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The understanding of particle dynamics in N-body problems is of importance to many appli-
cations in astrophysics, molecular dynamics and cloud/plasma physics where the theoretical
representation results in a coupled system of equations for a large number of entities. This
paper concerns algorithms for solving a specific N-body problem, namely, a system of distur-
bance velocities for hydrodynamically interacting particles in a particle-laden turbulent
flow. The system is derived from the improved superposition method of [1]. Targeting for
scalable computations on petascale computers, we have carried out a thorough study of a
parallel implementation of GMRes with different features, such as preconditioners,
matrix-free and parallel sparse representation of the matrix through 1D and 2D spatial
domain decompositions. Gauss–Seidel method is also studied as a reference iterative algo-
rithm. The range of conditions for efficiency and failure of each method is discussed in detail.

Through perturbation analysis, we have conducted a series of experiments to understand
the effect of particle sizes, interaction symmetry, inter-particle distances and interaction
truncation on the eigenvalues and normality of the linear system. For situations where the
system is ill-conditioned, we introduce a restricted Schwarz type preconditioner. We veri-
fied the parallel efficiency of the preconditioner using 1D domain decomposition on a paral-
lel machine. A benchmark problem of particle laden turbulence at 5123 resolution with
2� 106 particles is studied to understand the scalability of the proposed methods on parallel
machines. We have developed a stable and highly scalable parallel solver with an affordable
computational cost even for ill-conditioned systems through preconditioning. On 64 cores,
using GMRes in 2D domain decomposition, we achieved a speed-up of � 5:6x (relative to
1D domain decomposition on the same number of processors). Our complexity analysis
showed that for large N-body problems, the proposed GMRes scheme scales well for moder-
ate to large number of processors in current tera to petascale computers.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The simulation of the evolution of a system of N interacting bodies is known as the classical N-body problem. A force (or
kernel) is exerted on each body, which arises due to its interaction with all the other bodies in the system (e.g. based on
Newton’s law of gravitation or Coulomb’s law of electrostatic interaction). Solving the equations of motion analytically
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for a large number of particles is not possible, thus numerical methods must be introduced. At each discrete time interval,
the force on each particle is computed and this information is used to update the position and velocity of each particle.

There are numerous applications of this problem in areas such as astrophysics, molecular dynamics, solid-state physics,
and plasma physics. Apart from these, some problems in numerical complex analysis and elliptic partial differential equa-
tions can also be solved using this approach. Applications of the problem are also found in the radiosity method, which at-
tempts to create images by computing the equilibrium distribution of light for complex scene geometries [58].

Recently, in the context of cloud physics, [1] solved an N-body problem for the motion of water droplets in a turbulent
cloud. They developed a hybrid direct numerical simulation (HDNS) based on an improved superposition method to study
droplet–droplet hydrodynamic interactions. The improved formulation relates the drag force to a representation of Stokes
disturbance flow around each droplet [2]. The carrier-fluid turbulence affects the motion of the droplets through the inter-
facial hydrodynamic forces (mainly the viscous drag); the motion of each droplet can be affected by the presence of other
droplets in the system, either through the strong local near-field binary hydrodynamic interaction or by the cumulative
many-body, long-range interactions [3]; and the background air turbulence can also affect the hydrodynamic interactions
as the turbulence defines both the far-field conditions and the local environment for hydrodynamic interactions.

As a result of the coupled hydrodynamic interactions among the droplets, a large linear system has to be solved to obtain
the disturbance flow seen by each particle. This system is of dimension 3Np, where Np is the number of droplets in the sim-
ulation. The disturbance flow around each droplet decays with distance; the hydrodynamic interactions were truncated at
cut-off radius. This leads to a sparse linear system.

Initially [1] implemented an OpenMP parallelization of the HDNS method. In their implementation, hydrodynamic inter-
action took approximately 80% of the total runtime for a problem at 1283 grid resolution with approximately 500 K droplets
using a Gauss–Seidel linear solver on OpenMP threads. Thus, hydrodynamic interactions are the bottleneck in the compu-
tation for larger problem sizes. In this paper we discuss our efforts toward an efficient parallel implementation of drop-
let–droplet hydrodynamic interactions for large problem sizes when the domain is decomposed into many subdomains
for parallel computation.

In general, an efficient parallel implementation of a linear solver requires that we understand the properties of the linear
system such as sparsity pattern, physical constraints, distribution of eigenvalues, normality of the matrix [4,5]. We will show
that GMRes [6,7,4,8] is able to approximate the solution very efficiently, making it the right tool for the problem. However,
we also discuss some extreme conditions when GMRes might not behave well. To overcome the ill-conditioning we proposed
a preconditioner. An ill-conditioned linear system has a large condition number j ¼maxijkij=minjjkjj, where ki represent the
eigenvalues of the matrix of hydrodynamic interactions. For comparison purposes, we implemented a Block Gauss–Seidel
linear solver in parallel as an extension of the implementation of [1]. When comparing different computational approaches,
we considered Conjugate Gradient (CG) or Bi-Conjugate Gradient (BiCG) methods [7,4] but found that GMRes was the best
option in this case. Our system is not necessarily positive definite so CG would not be suitable, and BiCG requires an addi-
tional matrix–vector multiplication and a conjugation.

Our linear solvers have been integrated into a domain decomposition approach to enable parallel computation. The do-
main decomposition has been chosen because the particles are randomly distributed in the domain and the kernel for the
interactions has compact support. The parallelization of the block Gauss–Seidel is reduced to the local iterations and global
sharing of data. Notice however that due to the truncation of interaction distance of the kernel [1] the data sharing is only
needed with the neighboring subdomains. Parallel implementations of GMRes have been studied by several researchers [9–
15]. While most of them focused on parallelizing the whole algorithm, in this work, since the most time consuming portion
of the GMRes algorithm is matrix–vector multiplication, we focus our efforts in parallelizing it efficiently in the context of a
domain decomposition strategy. In addition, some GMRes parallel implementations rely on commercial libraries, which im-
pacts existing code portability.

Our results and findings are valuable to any N-body problem where the kernels acting on all the bodies are coupled and
the kernel is approximated by a cut-off radius of influence. Examples of such systems include calculation of extinction and
Raman intensities for small metal particles [16]; electrodynamics of noble metal nanoparticles [17]; particle interactions in
electrophoresis [18,19]; interactions for magnetic particles [20,21]; to name a few.

This particular N-body problem in a turbulent background flow is connected to other problems with interactions that are
screened by physical effects. The N-body problem for the motion of water droplets in a turbulent cloud discussed in this pa-
per involves long-range Stokes flow interactions among the droplets since they decay as ðr=aÞ�1 (a is the particle radius). It is
well known that the variance of particle velocity (in an otherwise stagnant flow) diverges with the size of the system [22]
due to the long-range effect. [23] has shown that to keep the variance finite a form of hydrodynamic screening is necessary,
similar to the Debye-like screening of electrical potential associated with a fixed ion in an ionic solution. This was later dem-
onstrated by [24] when studying the transient sedimentation of a dilute suspension. In our problem, we are dealing with a
suspension in a turbulent flow and the particles are smaller than the Kolmogorov length scale. The turbulence also brings a
screening effect because the relative motion of droplets due to turbulence damps the long-range Stokes aerodynamic inter-
action. Furthermore, it has been shown that the effects of particle inertia can reduce the long-range hydrodynamic interac-
tions [25]. [1], when considering the collision efficiency among droplets in a turbulent flow, showed that the cut-off radius of
influence was smaller than in the case of a stagnant flow. This implies that the long-range interactions were swapped by
turbulence and droplet inertia effects. In comparison with other N-body problems, the truncation of the kernel considered



C.E. Torres et al. / Journal of Computational Physics 245 (2013) 235–258 237
here could make our problem somehow different. However, by considering turbulence or some other forcing agents that may
create a screening effect, the problems become similar.

The paper is organized as follows. Section 2 explains the hybrid DNS method. In Section 3 we study the properties of the
governing linear system of equations. The domain decomposition strategy to parallelize the HDNS method is discussed in
Section 4. Section 5 includes a perturbation analysis of the matrix and convergence analysis for GMRes method to study
the appropriateness of the iterative method to the N-body problem in hand. In Section 6, we present the timing and scala-
bility of the proposed methods, followed by a complexity analysis in Section 7 to study the subroutine performance for very
large numbers of processors. Section 8 contains a summary of our work and presents our conclusions. For completeness, we
include discussion of other useful approaches for this problem and the methods in appendices.
2. Hybrid DNS

The basic ideas and algorithms for the HDNS approach have been presented in [1,26]. Only a brief description of the ap-
proach is given here to prepare for our discussion of the aerodynamic interaction of droplets. We consider a dilute suspen-
sion of droplets in a background turbulent air flow Uðx; tÞ solved by pseudo-spectral method in a periodic domain. The flow is
resolved with N3 grid points. Then, the fluid velocity at the location of the kth droplet of radius aðkÞ, denoted by UðYðkÞðtÞ; tÞ, is
interpolated from the grid using the 6-point Lagrangian interpolation in each spatial direction, where YðkÞðtÞ is the location of
that droplet. The velocity of the kth droplet will be denoted by VðkÞðtÞ.

