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Kinematic descriptions of the rate of collision between two groups of particles are central to a
variety of problems in cloud microphysics, engineering applications, and statistical mechanics.
When particles are uniformly distributed, the collision kerfialepends on the statistics of relative
velocities among colliding particles. In the pioneering work by Saffman and Tut@m the
collision of drops in turbulent clouds,” J. Fluid Mech, 16 (1956], two different formulations were
used to calculatd’ between two arbitrary particle size groups in a turbulent flow. The first or
spherical formulation is based on the radial or longitudinal compongof the relative velocityw
between two particles at contadt®'=27RX|w,|), whereR is the geometric collision radius. The
second or cylindrical formulation is based on the vector velocity it§&f= 7RX|w|). It was shown
previously by Wanget al.[“Statical mechanical descriptions of turbulent coagulation,” Phys. Fluids
10, 2647 (1998] that the spherical formulation is always correct when applied to different
situations, and that the cylindrical formulation overpredicts the collision kernel by about 20%—25%
for collisions due to a uniform shear or due to nonuniform shears in a turbulent flow. In this paper,
it is shown that the overpredictions in the cylindrical formulation are originated from the
dependence of the probability distributionwfon the orientation oR, and can be corrected for all
situations if this orientation dependence is explicitly accounted for. A generalized cylindrical
formulation is then proposed and is shown to be identical to the spherical formulation for all
collision mechanisms considered in Waetgal. (1998. Finally, we illustrate the difference between
kinematic statistics and statistics for colliding particle pairs. For example, the relative velocity for
colliding particle pairs can be 30%—-60% larger than the kinematic relative velocit30@®
American Institute of Physic§DOI: 10.1063/1.1928647

I. INTRODUCTION Turner! two different formulations of” were introduced to
describe geometric collision rates between two arbitrary par-

Coagulational growth of small solid particles and drop-ticle size groups in a turbulent flow. When particles are uni-
lets in a turbulent flow is of importance to a variety of prob- formly distributed, the collision kerndl depends on the sta-
lems in engineering and meteorology. Examples includaistics of relative velocities among colliding particles. In the
warm-rain precipitation, cloud processing of aerosols, profirst, spherical formulation, the average collision kernel is
duction of titanium-dioxide pigments, fine spray combustion,described as the average volume of fresh carrier fluid enter-
and formation of industrial emissions. The overall coagulaing a collision sphere per unit time,
tion rate of finite-size particles in fluid turbulence is gov-
erned by three consecutive and interrelated procesgégs:
geometric collision due to relative motibi® and nonuni-
form distributiond* ™ caused by the carrier fluid turbulence,
(2) collision efficiency due to local particle-particle aerody- The collision spheras defined as a sphere of radiBsr,
namic or hydrodynamic interaction&;*2and(3) coagulation ~ +T, centered on a reference particle of radiysHerer,; and
efficiency as determined by surface  sticking I, are the radii of the two particle size groups,is the radial
characteristic&>?* or longitudinal component of/, the velocity of arr,, particle

The average collision kerngl between two particle size relative to anr; particle when they are separated by a dis-
groups of average number concentratiopandn, measures tance ofR. Namely,w,=w-R/R,R is the separation vector
the rate of collisions between the two size groups normalize®f magnitude equal t. p(w,) is the probability density of
by (nyn,). The parametrization oF in terms of kinematic ~W,. One important assumption in E€L) is that the relative
particle-pair statistics makes it feasible to model the timevelocityw is incompressible, thus influx and outflux over the
evolution of particle size distribution using the Smolu- surface of the collision sphere are equal. The collision kernel
chowski collision-coalescence equatidsee, e.g., Prup- is then half the surface area multiplied by the average mag-
pacher and Kle%ﬁ)_ In the pioneering work by Saffman and hitude of the radial relative velocity. The validity of this

assumption has been discussed for finite-inertia particles in

; . : X 12
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831-8160. Fax(302 831-3619. Electronic mail: Iwang@me.udel.edu In the second, cylindrical formulation, the collision ker-

FSph: 27TR2<|Wr|> = 277sz |Wr|p(Wr)dWr (1)
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nel is described in terms of the relative velocity directly and 0 _4z
is defined as an integrated, cylindrical volume passing a
through the reference particle per unit time, with cross- R
sectional arearR? and lengthw|. The average collision ker- y
nel is expressed as z+dz

