptions of turbulent coagulation,” Phys. Fluids
10, 2647 s1998dg that the spherical formulation is always correct when applied to different
situations, and that the cylindrical formulation overpredicts the collision kernel by about 20%–25%
for collisions due to a uniform shear or due to nonuniform shears in a turbulent flow. In this paper,
it is shown that the overpredictions in the cylindrical formulation are originated from the
dependence of the probability distribution ofw on the orientation ofR, and can be corrected for all
situations if this orientation dependence is explicitly accounted for. A generalized cylindrical
formulation is then proposed and is shown to be identical to the spherical formulation for all
collision mechanisms considered in Wanget al. s1998d. Finally, we illustrate the difference between
kinematic statistics and statistics for colliding particle pairs. For example, the relative velocity for
colliding particle pairs can be 30%–60% larger than the kinematic relative velocity. ©2005
American Institute of Physics. fDOI: 10.1063/1.1928647g

I. INTRODUCTION

Coagulational growth of small solid particles and drop-
lets in a turbulent flow is of importance to a variety of prob-
lems in engineering and meteorology. Examples include
warm-rain precipitation, cloud processing of aerosols, pro-
duction of titanium-dioxide pigments, fine spray combustion,
and formation of industrial emissions. The overall coagula-
tion rate of finite-size particles in fluid turbulence is gov-
erned by three consecutive and interrelated processes:s1d
geometric collision due to relative motion1–10 and nonuni-
form distributions11–15caused by the carrier fluid turbulence,
s2d collision efficiency due to local particle-particle aerody-
namic or hydrodynamic interactions,16–22ands3d coagulation
efficiency as determined by surface sticking
characteristics.23,24

The average collision kernelG between two particle size
groups of average number concentrationsn1 andn2 measures
the rate of collisions between the two size groups normalized
by sn1n2d. The parametrization ofG in terms of kinematic
particle-pair statistics makes it feasible to model the time
evolution of particle size distribution using the Smolu-
chowski collision-coalescence equationssee, e.g., Prup-
pacher and Klett24d. In the pioneering work by Saffman and

Turner,1 two different formulations ofG were introduced to
describe geometric collision rates between two arbitrary par-
ticle size groups in a turbulent flow. When particles are uni-
formly distributed, the collision kernelG depends on the sta-
tistics of relative velocities among colliding particles. In the
first, spherical formulation, the average collision kernel is
described as the average volume of fresh carrier fluid enter-
ing a collision sphere per unit time,

Gsph= 2pR2kuwrul = 2pR2E uwrupswrddwr . s1d

The collision sphereis defined as a sphere of radiusR=r1

+r2, centered on a reference particle of radiusr1. Herer1 and
r2 are the radii of the two particle size groups,wr is the radial
or longitudinal component ofw, the velocity of anr2 particle
relative to anr1 particle when they are separated by a dis-
tance ofR. Namely,wr =w ·R /R,R is the separation vector
of magnitude equal toR. pswrd is the probability density of
wr. One important assumption in Eq.s1d is that the relative
velocity w is incompressible, thus influx and outflux over the
surface of the collision sphere are equal. The collision kernel
is then half the surface area multiplied by the average mag-
nitude of the radial relative velocity. The validity of this
assumption has been discussed for finite-inertia particles in
direct numerical simulationssDNSd by Wanget al.12

In the second, cylindrical formulation, the collision ker-
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nel is described in terms of the relative velocity directly and
is defined as an integrated, cylindrical volume passing
through the reference particle per unit time, with cross-
sectional areapR2 and lengthuwu. The average collision ker-
nel is expressed as

Gcyl = pR2kuwul = pR2E E E w pswdd3w, s2d

where w;uwu, and pswd is the probability density of the
vector velocityw when the pair is separated byR. In both
the above equations, the angle brackets denote averages over
all orientations ofR and spatial locations of the reference
particle. We note that the cylindrical formulation, which em-
ploys the concept of a collision cylinder, is standard textbook
material in statistical mechanicsssee, e.g., McQuarrie25d and
multiphase flow textbooksse.g., Croweet al.26d.

