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The preferential concentration of heavy inertial point particles in homogeneous isotropic
turbulence is investigated with direct numerical simulations. The particle clustering is
measured by the standard deviation of normalized Voronoï volumes. With the particle
number, large-scale time and length fixed, it is found that the degree of particle clustering
is reduced with the increase of Taylor Reynolds number (Rλ) for 52 � Rλ � 139 when
the Stokes number (St) is small (e.g., St <2.0), where St is the ratio of particle response
time (τp) to the Kolmogorov timescale (τη). On the contrary, the clustering of high-St
particles tends to become stronger with the increase of Rλ in the same Rλ range. Quantities
invoked for low-St particle clustering include τη, the characteristic time (τ f ) of particles
being trapped by “shear structures” and the strength of “shear structures” quantified by the
second invariant of velocity gradient tensor (Q = Si jSi j − �i j�i j). While the increase of
Q with Reynolds number enhances preferential concentration, τη and τ f both decrease as
Reynolds number increases, which could moderate the level of particle clustering. Then
the observable reduction in the clustering of low-St particles with increasing Rλ emerges
as the dominance of τη and τ f over Q effects. In addition, we find that the strain rate cannot
directly affect the spatial inhomogeneous distribution of low-St particles, but instead it
impacts low-St particle clustering indirectly due to its correlation with the rotation rate.
Unlike low-St particles dominated by small-scale eddies, the clustering of high-St particles
is mainly influenced by large-scale eddies due to the “resonant” effect between particles
and eddies.

DOI: 10.1103/PhysRevFluids.5.124603

I. INTRODUCTION

Multiphase flows are quite common in nature and engineering application, such as cloud-droplet
growth, sandstorm transport, plankton distribution, spray combustion, and aerosol manufacturing.
In the past decades, many investigations have been carried out to explore these complex phenomena.
This paper focuses on the preferential concentration of heavy inertial particles of size much smaller
than the Kolmogorov scale, suspended in three-dimensional (3D) incompressible homogeneous
isotropic turbulence (HIT).

In the exploration of particle-laden turbulence, the establishment of the Maxey-Riley-Gatignol
equation of motion for a small solid particle in a turbulent flow [1,2] was a milestone bringing
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together previous investigations [3–10] for various forces acting on a particle, on a firm mathe-
matical framework. A few years later, Maxey [11] pointed out that the velocity of small heavy
particles (vp) could be approximately formulated as vp = up − τpa when the Stokes number is
much smaller than unity, where up and a are the fluid velocity and acceleration at the position
of particles, respectively, and τp is the particle response time. Then, the distribution of particles
could be regarded as a continuous field. The divergence of vp, therefore, could be expressed as
∇ · vp = −τp(Si jSi j − �i j�i j ), where Si j and �i j are the rate-of-strain tensor and rate-of-rotation
tensor, respectively. Namely, heavy particles tend to collect in the region of high strain rate and low
rotation rate. Squires and Eaton [12] verified the existence of preferential concentration of heavy
particles in turbulence with direct numerical simulations.

Since then, interests surged and sustained as to the mechanisms leading to particle preferential
concentration, for different particle Stokes numbers under different flow conditions. Maxey [11]
attributed the particle clustering to the centrifugal effect owing to the difference of inertia between
particles and fluids. Coleman and Vassilicos [13] demonstrated that the centrifugal mechanism dom-
inates the preferential concentration of particles only in the limit of St � 1, but it is also accepted
that centrifugal forces still have an impact on the clustering of particles until St approaching to 1
[13–15]. Furthermore, Bragg et al. [16,17] pointed out that a history effect of particle inertia would
play a more important role when St � O(1). Falkovich et al. [18] proposed that “sling effect” (also
called fold caustic) mechanism should play an important role in facilitating the collision of particles.
Bec et al. [19] also emphasized that “sling effect” could substantially increase the collision rates
of particles. Subsequently, Wilkinson and Mehlig [20] and Wilkinson et al. [21] made a detailed
analysis on the caustic mechanism in particle clustering. They found that caustic curves could
precisely describe the regions of high concentration particles in a randomly moving fluid. Chun et al.
[22] declared that there are two mechanisms contributing to the spatial inhomogeneous distribution
of small heavy particles in the sub-Kolmogorov length scale. One is the radial inwards drift between
particles arising from the particle inertia, which increases linearly with the inter-particle distance.
The other is the pairwise diffusion of particles induced by the diffusivity of turbulence, which varies
with the quadratic of particle distances. The radial distribution function (RDF) of particles follows
a power law in the sub-Kolmogorov range, which is determined by these two factors. Here, the
RDF is defined as g(r) = (NrVt )/(NtVr ), where Nr is the number of particle pairs separated by a
distance r. Vr is the volume of a thin spherical shell with radius of r and thickness of dr. Nt and Vt