As a first approximation, we assume the disturbance flows resulted from the presence of the droplets in the background
turbulent flow are localized in space, on the assumption that the droplet size (10–60 lm in radius) is much smaller than the
flow Kolmogorov scale (�1 mm). If Stokes disturbance velocities of all Np droplets in the system are superposed appropri-
ately [27], the disturbance velocity uðkÞ felt by a kth droplet is:
uðkÞ ¼
XNp

m¼1|fflfflffl{zfflfflffl}
m–k

uS YðkÞðtÞ � YðmÞðtÞ; aðmÞ;VðmÞ � UðYðmÞ; tÞ � uðmÞ
� �

; k ¼ 1;2; . . . ;Np ð1Þ
where uS is the Stokes disturbance flow defined as:
uS ðrðkÞ; aðkÞ;VðkÞp Þ ¼
3
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Note that (1) is derived from the requirement that the composite flow field (background flow plus the disturbance flow fields
caused by droplets) should satisfy, on average, the no-slip boundary condition on the surface of each droplet [27].

Given aðkÞ; VðkÞ; YðkÞ and UðYðkÞ; tÞ at a specified time t, (1) is a system of equations of 3Np unknowns for the three com-
ponents of the disturbance velocities (u) of the Np droplets. The disturbance velocity at the location of each droplet is coupled
with the disturbance velocities of all other droplets and the three spatial components of the disturbance velocity cannot be
separated to form three independent smaller linear systems. Therefore, system (1) must be solved as a whole to yield the
disturbance velocities uðkÞ.

The most computationally demanding step in HDNS approach is to solve (1) for uðkÞ. Since for every droplet, the summa-
tion on the right hand side (RHS) of (1) should be carried out over all other droplets in the domain, the computational cost of
the summation in (1) grows as OðN2

pÞ after computing the coefficients.
As far as collision statistics are concerned, [1] showed that one could truncate the summation and restrict the radius of

influence of the disturbance flow caused by a kth droplet to a distance Htrunc � aðkÞ. Their experiments showed that the com-
puted collision efficiency is insensitive to Htrunc if Htrunc > 35. In this paper, we will use dimensionless truncation radius of
Htrunc ¼ 50 which is more conservative than Htrunc ¼ 35. This will significantly reduce the number of neighboring droplets
in the governing equations as we will see in §3. Inside the truncation sphere, in order to efficiently locate the droplets
and their immediate neighbors, we make use of the cell-index method and linked lists [28]. We note that in a periodic do-
main without truncation, the Stokes’ kernel (2) may diverge since it only decays as 1=r.

Once the perturbation velocities uðkÞ are solved (see Appendix A) and undisturbed fluid velocity UðYðkÞðtÞ; tÞ are computed,
droplets are advanced by solving their equation of motion which for the kth droplet becomes:
dVðkÞðtÞ
dt

¼ �
VðkÞðtÞ � UðYðkÞðtÞ; tÞ þ uðkÞ

� �
sðkÞp

þ g ð3Þ
dYðkÞðtÞ
dt

¼ VðkÞðtÞ ð4Þ
where sðkÞp ¼
2qpðaðkÞÞ

2

9l is the Stokes inertial response time of the k-th droplet and g is the gravitational acceleration.
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3. Governing system of equations

In this section, and in the following ones, we study properties of the linear system of Eqs. (5) to later take advantage of
them. We first introduce a set of notations for the linear system of equations in order to develop a complete description (gi-
ven in Appendix A) of the proposed solution methods. First, let us define (1) in a more familiar form Ax ¼ b where
A 2 R3Np�3Np , x is the vector of the components of the perturbation velocities uðkÞ ¼ huk;vk;wki for k ¼ 1; . . . ;Np arranged

for simplicity as follows x ¼ hu1;v1;w1; . . . ;uNp ;vNp ;wNp i
T and b is the right hand side vector of dimension 3Np.

To express the linear system as a matrix A we first rewrite (1) as follows:
uðkÞ þ
XNp

m¼1|fflfflffl{zfflfflffl}
m–k

uS YðkÞðtÞ � YðmÞðtÞ; aðmÞ;uðmÞ
� �

¼
XNp

m¼1|fflfflffl{zfflfflffl}
m–k

uS YðkÞðtÞ � YðmÞðtÞ; aðmÞ;VðmÞ � UðYðmÞ; tÞ
� �

; k ¼ 1;2; . . . ;Np ð5Þ
Now, we rewrite uS YðkÞðtÞ � YðmÞðtÞ; aðmÞ;uðmÞ
� �

in a more explicit form to obtain the linear dependence on uðmÞ ¼ hum;vm;wmi.
Omitting time dependence for clarity, we obtain:
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� �
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where rðk;mÞ ¼ YðkÞ � YðmÞ ¼ hrðk;mÞ1 ; rðk;mÞ2 ; rðk;mÞ3 i, rðk;mÞ ¼ krðk;mÞk, Kðk;mÞ ¼ 3
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Now, with aðk;mÞi;j ’s, Eq. (5) can be rewritten as follows:
1 0 0
0 1 0
0 0 1

0B@
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0B@
1CAþXNp

m¼1|fflfflffl{zfflfflffl}
m–k

aðk;mÞ1;1 aðk;mÞ1;2 aðk;mÞ1;3

aðk;mÞ2;1 aðk;mÞ2;2 aðk;mÞ2;3

aðk;mÞ3;1 aðk;mÞ3;2 aðk;mÞ3;3

0BB@
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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0B@
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m¼1|fflfflffl{zfflfflffl}
m–k

aðk;mÞ
V ðmÞ1 � UðmÞ1

V ðmÞ2 � UðmÞ2

V ðmÞ3 � UðmÞ3

0BB@
1CCA ð7Þ
where aðk;mÞ is a 3� 3 matrix defined on the left hand side of Eq. (7), VðmÞ ¼ hV ðmÞ1 ;V ðmÞ2 ;V ðmÞ3 i and UðmÞ ¼ hUðmÞ1 ;UðmÞ2 ;UðmÞ3 i. It is
important to point out that k will not be equal to m in the definition of aðk;mÞ. We need to define aðk;kÞ ¼ I3, where I3 is the
3� 3 identity matrix, leading us to the following definition of A:
A ¼

að1;1Þ � � � að1;mÞ � � � að1;NpÞ

..

. ..
. ..

. ..
. ..

.

aðk;1Þ � � � aðk;mÞ � � � aðk;NpÞ

..

. ..
. ..

. ..
. ..

.

aðNp ;1Þ � � � aðNp ;mÞ � � � aðNp ;NpÞ

0BBBBBBB@

1CCCCCCCA ð8Þ
The aðk;mÞi;j ’s are symmetric with respect to their subindices ði; jÞ but not with respect to their superindices ðk;mÞ, because par-

ticles do not necessarily have the same radii. For instance in (8) A3k�2;3m�2 – A3m�2;3k�2 if particle aðkÞ – aðmÞ. Another reason is
related to the truncation radius, i.e. particle m with radius aðmÞ could include particle k with radius aðkÞ inside its HtruncaðmÞ

interaction radius but particle k might not necessarily interact with particles m because it could have smaller radius. This
implies that aðk;mÞ – 03 and aðm;kÞ ¼ 03, where 03 is the 3� 3 zero matrix. Notice that using interactions based on HtruncaðmÞ

is only one option. We could also use a fixed interaction radius for all the particles, for instance HtruncmaxmaðmÞ. This produces
another matrix which is still consistent with the model. We discuss this in more detail in Sections 5 and 6.

Notice that A is a very sparse matrix, so the precomputation of the coefficients aðk;mÞi;j for later use saves time compared to
using a matrix-free approach where the coefficients aðk;mÞi;j are computed every time a matrix–vector multiplication is needed.
This is true as long as the number of interactions remains small.
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The matrix A can be rewritten as Bþ I, where I is the identity matrix. Thus the right-hand-side b can be obtained as By,

where y ¼ hVð1Þ1 � Uð1Þ1 ;Vð1Þ2 � Uð1Þ2 ;Vð1Þ3 � Uð1Þ3 ; . . . ;VðNpÞ
1 � UðNpÞ

1 ;VðNpÞ
2 � UðNpÞ

2 ;VðNpÞ
3 � UðNpÞ

3 iT .
This family of linear system of equations can be summarized as a sequence of linear system of equations AðnÞxðnÞ ¼ bðnÞ,

where n represents its temporal dependence. The matrix AðnÞ and bðnÞ represent the interaction matrix and right hand side,
respectively, for the particles at nth time step.

A more elaborated approach could be used here to take advantage of the sequence of linear systems, however we found
out that it is not computationally worthwhile to take that path, see Appendix B. However, we did take advantage of the solu-
tion xðnÞ of AðnÞxðnÞ ¼ bðnÞ as the initial guess for the next linear system Aðnþ1Þxðnþ1Þ ¼ bðnþ1Þ.

We would like to point out that Eq. (7) may be interpreted as a divergence-free interpolation method, as it is divergence-
free by construction.

We avoided the use of direct methods, such as Gauss elimination or QR decomposition ([7]) or sparse aware direct meth-
ods ([29]), because of their high computational cost and/or difficult parallelization.