The cylindrical formulation was viewed in Saffman and
Turner1 as an alternative rigorous formulation. The cylindri-
cal volume due to the relative velocityw is often termed as
the swept volumein atmospheric science literature and clas-
sical statistical mechanics, and the concept of swept volume
has served as foundation for the physical interpretation ofG.
This cylindrical formulation is often taken as a rigorous start-
ing point for the kinematic formulation of geometric colli-
sion kernel and has been rederived many times by others
se.g., Abrahamson,2 Yuu4d. Both formulations have been
widely cited in the literature, and the choice between the two
has been a matter of preference of the investigators.

Wang et al.9 questioned whether the two formulations
are equivalent for different collision mechanisms. They dem-
onstrated that the spherical formulation is always correct
when applied to different situations, and that the cylindrical
formulation overpredicts the collision kernel by about 20%–
25% for collisions due to a uniform shear or due to nonuni-
form shears in a turbulent flow. They pointed out that the two
formulations are equivalent ifpswd is everywhere the same
on the surface of the collision sphere, namely, the probability
density ofw is independent of the orientation ofR; for ex-
ample, collisions due to gravitational settling or due to un-
correlated relative motion such as Brownian motion. In gen-
eral, Wanget al.9 suggested that the cylindrical formulation
should not be used for treating turbulent coagulation.

In this paper, we go one step further to demonstrate that
it is possible to reconcile the cylindrical formulation with the
spherical formulation if the cylindrical formulation is more
carefully constructed such that the orientation dependence of
pswd is taken into consideration explicitly. Two specific col-
lision mechanisms for which Eqs.s1d and s2d lead to differ-
ent results are considered, namely, the geometric collisions
due to a uniform shearsvon Smoluchowski27d and nonuni-
form shear rates in isotropic turbulencesSaffman and
Turner1d. A generalized form of the cylindrical formulation is
then proposed and shown to yield the exact same result as
the spherical formulation for all the collision mechanisms
discussed in the work of Wanget al.9 Finally, we will illus-
trate the difference between kinematic statistics and statistics
for colliding particle pairs.

We shall limit our discussions here to the case that the

particle concentrations are spatially uniform. The correction
due to nonuniform concentrations in terms of the radial dis-
tribution function has been discussed in other studies
sSundaram and Collins,11 Wang et al.,12 Zhou et al.13d. We
also note that the correction to the kinematic formulation of
G due to hydrodynamic interactions has been discussed re-
cently by Wanget al.22

II. COLLISION RATE DUE TO A UNIFORM SHEAR

The exact collision kernel of passive particles due to a
uniform shear was first derived by von Smoluchowski.27 We
shall first revisit this case since it was shown in the work of
Wanget al.9 that the cylindrical formulation overpredicts the
collision kernel even for this very simple case. The purpose
here is to demonstrate how to correct the cylindrical formu-
lation, Eq. s2d, so that the exact collision kernel can be re-
covered.

We begin the analysis by considering the motion of
size-2 particles relative to a size-1sreferenced particle. The
relative velocity is given as

w = swx,wy,wzd = sgz,0,0d = sgRcosu,0,0d, s3d

whereg is the shear rate,z is the relative coordinate in thez
direction, andu is the polar anglesFig. 1d. While kwl may be
obtained easily without referring to the probability density
function ofpswd, it is instructive to explicitly considerpswd.
The probability density function ofpswd takes the form

pswd = pswxddswyddswzd. s4d

Therefore, Eq.s2d becomes

G12
Cyl = pR2E uwxupswxddwx. s5d

The probability distributionpswxd can be obtained by the
probability distribution ofu over the collision sphere. Since
the area of the collision sphere is obtained in terms ofu as

2pR2E
0

p

sinu du,

it follows that the probability density ofu is

psud = 1
2sinu. s6d

Sincedwx=gRs−sinuddu, we have

FIG. 1. Sketch for detailed analysis of collisions due to a simple shear.
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pswxd = H1/s2gRd if − gRø wx ø gR

0 otherwise.
J s7d

Therefore, the cylindrical formulation leads to

G12
Cyl = pR2E

−gR

gR 1

2gR
uwxudwx = 2pR2E

0

gR 1

2gR
wxdwx

=
p

2
gR3. s8d

This is about 20% larger than the correct result which would
have been obtained based on the spherical formulation9

G12
Sph= 2pR2E pswrduwrudwr = 4

3gR3. s9d

The problem with the cylindrical formulation originates
from the fact that a givenwx is only achieved at a specificu,
as suchpswxd is not independent ofu, or stated in another
way, the subset of size-2 particles with a givenwx is not
uniformly distributed over the collision sphere.