are the total number of particle pairs and the total volume of computational domain, respectively.
Another statistical model of particle clustering is introduced by Zaichik and Alipchenkov [23],
wherein they successfully predicted the RDF of particles in isotropic turbulence based on the
probability density function (PDF) of the relative velocity of two particles. The results in Refs. [22]
and [23] are consistent with each other when St is much smaller than unity. A comparison of the
two models made by Bragg and Collins [24] showed that the model proposed by Chun et al. [22]
is a good approximation, to the leading order, of that by Zaichik and Alipchenkov [23], the latter
thus being applicable to a wider range of St. Additionally, Goto and Vassilicos [25] proposed a
“sweep-stick” mechanism that the position of heavy particles suspended in turbulence coincides
with the location of acceleration stagnation points in two-dimensional (2D) homogeneous isotropic
turbulence, whereas in 3D turbulence, it is in good agreement with those points with e1 · a = 0,
where a is the fluid acceleration and e1 is the eigenvector of the symmetric part of the acceleration
gradient tensor (∇a), corresponding to the largest positive eigenvalue. Coleman and Vassilicos [13]
developed a generalized “sweep-stick” mechanism applicable to the preferential concentration of
heavy particles in 2D and 3D HIT, correcting the previous work by Goto and Vassilicos [25]. They
pointed out that heavy particles also preferentially stick to the points with a = 0 in 3D HIT, instead
of those points with e1 · a = 0.

While the earlier works [26–28] revealed that the small-scale eddies are mainly responsible for
the preferential concentration of inertial particles, later investigations [29–32] suggested that the
preferential concentration of inertial particles is a multi-scale phenomenon when the flow Reynolds
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number is large. In particular, it is scale-dependent in the inertial range. Furthermore, Yoshimoto
and Goto [29] pointed out that the distribution of particles in HIT is self-similar.

Besides the physical mechanisms of particle clustering, there have been various efforts to
describe Reynolds number dependence of the preferential concentration. Wang et al. [28] studied
the collision rate of small heavy particles suspended in turbulence with Rλ from 24 to 75. They
concluded that the RDF of particles at contact is independent of Rλ when St is much smaller
than unity. In contrast, it increases piecewise linearly with Reynolds number when St > 0.5. The
correlation dimension (D2) of particles, a way to measure the level of the preferential concentration
of particles, is found to be independent of the Reynolds number [30,33]. This might be due to the fact
that D2 only describes the distribution of particles in the dissipation range where effects of Reynolds
number are negligible. However, the degree of preferential concentration of particles, in terms of
pair correlation function, gradually increases with Reynolds number until it saturates at Rλ ≈ 100
[34]. The higher St, the more sensitive particles clustering to Reynolds number. In addition, Rosa
et al. [35] presented that the RDF of particles at contact reaches a peak near Rλ = 100 and then
reduces slightly in some cases when Rλ is approximately larger than 200. However, Rosa et al.
[35] fixed the diameter of particles instead of the Stokes number. The flow Reynolds number is not
the only governing parameter, which explains some discrepancies in different studies. Onishi et al.
[36] appealed to the the intermittency of turbulence to explain the Reynolds number dependence of
particles clustering, and provided a systematical analysis by means of the local strain rate [15], an
aspect which will be revisited in more detail in section 3.2. Sumbekova et al. [37] carried out a series
of experiments to study the dependence of preferential concentration of sub-Kolmogorov particles
on the Stokes number and flow Reynolds number when St = 0.5 ∼ 5 and Rλ = 170 ∼ 450. They
revealed that the standard deviation of the normalized areas of Voronoï polygons yields a power law
dependence on Reynolds number with the exponent of 0.97.

In spite of the large amount of studies on particle clustering, one may observe from the
aforementioned brief review that there is a lack of consensus on a couple of issues, for example,
the Reynolds number dependence of the preferential concentration of heavy particles and the
ambiguities surrounding the precise mechanisms of particle clustering.

In this paper, we mainly pay attention to the Reynolds number effects on the spatial inhomoge-
neous distribution of heavy inertial point particles in homogeneous isotropic turbulence with particle
number fixed. We also propose a plausible explanation to the Reynolds number dependence of
particle clustering. The outline of this paper is as follow: The simulation configuration is introduced
in Sec. II. The mechanism for the Reynolds number dependence of the preferential concentration of
particles is described in Sec. III. Finally, a brief conclusion and discussion is presented in Sec. IV.

