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Abstract

The two-way coupled particle-laden mixing layer is studied numerically and theoretically in order to
understand how the addition of solid particles a�ects the stability of the gas ¯ow. Numerical simulations
are undertaken to obtain results equivalent to solving the Orr±Sommerfeld equation of a dusty gas mixing
layer ®rst derived by Sa�man. The growth rate of a viscous particle-laden mixing layer depends on the
wavenumber, ¯ow Reynolds number, Stokes number, and bulk particulate mass loading. Two asymptotic
relations proposed by Sa�man have been con®rmed for the ®rst time by numerical simulations. In addition
to the stabilizing e�ect of particles on the gas ¯ow at large Stokes number, a destabilizing in¯uence at small
Stokes number is also observed at ®nite ¯ow Reynolds number. The fact that the addition of particles can
destabilize the gas ¯ow in the absence of gravity has been shown to follow the original speculation of
Sa�man. Physically, the increase of e�ective inertia of the ¯uid±particle mixture causes a destabilization
e�ect, while the enhanced viscous dissipation around particles gives a stabilization e�ect. These
qualitatively di�erent e�ects have been shown to be directly related to the direction of interphase energy
transfer. Results at arbitrary mass loading, Stokes number, and wavenumber show that for a given mass
loading and wavenumber, there is an intermediate Stokes number which corresponds to a maximum ¯ow
stability. We have shown that this Stokes number is on the order of one, and depends on the wavenumber.
An analytical model for predicting the growth rate in a viscous, particle-laden gas mixing layer is proposed
and compared with the simulation results. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Particle-laden two-phase ¯ows are encountered in a wide range of industrial applications

under various ¯ow con®gurations. Most of the studies in the past have focused on the
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turbulent dispersion of particles in dilute ¯ows [e.g. see Shirolkar et al. (1996) for a recent
review]. Moderate mass loadings of particles can also alter the ¯uid ¯ow, which is known as
the ¯ow modulation (or turbulence modulation if the carrier ¯ow is turbulent). In gas±solid
¯ows, three qualitatively di�erent ¯ow regimes can be de®ned, depending on the level of
particulate volume fraction and mass loading (Elghobashi 1994). First, at very low volume
fractions and mass loadings, the particles do not a�ect the surrounding ¯ow and there is no
¯ow modulation. This is known as the one-way coupling regime. In the second regime, the
particulate volume fraction is very low due to small particle sizes, but the mass loading is on
the order of one because of the high particle to ¯uid density ratio. In this case, particles can
signi®cantly change the carrier-¯ow characteristics, but particle±particle interactions are often
neglected. This is called the two-way coupling regime. Finally, in the dense ¯ow regime, both
the volume fraction and mass concentration are high so that particle±particle collisions have to
be considered. In this study, we will address particle-laden mixing layers which are
volumetrically dilute, but have a large mass loading (the second regime).
Turbulence or ¯ow modulation by particles has been known for several decades. Early

experimental observations (Torobin and Gauvin 1961) showed that the presence of particles
changes the wall drag in pipes as well as rates of heat transfer and chemical reaction which
cannot be explained unless the ¯uid turbulence is modi®ed by particles. Since then, the issue of
whether turbulence in the carrier ¯ow is enhanced or reduced by the dispersed particles has
been the subject of many experimental studies as experimental techniques have advanced. The
survey by Gore and Crowe (1991) showed that a range of e�ects may be observed depending
on the particle size and volumetric loading of particles. They found that the ratio of particle
diameter to turbulence integral length is a good indicator of whether the ¯uid turbulence level
is increased or decreased. Hetsroni (1989) included the particle inertia in his analysis and
correlated the turbulence enhancement or suppression in terms of particle Reynolds number
based on the interphase slip velocity and particle diameter. He concluded that the presence of
particles with a low particle Reynolds number tends to decrease the ¯uid turbulence and
particles with high Reynolds number tends to increase the ¯uid turbulence. Recently, several
theoretical models have been developed to predict the direction and level of turbulence
modi®cation (Yuan and Michaelides 1992, Yarin and Hetsroni 1994, Crowe et al. 1997).
With the development of modern computers, direct numerical simulations provide an

alternative tool for studying turbulence modulation by particles. For example, Squires and
Eaton (1990) reported that the particles enhance the turbulent kinetic energy at high
wavenumbers while decreasing the turbulent kinetic energy at low wavenumbers in forced
isotropic, stationary turbulence. Elghobashi and Truesdell (1993) found a similar ``pivoting'' of
the energy spectrum in a decaying, isotropic, particle-laden turbulent ¯ow.
The problem of turbulence modulation in fully developed ¯ows is related to the question of

the stability and evolution of two-phase laminar ¯ows. In this study, we investigate ¯ow
modulation in a particle-laden mixing layer, including the linear instability in this paper and
nonlinear evolution in a companion paper (Wang et al. 1998a).
The mixing layer represents a simple shear ¯ow and thus provides a building block for many

practical, inhomogeneous ¯ows such as jets, wakes and ¯ow over objects. There have been
numerous experimental and numerical studies of particle transport in mixing layers under one-
way coupling (e.g. see Samimy and Lele 1991, Hishida et al. 1992, Lazaro and Lasheras
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1992a,b, Wang 1992, Crowe et al. 1993, Martin and Meiburg 1994, Raju and Meiburg 1995,
Wang et al. 1998b). Particle transport in a mixing layer di�ers signi®cantly from that of passive
tracers if the particle inertial response time is comparable to the characteristic time scale of the
¯ow. Particles are found to accumulate in the periphery of large-scale vortices and particularly
near the braid stagnation points. The level of accumulation may be very high so that local
particle concentration or mass loading may be much larger than the bulk mean value.
There are relatively few studies of two-way coupled, particle-laden mixing layers. Sa�man