4. Domain decomposition and parallel implementation

[1] implemented a loop-level parallelization using OpenMP to speed up the solution procedure. Namely, they divided the
RHS of (1) into threads. In order to simulate a larger domain size with a larger number of droplets, a higher level of parall-
elization is inevitable. Therefore we parallelize the computation of (1) using the Message Passing Interface (MPI) to numer-
ically solve fluid flow, droplet hydrodynamic interactions and droplet equation of motion. Preliminary work in this direction
has been performed by [30] who considered MPI implementations of various tasks in the hybrid DNS. We note that their MPI
implementation did not include droplet hydrodynamic interactions.

Our MPI implementation is based on domain decomposition previously adopted for efficient MPI implementation of fast
Fourier transform (FFT) in the pseudo-spectral simulation of fluid turbulence [31]. Fig. 1 shows the computational domain
for both 1D and 2D decomposition [1].1 The domain is decomposed in the direction perpendicular to gravity in order to min-
imize the number of droplets crossing the subdomains. This will consequently reduce the data communication leading to higher
speed-up.

The solution of (1) could be achieved by truncating the hydrodynamic disturbance flow of a droplet (with radius a) to a
distance of Htrunc � a (in this study, we chose Htrunc ¼ 50). To proceed with parallel implementation, we assume that the trun-
cation sphere of any individual droplet can at most cover a space belonging to immediate neighboring subdomains. This
assumption amounts to an upper-bound on the number of subdomains in each decomposed direction, as:
1 Sinc
Nsubd1 6
Lbox

Htrunc � amax

	 

ð9Þ
where Nsubd1 is the number of subdomains in a single decomposed direction, amax is the maximum radius of the droplets in
the system, Lbox is the domain size in decomposed direction and ½ � is the integer part function. Since, the droplet radius is in
the range of 10 to 60 lm, this assumption does not pose a severe restriction on number of cores and has the benefit of lim-
iting the data communication to nearest neighbor subdomains. In this manner, data communication will be required with 2
subdomains in the 1D domain decomposition and 8 subdomains in the 2D decomposition.

As shown in Fig. 2, we have made data communication effective by creating a halo layer around each subdomain. The
thickness of this halo region is preset based on the maximum truncation radius. In the solution of (1), for a given time step,
particles are frozen to their host subdomains. We note that the communication in each method arises from different needs.
For instance in the Block Gauss–Seidel method, all data transfers are near-field communications which are restricted to the
host subdomain and halo region in the immediate neighbors. On the other hand, the GMRes method not only needs near-
field communication but also requires global reduction operations in order to be able to compute norms and dot products
which are the essential steps of GMRes algorithm, see Algorithm 1 in Appendix A.2 for details regarding communication step.

5. Perturbation analysis of the linear system

Bounds for the convergence of GMRes are well understood for certain type of matrices, such as positive definite matrices.
Our system of equations does not necessarily fall into one of these categories. For our special type of matrix, a numerical
study is carried out to extract the important features that drive the behavior of GMRes. Before proceeding with the bounds
for the behavior of GMRes, we need to discuss how the linear system behaves and what will be the correct quantities to ex-
plain the behavior of GMRes method.

Our first step was to try out GMRes with several test problems to see its behavior. Initial test problems utilized 2563 and
5123 grid resolution with particle sizes of 10–15 lm, 10–60 lm and 55–60 lm and number of particles set to 500 K, 1 M to
2 M. We found that GMRes performed consistently well, it converged with a relative error of 10�15 in less than 35 iterations
over long periods of simulation. The accuracy of 10�15 was chosen to show that we can make the relative residual converge to
machine precision, however for practical experiments we usually choose 10�6.
e each subdomain is assigned to a single processor, we may use the terms ‘‘process’’, ‘‘processor’’ or ‘‘subdomain’’ interchangeably.



Fig. 1. Two spatial domain decomposition. Left: 8 subdomains in 1D decomposition, Right: 16 subdomains in 2D decomposition. Fluid nodes and droplets
in each subdomain are assigned to an individual processor. In this Fig. 4 and 8 subdomains are used for demonstration purpose, though usually higher
number of divisions are used.

Fig. 2. Dark region around subdomain 9 shows the ‘‘halo region’’ in 2D domain decomposition. Particles’ data in this region is made available for subdomain
9 via communications from 8 neighboring subdomains. Arrows indicate the direction of data communication.
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We decided then to target a more specific behavior of the particles to push the linear system to behave poorly. To obtain
this, we looked at this problem as it were a radial basis function (rbf) interpolation of a vector field. This is because from rbf’s
theory [32,33] we know that the related matrices obtained becomes ill-conditioned as the particles cluster, assuming the size
of the particle is kept fixed. Thus, we expect to obtain a poor behavior of the matrix A as particles become clustered. This was
indeed observed when the particles are clustered.

We have identified and studied several features of the problem that affect the convergence of GMRes. These features are
the followings:

� Truncation radius
� Different size of particles
� Symmetry of truncation
� Normality of induced matrices
� Proximity of particles of equal and different sizes
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Although we were able to identify the features, it might not be possible to uncouple them explicitly to show their effect inde-
pendently. We did not use periodic boundary conditions for experiments of this section. We considered the experiments as if
domain was a small piece of a larger domain.

The first experiment we performed was to study how asymmetric and symmetric interactions of the droplets affected the
interaction matrix. An asymmetric interaction is when the truncation radius is based of the particle radii. This means that the
support of influence of particle i is 50ai, which implies that particle i will interact with particle j if rij 6 50ai, where
rij ¼ kxi � xjk. A symmetric interaction is when the truncation radii is the same for all the particles. This means that the sup-
port of particle i is 50maxkak, which implies that all the particles have the same support. Thus, if particle i interact with par-
ticle j, particles j also interacts with particle i. This does not necessarily produces a symmetric matrix. It will produce a
symmetric matrix if all the particles have the same radii.

To understand the properties of the linear system, we will study the distribution of the eigenvalues. In Table 1 row I, we
observe the bounds maxiðjRðkiÞjÞ;miniðjRðkiÞjÞ and maxiðjIðkiÞjÞ for the eigenvalues using asymmetric interactions. In this
experiment, we have 53 particles of two different size on a regular cubic mesh without periodic boundary conditions. We
set the radii of the largest particles in the domain such that they have, on average, 20 neighbors in its support of influence.
This means that particle i will have on average 20 particles that are in a distance smaller than 50maxkak from particle i. The
number of neighboring particles, in this study, is determined by the upper limit of droplet concentration in dilute suspension
of warm-rain clouds. The largest radii is kept fixed and the ratio of the radii is indicated on the x-axis.

Table 1 row I shows a discontinuity in the behavior of the imaginary part of the eigenvalues. There are two discontinu-
ities, the first is located about miniai=maxjaj ¼ 0:6 and the second one is located about miniai=maxjaj ¼ 1. The first discon-
tinuity happens when the small droplets start to interact with the large droplets. For values of miniai=maxjaj less than 0.6 the
large droplets were interacting among them and with the small droplets. However the small droplets were not interacting
with anybody. The second discontinuity appears when the small droplets reach the size of the large droplets, i.e.
miniai=maxjaj ¼ 1. This actually implies that the matrix becomes a symmetric matrix, so the eigenvalues must be real. There-
Table 1
The effect of asymmetric and symmetric interactions on the eigenvalues. The particles have two different radii and the locations are fixed. Row I shows the
experiment with asymmetric interactions and row II shows the experiment with symmetric interactions. Column (a) uses a log scale and column (b) uses a
linear scale. The maximum radii is set such that on average the largest particles interact with 20 neighboring particles. The ratio between the smallest and
largest radii is indicated by the x-axis. The y-axis plots the bounds for the eigenvalues. ‘‘A’’ is the maximum absolute value of the real part of the eigenvalues,
‘‘B’’ is the minimum absolute value of the real part of the eigenvalues and ‘‘C’’ is the maximum absolute value of the imaginary part of the eigenvalues. Particle i
affects particles inside its 50ai radius of influence. Notice that particle i could affect particle j but particle j does not necessarily affect particle i, so it is not a
symmetric interaction. Both experiments contain 53 particles in a regular mesh.
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fore, asymmetric interactions explain the discontinuous behavior of the imaginary part of the eigenvalues. For numerical
experiments particles keep their radii fix, such that miniai=maxjaj is constant.

In Table 1 row II, we observe the bounds maxiðjRðkiÞjÞ;miniðjRðkiÞjÞ and maxiðjIðkiÞjÞ for the eigenvalues using symmetric
interactions. In this case the imaginary part of the eigenvalues is not discontinuous, however we observe a slight increase on
the range of the real part of the eigenvalues with respect to the asymmetric interactions.