II. SIMULATION CONFIGURATION

A series of numerical simulations on three-dimensional incompressible HIT laded with inertial
particles have been conducted. The dynamics of fluid is governed by the mass equation and
momentum equations,

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + μ

ρ
∇2u + f , (2)

where u, ρ, p, and μ are, respectively, the velocity, fluid density, pressure, and dynamic vis-
cosity. Here an external force f is imposed at large scales to achieve a stationary state, which
is accomplished by keeping constant the kinetic energy at the first two wave number shells. We
solve the above equations in Fourier space via a pseudospectral method [38,39] with second-order
Adams-Bashforth time stepping [40,41] in a periodic cube of size 2π and with numerical resolution
of 5123 grid points. The aliasing error is removed by a combination of phase shift and truncation,
so that the largest magnitude of the wave vectors resolved in our simulations kmax ∼ 240. The
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TABLE I. Simulation parameters: Taylor Reynolds number Rλ, grid points N3, kinematic viscosity ν,
dissipation rate ε = 2ν〈Si jSi j〉, Kolmogorov length scale η, Kolmogorov timescale τη, root-mean-square
fluctuation velocity urms, integral length scale Lf , and large-scale eddy turnover time Tf .

Rλ N3 ν ε η τη urms Lf Tf

52 5123 0.0090 0.10 0.052 0.30 0.63 1.61 2.53
89 5123 0.0035 0.12 0.024 0.17 0.69 1.41 2.03
104 5123 0.0026 0.12 0.019 0.14 0.70 1.40 2.01
121 5123 0.0020 0.12 0.016 0.13 0.69 1.39 2.02
139 5123 0.0015 0.12 0.013 0.11 0.70 1.35 1.93

velocity field is initialized with random phases and fluctuation amplitudes. The above implies
that both the root-mean-square fluctuation velocity urms = √〈uiui〉/3, the integral length scale
L f = π/(2u2

rms)
∫

[E (k)/k]dk and large-scale eddy turnover time Tf = L f /urms of the flows are
more or less fixed. Other relevant parameters of simulations are listed in Table I.

One million particles are uniformly released into the flow once the turbulence reaches a statisti-
cally stationary state and then evolve for at least 20 large eddy turnover times. The motion of inertial
pointlike particles is governed by

dxp

dt
= vp, (3)

dvp

dt
= up − vp

τp
, (4)

where xp and vp represent the position and velocity of particles, respectively. up denotes the fluid
velocity at the position of particles, which is computed by a sixth-order Lagrangian interpolation.
We avoid some complications here, such as the impact of particles on turbulence and collisions
among particles, since the particle size is much smaller than the Kolmogorov length scale (η)
of turbulence and particles only occupy a small portion of the whole domain. Moreover, only
the Stokes drag is retained in the dynamic equations for particles. Other forces such as added
mass force and Basset-history force are not considered. The particle response time reads τp =
2ρpa2/[9μ(1 + 0.15Re0.689

p )] [42], with Rep being the Reynolds number of particles, a the particle
radius, and ρp the particle density, which is much higher than the fluid density, typically of the order
one thousand times the fluid density. We use at least 20 time slices over 10 large eddy turnover times
to obtain relevant statistics. To investigate the Reynolds number dependence of particle clustering,
five series of runs with varying Taylor Reynolds number Rλ from 52 to 139 are conducted. Here, Rλ

is an average value of Taylor Reynolds numbers at a sequence of time slices, with an error range
less than ±4.0% for each case. Also, the particle Stokes numbers vary in the range of 0 � St � 6.40
in all simulations (error range of St less than ±8.0% for each case).

III. RESULTS AND ANALYSIS

In this section, we present the Voronoï analysis for particle clustering followed by detailed
explanations of Reynolds number dependence of high- and low-St inertial particle clustering.

A. Reynolds number dependence by Voronoï analysis

There are various diagnostics, depending on the scales and properties concerned, that are relevant
to the assessment of the degree of particle clustering. In this paper, we employ the Voronoï method
[14,43–46] to measure the preferential concentration of inertial particles. The computational domain
is divided into a number of Voronoï cells associated to each particle, and one Voronoï cell only
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FIG. 1. The standard deviation σv for varying St at Rλ = 52 ∼ 139.

contains the spacial points that are closer to its own particle than to any other. If particles are
distributed close to each other, then the volumes of corresponding Voronoï cells (V ) will be small,
and vice versa. Therefore, the standard deviation of the volumes of Voronoï cells can quantify the
degree of particle preferential concentration.