(1962) presented the ®rst analytical formulation on this subject. He derived a modi®ed Orr±
Sommerfeld equation to study the linear stability of viscous, particle-laden, plane parallel
¯ows, under the assumptions of a dilute monodisperse suspension of ®ne particles and uniform
initial particle concentration. The momentum coupling is handled by a force term proportional
to the local interphase velocity slip and particle concentration. The presence of particles
introduces two additional parameters to the stability problem, namely, the bulk mass loading
and the particle Stokes number (the ratio of particle response time to ¯ow characteristic time).
Sa�man concluded that the addition of very weak-inertia particles (i.e. very small Stokes
number) tends to destabilize the ¯ow, while the addition of very large-inertia particles stabilizes
the ¯ow. Michael (1965) investigated the Kelvin±Helmholtz instability of an inviscid dusty gas
by applying a step mean ¯ow velocity pro®le and showed that the presence of the particles
always stabilizes the ¯ow. Acrivos and co-workers (Herbolzheimer 1983, Shaqfeh and Acrivos
1986, Borhan and Acrivos 1988) systematically studied the stability of buoyancy-driven two-
phase interfacial ¯ows in inclined particle settlers and found both inertia and buoyancy can
cause the growth of instability waves at the interface. Yang et al. (1990) integrated numerically
a modi®ed Rayleigh instability equation for an inviscid, spatially-evolving gas±solid mixing
layer. They neglected the particle perturbation velocity completely in their work and showed
that the stability of the mixing layer is always enhanced with increased particle loading and
decreased particle free-stream velocity ratio. Sykes and Lyell (1994) performed the linear
spatial stability analysis of an inviscid, particle-laden circular jet under the similar assumptions
of Yang et al. (1990) and reached the same conclusion that particles always stabilize the ¯ow.
Isakov and Rudnyak (1995) investigated the neutral stability curves of a dusty channel ¯ow,
showing similar trends of Sa�man (1962) that small inertia particles destabilize the ¯ow while
large inertia particles stabilize the ¯ow. Wen and Evans (1994) extended the work of Yang et
al. (1990) by having non-uniform mean particle concentration in the shear layer. They
observed the occurrence of two separate modes as a result of the non-uniform loading: a long
wave mode which corresponds to the standard Kelvin±Helmholtz instability and a short wave
mode which is similar to Holmboe instabilities observed in strati®ed ¯ows. A more careful
study of the spatial instability of an inviscid, particle-laden mixing layer is given by Dimas and
Kiger (1998). They included the particle perturbation velocity so their results are applicable to
®nite particle inertia.
In this paper, numerical simulations are performed to study the linear instability of a

viscous, two-dimensional, particle-laden mixing layer. We ®nd that while for most of the
parametric region the presence of particles stabilizes the ¯ow, addition of weak-inertia particles
can destabilize the ¯ow even in the absence of a gravitational force ®eld, in a manner
consistent with Sa�man's (1962) prediction. A relation is developed to predict the growth rate
and compare this with numerical results. The paper is organized as follows. In Section 2 we
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present the mathematical formulation and theoretical predictions; the numerical method is
described in Section 3; numerical results are discussed and compared with theories in Section 4,
as well as an alternative interpretation in terms of the direction of interphase energy transfer.

2. Theory

We consider a gas mixing layer laden with solid particles in which the volume fraction of
particulate phase is very low and particles are uniform in size with diameter much smaller than
any characteristic length scales in the base gas ¯ow. The particle density is much larger than
that of the gas (rp/rf>>1) so that the bulk mass loading of the particulate phase is on the order
of one and as such the ¯ow modulation by the particles may be signi®cant. The dimensional
governing equations for the carrier gas (subscript f) and particulate phase (subscript p) are:

r � u � 0; �1�

@u

@t
� u � ru � 1

r f

rPÿ 3pm nd
r f

�uÿ v� � nr2u; �2�

@E
@t
� r � �Ev� � 0; �3�

@v

@t
� v � rv � 18m

rpd
2
�uÿ v�; �4�

where u0(ux, uy) is the gas velocity, v0(vx, vy) is the particle velocity, P is the gas pressure,
rf is the gas density. The momentum coupling is described by the term 3pmnd/rf (uÿ v), where
n is the particle number density and d is the particle diameter, m and n are the gas dynamic and
kinematic viscosity, respectively. E denotes the particulate local volume fraction (i E = npd 3/6).
The above mathematical formulation is identical to that given in Sa�man's (1962) pioneering
paper.
The governing equations are now non-dimensionalized using half the velocity di�erence

across the mixing layer U0, the vorticity thickness of the initial mean ¯ow d02U0/dU/dyvy = 0
and a reference particle volume fraction E0. The resulting equations for the gas and particulate
phase become:

r � u � 0; �5�

@u

@t
� u� ~oÿ r P� juj2=2

� �
� r

2u

Re
ÿ ZE

uÿ v

St
; �6�

@E
@t
� r � �Ev� � 0; �7�
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@v