To better understand what it means to have asymmetric and symmetric interactions, we built two small examples. In
rows I and II of Table 2 we have the figures of the first example with 53 particles distributed on a cubic mesh. In rows III
and IV of Table 2 we have the figures of the first example with 103 particles distributed on cubic mesh. Column (a) of Table 2
shows the sparsity pattern of the respective matrices. Column (b) of Table 2 shows the behavior of the eigenvalues. Here we
can confirm that for symmetric interactions the range of the real part of the eigenvalues is larger than for asymmetric inter-
actions. Finally, column (c) of Table 2 shows the behavior of the relative residual of GMRes. The right hand sides were gen-
erated as b ¼ ðA� IÞbr , where br is a random vector, see (7). It requires two more iterations to reach convergence in the
symmetric case when compared to the asymmetric case.
Table 2
Comparison of several experiments. Column (a) indicates nonzero elements (nz) of A, column (b) shows the distribution of eigenvalues of A and column (c)
shows the relative residual produced by GMRes. The particles have on average 20 neighbors. 50% of the particles have radii a1 and the rest have radii a2 ¼ 0:7a1.
Rows I and III indicate experiment with asymmetric interaction and rows II and IV indicate symmetric interactions. Rows I and II indicate experiments with 53

particles and rows III and IV indicate experiments with 103 particles. The particles are located on a uniform mesh. Notice that the vertical scale differs from the
horizontal scale in column (b).
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Table 3
Quantitative analysis of experiments shown in Table 2. Refer to Eq. (10), Fig. 3 and the upper bound kb� Axnk=kbk 6 Cj2ðVÞqn . The parameters km and kM have
been set based on the eigenvalues. The parameter d has been obtained after an ellipsis has been circumscribed on the eigenvalues and it is dependent on �. The
parameter � has been introduced in the analysis as a perturbation to the left bound km to show its effect on q.

q j2ðVÞ kM km d

I 0:103� 0:034�þOð�2Þ 284.416 1.285 0:8949� � 0:029� 0:689�þOð�2Þ
II 0:139 1.251 1.417 0.820 0
III 0:149þ 0:2494�þOð�2Þ 2037.577 1.415 0:821� � 0:0325� 0:126�þOð�2Þ
IV 0:173 9.4292 1.530 0.758 0

Fig. 3. Ellipse enclosing all eigenvalues of matrix A. The eigenvalues are represented by the blue dots. kM is an upper bound for the largest real part of the
eigenvalues. km is a greater than zero lower bound for the smallest real part of the eigenvalues. d is an upper bound for the largest imaginary part of the
eigenvalues. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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To be more precise, we would like to provide the actual estimation for q and j2ðVÞ for the test cases shown in Table 2 and
understand better column (c) of the same table. In Table 3 we observe a direct comparison of q and j2ðVÞ for the symmetric
and asymmetric interactions. This shows that for symmetric interaction we obtain a better j2ðVÞ but with the cost of a larger
q compared with asymmetric interactions.

Up to this point, we have observed by numerical experiments that the eigenvalues of the matrix A tend to have a positive
real part and may have a small imaginary part, depending if asymmetric or symmetric interactions are used. We have ob-
served good convergence behavior of the relative residual for GMRes for both asymmetric and symmetric case.

The particular behavior of the eigenvalues shown in Table 2 column (b) allow us to follow [34,35,4] to bound the behavior
the relative residual produced by GMRes. This is carried out by enclosing the eigenvalues by an ellipse, see Fig. 3. This allows
us to find an explicit bound for the behavior of the relative residual produced by GMRes, this is kb� Axnk=kbk 6 Cj2ðVÞqn.
q 6 1 is a constant, n is the iteration number, C is a constant independent of n and j2ðVÞ ¼ kVkkV�1k. V is the matrix with the
eigenvectors of A, such that A ¼ VKV�1 is the eigenvalue decomposition of A;K is the diagonal matrix with the eigenvalues
of A. q measures the ratio between a characteristic radius of the ellipsis over the distance of the center of the ellipse to the
origin [35]. Thus, we must avoid the origin when we enclose the eigenvalues otherwise q is useless. This leads us to the fol-
lowing definition of q,
q ¼ kM � km þ 2d

kM þ km þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kMkm þ d2

p ð10Þ
where kM is an upper bound for the largest real part of the eigenvalues, km is a greater than zero lower bound for the smallest
real part of the eigenvalues and d is an upper bound for the largest imaginary part of the eigenvalues. We choose kM; km and d
such that they minimize q and all the eigenvalues are enclosed by the ellipse. This result reduces to the well-known result
for positive definite matrices ([35]) by taking the Taylor expansion of q as a function of d and letting d! 0,
q ¼
ffiffiffiffi
j
p
� 1ffiffiffiffi

j
p
þ 1
þ 2d

ð
ffiffiffiffiffiffi
kM
p

þ
ffiffiffiffiffiffi
km
p
Þ2
þOðd2Þ ð11Þ
where j ¼ kM=km is the condition number of A. Notice that when the matrix is positive definite it is enough to use
kM ¼maxiðjRðkiÞjÞ; km ¼miniðjRðkiÞjÞ and d ¼ 0.

For problems where the eigenvalues show different patterns, new estimates must be computed [35–37].
Since q is small, GMRes will perform well for our test problems. However, we still have to describe the behavior of j2ðVÞ

to have a tight bound for GMRes, i.e. we need j2ðVÞ � 1. In Fig. 4, we show the behavior of j2ðVÞ for asymmetric and sym-
metric interactions. We observe that for the case of asymmetric interactions j2ðVÞ increases as we increase the number of
particles. This implies that the matrix induced by the asymmetric interactions behaves as a nonnormal matrix as we increase
the number of particles. On the other hand, the matrix induced by the symmetric interactions shows a bounded behavior of
j2ðVÞ, which suggests that it behaves as a normal matrix. This apparent bad behavior [5] might not be that harmful after all,
remember that from column (c) of Table 2 we know that GMRes converged slightly faster for the asymmetric case than the
symmetric case. This faster convergence rate is explained by q, i.e. for the asymmetric case q is slightly smaller than the sym-
metric case. So, even though j2ðVÞ increases with the number of droplets, this is overcome by qn. Another important advan-
tage for the asymmetric case over the symmetric case is its computational cost. Even though that both of them are sparse, the
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asymmetric case is sparser so less computation is required when solving the linear system. We will show in Section 6 that
the use of asymmetric interactions is after all the best.
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Another part of the problem we would like to study in more detail is the behavior of the eigenvalues as two particles ap-
proach each other and when the particles are touching each other. This could be seen as an extreme case for interacting par-
ticles. These two experiments are performed in an unbounded domain, i.e. no periodic boundary conditions. In Fig. 5 (a) we
show an sketch of the first experiment of two particles of the same radii approaching each other. in Fig. 6 (a) we show a
sketch of the second experiment of two particles with different radii touching each other.

For simplicity the distance between the particles has been normalized by their radii. In Eq. (12) we write the explicit def-
inition of the interaction matrix. For simplicity, the locations of the particles have been aligned on the x-axis.
Table 4
Showin

n

0:94

0:97
A ¼

1 0 0 bK 0 0
0 1 0 0 bb 0

0 0 1 0 0 bbbK 0 0 1 0 0
0 bb 0 0 1 0

0 0 bb 0 0 1

0BBBBBBBBB@

1CCCCCCCCCA
ð12Þ
where bK ¼ 1
4ð2þdÞ3

þ 3
4ð2þdÞ þ 3

4
1

2þd� 1
ð2þdÞ3

� �
, bb ¼ 1

4ð2þdÞ3
þ 3

4ð2þdÞ and the distance between the particles is 2þ d. The eigenvalues

have been found to be,
k1 ¼
ð3þ dÞ2ð3þ 2dÞ

2ð2þ dÞ3
ð13aÞ

k2 ¼
ð1þ dÞ2ð5þ 2dÞ

2ð2þ dÞ3
ð13bÞ

k3 ¼ k4 ¼
ð1þ dÞð19þ dð17þ 4dÞÞ

4ð2þ dÞ3
ð13cÞ

k5 ¼ k6 ¼
1
4

4þ 1

ð2þ dÞ3
þ 3

2þ d

 !
ð13dÞ
In Fig. 5 we show the behavior of the eigenvalues as a function of d. We observe that the eigenvalues spread out as d! 0.
This suggests that having two particles close to each other may slow down the convergence behavior of GMRes. This is seen
directly from the definition of q in Eq. (10). Another important theoretical feature that can be obtained from the eigenvalues
of (12) in Eq. (13), is that when d ¼ �1 the matrix is singular, i.e. k2 ¼ k3 ¼ k4 ¼ 0. Notice that when d ¼ �1 the particles
overlap but they are not on top of each other. Thus, when d ¼ �1 the distance between the centers is 1. This is very inter-
esting behavior from the theoretical point of view but an unreachable state from the physical point of view, since particles
are not allowed to overlap.

The second experiment explores further the behavior of the eigenvalues when two particles are touching each other. In
Fig. 6 we observe the behavior of the eigenvalues for a complete range of different radii. The experiment was design such that
one particle keeps its radius fixed and the other one changes its radius. Notice that even one particle is changing its size, they
are always touching. The conclusion from this experiment is clear, the eigenvalues will spread out most when two particles
of the same size are touching each other.

The conclusion from these two experiments with two particles is clear. The eigenvalues of the matrix will spread out most
when two particles of the same size are touching each other. For any other configuration, such as when the particles are not
touching or have different size, the effect on the eigenvalues will be less severe.