To remove possible influence of particle number (Np) on statistics, we normalize the Voronoï
volumes (V ) by their averaged volume (〈V 〉), Ṽ = V/〈V 〉. As a first diagnostic to address the
Reynolds number dependence of particle clustering, Fig. 1 shows the standard deviation of Ṽ , σv , for
varying St at Rλ = 52 ∼ 139. The first thing to notice is that the curves peak near St = O(1) [26,47–
49] and the Stokes number where σv peaks seems to increase with increasing Rλ. Also noteworthy
is that for low St, approximately St <2.0 in present simulations, σv becomes remarkably attenuated
as Rλ increases, while it is enhanced for high St. This can be verified in Fig. 2, where particle
distributions in the same slice are shown for St ≈1.25 and St ≈6.40 at Rλ = 52, 104, and 139.
Throughout the paper, all particles lying close to the 2D slice, e.g., less than the Kolmogorov length
scale η in the perpendicular direction, are projected into the 2D slice to obtain particle distribution.
In the low St cases, as shown in Figs. 2(a)–2(c), particles populate in narrow but long lanes at
Rλ = 52, which, however, appear to be a collection of short and broken portions as Rλ increases,
see for example Fig. 2(c). However, in the high St cases, e.g., St ≈6.40 presented in Figs. 2(d)–2(f),
it can be visually found that the particle clustering is enhanced with increasing Rλ. Therefore, we
close this section with a salient point of this paper: the preferential concentration of heavy inertial
particles with low St attenuates with Reynolds number in the range of Rλ = 52 ∼ 139, whereas that
of high-St particles is enhanced with increasing Reynolds number.

Tagawa et al. [14] discovered σv also depends on the number of particles, even though the
Voronoï volumes have been normalized. Whereafter, Monchaux [50] described that the dependence
of σv on particle number was attributed to the different probing scales for different particle number.
We investigate this uncertainty in Fig. 3(a), which exhibits that σv keeps increasing with the
increase of particle number at Rλ = 52, 104, and 139. It is known that, as particle number changes,
the probability density functions (PDFs) of Ṽ for randomly distributed particles are in the same
form, which yields a Gamma distribution [43]. σv is therefore independent of the particle number.
However, this does not hold if particles accumulate preferentially. Figure 3(b) shows the PDFs of
the normalized Voronoï volume, Ṽ , for different particle numbers at St ≈1.25 and Rλ = 104. One
can see that the case with larger particle number has a higher probability for both small and large Ṽ ,
which leads to larger σv . Fortunately, σv changes with Reynolds numbers in a similar way for any
fixed number of particles, as shown in Fig. 3(a). Throughout this paper all simulations are seeded
with 106 particles to avoid being sidetracked by the possible effect of particle number.
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FIG. 2. Particle positions in the same 2D slice are shown for St ≈1.25 at (a) Rλ = 52, (b) 104, and (c) 139;
and for St ≈6.40 at (d) Rλ = 52, (e) 104, and (f) 139.

B. Reynolds number dependence at low St

In this subsection, we investigate the preferential concentration of inertial particles at low St. To
this end, it is widely accepted that heavy particles preferentially accumulate in high-strain and low-
rotation regions [11,12,51–53]. Onishi and Vassilicos [15] adapted this idea to explain the change
in the preferential concentration with the increase of Reynolds number. They demonstrated that the
case with higher Reynolds number corresponds to smaller fraction of region with high normalized

FIG. 3. (a) The standard deviation of nondimensional Voronoï volumes (Ṽ), σv , varies with particle number
(Np) when St ≈1.25 at Rλ = 52, 104, and 139. (b) The probability density functions (PDFs) of Ṽ for different
particle numbers at St ≈1.25 and Rλ = 104.
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TABLE II. The cases at St ≈1.25 with Rλ = 52 ∼ 139: space-time average values of the strain rate 〈s∗〉,
the strain rate at the position of particles 〈s∗

p〉, the rotation rate 〈r∗〉, and the rotation rate at the position of
particles 〈r∗

p〉.