@t
� v � rv � uÿ v� �

St
; �8�

where o40t � u is the ¯uid vorticity. The same symbols are used here to denote the
corresponding non-dimensional variables. The ¯ow Reynolds number, Re, is de®ned as U0d/n.
The ¯ow momentum coupling term becomes ZEuÿ v/St, where Z is the average particle mass
loading (Z= rp/rfE0); the Stokes number St represents the ratio of particle response time
(tp=d 2/18nrp/rf ) to ¯ow characteristic time (tf=d/U0).
The dimensionless mean velocity pro®le of the gas phase is assumed to be:

U�y� � erf
ÿ ���

p
p

y
� �9�

This velocity pro®le gives a compact vorticity layer (i.e. vorticity decays very quickly to zero at
large y) and was used in previous studies of single-phase mixing layer (e.g. Corcos and
Sherman 1984, Moser and Rogers 1993).
Particles are initially distributed uniformly throughout the ¯ow [E(t = 0) = 1] with the initial

mean velocity equal to the ¯uid mean velocity. This assumption of dynamic equilibrium in the
mean is used in the previous studies by Sa�man (1962) and Yang et al. (1990). The
perturbation is taken to be periodic in the streamwise (x) direction and is unbounded in the
vertical direction ( y) with vanishing velocity±vorticity perturbation at in®nities. A pseudo-
spectral method was developed to solve the governing equations (Tong and Wang 1997).
We consider the temporal instability of the ¯ow composed of two equal and opposite

currents, as in Sa�man (1962). This instability mode may be realized in an experimental tilting
tank (Thorpe 1968, 1973). We note that, however, most experimental shear layers are
composed of two parallel streams moving in the same direction, leading to convectively
unstable mode which should be studied as a spatial instability problem (Huerre and
Monkewitz, 1985). The relationship between the temporal instability and spatial instability has
been discussed, for example, by Michalke (1965). These two problems have qualitatively similar
features but are quantitatively di�erent. The observations to be made in this paper, therefore,
should only be valid qualitatively when considering a spatially evolving, viscous, particle-laden
¯ow.
The conventional way to obtain the linear instability growth rate of the above two-

dimensional ¯ow system is to solve a linearized system of Eqs. (6)±(8), or the Orr±Sommerfeld
equation. Sa�man (1962) showed that the Orr±Sommerfeld equation was similar to that of a
single-phase ¯ow, but with the usual mean ¯ow U( y) replaced by a complex mean ¯ow u( y)

�u�y� � U�y� � Z�Uÿ c�
1� ia�Uÿ c�St ; �10�

where a is the perturbation wave number and c is the phase velocity.
The problem of linear instability is an eigenvalue problem involving four governing

parameters, namely, the growth rate, srm 0aci, is a function of Re, a, particle inertia
parameter St, and particle mass loading Z:

s � s�Re; a;St;Z�: �11�
Here ci is the imaginary part of c. As a comparison, in clean gas or single-phase ¯ow, the
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growth rate s0 is only a function of Re and a:

s0 � s0�Re; a� �12�
The phase velocity or the real part of c is zero due to the symmetry of the mean velocity
pro®le, Eq. (9). It is important to note that the perturbation ®eld in the particle concentration
does not enter the eigenvalue problem directly or it can be determined, a posteriori, in terms of
the eigenfunctions of the velocity ®elds.
Sa�man (1962) made two important observations regarding the asymptotic solutions in

terms of St. For the case of very ®ne particles or St<<1, he used a leading order solution for
the particle velocity ®eld to show that the e�ect of the dust is simply equivalent to increasing
the density of gas and thus an increase of ¯ow Reynolds number by a factor of (1 + Z).
Therefore,

s�a;Re;Z;St� 1� � s0 a;Ree � Re�1� Z�� �
: �13�

Since in a single-phase viscous mixing layer, the growth rate increases with Re (Michalke
1964), the addition of particles then destabilizes the ¯ow. We will compare this relation with
numerical results in Section 4.
In the limit of very large particle inertia or St>>1, Sa�man made another prediction. In this

limit, we have u( y) = U( y)ÿ iZ/(a�St) from Eq. (10). Therefore,

s�a;Re;Z;St� 1� � s0�a;Re� ÿ Z

St
: �14�

This relation indicates that the growth rate decreases linearly with loading for large St. Yang et
al. (1990) made a similar observation, although with the additional assumption that the ¯ow is
inviscid.
We shall now formulate a relation to predict the growth rate at arbitrary St. Basically we

shall modify the prediction of Michael (1965) for inviscid two-phase ¯ow. Michael (1965)
considered a step velocity pro®le of U( y) = 1 for y>0 and U( y) =ÿ 1 for y < 0. By applying
the kinematic (continuity of interface displacement) and dynamic (continuity of the pressure
disturbance) conditions at the interface y = 0, he derived the equation for the growth rate,
which in our notation, is