Finally, we performed an experiment with 8 particles having the same radii arranged on the corners of a cube. The pur-
pose of this experiment is to explore how a cluster affects the behavior of the eigenvalues. The radii of the particles is con-
trolled by the nondimensional parameter n. The nondimensional parameter n defines the radii of the particles such that
when n ¼ 0 the particles have radii equal to 0 and when n ¼ 1 the closest particles in the cubic mesh are touching each other.
We found these two configurations lead to a very interesting behavior of the eigenvalues. For the two cases we use symmet-
ric interactions. In Table 4 we summarize the outputs found for the two configurations.

The main purpose of all the experiments in this section was to understand how the configuration of the particles affects
the convergence of GMRes. We have shown that the convergence of GMRes is controlled by two components. These are the
normality of the matrix and distribution of its eigenvalues. We have shown how to overcome the non-normality of the inter-
g ill-conditioning and negative eigenvalues of the matrix for our linear system.

maxiðRðkiÞÞ q

6851675535042 3:71 miniðjRðkiÞjÞ ¼ 1:2033� 10�8 0:9998

3:78 miniðRðkiÞÞ ¼ �0:0116 Does not apply
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action matrix by using symmetric interaction. However, as mention before, we decide to use asymmetric interactions. We
discuss this point further in Section 6.

On the other hand, we have not discussed how to overcome a bad distribution of eigenvalues. As we showed before, when
the particles cluster they could induce a poor configuration of the eigenvalues. Although in cloud physics this might not be
common, mathematically the matrix could reach a configuration such that GMRes might behave poorly. Therefore, we must
prepare to handle this issue in case it happens. To handle a bad distribution of eigenvalues, we consider using a precondi-
tioner. This preconditioner was already described in Appendix A.3, however at this point we have only shown why we need
to have a preconditioner. We shall discuss in Section 6 the mathematical effectiveness and computational efficiency of this
type of preconditioner.
6. Scalability

To solve system (1) on a 1D decomposed domain, we implemented the following methods:

1. Block Gauss–Seidel explained in Appendix A.1.
2. GMRes explained in Appendix A.2.
(a) GMRes with a matrix-free approach
(b) GMRes with a parallel sparse matrix implementation, discussed in Section 3.

3. Preconditioned GMRes explained in Appendix A.3.

(a) Preconditioner with no overlap
(b) Preconditioner with overlapping

For 2D domain decomposition, we only implemented GMRes with a matrix-free approach and with the parallel sparse rep-
resentation of the matrix.

In HDNS simulations, output quantities of interest are as follows: radial relative velocity which is the relative velocity of
droplet pairs projected on their center line, radial distribution function is a measure of local clustering of droplets, and col-
lision kernel is the normalized rate of collisions between droplets per unit time per unit volume. The results (radial relative
velocity, radial distribution function and collision kernel) from all methods discussed in this paper are strictly validated
against each other.

Symmetric and asymmetric interaction of the droplets are compared in Fig. 7. With symmetric interaction, particles are
allowed to interact within a truncation sphere of Htrunc � amax in radius while asymmetric interaction is restricted to a sphere
of radius Htrunc � ai. As expected, symmetric interaction takes a few (� 2) more iterations to converge in comparison with
asymmetric interaction. For symmetric interactions, each particle on average has more neighboring particles and the com-
putational cost per iteration is slightly higher than the asymmetric interaction as shown in Table 5.

For the rest of this section, we will only consider asymmetric interactions due to its lower computational cost.
The scaled performance of proposed methods are shown in Fig. 8. The timing measurements are carried out for a bench-

mark problem of 2� 106 droplets of radii 20 and 40 microns at 5123 grid resolution. For the overlapped preconditioner, the
Fig. 7. Convergence rate for symmetric and asymmetric interaction (2D decomposition, 5123 simulation on Nproc ¼ 256 cores, Np ¼ 2� 106; a1 ¼ 10 lm and
a2 ¼ 60 lm).



Table 5
Effect of symmetric and asymmetric interaction on approx. number of iterations to converge and timing of GMRes with sparse representation of A (2D
decomposition, 5123 simulation on Nproc ¼ 256 cores, Np ¼ 2� 106; a1 ¼ 10 l and a2 ¼ 60 l; kAx� bk=kbk 6 e).

Interaction Fix cost Variable cost e ¼ 10�6 e ¼ 10�13

# Iter. Total time (s) # Iter. Total time (s)

Asymmetric 0.0093 0.0058 7 0.0499 20 0.1253
Symmetric 0.0117 0.0081 7 0.0684 21 0.1818

Fig. 8. Scalability of different proposed methods.
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overlapping thickness in all 3 directions is set to Htrunc � amax with Htrunc ¼ 50. All measurements are carried out on NCAR’s
Bluefire machine with identical compiler and optimization settings. The convergence criterion is set to e ¼ 10�6 and mea-
surements are averaged over 1000 time-steps of simulation. This value of e is the acceptable measure we use in our simu-
lations. We note that e could be set as small as machine e, but the average statistics we are interested in are not sensitive to e
when e 6 10�5. Furthermore e ¼ 10�6 allows us to simulate large problems in a manageable run time.

We observed following behavior for 1D decomposition: All implemented methods have an almost ideal scaling with the
number of cores but start to saturate at about Nproc ¼ 64. This suggests that 1D decomposition will not be the method of
choice for larger problem sizes. Our proposed preconditioning methods have a high computation overhead so that it renders
both methods to be less efficient than GMRes without preconditioning for dilute suspensions. This suggests that one should
use the preconditioner when stagnation of GMRes is observed. Although we have not seen this yet, we know from the per-
turbation study in Section 5 that the matrix could become ill-conditioned, which would make GMRes stagnate.

Also in Fig. 8, we show the timing results for GMRes and Block Gauss–Seidel on a 1D and 2D decomposition implemen-
tation The 2D decomposition does not show any symptom of saturation up to 1024 cores suggesting that 2D implementation
of GMRes and GMRes with sparse representation are highly scalable. Please also note that the sparse representation of A
leads to the most efficient method both in 1D and 2D decomposition. As we discussed earlier, with precomputation of coef-
ficients, we avoid a heavy computational burden in each iteration which highly increases the efficiency of the method.
Namely, in 2D decomposition, precomputation yields a speed-up of � 5:6x compared to matrix-free GMRes on 1024 cores.
Further, in Table 6, we have summarized the number of iterations of each method to converge to a preset e along with wall-
clock time per iteration for each method. This table is obtained for our benchmark problem on 64 cores. Even though over-
lapped preconditioned GMRes takes fewer iterations, each iteration is slower compared to (for instance) precomputed
GMRes. We note that it is possible to implement a sparse representation of Block Gauss–Seidel. However, even if we assume
the cost per iteration becomes as low as sparse representation of GMRes, since the total number of iterations will remain the
same (Table 6: 18 for BGS versus 11 for GMRes to achieve e ¼ 10�6), the sparse representation of Block Gauss–Seidel will still
be slower. Also we should add that Block Gauss–Seidel has a stricter convergence behavior. For instance Block Gauss–Seidel
becomes extremely slow or it will diverge for large density of particles.



Fig. 9. Scaling of GMRes with sparse representation of A versus number of particles (2D decomposition, 5123 simulation on Nproc ¼ 256 cores, a1 ¼ 20 lm
and a2 ¼ 40 lm).

Table 6
Average number of iterations to converge and timing of proposed methods (1D decomposition, 5123 simulation on Nproc ¼ 64 cores, Np ¼ 2� 106 ; a1 ¼ 20 l and
a2 ¼ 40 l; kAx� bk=kbk 6 e).

Solution method Fix cost Variable cost e ¼ 10�6 e ¼ 10�13

# Iter. Total time (s) # Iter. Total time (s)

Block Gauss–Seidel 0.1254 0.3785 18 6.9390 92 34.9474
Matrix-free GMRes 0.1163 0.3463 11 3.9259 31 10.8516
Non-Overlap. Precond. GMRes 0.1402 1.1873 9 10.8261 26 31.01
Overlap. Precond. GMRes 0.2138 2.5564 2 5.3266 4 10.4394
GMRes with Sparse Rep. of A 0.3591 0.1317 11 1.8084 31 4.4418

Fig. 10. Effect of particle size on the convergence rate of GMRes with sparse representation of A (2D decomposition, 5123 simulation on Nproc ¼ 256 cores,
Np ¼ 2� 106).
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In Fig. 8, the 2D domain decomposition codes could not be run on small number of cores due to memory requirements. On
the other hand, Eq. (9) restricts the option of large number of cores for 1D domain decomposition.

Fig. 9 demonstrates the scaling of GMRes with sparse representation of A versus total number of particles in the domain.
We observed that number of iterations has a relatively weak dependence on the number of particles. Namely, the number of
iterations almost doubles for a 40-fold increase of number of particles (from 500 K to 20 M). The number of particles has an
even weaker effect for larger number of droplets. For droplets in the range of application in cloud physics, the effect of par-
ticle size on the convergence rate of sparse representation is shown in Fig. 10. Figs. 9 and 10 are obtained by averaging the
residuals over 50 time steps.