Rλ 〈s∗〉 〈s∗
p〉 〈r∗〉 〈r∗

p〉
52 2.16 2.20 2.00 1.53
89 3.67 3.72 3.35 2.53
104 4.29 4.43 3.88 3.02
121 4.73 4.77 4.29 3.27
139 5.60 5.64 5.07 3.86

strain rate, σ ∗ = s∗/〈s∗〉 (where s∗ = √
2Si jSi j and 〈·〉 denotes the ensemble average), and therefore

the particle clustering is weakened.
Here we make a comparison between the strain rate s∗ (the rotation rate r∗ = √

2�i j�i j) and its
localized value at the position of particles s∗

p (its localized value r∗
p). Shown in Table II are the cases

at St ≈1.25 for clarity, and the results of other cases in our paper are consistent with the listed ones.
One can see that 〈r∗

p〉 is smaller than 〈r∗〉 by about 20%, which is in favor of the particle preferential
concentration in relatively low-rotation regions. However, and perhaps most remarkably, there is
no much larger 〈s∗

p〉 as compared to 〈s∗〉, as there should have been if particles tend to accumulate
in high-strain regions. The PDFs of s∗, s∗

p, r∗ and r∗
p in Fig. 4 add more evidence to the finding of

Table II, wherein the PDFs of s∗ and s∗
p almost collapse with each other, while the PDF of r∗

p shifts
left in comparison with r∗. The particle distributions are plotted on the top of the color maps of the
strain rate s∗ and the rotation rate r∗ in Fig. 5. No apparent associations between particle clustering
and high strain rate can be observed in Fig. 5(a), while we can readily identify the preferential
concentration of particles in regions of low rotation rate in Fig. 5(b).

The aforementioned results suggest that low-St particle clustering needs not be associated with
high strain, but rather occurs preferentially in low-rotation patches, which may seem at first to be
in conflict with the argument that particles tend to accumulate in high-strain regions [11,12,51–
53]. It may not be so surprising that there is a strong correlation between low rotation and particle
concentration, since, at a heuristic level, heavy particles are expected to be expelled from vortices
due to inertia. We reinterpret the role of strain on particle clustering to be indirect. In some
studies [12,51–53], the correlation between high strain and particle concentration is not guaranteed
mathematically, but emerges due to its possible superposition with low rotation. However, in our

FIG. 4. PDFs of (a) the strain rate s∗ and the strain rate at the position of particles s∗
p, and (b) the rotation

rate r∗ and the rotation rate at the position of particles r∗
p for St ≈1.25 at Rλ = 104.
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FIG. 5. Particle positions superposed on color maps of (a) the strain rate s∗ and (b) the rotation rate r∗ in a
2D subregion for St ≈1.25 at Rλ = 104.

HIT simulations, comparison of Figs. 5(a) and 5(b) reveals greatly similar patterns of large strain
and large rotation. The high rotation rate is well associated with large strain rate [54]. However, they
seem to be independent of each other in the region with low rotation rate (joint PDF not shown). As
a consequence, particles will mainly populate in the region of low rotation rate, where the strain rate
is independent of the rotation rate. This is intuitively consistent with the finding in Fig. 4(a), where
the PDF of s∗ then collapses onto that of s∗

p.
In addition to the preceding reasoning for the effect of coherent structures, we seek to appeal

to the alternatives available for the Reynolds number dependence of low-St particle preferential
concentration. Here we consider the particles as a continuous compressible flow and start with the
particle number conservation equation,

∂n

∂t
+ ∇ · (nvp) = 0, (5)

where n(x, t ) is the local particle number density. It can be expressed also in the form
∂n

∂t
+ vp · ∇n = −n∇ · vp. (6)

A reasonable approximation for small Stokes number [11] is

∇ · vp = −τp(Si jSi j − �i j�i j ) = −τpQ. (7)

On plugging the above equation into Eq. (6), we have

dn

dt
= nτpQ, (8)

where d/dt is defined as ∂/∂t + vp · ∇. Integrating the above equation over time yields the time
evolution of n, denoted by n0 at initial time, which reads

n = n0eτp
∫ t

0 Qdτ . (9)

After the distribution of particles reaches a statistically stationary state, Q along particle trajectories,
owing to the movement of vortices, will fluctuate around an average value with a characteristic
period (τ f ) statistically, as shown in Fig. 6. Physically, τ f can be regarded as the characteristic
timescale over which particles are trapped by “shear structures.” Here, “shear structures” refer the
flow structures in the periphery of vortices. Therefore, the characteristic concentration of particles
can be written as

n(τ f ) = n0eτητ f 〈Q〉l St, (10)

where 〈·〉l represents the average along Lagrangian particle trajectories.
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FIG. 6. Q along a typical particle trajectory at St ≈1.25: (a) short segments of time histories of Q at Rλ = 52
and 139, (b) frequency spectra of Q at Rλ = 52, (c) frequency spectra of Q at Rλ = 139.