Now consider the actual swept volume due to a differ-
ential range ofwx. It is equal towx times the differential
cross-section area 2ÎR2−z2dz=2ÎR2−swx/gd2dwx/g. Note
that the cross-section area is the projected area perpendicular
to the relative motion or onto they-z plane, referring to Fig.
1 for the geometric detail. Therefore the cylindrical formula-
tion can be corrected in the sense that the swept volume for
eachwx is summed up,

G12
Cyl,corrected=E

−gR

gR

uwxu2ÎR2 − swx/gd2dwx/g. s10d

This can be integrated and shown to yield the correct result
as the spherical formulation, Eq.s9d. The corrected formula-
tion can be rewritten as

G12
Cyl,corrected= pR2E

−gR

gR

uwxu
1

2gR
F 4

p
Î1 −S wx

gR
D2Gdwx.

s11d

The term in the square brackets can be viewed as a correc-
tion factor when compared to the original cylindrical formu-
lation, Eq.s8d. A plot of this correction factor is given in Fig.
2, showing that the smalleruwru range contributes more to the
collision kernel than what is assumed in the original cylin-
drical formulation, due to larger projected cross-sectional
area. This correction is needed in addition to the consider-
ation of pswxd. The above analysis shows that we must con-
sider contribution by eachw to the total swept volume care-
fully when pswd depends on the orientation ofR.

III. COLLISION RATE DUE TO NONUNIFORM SHEARS
IN ISOTROPIC TURBULENCE

Next we consider collisions of small passive particles
driven by nonuniform shears in an isotropic turbulence, for
which the cylindrical formulation again overpredicts the geo-
metric collision kernel.9 Following Wanget al.,9 we shall
first introduce the necessary notations to describe the relative
motion at the scale ofR which is assumed to be smaller than

the Kolmogorov scale. As in the work of Saffman and
Turner,1 the radial relative velocity is modeled as a Gaussian
random variable with variance equal to

kwr
2l = R2KS ]u

]x
D2L =

R2

15

ē

n
= 1

15

R2

tk
2 ; s2, s12d

whereu is the x component of the fluid velocity,tk is the
Kolmogorov time scale,n is the fluid kinematic viscosity,
andē is the average rate of viscous dissipation per unit mass.
In reality the probability distribution of relative velocity may
deviate significantly from the Gaussian distribution.28,29 It is
assumed here so that the collision kernel can be explicitly
obtained in closed forms and as such different formulations
can be compared. The major conclusions of the paper are not
affected by this assumption.

In terms of velocity components in a spherical coordi-
nate system over the collision sphere, the probability distri-
bution of w can be expressed as9,28

pswd =
1

2sÎ2psd3
expS−

wr
2

2s2 −
wu

2 + wf
2

4s2 D
=

1

2sÎ2psd3
expS−

wr
2

4s2 −
w2

4s2D . s13d

The dependence ofpswd on the orientation ofR is evident
since

wr = wzcosu + swxcosf + wysinfdsinu,

whereu is the polar angle andf is the azimuthal angle. The
dependence is originated from the fact that the statistics of
longitudinal velocity derivative differ from the statistics of
transverse velocity derivative.9,28 Previously, it was shown
that this dependence causes the cylindrical formulation to
overpredict the collision kernel by about 25%.9

Here we shall demonstrate that it is actually possible to
reconcile the cylindrical formulation with the spherical for-
mulation. To proceed, we consider the contribution of a
given w to the collision kernel. We shall redefine the polar
angle relative to the direction of −w ssee Fig. 3d. Then wr

=−w cosu and Eq.s13d can be written as

FIG. 2. The correction factor implied by Eq.s11d.
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psw;ud =
1

s2pd1.52s3expF−
w2s1 + cos2ud

4s2 G . s14d

Therefore, for a given subset of size-2 particles with relative
velocity w, the explicit dependence ofpswd on the orienta-
tion of R, as measured byu, has been made explicit by the
above expression; namely, the variance ofw varies withu.
For this reason, the swept volume must be computed care-
fully for each value ofu. Consider the differential region on
the collision sphere with the polar angle changing fromu to
u+du. The area of this differential surface isdA
=s2pRsinudsR dud=2pR2sinu du. The net swept volume
through this differential area is equal tow times dAcosu
si.e., the projected area in the plane perpendicular towd.
Therefore, in terms of the swept volume, we can generalize
Eq. s2d as