1ÿ s2

a2

 !
�1� Sts�2 � a2St2 � Z�1� sSt�
h i

ÿ 2StZs � 0 �15�

We note that in the limit of St>>1 the leading-order solution to Eq. (15) is

s � aÿ 2
Z

St
; �16�

this is di�erent from the correct behavior given by Sa�man, Eq. (14). This discrepancy is due
to the assumption in Michael (1965) that particles do not cross the interface between the gas
streams or the normal velocity of the particles relative to this interface is neglected. This
assumption is only valid in the limit St<<1.
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Eq. (15) has to be solved numerically, in general, to determine the growth rate at the inviscid
limit. However, a useful explicit solution for small loading is given by Michael (1965) as

s � a 1ÿ a � Z � St
1� 2a � St� 2�a � St�2

" #
: �17�

The ®rst term, a, in Eq. (17) represents the growth rate for an inviscid single-phase ¯ow with a
step mean velocity, while the second term gives the damping e�ect of the particulate phase on
the instability growth. Assuming that the two parts are separable for a general mean velocity
pro®le, we may approximate the growth rate for an inviscid particle-laden ¯ow as

s�a;Z;St� � s0�a� ÿ 2a2 � Z � St
1� 2a � St� 2�a � St�2 ; �18�

where we have simply added a factor 2 to the second term to ensure the correct limiting
behavior, Eq. (14). Such correction would have been made more rigorously if we could treat
the two interfaces (¯uid material interface and the particle material interface) separately when
they do not overlap. However, we do not know how to handle analytically boundary
conditions at the two separate interfaces. Eq. (18) is expected to predict the growth rate well at
large ¯ow Reynolds number and small wavenumber, as the di�erences between the step
velocity pro®le analyzed by Michael (1965) and a smoothed velocity pro®le vanish.
We note further that Tatsumi et al. (1964) derived an asymptotic solution for small a of an

inviscid, single-phase mixing layer with a hyperbolic tangent velocity pro®le. Since the solution
is insensitive to the shape of the velocity pro®le for small a and the mean velocity pro®le used
in this study is very similar to the hyperbolic tangent velocity pro®le, we can write Eq. (19) as

s�a;Z;St� � a 1ÿ 1:78a� 3:32a2
h i

ÿ 2a2 � Z � St
1� 2a � St� 2�a � St�2 : �19�

We stress that this proposed relation was not derived rigorously and thus its usefulness can
only be justi®ed by comparison with numerical results, as will be done in Section 4.3. Although
the above relation was developed for small a and Z, the comparison with numerical results will
show that the relation works well for a < 0.4 and Z< 1.
We may go one step further by assuming that the viscous e�ect can be included in the ®rst

term in a manner which can reproduce the limiting behavior at St<<1. A more general relation
for the growth rate in viscous, particle-laden ¯ow is then

s�a;Re;Z;St� � s0�a;Ree� ÿ 2a2 � Z � St
1� 2a � St� 2�a � St�2 ; �20�

where Ree0Re[1 + Zexp(ÿSt)]. This expression satis®es both limiting behaviors given by
Sa�man, although the solution for the corresponding single-phase ¯ow has to be known.
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3. Numerical method

The Orr±Sommerfeld equation has to be solved numerically to obtain the growth rate of
linear instability modes. Alternatively the pseudo-spectral code for the full nonlinear equations
(Tong and Wang 1997) can be used to calculate the eigenfunctions and growth rate, which will
be explained next.
First, we decompose the velocity and particle volumetric concentration ®elds into the mean

and disturbance ®elds:

u � U�y�
0

� �
� A�t� ûxR�y� � iûxI�y�

ûyR�y� � iûyI�y�

 !
eiax; �21�

v � U�y�
0

� �
� A�t� v̂xR�y� � iv̂xI�y�

v̂yR�y� � iv̂yI�y�

 !
eiax; �22�

E � 1� A�t� ÊR�y� � iÊI�y�
ÿ �

eiax; �23�
where subscript R denotes the real part and I the imaginary part of eigenfunctions; subscript x,
y represent velocity components in these two directions, respectively.
Next, initial guess of eigenfunctions has to be made, which are usually chosen to guarantee

relatively fast convergence. In the current simulations, the following initial forms were used:

ûyI � v̂yI � ÿ 1

cosh�ay�ÿ �2 ; �24�

ûyR � v̂yR � sinh�ay�
cosh�ay�ÿ �2 ; �25�

ÊR � ÊI � 0: �26�

The initial forms for uÃxR, uÃxI, vÃxR, vÃxI were obtained by applying the divergence-free
condition:

ûxR � v̂xR � ÿ duyI=dy

a
; �27�

ûxI � v̂xI � duyR=dy

a
: �28�

These initial forms along with the decomposition specify the initial ¯ow ®eld. The ¯ow is
then advanced in time using a second-order Adams±Bashforth scheme on nonlinear terms and
a second-order Crank±Nicholson scheme on linear viscous terms. Perturbation amplitude A(t)
is de®ned such that uÃyI( y = 0) = 1, and is kept to be less than 1% throughout the simulations
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to ensure a linear instability behavior. Namely, we started each iteration with A= 0.001 and
the simulation was stopped before A reached 0.01. The eigenfunctions at the end of the
simulation were saved and used to specify the initial perturbation ®elds for the next iteration.
It is necessary to keep A su�ciently small since we used a nonlinear ¯ow code. This iteration
procedure continues until all the eigenfunctions converge and the amplitude A(t) varies
exponentially with time.
We note that, because of the symmetry in the mean velocity pro®le, the real parts of velocity

eigenfunctions are odd functions and the imaginary parts are even ones (for both the gas phase
and particulate phase). The real part of particle volumetric concentration eigenfunction is even
and the imaginary part is odd.
At the linear instability stage of the ¯ow evolution, the exponential growth rate of the

perturbation ®elds was computed as

s�t� � ln A�Dt�=A�t � 0�� �
Dt

; �29�

where A(Dt) is the amplitude at time Dt. The growth rate will remain constant once
eigenfunctions converge. Fig. 1 shows, on a log±linear plot, the time development of the
perturbation amplitude at the converged stage under di�erent mass loadings. The slope of each
straight line represents the corresponding exponential growth rate.

Fig. 1. Time development of perturbation amplitude at the converged stage (a= 0.8620, Re= 250, St = 1.0).
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4. Results

4.1. Numerical results

We ®rst present numerical results with each of the three parameters, a, St and Z, being
varied. The Reynolds number is ®xed at 250 unless otherwise speci®ed. Based on the single-
phase result of Michalke (1964), we expect that the growth rate increases with the Reynolds
number. Speci®cally, the growth rate is sensitive to the Reynolds number only for Re < 500.
For higher Reynolds numbers, the ¯ow is similar to the inviscid limit. Since we intended to
show the stabilization e�ect which is a ®nite-Re e�ect, the choice of Re= 250 was made.
Similar results would be expected for other ¯ow Reynolds numbers.
Fig. 2 shows the growth rate as a function of the particle mass loading for three di�erent

Stokes numbers and a = 0.8620. First, for very large Stokes number (St= 10), s decreases
linearly with increasing Z and the slope is about 1/St, as predicted by Sa�man (1962). The
dependence on loading is no longer linear for small to intermediate Stokes numbers. For most
Stokes numbers, the growth rate is less than that of a single-phase ¯ow implying that the
addition of particles tends to stabilize the ¯ow. However, for very small Stokes number
(St= 0.01), the growth rate can actually be larger than that of single phase ¯ow and increases
slowly with Z or particles can actually destabilize the ¯ow (even in the absence of the gravity),
again consistent with Sa�man's prediction. A direct comparison of the numerical results with
Sa�man's asymptotic limits will be given later.

Fig. 2. Growth rate as a function of mass loading for di�erent Stokes numbers (a = 0.8620, Re= 250).
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Fig. 2 also shows that for a given a and Z, the ¯ow becomes most stable for St of the order
of 1. An interesting implication of this is that particles with intermediate Stokes number may
not have the largest dispersion at the later times, unlike the case of one-way coupled particle-
laden ¯ow.
The growth rate is plotted as a function of a for St = 1 in Fig. 3. At this Stokes number,

the addition of particles always enhances the stability of the ¯ow and this stabilizing e�ect
increases with the mass loading. Similar to the single-phase case, the growth rate does not
depend on a monotonically but rather there is a most unstable wavenumber for each mass
loading. This most unstable wavenumber decreases with mass loading, indicating that heavy
loading will lead to rollup at longer wavelengths.
Fig. 4 shows the growth rate as a function of the wavenumber with a ®xed mass loading

(Z= 1.0), but di�erent particle inertial parameters. Again we ®nd that particles with Stokes
number on the order of unity have the strongest stabilization e�ect on the ¯ow. This point is
demonstrated directly by replotting the same data in Fig. 5 as a function of St.
It should be noted that the linear instability eigenfunctions allow for a qualitative description

of the particle±¯ow interaction, as shown in Fig. 6 in which the perturbed gas vorticity ®eld,
the particle velocity divergence and perturbation concentration ®elds are presented. The
particulate velocity ®eld is not divergence free, but has a positive divergence in the vortex
center and negative divergence in the braid regions, leading to the depletion of particles in the
core and accumulation of particles in the braid regions. This preferential accumulation is
known for one-way coupled ¯ow, but appears to be qualitatively similar in the two-way
coupled case. The level of accumulation is expected to be reduced in the two-way coupled case
as the growth rate is signi®cantly reduced for St of the order of 1.

Fig. 3. Growth rate as a function of the wave number under di�erent mass loadings (Re = 250, St= 1.0).
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Fig. 4. Growth rate as a function of the wave number for di�erent Stokes numbers (Re = 250, Z= 1.0).

Fig. 5. Growth rate as a function of Stokes number at di�erent wave numbers (Re= 250, Z= 1.0).
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4.2. Comparison with Sa�man's asymptotic results

In Fig. 7 we compare the numerical results at large St with Sa�man's asymptotic prediction,

Eq. (14). The agreement is well established when St is on the order of 100. We also ®nd the

agreement is better for large a as the ¯ow time scale based on the wavelength is decreased.