According to Eq. (10), a point to be realized immediately is that, for any fixed St, n(τ f ) is related
to 〈Q〉l as well as the Kolmogorov timescale τη, and the particle trapped time τ f . In addition, when
St is small enough, the contributions from τη, τ f and 〈Q〉l are negligible, which implies that the
preferential concentration of particles will become less sensitive to the Reynolds number. This can
be seen in Fig. 1 where the data points start to collapse for quite small St. This point of view is also
supported by Wang et al. [28], Zhou et al. [27], Onishi and Seifert [55]. It is known that τη decreases
with the increase of Rλ when the integral scales are fixed, seen also in Table III, where relevant
statistics at St ≈ 1.25 are shown. However, as Rλ increases, the value of Q in “shear structures” will
also increase statistically, which results in the increase of 〈Q〉l . Then the remainder that needs to
be specified is τ f . We present the time history and frequency spectra of Q along a typical particle
trajectory at Rλ = 52 and 139 for reference in Fig. 6, wherein one can see immediately that the
dominant fluctuating frequencies of Q at varying Reynolds numbers are quite different. We then
apply the Fourier spectral analysis to the time series (more than eight large-scale eddy turnover
times) of Q along hundreds of random selected particle trajectories, and the average characteristic
frequency (F ) is taken as the arithmetical mean of the frequency of each time series of Q at which the
mode gets the largest amplitude. Seen in Table III is that the average particle trapped time τ f = 1/F
decreases with increasing Rλ. Moreover, from Table III, the variables: τηRλ and 〈Q〉l/(Rλ)2 are
roughly constant with the increase of Rλ, whereas τ f Rλ decreases. Here, the first relation apparently
results from the roughly fixed τ f . For the last two relations, we only show that they hold for our
numerical simulation, but a physical interpretation is yet to be discovered. In summary, our results
signify a pathway by which the three parameters—τη, τ f and 〈Q〉l —act in concert and eventually
lead to decreasing τητ f 〈Q〉l with increasing Rλ (see Table III), thus providing a plausible explanation

TABLE III. Characteristic quantities at St ≈1.25 with Rλ = 52 ∼ 139. 〈Q〉l is the Lagrangian averaged
Q along particle trajectories. F is the average characteristic frequency of the time series of Q along particle
trajectories. τ f represents the characteristic timescale of particles being trapped by “shear structures.”

Rλ τη 〈Q〉l F τ f τητ f 〈Q〉l τ 2
η 〈Q〉l

52 0.303 2.541 0.465 2.149 1.656 0.234
89 0.170 7.659 0.843 1.186 1.548 0.223
104 0.145 10.87 1.256 0.796 1.253 0.228
121 0.132 12.54 1.455 0.687 1.138 0.219
139 0.111 17.56 1.896 0.528 1.025 0.215
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FIG. 7. Spectra for energy E (k) (blue solid line) and energy dissipation 2νk2E (k) (red dashed line) with
Rλ = 104. Vertical lines are drawn at different cutoff wave numbers Kc.

for the mitigation of preferential concentration of low-St particles as Rλ increases. It needs to be
pointed out that the above analysis is based on the assumption that the particle number density is
a continuous field. Therefore, Eq. (10) is only suitable for regions with high particle concentration,
and it is not precise (only qualitative analysis) in regions with low particle concentration. Here
Eq. (10) is only used as a semiquantitative analysis as we focus on the governing parameters that
influence the level of particle clustering at different Reynolds number.

An aside, recall that τ f is on the order of τη [27,28]. Then one might replace τ f in Eq. (10) with
τη,

n ≈ n0eτ 2
η 〈Q〉l St. (11)

It is obvious that for a fixed St, there is a significant deviation between τ f and τη, suggested by
Table III. Additionally, replacing τ f by τη, will lead to the conclusion that τ f Rλ ∼ τηRλ ∼ Tf , which
is then essentially independent of Rλ. Simultaneously, 〈Q〉l/(Rλ)2 seems to be roughly unchanged
with the increase of Rλ in our simulations, implied by Table III (cannot give a physical interpretation
to this fact yet). Thus, the values of τ 2

η 〈Q〉l are quite close at different Rλ. With these caveats in
mind, we believe that the approximation of Eq. (11) to Eq. (10) is inappropriate in understanding
the Reynolds number dependence of particle clustering.

C. Reynolds number dependence at high St

Unlike the low-St case where the degree of particle clustering is suppressed when the Reynolds
number increases, the high-St particle clustering is enhanced with increasing Reynolds number, see
Fig. 1 in Sec. III A. This recalls the finding [56–59] that the particle clustering is scale-dependent.
Namely, the preferential concentration of low-St and high-St particles is determined, respectively,
by small- and large-scale eddies. It is natural then to inquire here as to whether varying Reynolds
number could trigger different behavior of these coherent structures, e.g., different volume fractions
of small- and large-scale eddies, thus providing clues to how the Reynolds number would affect the
particle clustering.