I = 7R|w|) = 7R f f J w p(w)dw, ) i

where w=|w|, and p(w) is the probability density of the
vector velocityw when the pair is separated I®. In both

the above equations, the angle brackets denote averages over
all orientations ofR and spatial locations of the reference
particle. We note that the cylindrical formulation, which em-

ploys the concept of a collision cylinder, is standarr%d textbooksarticle concentrations are spatially uniform. The correction
material in statistical mechani¢see, e.g., McQuar® and e to nonuniform concentrations in terms of the radial dis-

: 2
multiphase flow textbookee.g., Croweet al: % tribution function has been discussed in other studies
The cylindrical formulation was viewed in Saffman and (Sundaram and Colling, Wang et al,’ Zhou et al®). We
Turnef as an alternative rigorous formulation. The cylindri- 516 note that the correction to the kinematic formulation of

cal volume due to the relative velocity is often termed s 1 qye to hydrodynamic interactions has been discussed re-
the swept volumé atmospheric science literature and Clas'cently by Wanget al22

sical statistical mechanics, and the concept of swept volume
has served as foundation for the physical interpretatiol. of
This cylindrical formulation is often taken as a rigorous start-!l- COLLISION RATE DUE TO A UNIFORM SHEAR

ing point for the kinematic formulation of geometric colli- The exact collision kernel of passive particles due to a
sion kernel and has been rederived many times by othergniform shear was first derived by von Smoluchow®Rive
(e.g., Abrahamsof,Yuu®). Both formulations have been shal first revisit this case since it was shown in the work of
widely cited in the literature, and the choice between the twoyanget al? that the cylindrical formulation overpredicts the
has been a matter of preference of the investigators. collision kernel even for this very simple case. The purpose
Wang et al.” questioned whether the two formulations here is to demonstrate how to correct the cylindrical formu-
are equivalent for different collision mechanisms. They dem'lation’ Eq(z), so that the exact collision kernel can be re-
onstrated that the spherical formulation is always correctgyered.
when applied to different situations, and that the cylindrical  \ye begin the analysis by considering the motion of

formulation Ovel’prediCtS the collision kernel by about 20%—size_2 particles relative to a Size(ﬂeferen0¢ partic|e. The
25% for collisions due to a uniform shear or due to nonuni-re|ative velocity is given as

form shears in a turbulent flow. They pointed out that the two

formulations are equivalent {i(w) is everywhere the same W= (Wy, Wy, W) = (72,0,0) = (YR c0s6,0,0), 3)

on the surface of the collision sphere, namely, the probabilityyhere y is the shear rate; is the relative coordinate in the
density ofw is independent of the orientation &; for ex-  direction, andb is the polar angl¢Fig. 1). While (w) may be
ample, collisions due to gravitational settling or due to Un-gptained easily without referring to the probability density
correlated relative motion such as Brownian motion. In genfynction of p(w), it is instructive to explicitly considen(w).

eral, Wanget al? suggested that the cylindrical formulation The probability density function gb(w) takes the form
should not be used for treating turbulent coagulation.

In this paper, we go one step further to demonstrate that ~ P(W) = P(W) S(wy) 5(w;). (4)
it is possible to reconcile the cylindrical formulation with the Therefore, Eq(2) becomes
spherical formulation if the cylindrical formulation is more
carefylly cons.tructed sgch thfat the opgntatlon depelj(_jence of F%" = 7R2 f W W) dvyg. (5)
p(w) is taken into consideration explicitly. Two specific col-
lision mechanisms fqr which Eqél) and (2) lead tq d|ffer_-_ The probability distributionp(w,) can be obtained by the
ent results are considered, namely, the geometric collisions S S g .
. 7 .~ probability distribution ofé over the collision sphere. Since
due to a uniform sheafvon Smoluchowskl) and nonuni- . . . :
S . the area of the collision sphere is obtained in termg ab
form shear rates in isotropic turbuleng&affman and
Turner). A generalized form of the cylindrical formulation is 5 sz”
ar

G. 1. Sketch for detailed analysis of collisions due to a simple shear.

then proposed and shown to yield the exact same result as sin 6 do,

the spherical formulation for all the collision mechanisms

discussed in the work of Wangt al? Finally, we will illus- it follows that the probability density of is

trate th_e _dlfferen_ce bet\_/veen kinematic statistics and statistics 0(6) = % sin 6. (6)

for colliding particle pairs.
We shall limit our discussions here to the case that theSincedw,=yR(-sin #)d§, we have