Fig. 6. Visualizations of: (a) gas vorticity; (b) particle velocity divergence; and (c) perturbation concentration ®elds
with a = 0.8620, Re= 250, St= 1.0 and Z= 1. The initial perturbation amplitude is set to 0.08 and contour levels
of (a), (b) and (c) are 0.4, 0.05 and 0.1, respectively.

X.-L. Tong, L.-P. Wang / International Journal of Multiphase Flow 25 (1999) 575±598 587



Fig. 7. Comparison of the simulation results with Sa�man's theory at the large Stokes number limit (Re= 250,
Z= 1.0).

Fig. 8. Comparison of the numerical results with Sa�man's theory at the small Stokes number limit (St = 0.01) with
Re= 125 and a = 0.8620.
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Fig. 8 shows a comparison at the small St limit (St= 0.01). It is harder to obtain accurate
numerical growth rates since a smaller time step is necessary. Nevertheless, the destabilizing
e�ect is con®rmed and follows approximately the predicted dependence on the mass loading,
Eq. (13).
An interesting question is when the destabilizing e�ect due to the increase of e�ective inertia

of the ¯uid±particle mixture balances, in terms of St number, the stabilization e�ect due to
enhanced viscous dissipation around particles. The cross-over of the curves with respect to the
s0(Re = 125) horizontal line in Fig. 9 shows that particles with St < 0.08 show destabilizing
e�ect while particles with St>0.08 give stabilizing in¯uence, at least for loading on the order
of one. The three horizontal lines in Fig. 9 denote, respectively, the single-phase ¯ow growth
rate, and the predictions at St<<1 by Eq. (13) for the two mass loadings considered.

4.3. Comparison with the proposed relation

Fig. 10 compares the asymptotic result of Tatsumi et al. (1964) for small a in single-phase
¯ow with numerical results at Re = 250 and Z= 0. As expected, the agreement is good for
small a, say, a < 0.3.
Fig. 11 provides the comparison of the dependence of the growth rate on Z between

simulation results and the proposed relation, Eq. (19), under the conditions of low wave
numbers (a = 0.1, 0.2) and small mass loading (Z= 0.1±0.5). Overall the agreement is good,
particularly in terms of the slopes of the curves. The numerical results agree well with the

Fig. 9. Comparison of the numerical results with Sa�man's theory at the small Stokes number limit (a= 0.8620 and
Re= 125). Horizontal lines indicate the growth rate levels of single-phase ¯ow.
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Fig. 10. Comparison of the growth rate as a function of the wave number between the simulation and the model in

single-phase mixing layer.

Fig. 11. Comparison of the growth rate as a function of mass loading between the simulation and the model
(Re= 250, St = 1.0).
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proposed relation. It would have been better to make a comparison with the viscous model if
the growth rate at any Reynolds number for the single-phase ¯ow was available.
Fig. 12 compares the inertial dependence of the growth rate. Interestingly the model also

predicts that the ¯ow is most stable for intermediate St. In fact, Eq. (19) shows that the Stokes
number corresponding to the minimum s is St= 1/(Z2a. This result implies that the most
damped Stokes number shifts to smaller value as we increase a, which is in qualitative
agreement with the numerical results. For example, the most damped mode occurs around
St= 4.0 and St= 1.8 for a = 0.2 and a = 0.4, respectively, in the simulations.

4.4. Alternative explanations in terms of energy transfer

Physically, the addition of particles increases the e�ective inertia of the ¯uid±particle
mixture, since the local e�ective density of the mixture is

rm � r f � rpEE0 � r f�1� ZE�; �30�

and the bulk average mixture density is

hrmi � r f�1� Z�: �31�
Namely the bulk density is increased by a factor of (1 + Z). We note that in Eqs. (30) and
(31), E is the non-dimensional volume fraction, rf and rm have the usual dimension of density.
For a dilute, Stokes suspension of spherical particles, the increase in the dynamic bulk viscosity

Fig. 12. Comparison of the growth rate as a function of Stokes number between the simulation and the model
(Re= 250, Z= 1.0). The horizontal dotted line denotes the growth rate of single-phase mixing layer at Re= 250
and a= 0.4.
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is 5/2mE0 (see, e.g. Batchelor 1967), which is negligible for a dilute ¯ow considered in this work.
Therefore, the increase in the e�ective inertia leads to an increase in the e�ective ¯ow Reynolds
number, and is thus a destabilization e�ect. On the other hand, the addition of particles
generates extra viscous dissipation as a result of the local ¯ows around particles. This
additional dissipation or particle dissipation Ep per unit volume is

Ep � r fU
3
0

d
ZE
�uÿ v�2

St
; �32�

where on the right-hand side of Eq. (32), rf , U0, and d are dimensional quantities and all
others are dimensionless. Note that because of the relative motion between the phases, energy
is typically transferred from the gas to the particulate phase (but not always in this direction,
as shown below). The rate of work transferred to/from the particulate phase is

P � r fU
3
0

d
ZE

v � �uÿ v�
St

; �33�

while the rate of work transferred from/to the gas is

Q � r fU
3
0

d
ZE

u � �uÿ v�
St

: �34�

The local dissipation rate Ep represents the di�erence, Qÿ P.
For the case of small St, the relative velocity is on the order of Std u/dt (Sa�man 1962).