The first point at hand is to justify the role of eddies on particle clustering again in our HIT
system. To resolve fields in scales, we introduce a filtering operation that acts as a low-pass
sharp Fourier filter at wave number Kc. Here four cut-off wave numbers, Kc = 42, 20, 10, and
5, are applied to the turbulence with Rλ = 104, which are drawn as vertical lines in Fig. 7. The
corresponding scales Lc = π/Kc of Kc = 42 and Kc = 5 are about 4η and up to the half of integral
length scale, respectively. Particles uniformly distributed then evolve according to the filtered
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TABLE IV. Summary of parameters for particle motions in filtered turbulence with Rλ = 104: cutoff wave
number Kc, corresponding cutoff scale Lc = 2π/Kc, and Stokes number St.

Cases Kc Lc = π/Kc St

C42_L 42 0.075 0.33
C42_H 42 0.075 6.40
C20_L 20 0.157 0.33
C20_H 20 0.157 6.40
C10_L 10 0.314 0.33
C10_H 10 0.314 6.40
C05_L 5 0.628 0.33
C05_H 5 0.628 6.40

velocity. Here we take two types of particles, i.e., St ≈0.33 and 6.40, as examples. For simplicity, an
abbreviation is used to represent runs of different St particles under differently filtered turbulence.
For example, “C42_L” represents particles with St ≈0.33 evolving in the filtered turbulence with
Kc = 42. The relevant details are listed in Table IV.

Figure 8 shows the standard deviation σv at varying cutoff wave numbers Kc, for both low-
(e.g., St ≈0.33) and high-St (e.g., St ≈6.40) particles. Obviously, they have the opposite bias:
the preferential concentration of low-St particles is alleviated with the decrease of Kc [see also
Figs. 9(a) and 9(b)]; while that of high-St particles is enhanced [see also Figs. 9(c) and 9(d)]. This
indicates that eddies at different scales might contribute to low- and high-St particle clustering. The
preferential concentration of high-St (low-St) particles is determined by large-scale (small-scale)
eddies such that it is enhanced (mitigated) as more small-scale eddies are eliminated through
filtering. Also noteworthy in Fig. 8 is that neither the standard deviation σv for high-St particles
nor that for low-St particles at large cut-off wavenumbers (e.g., Kc = 20 and 42) exhibits apparent
deviation from the unfiltered cases. Only when the filtering is applied at sufficiently small cutoff
wave numbers, typically smaller than the wave number at which the dissipation spectrum reaches
its maximum [58] (approximate to k ≈ 10 in current case), the volume standard deviation shows
significant dependence on Kc.

FIG. 8. The standard deviation σv for particles with St ≈0.33 and 6.40 at varying cutoff wave numbers Kc.
σv for particles with St ≈0.33 and 6.40 in the unfiltered turbulence is plotted as a dashed line and a dash-dotted
line, respectively, and the width of the shadow areas means the corresponding error range.
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FIG. 9. Particle distribution in the same 2D slice for (a) C42_L, (b) C05_L, (c) C42_H, and (d) C05_H. For
low St (a, b), the degree of particle clustering decreases with the reduction of Kc, while for high St (c, d), it
increases as Kc decreases.

Upon clarifying the dominance of eddies on particle clustering, we move into the realm of its
Reynolds number dependence. It is customary to expect that the turbulence with a higher Reynolds
number contains larger (relative to the Kolmogorov length scale) and stronger eddies, which are
responsible for the preferential concentration of high-St particles. We anticipate then that the high-
St particle clustering becomes more intensive as the Reynolds number increases. This scenario
also reconciles with the conjecture proposed by Goto and Vassilicos [56], in which they defined a
scale-dependent Stokes number, Str = τp/τr , where τr = ε−1/3 · r2/3 represents the turnover time of
local eddy with size of r. The strongest local preferential concentration of particles tends to occur
in localized patches with Str ≈ 1, which corresponds to local eddies of certain size, let us say r0.
Increasing Rλ would presumably amplify the strength of large-scale eddies, thus leads to a higher
probability for eddies with size comparable to r0 and therefore stronger preferential concentration.