0
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1/(2yR) if —yRsw, <R 14— oy
p(wy) = . (7) ] :
0 otherwise. 1.2 C
Therefore, the cylindrical formulation leads to 1.0 _ _
o o1 3 a
Y= 7R —|wyJdw, = 27R? — W, dw 08 ] r
12 29R 29R
-yR Y 0 Y 0.6—: :_
:7_T),R3_ (8) 0.4 - o
2 ] r
0-2__ __
This is about 20% larger than the correct result which would ] C
have been obtained based on the spherical formufation 0.0 ——————
1.0 05 0.0 0.5 1.0
w
r$ph= 277R2J p(w,)|w;|dw;, = $yRC. 9) "R

. L . . FIG. 2. The correction factor implied by E¢L1).
The problem with the cylindrical formulation originates

from the fact that a givem, is only achieved at a specifit,
as suchp(w,) is not independent o#, or stated in another
way, the subset of size-2 particles with a given is not the Kolmogorov scale. As in the work of Saffman and

uniformly distributed over the collision sphere. Turner! the radial relative velocity is modeled as a Gaussian
Now consider the actual swept volume due to a differ-random variable with variance equal to

ential range ofw. It’ |§ egua_l tow2 times t|2’]e differential w2\ Re LR

cross-section areavR?-z2dz=2\R?-(w,/y)?dw,/y. Note W2 =R | = = ——=5— =0 (12

that the cross-section area is the projected area perpendicular X 15v T«

to the relative motion or onto the-z plane, referring to Fig. \\hereu is the x component of the fluid velocityr, is the
1 for the geometric detail. Therefore the cylindrical formula- Kolmogorov time scaley is the fluid kinematic viscosity

tion can be corrected in the sense that the swept volume fQl, s the average rate of viscous dissipation per unit mass.
eachw, is summed up, In reality the probability distribution of relative velocity may

R — deviate significantly from the Gaussian distributf8° It is

I —f Wi 2VR? = (w/ ) “dws/ y. (100 assumed here so that the collision kernel can be explicitly
R obtained in closed forms and as such different formulations

This can be integrated and shown to yield the correct resultan be compared. The major conclusions of the paper are not

as the spherical formulation, E¢@). The corrected formula- affected by this assumption.

tion can be rewritten as In terms of velocity components in a spherical coordi-
nate system over the collision sphere, the probability distri-
R 1|4 Wy |2 : 9
[$yhcorrecteds 2 f W =——| — /1~ (_X) dw,. bution ofw can be expressed %%
- 2yR| 7 YR
" (W) = ———ex Wrz Wz‘g—w W )
(D P (2ma) 20> 407
The term in the square brackets can be viewed as a correc- 5
. . S 1 w2 ow
tion factor when compared to the original cylindrical formu- - —exp-—5-— (13)
lation, Eq.(8). A plot of this correction factor is given in Fig. 2(\2mo)® 40”  4o”
2, s_h(_)wmg that the smallé\n{,| range cont.nbutes more to th_e The dependence gf(w) on the orientation oR is evident
collision kernel than what is assumed in the original cylin- .
. . . " ince
drical formulation, due to larger projected cross—sectlonaF

area. This correction is needed in addition to the consider- ~ w; =w,C0S6+ (W,C0S¢ + W,Sin ¢)sin 6,
ation of p(w,). The above analysis shows that we must con-

sider contribution by eactv to the total swept volume care- wheregis the_ pole_lr _angle ane is the azimuthal angle: T_he
fully when p(w) depends on the orientation B dependence is originated from the fact that the statistics of

longitudinal velocity derivative differ from the statistics of
transverse velocity derivativé’® Previously, it was shown
that this dependence causes the cylindrical formulation to
overpredict the collision kernel by about 25%.

Next we consider collisions of small passive particles  Here we shall demonstrate that it is actually possible to
driven by nonuniform shears in an isotropic turbulence, forreconcile the cylindrical formulation with the spherical for-
which the cylindrical formulation again overpredicts the geo-mulation. To proceed, we consider the contribution of a
metric collision kernef. Following Wang et al.’ we shall givenw to the collision kernel. We shall redefine the polar
first introduce the necessary notations to describe the relativengle relative to the direction ofw (see Fig. 3 Thenw,
motion at the scale dR which is assumed to be smaller than =—w cosé and Eq.(13) can be written as

IIl. COLLISION RATE DUE TO NONUNIFORM SHEARS
IN ISOTROPIC TURBULENCE
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Z 1

corrected [
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R [
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FIG. 3. Notation for the generalized cylindrical formulation. T 4T0ﬁ T f50