Next, we discuss the main drawback of GMRes with sparse representation of A. As discussed earlier, at least 6 coefficients
need to be stored for each neighbor pair of particles in the simulation. Therefore, in total, Oð6navgNpÞ values must be stored in
total where navg is the average number of neighbors in the truncation sphere per droplet. The required memory might grow
rapidly if Np or navg become large for a specific simulation which might cause a drastic slow-down of the computation
depending on the machine architecture and memory limitations. In our simulations, we do not reach these extreme limits,
since navg is small (of Oð10Þ) due to the nature of the physical problem we explore. Namely due to the dilute suspension of
particles in clouds, the number of neighboring particles for a single droplet is bounded because the liquid water content is
quite small for typical cloud physics applications.

7. Complexity analysis

We analyzed the complexity of the proposed subroutine with the 2D domain decomposition scheme to theoretically esti-
mate the wall-clock execution time. This allows us to analyze how different variables affect the code performance. The
expression is built by using the elemental times ta; tc , tw, and ts where ta is the computation time per floating point operation,
tc is the memory-to-memory copy time per word, tw is the time for transmission of a single word between processors, and ts

is the startup or latency time before actual communication occur. The reader can find in [38] a discussion on how to obtain
these times for the case of a parallel 3D FFT. In this paper, we will use same elemental times, and they are shown in Table 7.
These elemental times belong to the supercomputer Bluefire at NCAR, an IBM Power 575 cluster.

Our fastest implementation builds the sparse representation of A before the iterative process. Eq. (14) gives the
wall-clock time of the precomputation step together with the initialization part (Line 1 and 2 of the GMRes algorithm in
Appendix A.2).
tPrecomp ¼ 124ta þ 21tc þ 16þ 3:32 logðNprocÞ
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where amax is the largest droplet radii (¼maxða1; a2Þ), L is the domain box size, and dx is the cell unit size of the particle
search grid used for the cell-index method and linked lists [28].

In this equation, there are two communication times; (1) the third term in line (14a) mainly represents the global com-
munication needed at initialization (for this, MPI_All_Reduce command is utilized), and (2) the line (14b) gives the time it
takes to transfer the data related to particles located in the halo layer around each subdomain (see Fig. 2). This term depends
on the volume of the layer composed by four neighboring slabs and four corners. Note that for very large number of proces-
sors, the second communication time decreases until it saturates with a halo layer containing only corners while the first
increases slowly.

The wall-clock time for the iterative process is:
Table 7
Estimated elemental times on Bluefire for the complexity analysis.

ta 0:37 ns/FLOPS
tc 6:37 ns/word
tw 2:19 ns/word
ts 7:00 ls
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where n is the number of iterations. Similar to Eq. (14), there are two types of communication times and they take place in
Line 7 and 9 of the GMRes algorithm shown Appendix A.2. Note that some terms have the number of iterations (n) to the
second or third power due to the double nested loops in the GMRes algorithm.

Both equations assumed a truncation radius of influence of Htrunc ¼ 50 and a uniform spatial distribution of the droplets in
the domain of size L. To simplify, we set dx to the same grid size used for flow simulations and the number of iterations n to
10. Setting n equal to 10 may be seen as being optimistic but this is indeed a good approximation because it gives us a lower
bound for the total cost of the complexity analysis. dx should be any small enough value to reduce the N2

p dependence but not
smaller than 2ða1 þ a2Þ. The number of iterations depends on the problem setting, however we have shown before that it
depends weakly on Np and droplet sizes (a1; a2). 10 iterations is an average value to reach the 10�6 convergence criteria
(see Figs. 9 and 10). In the context on cloud physics, for a fixed liquid water content (typically about 1 g/m3), the number
of droplets Np is determined by the box size L and droplet sizes (a1; a2). With these premises, in reality the total wall-clock
time depends only on the problem size (L), droplet sizes (a1; a2), and the number of processors (Nproc).

Before examining these dependencies, we show in Fig. 11 the relative importance of each of the terms in the complexity
analysis using the case discussed in Fig. 8. We note that the total wall-clock time of the subroutine is dominated by the pre-
computation and initialization, Eq. (14), (mainly for small to moderate number of processors) and by the global communi-
cation (MPI_All_Reduce command) during the iteration process, line (15b) of Eq. (15), (mainly for large number of
processors). The latter effect is due to the logðNprocÞ dependency of the communications, which leads to a poor scalability
of the subroutine.

We note that the time for communication of data of particles located in the halo layer (line (15c) of Eq. (15)) is negligible
in comparison to the leading terms (similar behavior was found for the same term in Eq. (14)). The theoretical total wall-
clock time matches the data of the case 2D_dd GMRes with precomputation from Fig. 8, which validates our complexity
analysis.

In Fig. 12 we show the dependency of theoretical wall-clock execution time on the problem size (L), droplet sizes (a1; a2),
and the number of processors (Nproc). For similar numbers of droplets, the wall-clock execution time is similar, thus the sub-
routine depends strongly on the number of particles. From the figure we can conclude that our parallel GMRes implemen-
tation is suitable for a moderate number of processors in the tera to petascale computers, depending on the size of the
Fig. 11. Complexity analysis of each term of the theoretical wall-clock execution time, using the case discussed in Fig. 8.



Fig. 12. Complexity analysis of the theoretical wall-clock execution time for different cloud physic cases.
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problem. Further research is needed toward reducing the global communications, as it becomes the bottleneck for the sub-
routine for very large number of processors. There are few options we could explore. Although Block Gauss Seidel is more
computationally expensive, it does not require global communications. We showed that the use of preconditioners in GMRes
increase the computation time but greatly reduces the number of iterations. This could also be used to our advantage for a
large number of processors because the computation effort is negligible in comparison to the global communication which is
reduced as the number of iterations are reduced. We point out that our aim is to simulate large problems with problem sizes
of 20483 or larger. For those cases, our subroutine scales well for moderate to large numbers of processor.

We also performed a weak scalability analysis (not shown) and we found that the scalability deteriorates with number of
processors because, while the computational load per processor is constant, global communication dominates the subrou-
tine’s performance.
8. Summary and conclusions

In this paper, we have studied the mathematical and computational properties of the linear system obtained from the
hydrodynamic interaction of cloud droplets in a turbulent flow, in order to accelerate the convergence rate of the relevant
iterative solver. The hydrodynamic interactions have been modeled by the Stokes disturbance flow approximation, see [2].
We compared the original Block Gauss–Seidel solver (explained in Appendix A.1), with a GMRes solver.

We provided a complete mathematical description of the linear system. Specific properties of the system matrix A such as
eigenvalue distribution and normality of the matrix were analyzed to understand the convergence of the linear solver. We
studied the performance of GMRes with and without a preconditioner, using a matrix-free and sparse representation of the
matrix and on a 1D and 2D domain decompositions. We provided theoretical understanding of the convergence rate for
GMRes method. The results were compared to the Block Gauss–Seidel method originally used by [1].

This study shows that the linear system could behave very poorly under certain conditions, such as strong clustering of
particles. Although, in cloud physics this extreme clustering is unlikely, we should be aware that the Stokes approximation
produces an ill-conditioned linear system, i.e. the matrix of hydrodynamic interaction may have a large condition number
j ¼maxijkij=minjjkjj, where ki represent the eigenvalues of the matrix. By analyzing the eigenvalues, we also showed that
the closeness of similar-size droplets affects the conditioning of the matrix as opposed to different-size droplets. Namely,
the worst case of ill-conditioning will be same size particles in close proximity. For these situations, we developed a re-
stricted Schwarz type preconditioner for the linear system which can handle the ill-conditioning, see A.3. This preconditioner
was tested in a 1D domain decomposition implementation. However, the scalability results in Table 6 show that the precon-
ditioning overhead dominates the method for our well-behaved system.

We also studied how the normality of the matrix can be obtained by having symmetric interactions instead of asymmetric
interactions. Even when the matrix behaves as a nonnormal matrix, it did not yield a stagnation behavior in GMRes for our
problem. However, for the rest of our experiments, we kept the nonnormal matrix for performance reasons. It is important to
point out that by making the matrix a normal matrix we obtained a different behavior of the eigenvalues. However, the same
bound derived in Section 5 holds.

We did a complete convergence analysis of the Block Gauss–Seidel method in AppendixA.1. However, we did not pursue
further because GMRes was more computationally efficient and stable.
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We demonstrated, quantitatively, that convergence rate of GMRes method saturates for high density of particles, see
Fig. 9. Particle size has a slight effect on the convergence rate. We showed that 55–60 lm droplet pair requires �10 more
iterations to converge to machine roundoff error when compared to 10–15 lm pair, see Fig. 10. Thus, for droplets in the
range of application in cloud physics, we observe a systematic convergence of GMRes to machine roundoff error in <35
iterations.

We studied a problem of particle laden turbulence at 5123 resolution with 2� 106 particles and obtained scalability data
of the proposed methods on parallel machines. Using GMRes with a parallel sparse representation of the matrix, we have
been able to speed up the linear solver by a factor of � 5:6x (2D domain decomposition compared to 1D domain decompo-
sition on 64 cores). Using the combination of techniques described in this paper, we will be able to scale HDNS computations
to petascale computers as they become available. Our results along with the proposed solver can be of value to other re-
search areas where an interacting N-body problem is encountered (e.g. particle interactions in electrophoresis of [19] and
magnetic particle interactions by [20]). Furthermore, knowing the nature of the governing kernel (namely the decay of in-
volved forces with distance), the eigenvalue analysis can be extended to such problems.