GCyl,corrected=E E E w d3wE
0

p/2

du psw;ud2pR2

3sinu cosu, s15d

wherepsw ,ud is the probability density ofw at the specific
orientation angleu. Note that only half of the collisional
sphere with inward flux as defined by 0øuøp /2 needs to
be considered. The above equation would reduce exactly to
the original cylindrical formulation, Eq.s2d, if psw ;ud were
assumed to be independent ofu.

Substituting Eq.s14d into Eq. s15d, we can carry out the
integration overu, yielding

GCyl,corrected=
1

Î2p

R2

s
E E E 1

w
FexpS−

w2

4s2D
− expS−

w2

2s2DGd3w. s16d

Since the integrand in Eq.s16d only depends on the magni-
tude of w, we can writed3w=4pw2dw=2pwdw2 and the
above expression becomes

GCyl,corrected= Î2p
R2

s
E

0

` FexpS−
w2

4s2D
− expS−

w2

2s2DGdw2, s17d

which can be integrated to obtain

GCyl,corrected= 2Î2pR2s =Î8p

15

R3

tk
. s18d

Therefore, the correct result based on the spherical
formulation1,9 is recovered.

To quantify the difference between the original cylindri-
cal formulation and the corrected cylindrical formulation, we
can rewrite Eq.s17d as

GCyl,corrected= R2sE
0

`

FCyl,correctedS w

2s
Ddw

2s
, s19d

where the integrand is

FCyl,correctedsxd = 8Î2p xfe−x2
− e−2x2g . s20d

While the original formulation can be written similarly but
with a different integrand, according to the Appendix in the
work of Wanget al.,9 as

GCyl = R2sE
0

`

FCylS w

2s
Ddw

2s
, s21d

FCylsxd = 4pÎ2x2erfsxde−x2
, s22d

where the standard error function is defined as erfsxd
=s2/Îpde0

xexps−u2ddu. In Fig. 4, the two integrands are
compared, showing that the original formulation overpredicts
the contributions from intermediate to large magnitudes of
relative velocities. The net effect is a roughly 25% overpre-
diction of the collision kernel.9

FIG. 3. Notation for the generalized cylindrical formulation.

FIG. 4. Comparison of the two integrands in Eqs.s20d and s22d.
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IV. THE GENERALIZED CYLINDRICAL FORMULATION

In light of the above discussions and derivations, we
shall now propose a generalized cylindrical formulation as
follows:

GCyl,generalized=E E E d3wE
0

2p

dfE
0

p/2

du psw;u,fd

3sR2sinu cosudw, s23d

where psw ;u ,fd denotes the probability density ofw at a
specific orientation on the surface of the collision sphere as
defined by a polar angleu, relative to the direction of −w,
and an azimuthal anglef ssee Fig. 3d. By definition,

E E E d3w psw;u,fd = 1,

for any u andf combination. The integrand in Eq.s23d can
be viewed as the product of three groups:s1d the differential
cross-sectional area, perpendicular tow, given by sR dud
3sRsinu dfdscosud; s2d the relative swept distance per unit
time given byw; s3d the percentage of the size-2 particles
seen by a size-1 particle with relative velocity ranging from
w to w+d3w, given by psw ;u ,fdd3w. Once again, for a
given w, only half of the collision sphere surface where in-
ward fluxes are realized, as defined by 0øuøp /2, needs to
be consideredsFig. 3d.

Equation s23d is simply a generalization of Eq.s15d.
When applied to isotropic turbulence discussed in the last
section,psw ;u ,fd is independent off, Eq. s23d reduces to
Eq. s15d.