FIG. 4. Comparison of the two integrands in E¢&0) and (22).

w21 g
DW: 6) = 5 )1% e p[ (1+co 0)}' (14

] ) ) ] ) Cyl,corrected— ’Zﬂ—f [exp(— lz)
Therefore, for a given subset of size-2 particles with relative alo 452
velocity w, the explicit dependence @fw) on the orienta-
tion of R, as measured by, has been made explicit by the —exp< w’ )}dwz (17)
above expression; namely, the varianceaofaries with 6. 207
For this reason, the swept volume must be computed care-
fully for each value off. Consider the differential region on Which can be integrated to obtain
the collision sphere with the polar angle changing fréno
0+d6. The area of this differential surface islA [Cyl.corrected— o,/ 02 - — 8_7753 (18)
=(2wRsin 6)(R df)=27R°sin §dé. The net swept volume 15 7
through this differential area is equal @ times dAcosé
(i.e., the projected area in the plane perpendiculamio Therefore, the correct result based on the spherical

. 9.
Therefore, in terms of the swept volume, we can generalizéommlat'ori1 is recovered. o o
Eq.(2) as To quantify the difference between the original cylindri-

cal formulation and the corrected cylindrical formulation, we
o can rewrite Eq(17) as

ronamsc. [ [ [ [ anpwioznre
0

X sin 6 cos#, (15

[

["Cyl.corrected— RZO'f FCy. correcte{ 20) :W (19)
0

. . ) _ where the integrand is
wherep(w, ) is the probability density ofv at the specific

orientation angled. Note that only half of the collisional FCyI,correctegX)zgv'zx[e—xz_e—sz]_ (20)
sphere with inward flux as defined by=09=< 7/2 needs to

be considered. The above equation would reduce exactly t/hile the original formulation can be written similarly but
the original cylindrical formulation, Eq(2), if p(w; 6) were  with a different integrand, according to the Appendix in the

assumed to be independent f work of Wanget al.’ as
Substituting Eq(14) into Eqg. (15), we can carry out the
integration overd, yielding o= Rzo'f ch( )dw 21)
0 20"
rCyI corrected— __— f f j [ % )
V27 o FOV(x) = 4m2x2erf(x)e™, (22
- exr( )]d3vv (16) where_the standard error function is defined as(xgrf
20° =(2/Nm) [§exp(-u?)du. In Fig. 4, the two integrands are

compared, showing that the original formulation overpredicts
Since the integrand in E¢16) only depends on the magni- the contributions from intermediate to large magnitudes of
tude of w, we can writed®w=4mw’dw=27wdw? and the relative velocities. The net effect is a roughly 25% overpre-
above expression becomes diction of the collision kernel.
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z R a 72
FCyI,generaIized: 2] dewxf d¢J do
0 @ @

/ ’ X (W, — yRsin 6 cos ¢)(R?sin 6 cosb).
z (25)

x In writing the above, we have recognized the fact that the
contribution to the collision kernel fromyR<w,=<0 is the
same as the contribution from<Ow, < yR. The above inte-
gral can be carried out analyticalllgee the Appendixto
yield

Cyl,generalized_ 4 —~3
FIG. 5. Notation for the generalized formulation when applied to collisions r 3 W, (26)

due to a simple shear. which recovers the expected result of the collision kernel due

to a uniform shear.
It is trivial to show that the generalized form reduces to
IV. THE GENERALIZED CYLINDRICAL FORMULATION the original cylindrical formulation ifp(w; 6, ¢) is indepen-
dent of # and ¢. We can cite two examples here. The first is
In light of the above discussions and derivations, wethe collision kernel due to gravitational settling, for which
shall now propose a generalized cylindrical formulation asp(w; 6, ¢) is given by
follows:

P(W; 6, ) = 8wy S(wy) S(w, = AV), (27
2 7l2 . . . .
Cylgeneralized . whereAV is the differential settling rate.
r Jffd3wjo dd’fo do p(w: 6,4) The second example is collisions due to Brownian mo-
. tion or between random molecules. In this case, we have
X (R?sin 6 cosf)w, (23)
(WD) = (Wj) = (W5) = o (29
where p(w; 0, ¢) denotes the probability density @f at a and
specific orientation on the surface of the collision sphere as
defined by a polar anglé, relative to the direction of w, (W0, ) = 1 exd — ﬁ (29)
and an azimuthal anglé (see Fig. 3. By definition, p(w; 6,) = (2mo)? 20%)°
Therefore, for both the gravitational collision and
fffdsw p(w;6,¢) =1, Brownian collision,p(w; 6, ¢) is independent of the orienta-

tion of R. As shown previousl;g/,the original cylindrical for-
mulation and the spherical formulation then give identical
results.