Finally, our complexity analysis shows that for large problems (large numbers of particles), the proposed GMRes scheme
scales well for moderate to large numbers of processors in current tera to petascale computers. Further research is needed
toward reducing global communications, as it becomes the bottleneck for very large number of processors. Block Gauss Sei-
del and GMRes with preconditioner could be re-explored due to lower global communication requirements, respectively.
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Appendix A. Solution methods

In this appendix, we give a complete mathematical description of the methods we use to solve (7). For each method, we
provide a detailed description of our implementation, explain the convergence criteria used, and provide a simplified con-
vergence study. A complete convergence study has been developed in the perturbation analysis, Section 5.

A.1. Block Gauss–Seidel method

The first method uses a non-overlapping Block Gauss–Seidel implementation. This is a domain decomposition where in
each local domain we applied one Gauss–Seidel iteration and then share the local approximation. We iterate until conver-
gence is achieved. To describe the method, consider the domain decompositions described in Fig. 1 and sub-domain l. Notice
that this description is valid for the 1D domain decomposition and the 2D domain decomposition described in Fig. 1. In Eq.
(A.1) we provide a sketch of the decomposition in matrix form,
ðA:1Þ
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where ml is the number of particles inside sub-domain l, A and x are described in Section 3, Ain
l represents the square matrix

of the interaction among the particles inside subdomain l, Aout
l;a and Aout

l;b represents the interactions of particles inside of sub-
domain l with the particles outside subdomain l. Notice that Aout

l;a and Aout
l;b do not consider the interactions among particles

outside subdomain l.
If we decompose Ain

l into Lin
l ;D

in
l and Uin

l . Where Lin
l is the lower triangular part of Ain

l below the diagonal, Din
l be the diag-

onal of Ain
l and Uin

l is the upper triangular part of Ain
l above the diagonal. Such that Ain

l ¼ Lin
l þ Din

l þ Uin
l . Thus, the iteration

equation for xl ¼ hu1;l;v1;l;w1;l; . . . ;uml ;l;vml ;l;wml ;li
T is as follows,
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h i
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where ebl is the right hand side related to the subdomain l. The global approximation of the solution xðnþ1Þ for the nþ 1 iter-
ation is as follows,
xðnþ1Þ ¼
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where L is the number of subdomains and ðnÞ represents the iteration counter. Notice that the computation of Din
l þ Uin

l

� ��1

is not expensive since it is a sparse upper triangular linear system of equation where backward substitution is applied. It is
important to point out that (A.2) is highly parallel and it only requires to communicate xðnÞ between iterations. Actually, it
only requires a local communication between neighboring subdomains, see Fig. 1, because of the truncation radius.

The convergence criteria used for this method was originally proposed in [1] and is included here for completeness. This is
defined as follows
normalized error ¼ kx
ðnþ1Þ � xðnÞk1

ucharac
6 e ðA:4Þ
where xðnÞ ¼ huðnÞ1 ; v ðnÞ1 ;wðnÞ1 ; . . . ; uðnÞNp
;v ðnÞNp

;wðnÞNp
iT and ucharac is a characteristic velocity. For a bidisperse system with two differ-

ent radii of droplets, the characteristic velocity ucharac can be defined to be the differential terminal velocity
(ucharac ¼ jvp2 � vp1j).

To study the global convergence properties of this method, we rewrite it as a global (non local) iterative procedure, see
[39], leading us to the following,
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where Rl is a restriction from R3Np to the lower dimensional vector which entries are related to the subdomain l. Thus, if the
error is defined as en ¼ xðnþ1Þ � xðnÞ, we conclude that it has the following behavior,
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Therefore, the convergence properties of the Block Gauss–Seidel method are reduced to studying the eigenvalues of the
matrix,
E ¼
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h i
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Finally, by the fixed point theorem, the method will converge as long as the magnitude of all the eigenvalues of E 2 R3Np�3Np

are less than one, i.e. jkðEÞj < 1, where kðEÞ is the spectrum of E.

A.2. GMRes

We also implemented the Generalized Minimal Residual method (GMRes), see [6,7,4,8]. This method which can handle
asymmetric and indefinite matrices and so is well suited for our linear system. This method has been studied and modified
by several researchers [40,41,11,42]. Such modifications include the use of static/dynamic preconditioners, recycling, fix
number of basis used in the Arnoldi iteration; see [4]. However not all such of modifications are suitable for our linear sys-
tem. For instance, we tried the recycling of the Krylov subspace basis for our sequence of linear system and did not provide
any advantage, see Appendix B.1.
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GMRes uses a projection into the Krylov subspace of the matrix A as a basis for the solution x of the linear system Ax ¼ b.
The Krylov subspace KnðA;bÞ ¼ hb;Ab;A2b; . . . ;An�1bi is orthonormalized by the Arnoldi algorithm and then the problem is
reduced to a least square problem to minimize the residual kAxn � bk. GMRes usually provides a very good approximation
with only a small number of basis/iterations of the Krylov subspace for well-conditioned linear systems, but extreme cases
can also be found [36].

For the GMRes implementation, in Algorithm 1, we do not require a specific form of the matrix A, see [6,7,4,40]. We only
require an efficient matrix–vector multiplication between A and a given vector. This will be denoted as Av, where v is going
be specified on each iteration of GMRes. For this particular implementation of GMRes, we do not include restarts because, as
shown in Sections 5 and 6, GMRes converges in few iterations. However, precautions must be taken into account because we
found conditions when GMRes may stagnate for our linear system, see Section 5.

Algorithm 1. GMRes

1: r0 ¼ b� Ax0  Ax0 req. Near-Field comm.
2: b0 ¼ kbk; b1 ¼ kr0k;q1 ¼ r0=b1  b0 and b1 req. Global comm.
3: for n ¼ 1;2;3; . . . do
4: w ¼ Aqn  Aqn req. Near-Field comm.
5: for j ¼ 1! n do
6: hjn ¼ q	j w

7: w ¼ w� hjnqj  hjn req. Global comm.
8: end for
9: hnþ1;n ¼ kwk  kwk req. Global comm.
10: qnþ1 ¼ w=hnþ1;n

11: Find yn to minimize keHnyn � b1e1kð¼ krnkÞ
12: if krnk=b0 < e then
13: x ¼ x0 þ Qnyn  Qnyn req. Near-Field Comm.
14: BREAK main loop
15: end if
16: end for
Now we proceed to the explanation of Algorithm 1 line by line. For steps which require data communication, please see
Section 4.

Lines 1–2 Initialization with initial guess x0 and definition of b0; b1 and q1 (first orthonormal basis for Kn).
Lines 3–16 Main loop to build and orthonormalize the Krylov subspace Kn.

Lines 4 Matrix–vector multiplication to compute next Krylov basis.
Lines 5–8 Arnoldi iteration to orthogonalize vector w with respect to qj; j ¼ 1; . . . ;n. Notice that the Arnoldi method is

just a modified Gram–Schmidt orthonormalization, and it can be modified for stability purposes, see [4].
Lines 9–10 Normalization and storage of w as qnþ1.

Line 11 Least square problem to find yn, where e1 is a vector of dimension ðnþ 1Þ defined as e1 ¼ h1;0; . . . ; iT ; and eHn is
an upper Hessenberg matrix of size ðnþ 1Þ � ðnÞ. This least square problem can be solved by using a QR
decomposition of eHn with Givens rotations.

Line 12 Checking if relative residual is smaller than threshold e. Notice here we are dividing by b0 not b1, the reason for
this is that we want a small residual for the original problem (Ax ¼ b) we are solving not the modified one
(Az ¼ r0 ¼ b� Ax0, with x ¼ zþ x0) modified by the initial guess x0.

Lines 13–14 Final construction of the approximated solution x from the initial guess and the Krylov subspace
Qn ¼ q1j . . . jqn½ �.

The convergence criteria for GMRes is the relative residual,
kAxn � bk
kbk 6 e: ðA:8Þ
thus, we stop GMRes as soon as the relative residual is below e, as was already mentioned in Algorithm 1, line 12. Notice that
the convergence criterion (A.8) is different from (A.4). However (A.8) has been used for comparison purposes.

The convergence analysis for GMRes has been studied by several authors, see [34,37,35,36,4,5]. A complete analysis of the
convergence of GMRes for this type of matrix has been performed in Section 5. Convergence is mainly affected by the prox-
imity of the particles, i.e. if the particles cluster, GMRes start to behave poorly.
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A.3. GMRes with preconditioner and (optional) storage of preconditioned basis

There are some situations, which have been described in Section 5, where the linear system (1) may show a slow conver-
gence. Up to this point we have not provided any tool to manage this bad behavior. So, it is of high importance to be able to
provide such a tool. Thus, the next step will be to provide a preconditioner for (1) to be used with GMRes.

The preconditioner we finally decided to use is a restricted Schwarz type [43], which is adapted to our problem. A similar ap-
proach can be found in [44] where it was used as an iterative solver, and in [45]. Notice that we cannot follow the same approach
developed in [44] because their method, unfortunately, diverges for our problem. See more about preconditioners in [46].