We shall now demonstrate that Eq.s23d also applies to
the case of collisions due to a simple uniform shear which
was discussed in Sec. II. Referring to Fig. 5, for a givenwx,
we can write

psw;u,fd = dswx − gRcosaddswyddswzd, s24d

where cosa;wx/ sgRd. With the definition ofu and f as
shown in Fig. 5, we haveRcosa=Rsinu cosf. Therefore,
Eq. s23d becomes

GCyl,generalized= 2E
0

gR

wxdwxE
−a

a

dfE
a

p/2

du

3dswx − gRsinu cosfdsR2sinu cosud.

s25d

In writing the above, we have recognized the fact that the
contribution to the collision kernel from −gRøwxø0 is the
same as the contribution from 0øwxøgR. The above inte-
gral can be carried out analyticallyssee the Appendixd to
yield

GCyl,generalized= 4
3gR3, s26d

which recovers the expected result of the collision kernel due
to a uniform shear.

It is trivial to show that the generalized form reduces to
the original cylindrical formulation ifpsw ;u ,fd is indepen-
dent ofu andf. We can cite two examples here. The first is
the collision kernel due to gravitational settling, for which
psw ;u ,fd is given by

psw;u,fd = dswxddswyddswz − DVd, s27d

whereDV is the differential settling rate.
The second example is collisions due to Brownian mo-

tion or between random molecules. In this case, we have

kwr
2l = kwu

2l = kwf
2l ; s2 s28d

and

psw;u,fd =
1

sÎ2psd3
expS−

w2

2s2D . s29d

Therefore, for both the gravitational collision and
Brownian collision,psw ;u ,fd is independent of the orienta-
tion of R. As shown previously,9 the original cylindrical for-
mulation and the spherical formulation then give identical
results.

Finally, we shall give the generalized cylindrical formu-
lation, Eq.s23d, an interpretation that would relate it directly
to the spherical formulation given by Eq.s1d. Rewriting Eq.
s23d as

GCyl,generalized= s2pR2d E E E d3w
1

2pR2E
0

2p

df

3E
0

p/2

dusR2sinudpsw;u,fduwru, s30d

whereuwru;w cosu denotes the magnitude of inward radial
relative velocity corresponding to a particular combination of
w ,u, andf. The combinationfs2pR2d−1df dusR2sinudg rep-
resents the probability of finding a pair at a specific location
of the collision sphere if the pair distribution density is inde-
pendent of the orientation ofR. It is then evident that the
combined integration provides a means to compute the aver-
age value ofwr over all realizations of the contacting pairs,
as averages over all possiblew and all possible orientations
for a givenw have been considered. This shows that Eq.s23d
is essentially equivalent to Eq.s1d, but with an explicit ex-
pression on how the average ofwr should be obtained.

FIG. 5. Notation for the generalized formulation when applied to collisions
due to a simple shear.
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V. THE AVERAGE RELATIVE VELOCITY OF
COLLIDING PARTICLE PAIRS

Here we shall comment on the average radial relative
velocity kuwrucl based on only those particle pairs which par-
ticipate in collision events. This radial relative velocity is
referred to as the normal collision velocity in the study of
Mei and Hu8 or the radial relative velocity for colliding pairs
in the work of Wanget al.12 For an isotropic Gaussian tur-
bulence, the analysis of Mei and Hu8 showed thatkuwrucl
=1.58kuwrul, while the theory of Wanget al.12 led to kuwrucl
=1.57kuwrul. Herekuwrul is the kinematic average radial rela-
tive velocity used in the collision kernel formulation, and is
computed using all pairs that are separated at the near at-
contact distancessee, e.g., the work of Wanget al.12d. In the
spherical formulation, the two different relative velocity sta-
tistics are given as8,12

kuwrul =E wrpswrddwr , s31d

kuwrucl =
E wr

2pswrddwr

E wrpswrddwr

. s32d

We note that only the kinematic relative velocitykuwrul is
needed for the kinematic formulation of the collision kernel.

However, the radial relative velocity for colliding pairs,
kuwrucl, must be used when addressing the consequence of
particle-particle collisional interactions, such as local hydro-
dynamic interactions and collision and coalescence efficien-
cies ssee, e.g., the work of Wanget al.22d. These near-field
interactions determine whether two approaching particles
can overcome the additional viscous resistance to take ad-
vantage of the molecular attractive force to actually result in
a coalescence or simply bounce offssee, e.g., the work of
Hocking30 and Jonas31d. The relative approaching velocity or
average kinetic energy of geometrically colliding particles
plays a key role as this sets the initial conditions for the
analysis of near-field interactions. As emphasized in the
work of Mei and Hu8 and Wanget al.,12 the two relative
velocities are quite different in magnitude and they should be
acquired separately.8,12