Therefore,

Fig. 13. The distribution of streamwise-averaged energy-related terms for Re= 250, a = 0.4, Z = 1, and St = 1.
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Ep1
r fU

3
0

d
ZESt

du

dt

� �2

: �35�

This particle dissipation increases linearly with St for small St and leads to stabilization e�ect.
Whether the ¯ow is more stable or not, relative to the single-phase case, depends on the
relative magnitudes of the two mechanisms. For a given mass loading, the e�ective inertia is
®xed. In the limit of very small St, the particle dissipation vanishes and thus the ¯ow is less
stable. As St increases, the particle dissipation is increased and thus quickly the ¯ow becomes
more stable than the corresponding single-phase ¯ow.
We can compute the above quantities, Ep, P, and Q, within the framework of the linear

instability. Of interest are the streamwise averages of these quantities, which can be written in
terms of the eigenfunctions, using Eqs. (22)±(24). For example,

Epd
r fU

3
0

� Z

St
�u0 ÿ v0�2

� Z

St

A2�t�
2

h
ûxR�y� ÿ v̂xR�y�
ÿ �2

� ûxI�y� ÿ v̂xI�y�
ÿ �2
� ûyR�y� ÿ v̂yR�y�
ÿ �2
� ûyI�y� ÿ v̂yI�y�
ÿ �2i

; �36�

�Qd
r fU

3
0

� Z

St
u0 � �u0 ÿ v0� �UE 0�u 0x ÿ v 0x�
� �

� Z

St

A2�t�
2

h
ûxR�y� ûxR�y� ÿ v̂xR�y�

ÿ �
� ûxI�y� ûxI�y� ÿ v̂xI�y�

ÿ �
� ûyR�y� ûyR�y� ÿ v̂yR�y�

ÿ �
� ûyI�y� ûyI�y� ÿ v̂yI�y�

ÿ �
�U�y�ÊR�y� ûxR�y� ÿ v̂xR�y�

ÿ �
�U�y�ÊI�y� ûxI�y� ÿ v̂xI�y�

ÿ �i
; �37�

where the overbar denotes the streamwise average and 0 denotes the perturbation ®elds. Fig. 13
shows the distribution of these streamwise-averaged quantities for a typical case at Re = 250,
a = 0.4, Z= 1, and St= 1. Interestingly, both P and Q are negative near the interface of the
mixing layer, implying that the kinetic energy is transferred from the particulate phase to the
gas. A careful examination of the velocity vector plots reveals the origin of this direction of
transfer: the gas perturbation velocity is typically pointing away from the center (i.e. the point
which will become vortex center at the later nonlinear rollup) and the relative velocity,
(v 0 ÿ u 0), is also pointing away from the center due to the inertial bias e�ect (Maxey 1987); this
combination leads to larger particulate perturbation velocity near the interface and thus the
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observed direction of transfer. Away from the interface, the direction of transfer is reversed.
The dissipation (Ep) pro®le shows a peak at a location where the direction of the transfer is
reversed.
The pro®les can be further integrated over y to compute the bulk energy-related budgets,

and the ®nal results are denoted by hEpi, hPi, and hQi:
hEpi d
r fU

3
0

� Z

St


�u0 ÿ v0�2� �38�

h �P i d
r fU

3
0

� Z

St



v0 � �u0 ÿ v0��� 
UE 0�u 0x ÿ v 0x�

�h i
�39�

h �Qi d
r fU

3
0

� Z

St



u0 � �u0 ÿ v0��� 
UE 0�u 0x ÿ v 0x�

�h i
: �40�

These integral quantities can be used to give an alternative explanation for the ¯ow instability
characteristics discussed earlier. Fig. 14 shows these global budgets as a function of St for
Re= 250, a = 0.4, and Z= 1. As expected, for a given loading, the particle dissipation
increases quickly with St when St is small, eventually leading to a more stable ¯ow relative to
the single-phase case at intermediate and larger St values. Another way of looking at the e�ect
of particles on the ¯ow instability is through the sign of the hQi term. hQi is negative for small
St and positive for large St, implying qualitatively di�erent e�ects of the addition of the
particles on the gas ¯ow. Obviously, the ¯ow is less stable than the single-phase case if hQi< 0

Fig. 14. Energy-related budgets as a function of St(Re= 250, a= 0.4, Z= 1.0).
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and more stable if hQi>0. The transition occurs at St10.10 for the particular parameter
setting. Note this transition is quantitatively the same as that shown in Fig. 10 for a = 0.4 by
the horizontal dotted line.
The limiting behaviors of hQi for very large and very small St can be inferred from an

asymptotic analysis similar to that presented in Section 2. Such an asymptotic analysis of the
energy transfer budgets can o�er insights into the physics of energy transfer characteristics. We
®rst note that the linearization of the volume fraction equation, Eq. (7), implies a scaling for
the magnitude of E 0 as