IV. CONCLUSION AND DISCUSSION

We have performed a quantitative assessment of the Reynolds number dependence of the pref-
erential concentration of heavy inertial particles of size much smaller than the Kolmogorov length
scale, in incompressible HIT using Voronoï method. In present paper, the influence of particles
on turbulence and the interaction of particles are neglected. We find that for increasing Reynolds
numbers, the preferential concentration of low-St particles is moderated, whereas it is the other way
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FIG. 10. RDF at contact for varying Rλ at St ≈1.25.

round for high-St particles, that is, its preferential concentration tends to be enhanced by elevated
Reynolds numbers.

From Eq. (10) we can deduce that the low-St particle clustering could be associated with the Kol-
mogorov timescale (τη), the characteristic time (τ f ) of particles being trapped by “shear structures”
and the strength of “shear structures” (Q = Si jSi j − �i j�i j). Then the outcome of incorporating
the Reynolds number dependence of the three quantities will be closely related to the relative
weighting of these dependencies. In our investigation, τηRλ and 〈Q〉l/(Rλ)2 are roughly constant
with the increase of Rλ. However τ f Rλ decreases apparently with Rλ. Therefore, the degree of
particle clustering decreases with the increasing Rλ. The above reasoning does not remain applicable
to high-St particles. The preferential concentration of high-St particles is mainly controlled by
large-scale eddies, and small-scale eddies whose lifetime are much shorter than the particle response
time tend to randomize the particle distribution, acting to enhance turbulent diffusion. Consequently,
the turbulence with higher Reynolds numbers, in possession of larger and stronger eddies, fosters
the preferential concentration of high-St particles.

The studies [15,28,35,36] on the RDF of particles at contact have evidenced, instead, an en-
hancement of the preferential concentration of low-St particles for increasing Reynolds numbers as
Rλ < 100. Balkovsky et al. [60] analyzed the fluctuation of particle concentration in viscous scale in
detailed. An analytic statistical theory [18,60] could explain the performance of the RDF of particles
at contact with Rλ. We plot the RDF of particles at contact as well using our DNS dataset, as shown
in Fig. 10, which clearly reproduces similar trends as Rosa et al. [35], Onishi et al. [36], Onishi and
Vassilicos [15]. So we inquire why we reach opposite conclusions by virtue of the Voronoï method
and the RDF at contact. The reasons that we could come up with are essentially two: (i) the RDF at
contact describes particle clustering at one scale, i.e., the particle diameter, which is always much
smaller than the Kolmogorov length scale, while the Voronoï analysis assesses particle clustering
without separately describing its behavior at different scales. (ii) To study the Reynolds number
dependence of particle clustering, one should keep Stokes number constant by changing particle
size. Usually different flow Reynolds numbers correspond to different particle sizes, which will
inevitably change the RDF at contact. In this sense, the RDF at contact does not properly account
for the Reynolds number effect since it is particle size dependent.

The most studied cases of particle clustering have been attributed to high strain and low rotation
motions, at least in part due to the inspiration of Eq. (7) proposed by Maxey [11]. However, a more
detailed treatment in this paper reveals that only the low rotation and not the high strain contributes
directly to the preferential concentration of low-St particles. So how are our results to be reconciled
with the previous studies that evidenced the association of particle clustering and high strain? For
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an empirical answer, we resort to the different degree of correlation between high strain and low
rotation. In some studies [12,51–53], there is a very high degree of correlation between high strain
and low rotation. Therefore, low-St particles populate around the peripheries of vortices where the
low rotation and high strain are co-located. In our incompressible HIT, however, the region with low
rotation is not in apparent association with the region with high strain.

There is a broad range of particle-laden turbulent systems, varying in characteristic parameters,
may involving additional physical processes, for which valuable extensions of present study are
sought. For example, our simulations clearly exhibit different behaviors of high- and low-St particles
but nonetheless involve only a very limited Reynolds number range (Rλ = 52 ∼ 139). We would
expect our results to be justified in flows with higher Reynolds numbers. In addition, we fixed
the particle number density in the computational domain over all simulations. Alternatively, if the
particle number density based on Kolmogorov length scale is fixed, the results on Reynolds number
dependence of particle clustering may be different via Voronoï analysis. we will devote to a future
detailed study on this problem. It is also noteworthy that the reasoning for the Reynolds number
dependence of particle clustering in this paper is not cast in a well-defined quantitative form. We
therefore anticipate our results to be a starting point for more sophisticated models. Moreover,
vorticity appears in bundles that are increasingly localized and isolated from each other as the
Reynolds number increases. This intermittency might have an impact on the clustering of particles.
But it is not taken into consideration in this paper. Finally, here we do not discuss the Reynolds
number dependence of particle clustering at different scales (e.g., in dissipation range or in inertial
range). One can imagine that this problem must be more complex than what we have described so
far, which we will defer to a future study.
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