Finally, we shall give the generalized cylindrical formu-
lation, Eq.(23), an interpretation that would relate it directly

for any 6 and ¢» combination. The integrand in ER3) can
be viewed as the product of three groufiy:the differential
cross-sectional area, perpendicularvo given by (R db)
X (Rsin #dg)(cosb); (2) the relative swept distance per unit ; : X .
time given byw: (3) the percentage of the size-2 particlesto the spherical formulation given by E€l). Rewriting Eq.

seen by a size-1 particle with relative velocity ranging from(zs) as
W to w+d®w, given by p(w; 6, ¢)d®w. Once again, for a CyLgeneraized (5 r2 d3 1 (2
givenw, only half of the collision sphere surface where in- r = (27RY) WZWRZ
ward fluxes are realized, as defined bs 6< /2, needs to 0
be consideredFig. 3. 2
Equation (23) is simply a generalization of E(q15). XJ
When applied to isotropic turbulence discussed in the last
section,p(w; 6, ¢) is independent ofp, Eq. (23) reduces to  where|w,|=w cos# denotes the magnitude of inward radial
Eq. (15). relative velocity corresponding to a particular combination of
We shall now demonstrate that E@3) also applies to  w, 6, and¢. The combinatioi(27R?)1d¢ dé(R?sin 6)] rep-
the case of collisions due to a simple uniform shear whictresents the probability of finding a pair at a specific location
was discussed in Sec. Il. Referring to Fig. 5, for a given  of the collision sphere if the pair distribution density is inde-

d¢

do(R%sin §)p(w; 6, d)|w,|,  (30)
0

we can write pendent of the orientation dR. It is then evident that the
combined integration provides a means to compute the aver-
p(W; 6, @) = 8wy — YR cosa) s(wy) S(w,), (24) age value ofw, over all realizations of the contacting pairs,

as averages over all possibmeand all possible orientations
where cosyx=w,/(yR). With the definition of# and ¢» as  for a givenw have been considered. This shows that(28)
shown in Fig. 5, we hav® cosa=Rsin 6 cos¢. Therefore, is essentially equivalent to E@l), but with an explicit ex-
Eq. (23) becomes pression on how the average wf should be obtained.
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V. THE AVERAGE RELATIVE VELOCITY OF However, the radial relative velocity for colliding pairs,
COLLIDING PARTICLE PAIRS (|wy|c), must be used when addressing the consequence of

Here we shall comment on the average radial re|ativé)artiC|e-partiC|e collisional interactions, such as local hydro-
velocity (|w,|,) based on only those particle pairs which par_d_ynamic interactions and collision ang coalescence e_fficien—
ticipate in collision events. This radial relative velocity is Cies (see, e.g., the work of Wanet al™). These near-field
referred to as the normal collision velocity in the study of interactions determine whether two approaching particles
Mei and H or the radial relative velocity for colliding pairs €&n overcome the additional viscous resistance to take ad-
in the work of Wanget al*? For an isotropic Gaussian tur- vVantage of the molecular attractive force to actually result in
bulence, the analysis of Mei and Fishowed that(|w|) ~ @ coalescence or simply bounce ¢éke, e.g., the work of
=1.58|w,|), while the theory of Wanget al?? led to (|w,|o) Hocklng3 gnd_Jonaesl). The relative a_pproachmg_ velomty or
=1.5%|w,|). Here(|w,]) is the kinematic average radial rela- 2Verage kinetic energy of geometr_lc_a_lly collld_mg particles
tive velocity used in the collision kernel formulation, and is P!ays @ key role as this sets the initial conditions for the
computed using all pairs that are separated at the near <,ﬂ_rlalysls of near-field interactions. As emphasized in the

contact distancésee, e.g.. the work of Waref al’?). In the ~ WOrk of Mei and H& and Wanget al.'? the two relative
spherical formulation, the two different relative velocity sta- VelOCities are quite different in magnitude and they should be

: 12
tistics are given &s acquired sepgrateﬂf. . o .
In the spirit of the generalized cylindrical formulation,