In the spirit of the generalized cylindrical formulation,
Eq. s30d, we can also write

kuwrul =
1

2p
E E E d3wE

0

2p

dfE
0

p/2

du sinu

3psw;u,fdw cosu, s33d

and

kuwrucl =

E E E d3wE
0

2p

dfE
0

p/2

du sinu psw;u,fdw2cos2 u

E E E d3wE
0

2p

dfE
0

p/2

du sinu psw;u,fdw cosu

. s34d

We can show that Eq.s33d is identical to Eq.s31d, and that
Eq. s34d is identical to Eq.s32d.

For the case of simple shear flow discussed in Sec. II, we
can obtain, using either the spherical formulation or the gen-
eralized cylindrical formulation, that

kuwrul =
2

3p
gR s35d

and

kuwrucl =
p

10
gR=

3p2

20
kuwrul = 1.480kuwrul. s36d

Therefore,kuwrucl is 48% larger thankuwrul.
For isotropic Gaussian turbulence, we can obtain

kuwrul =Î 2

p
s s37d

and

kuwrucl =Îp

2
s =

p

2
kuwrul = 1.5708kuwrul. s38d

Obviously, the original, incorrect cylindrical formulation
will be unable to produce the correct statistics forkuwrul and
kuwrucl, as expected from the extensive discussions on the
collision kernel given in previous sections. Overpredictions
of the collision kernel by the original cylindrical formulation
lead to exactly the same levels of overpredictions ofkuwrul, as
the collision kernel and the average relative velocity are pro-
portional to one another.

VI. CONCLUSIONS

In this short paper, we demonstrate that the dependence
of the probability distribution ofw on the orientation ofR
exists for particle collisions due to a simple uniform shear or
nonuniform shears in an isotropic turbulence. For these
cases, the concept of the swept volume can still be applied,
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but careful considerations of the orientational dependence
are necessary to correctly express the amount of the swept
volume. In this manner, the cylindrical formulation can be
corrected to give identical results as the spherical formula-
tion. The analyses in this paper also emphasize the impor-
tance of relating the swept volumesa concept in the cylin-
drical formulationd to differential regions over the collision
spheresa concept in the spherical formulationd. Furthermore,
a generalized cylindrical formulation is proposed and is
shown to be identical to the spherical formulation for all
collision mechanisms considered by Wanget al.9 In other
words, orientation-dependent probability density of
w ,psw ;u ,fd, is needed to correct the cylindrical formula-
tion.

We hope that the detailed analyses provided in this short
paper further clarify the origin of errors in the commonly
used cylindrical formulation, although the level of errors is
perhaps tolerable for most engineering and meteorological
applications.

The two collision mechanisms analyzed in detail here
were only applied to passivesinertialessd particles, it is ex-
pected that the concept and the generalized formulation
should be equally applicable to inertial particles when the
preferential concentration effect is taken into account in
terms of the radial distribution function.11–15A generalization
of the radial distribution function in terms of the orientation
angles ofR would be necessary in general.

Finally, a distinction between kinematic statistics and
statistics for colliding particle pairs was also made. For ex-
ample, the radial relative velocity for colliding particle pairs
can be 30%–60% higher than the kinematic radial relative
velocity.
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APPENDIX: DERIVATION OF EQ. „26… FROM EQ. „25…

Introducings=sinu and using the property of the delta
function, we can carry out the integration overu as

E
a

p/2

du dswx − gRsinu cosfdsR2sinu cosud

=E
sin a

1

dsdswx − gRscosfdsR2sd

=
1

sg cosfd2E
sin a

1

sgRscosfd

3dswx − gRscosfddsgRscosfd =
1

sg cosfd2wx.

sA1d

Therefore, Eq.s21d can be written as

GCyl,generalized= 2gR3E
0

1

r2drE
−a

a 1

cos2 f
df

= 2gR3E
0

1

r2dr 2E
r

1 dq

q2Î1 − q2
,

with dummy variablesr;wx/ sgRd andq;cosf. Exchang-
ing the order of integration, we can carry out the integration
as follows:

GCyl,generalized= 4gR3E
0

1 dq

q2Î1 − q2

q3

3
= 4

3gR3. sA2d
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