The preconditioner takes advantage of the domain decomposition. However a modification must be made. This is because
the preconditioner will include an overlap region, see Fig. 13. The overlap must be chosen such that it handles the ill-con-
ditioning of the linear system and also minimizes the total computation time. Thus, following the same notation used in
Appendix A.1, we obtain the following representation for the preconditioner,
M�1ex ¼X
l

bRT
l Pl
bA�1

l
bRlex ðA:9Þ
where bAl is the matrix of interaction among all the particles inside subdomain l together with the particles in the overlap
region, bRl is the restriction from R3Np to the lower dimensional vector which entries are related to the subdomain l and
its overlap, Pl is the projection from the entries related to the subdomain l and its overlap to only the entries related to
the subdomain l and bRT

l is the transpose of bRl. A graphical description of the overlapped subdomain related to bAl can be seen
in Fig. 13. Notice that we could also have a preconditioner with no overlap. The overlap, of course, makes the preconditioner
more computationally expensive. However, we considerably improve the quality of the preconditioner with the overlap.
Both preconditioners are considered and compared. For future reference, we define as the overlapped preconditioner as the
preconditioner considering the overlap region and the non-overlapped preconditioner the preconditioner with no overlap.

It is important to point out that this is an additive type preconditioner [39], meaning that the terms on the sum on the
right hand side of (A.9) are independent. This implies that it is a highly parallel preconditioner. More details on the parallel
implementation can be found in Section 4.

GMRes must be modified to include the preconditioner, see Algorithm 2. However, we will only explain the lines that dif-
fer from Algorithm 1.

Algorithm 2. GMRes with preconditioner and (optional) storage of preconditioned basis

1: r0 ¼ b� Ax0; b0 ¼ kbk; b1 ¼ kr0k
2: q1 ¼ r0=b1
3: for n ¼ 1;2;3; . . . ; do

4: zn ¼M�1qn  NEW LINE
5: w ¼ Azn  NEW LINE
6: for j ¼ 1! n do
7: hjn ¼ q	j w

8: w ¼ w� hjnqj

9: end for
10: hnþ1;n ¼ kwk
11: qnþ1 ¼ w=hnþ1;n

12: Find yn to minimize keHnyn � b1e1kð¼ krnkÞ
13: if krnk=b0 < e then
14: x ¼ x0 þ Znyn  NEW LINE
15: BREAK main loop
16: end if
17: end for
Lines 4–5 Use of right-preconditioner and storage of right preconditioned vectors (line 4); and matrix–vector multipli-
cation to compute next Krylov basis (line 5). Line 4 can be modified to have an iteration dependent precon-
ditioner as zn ¼M�1

n qn, see more details in [40,4].
Lines 14 Final construction of approximated solution x from initial guess and the Krylov subspace Zn, where

Zn ¼ z1j . . . jzn½ �. Line 14 must be modified if the vectors zn are not stored and the right preconditioner is in
use, this should change to x ¼ x0 þM�1Qnyn, where Q n ¼ q1j . . . jqn½ �



Fig. 13. Restricted Schwarz domain decomposition preconditioner in 1D domain decomposition. Left: Dashed box is the preconditioning volume for X1.
Right: Side view of the computational domain for 4 preconditioning volumes.
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Appendix B. Other attempts to solve the governing system

We investigated several other solution methods, and we discuss two of them in this appendix. For our problem these
methods turned out to be computationally expensive, but we mention them because they are suitable for this problem
and they are mathematical attractive. The first approach is making use of recycling (Appendix B.1) and the second method
is a black-box type preconditioner by means of a contour integral (Appendix B.2).

B.1. Sequence of linear systems awareness

This approach considers, in its design, that the solver is aware that it is solving a sequence of linear systems [41,47–49]
and takes advantage of it. Namely, if we have AðnÞxðnÞ ¼ bðnÞ and assuming that the change from AðnÞ and bðnÞ to Aðn�1Þ and
bðn�1Þ is small, it is then expected that xðnÞ is close to xðn�1Þ and the procedure used in solving Aðn�1Þxðn�1Þ ¼ bðn�1Þ can provide
certain advantage compared to just solving AðnÞxðnÞ ¼ bðnÞ from scratch.

For our problem we found that the overhead added in this awareness/recycling of Krylov subspace [41] is quite high to the
point that renders the method to be computationally slower than just solving each linear system independently. We tried
this method using the computer code provided by one of the authors of [41] on his web page. Our conclusion is that our
linear system was too well-conditioned to be able to take advantage of the sequence of linear systems. For the problem dis-
cussed in [41] the matrix is more ill-conditioned than our matrix. We believe that recycling is a good idea to handle certain
sequence of linear systems, however, we are left with the following open question: How do we identify a sequence of linear
system that would be a good candidate for this kind of awareness?.

B.2. The contour preconditioner

We experimented with reusing the already implemented matrix–vector multiplication Ax. The first preconditioner we
explored was a shifted version of the original matrix M ¼ aIþ A. This approach has already been considered in literature
but from a different point of view [50,4] in Section 10.8.2. Our point of view was to use it directly as a nested GMRes method.
This means use GMRes and also use GMRes for the preconditioner. The reason for doing this can be seen directly from Eq.
(10). In other words, when we add the shift we are basically reducing the factor qM for M respect to the original factor q for
the matrix A. This implies that GMRes should converge faster for the shifted matrix M. The factor qM is the following,
qMðaÞ ¼
kM � km þ 2d

kM þ km þ 2aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkM þ aÞðkm þ aÞ þ d2

q ðB:1Þ
qM is definitely smaller than q in (10), i.e. qMðaÞ 6 qMð0Þ ¼ q for a P 0. Notice that this implies a better performance of
GMRes for M. Unfortunately, this approach does not speed up the global computation. This makes it worse since each use
of the preconditioner requires several matrix–vector calls. Notice however that it does reduce the global iteration number.

One would think that having a large a would help the convergence of the preconditioner, which is true. But, on the other
hand, having a large a implies that M is not a very good preconditioner. A way to see this is that M�1 should be as close as
possible to A�1. But having a large a goes against this principle and having a too small a is similar to coming back to the
original problem Ax ¼ b. Thus, we need a preconditioner as close as possible to A�1 and having an a as large as possible.
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To do this, we considered that M�1 is not other than just applying the function f ðxÞ ¼ 1=x to M, which is equivalent to say
f ðMÞ. We could obtain a new function by approximating 1=x with a truncated Laurent series. For a positive definite matrix,
we get the following,
1
x
¼ 1

xþ a� a

¼ 1
z� a

ðChanging variablez ¼ xþ aÞ

¼ 1
z

1
1� a=z

¼ 1
z

X1
k¼0

a
z

� �k

ðConsidering
a
z

��� ��� < 1Þ

� 1
z

XNf

k¼0

a
z

� �k

ðTruncating afterNf þ 1 termsÞ

¼
1� a

z

� �Nfþ1

z� a
ðB:2Þ
Notice that for this derivation it is very important to have a
z

�� �� < 1, otherwise this derivation does not make sense. For our case,
it does make sense because all the eigenvalues seems to have a positive real part. Thus, the proposed function is,
f ðzÞ ¼
1� a

z

� �Nfþ1

z� a
: ðB:3Þ
Notice that Nf should be defined such that 1=x is well approximated by f ðzÞ for all the eigenvalues of M. When f is an analytic
function, f ðMÞ can be computed by a contour integral [51–55],
f ðMÞ ¼ 1
2p i

Z
C

f ðzÞðzI�MÞ�1dz ðB:4Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

and C is a contour that encloses all the spectrum of M. Notice that we actually do not need to compute the
matrix f ðMÞ, we only need to have f ðMÞv, where v is a given vector, thus,
f ðMÞv ¼ 1
2pi

Z
C

f ðzÞðzI�MÞ�1vdz ðB:5Þ
where the contour integral can be approximated by the trapezoidal rule, see [55,54] for a complete discussion. Thus, the
approximation is as follows,
f ðMÞv � 1
2pi

XNt

k

f ðzkÞðzkI�MÞ�1vDk ðB:6Þ
Therefore, the problem is reduced to solving ðzkI�MÞh ¼ v, where h is a given vector defined by h ¼ ðzkI�MÞ�1v and
k ¼ 1; . . . ;Nt . We propose to handle these linear systems with GMRes since we are using the shifted matrix M ¼ aIþ A,
which has a shifted eigenvalue distribution compared to A. The linear systems ðzkI�MÞh ¼ v can be handle in parallel by
only shifting the reduced Hessenberg matrix of M. It will only require a highly parallel solution of Nt small least square prob-
lems [49,56,57].

From our experiments, we concluded that the overhead added is high. However, we found that the preconditioner re-
duces the number of iterations significantly. Another way to see this preconditioner is that it is a black-box type precondi-
tioner. It could be applied to any positive definite matrix and reuses the matrix–vector multiplication. It could also be used
with matrices having all eigenvalues with positive real part and small imaginary part [54]. For matrices that do not satisfy
these constraints a new f ðzÞ and/or a different contour must be defined. Another option would be to use the normal equa-
tions, which ensures a positive definite matrix for a non-singular matrix. This might be a double edged sword since the nor-
mal equations square the condition number.
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