(I ) = f W p(we ) dw (31) Eg. (30), we can also write
2 2
fwrzp(wr)dwr <|wr|>:ifffd3wf d¢>f dgsine
(Wl = ———. (32 2m 0 0
fer(Wr)dWr Xp(w; 6, p)w coso, (33

We note that only the kinematic relative velocit,|) is
needed for the kinematic formulation of the collision kernel.and

27 2
ffjd%vf d¢f désin 6 p(w; 6, p)w?cos 6
0 0

2m 2 .
ffjdg’wf dqbf désin 6 p(w; 6, p)w cos @
0 0

<|Wr|c> = (34)

We can show that Eq33) is identical to Eq.(31), and that o -

Eq. (34) is identical to Eq(32). (Iwilo) = \/;F o (Iwirl) = 1.5708|w). (38)
For the case of simple shear flow discussed in Sec. Il, we

can obtain, using either the spherical formulation or the gen-  Obviously, the original, incorrect cylindrical formulation

eralized cylindrical formulation, that will be unable to produce the correct statistics fov,|) and
5 (Iw,|o), as expected from the extensive discussions on the
(w]y ==—9R (35)  collision kernel given in previous sections. Overpredictions
3m of the collision kernel by the original cylindrical formulation
and lead to exactly the same levels of overprediction§\wf|), as
2 the collision kernel and the average relative velocity are pro-
3 .
(Iwr|o) = 17R= =—(jw,|) = 1.48Q|w,|). (36) portional to one another.
10 20
Therefore(|w,|o) is 48% larger thar|w,|). VI. CONCLUSIONS

For isotropic Gaussian turbulence, we can obtain In this short paper, we demonstrate that the dependence

2 of the probability distribution ofv on the orientation oR
(Iwi ]y = \/;ff (37) exists for particle collisions due to a simple uniform shear or
nonuniform shears in an isotropic turbulence. For these
and cases, the concept of the swept volume can still be applied,
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but careful considerations of the orientational dependence

are necessary to correctly express the amount of the swept X 8wy — yRscos@)d(yRscos¢) = wa-
volume. In this manner, the cylindrical formulation can be

corrected to give identical results as the spherical formula-

tion. The analyses in this paper also emphasize the impo"l‘herefore, Eq(21) can be written as
tance of relating the swept voluma concept in the cylin-

(A1)

drical formulation) to differential regions over the collision [Cyigeneralized. . 3 1 2 R q
sphere(a concept in the spherical formulatjorFurthermore, ) PP) cod ¢ ¢
a generalized cylindrical formulation is proposed and is ‘

shown to be identical to the spherical formulation for all R ! 2dp 2 ' dg
collision mechanisms considered by Waegal.9 In other 4 0 pEp ) qzvr’T(]z’

words, orientation-dependent probability density of
w,p(w; 6, ¢), is needed to correct the cylindrical formula- with dummy variablep=w,/(yR) andq=cos¢. Exchang-

tion. ing the order of integration, we can carry out the integration
We hope that the detailed analyses provided in this shoras follows:
paper further clarify the origin of errors in the commonly 1 3
. k . ; . dq q
used cylindrical formulation, although the level of errors is  pCylgeneraized: 4,23 | — - = 2,13, (A2)
perhaps tolerable for most engineering and meteorological 0 g?V1-¢°3
applications.

The two cq|||s|on meghgmsms analyZE_d n Fje_tal| here 'p. G. Saffman and J. S. Turner, “On the collision of drops in turbulent
were only applied to passivénertiales$ patrticles, it is ex- clouds,” J. Fluid Mech.1, 16 (1956.
pected that the concept and the generalized formulatiorfJ. Abrahamson, “Collision rates of small particles in a vigorously turbulent

should be equally applicable to inertial particles when thesg'“ijdv'l'zc\t‘v?lflﬁ- EngaSng.i’%O,Cl371(‘}F§JY?.I lision rate in turbulent flow”
. . . . . L J. Bl Ilam an . 1. Crane, article collision rate In turpulent riow,
preferential concentration effect is taken into account in Int. J. Multiphase Flow9, 421 (1983.

. - . . 11-15 . .
terms of the radial distribution function-*>A generalization  4s. yuu, “Collision rate of small particles in a homogeneous and isotropic

of the radial distribution function in terms of the orientation turbulence,” AIChE J.30, 802 (1984.
angles ofR would be necessary in general. °F. E. Kruis and K. A. Kusters, “The collision rate of particles in turbulent

. S . . . flow,” Chem. Eng. Commun158 201 (1997).
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