E 00 r � v0�����������������������
s2 � a2U 2

p : �41�

At very large St, E 0 is very small because v 0 is very small, so that the second term in Eq. (40)
can be neglected relative to the ®rst term. Also at very small St, the divergence t�v 0 is linearly
proportional to St (Maxey 1987), so is E 0. It follows that the second term in Eq. (40) is again
much smaller than the ®rst term. Therefore, at large St, the leading order is (1/St),

h �Qi d
r fU

3
0

� hEpi d
r fU

3
0

� Z

St


�u0�2�; �42�

h �P i d
r fU

3
0

� 0: �43�

Therefore, the gas phase loses kinetic energy due to the relative motion and this energy is
almost completely dissipated locally. At very small St number, the leading order expansion of
the relative velocity leads to

h �Qi d
r fU

3
0

1 h
�P i d

r fU
3
0

1Z

�
u0 � du

0

dt

�
�44�

� Z s

�u0�2�ÿ ��ÿu 0xu 0y� dUdy

�" #
�45�

1ÿ Z

Re�1� Z�
�
@u 0i
@xj

@u 0i
@xj

�
; �46�

namely, hQi is negative and related to the di�erence between the rate of increase of gas kinetic
energy and the rate of production of the kinetic energy due to the mean shear which is the
minus rate of viscous dissipation in the gas perturbation ®eld. Therefore, in this limit, the
particulate phase gives energy to the gas phase, qualitatively di�erent from the large St. Note
that Eq. (44) follows from the leading-order expansion of the relative velocity, Eq. (45) from
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the linearization of the ¯uid acceleration, and Eq. (46) from the expanded kinetic energy
equation. For the case of St= 0.01, Re = 250, a = 0.4 and Z= 1, the three ways of
computing hQi, namely, Eqs. (40), (45) and (46), give roughly a same result. These asymptotic
results con®rm the di�erent signs of hQi as shown in Fig. 14.
We note that there were experimental studies on both the kinetic energy transfer to the

particulate phase, P, (Kiger and Lasheras 1995) and additional viscous dissipation due to the
particle±¯uid interaction, Ep, (Kiger and Lasheras 1997) in a nonlinear, turbulent mixing layer
with polydispersed, small, spherical particles laden in only half of the mixing layer. Kiger and
Lasheras found that the maximum positive value of P is located under the core and the
maximum negative of it occurs near the free stagnation point mainly due to the large slip
velocity between particles and ¯uid in those regions. In our simulations, although we did not
investigate the local distribution of P, two peaks of P shown in Fig. 13 re¯ect the above results
qualitatively to some extent. They also found that the additional viscous dissipation is
primarily concentrated into intense regions located beneath the core of the vortex. The same
trend is observed by examining the Ep pro®le in Fig. 13. Their experimental results have also
shown that the level of the additional viscous dissipation increases with the particle mass
loading for Stokes number of the order of 1, which compares well with our simulation results.

5. Summary

We have performed stability analysis of a temporally evolving particle-laden mixing layer,
through numerical simulations equivalent to solving the Orr±Sommerfeld equation originally
proposed by Sa�man (1962). We have con®rmed, for the ®rst time, the stability behaviors at
the two asymptotic limits, St<<1 and St>>1, discovered by Sa�man (1962). While the
stabilizing e�ect of particles on the ¯ow at large Stokes number is well recognized in the
studies by Michael (1965) and Yang et al. (1990) in the inviscid limit, the destabilizing
in¯uence at small Stokes number is only realized at ®nite ¯ow Reynolds number. The fact that
the addition of particles can destabilize the ¯ow in the absence of gravity is clearly established
here by careful numerical simulations. It should be noted that with the addition of gravity,
particles can introduce buoyancy e�ects which can destabilize the ¯ow easily (Herbolzheimer
1983, Shaqfeh and Acrivos 1986, Borhan and Acrivos 1988). The qualitatively di�erent e�ects
of the addition of the particles on the ¯ow instability have also been explained in terms of the
particle dissipation and e�ective system inertia, as well as the direction of the interphase energy
transfer.
We have also provided results on the stability of particle laden mixing layer at arbitrary

mass loading, Stokes number, and wavenumber. For a given mass loading and wavenumber,
there is an intermediate Stokes number which corresponds to a maximum ¯ow stability. This
was speculated by Sa�man (1962) based on the two asymptotic limits. We have shown that this
Stokes number is on the order of one, and seems to be related to the wavenumber, as implied
in the simple model of Michael (1965). An approximate for predicting the growth rate in a
general viscous, particle-laden ¯ow is proposed and compared with the simulation results. It
was shown that the proposed relation works well for a < 0.4 and Z< 1. The e�cient damping
by the particulate phase at the intermediate Stokes number has an interesting implication that

X.-L. Tong, L.-P. Wang / International Journal of Multiphase Flow 25 (1999) 575±598596



the enhanced dispersion discovered previously under one-way coupling (see, e.g. Crowe et al.
1993) might not apply to strongly coupled shear ¯ows. The dispersion of particles in coupled
shear ¯ows requires further investigation.
The qualitative correlation between the particle concentration ®eld and the ¯ow vorticity

®eld observed previously under one-way coupling is also shown to exist with two-way coupled
dynamics, although the level of particle accumulations will develop at the nonlinear stage of
the mixing layer evolutions. This and other related issues of nonlinear two-way coupled mixing
layer are studied in a companion paper (Wang et al. 1998a).
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