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The dynamics of a single or a group of slippery spheres settling under gravity in a Newtonian fluid is studied nu-
merically. We focus particularly on the effect of particle surface slip on the sedimentation behavior. The flows
containing moving slippery spheres are solved by a three-dimensional lattice Boltzmann model where a kinetic
boundary condition is used to handle the slip phenomenon at the curved particle surface. Themethod is first val-
idated by simulating the slip flow in a cylindrical tube, and the no-slip flows around one and two spheres settling
in a container. The hydrodynamic behaviors of one, two and multiple slippery spheres settling under gravity are
then investigated. The results for a single sphere show that the surface slipmakes the sphere fall faster than a no-
slip particle and the wall correction factor decreases as the level of particle-surface slip is increased, indicating a
drag reduction caused by the slip condition. For two settling spheres, when the no-slip particle is placed below
the slip one, the two spheres will enter into the kissing phase earlier; on the contrary, deploying the no-slip par-
ticle above the slip one, the DKT process does not occur beyond a critical slip level and initial gap distance. If the
two spheres are both slippery, the settling dynamics are similar to the no-slip case, but the time duration of the
kissing phase decreases. As for the sedimentation of multiple spheres, it is found that the initial geometric ar-
rangement has a significant impact on the sedimentation behavior. In general, slippery spheres in a cluster will
experience larger fluctuations in the vertical velocity and position in the accelerated-falling stage, and smaller
fluctuations in the decelerated-falling stage.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The transport of particles suspended in a viscous fluid plays an im-
portant role in many natural and industrial processes involving multi-
phase flows, such as paper manufacturing, bed fluidization and
contaminant filtration. In order to better design and control such com-
plex particulate flow systems, it is necessary to understand fully the
underlying dynamics of the particle-fluid and the particle-particle
interactions. Accurate prediction of the dynamic behavior of the freely
moving particles within a flow is very important and essential for such
purpose, which could be obtained by the particle-resolved direct nu-
merical simulation (PR-DNS) [1]. For PR-DNS, there are mainly two
strategies available in the literature. One is the arbitrary Lagrange-
Euler (ALE) method which uses a body-fitted grid and regenerates the
computation mesh once any particle moves (i.e., moving mesh) [2].
l Combustion, School of Energy
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Although the accuracy of boundary treatment can be guaranteed in
the ALEmethod, the computational cost is significant due to grid regen-
eration in each time step. This problem becomes more serious when
dealingwithmultiple particles. The second type adopts afixed Cartesian
grid over which particle-fluid interfaces move, such as the immersed
boundary method (IBM) [3,60], the fictitious domain method (FDM)
[4], and the lattice Boltzmann method (LBM) [5]. Since no re-meshing
is needed, the second approach is computationally more efficient and
makes the investigation of large number of particles possible. Hence,
the second approach becomes more and more widely-used in simulat-
ing particulate flows. Particularly, LBM is employed in the present study.

LBM is an alternative computational approach for solving the
Navier-Stokes equations [6,7]. Pioneered by Ladd et al. [8,9] and Aidun
et al. [10] in 1990s, it has now been developed into a popular numerical
tool for particulate flows [11–13]. As a special discretization of the
Boltzmann equation on regular Cartesian grids with minimal discrete
velocity sets, the fluid dynamics in LBM is described by streaming and
collision procedures of the discrete distribution functions. The no-slip
boundary condition at the fluid-solid interface can be realized by the
bounce-back (BB) rule, while the hydrodynamic force can be directly
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obtained using the momentum exchange (ME) scheme. In the original
methods [8–10], the geometric shape of moving particle is approximat-
ed as low-order zig-zag lines (see Fig. 1). This is improved subsequently
by the introduction of curved boundary conditions [7,14] that can well
preserve the geometric integrity of particle surface. Some further im-
provements have been proposed in recent years. For example, Wang
et al. [15] substituted the multiple-relaxation-time (MRT) collision
model for the single-relaxation-time (SRT) model to enhance the nu-
merical stability. Lorenz et al. [16] proposed a corrected ME scheme to
fulfill the Galilean invariance in force calculation, and the IBM and
FDM have also been combined with the LBM to make use of their indi-
vidual advantages [17,18].

The underlying dynamics of particle-fluid and particle-particle inter-
actions are important issues in particulate flows, and have gainedmuch
attention in the past decades. For instance, Cate et al. [19] investigated a
sphere settling under gravity in a closed channel numerically, and their
results agree well with experimental data for the particle Reynolds
number (Re) ranging from 1.5 to 31.9. Horowitz et al. [20] studied ex-
perimentally the effect of Re on the dynamics and wake of a falling
sphere, in which oscillatory motion was found and several nontrivial
vortex-shedding modes were reported, and an extended parametric
study was carried out by Zhou et al. [21]. Ern et al. [22] then presented
a comprehensive review on the dynamics of a body falling in fluids.
The case of two settling particles is also frequently studied in the litera-
ture. Fortes et al. [23] first observed experimentally that two identical
spheres settling in a vertical channel would undergo drafting, kissing
and tumbling (DKT) motions, which was later confirmed and
reproduced in many works [24,25,57]. Recently, Wang et al. [58] and
Liao et al. [26] both found that the diameter ratio of the two spheres
had significant influence on such dynamic process. In particular, the oc-
currence of kissing could not be observed for the diameter ratio larger
than 2.2, when the smaller sphere is placed above [26]. As for multiple
particles, Ernst et al. [27] performed numerical simulations to investi-
gate the settling morphology of a poly-sized sphere cluster. Nguyen
Fig. 1. Schematic of a particle boundary (the solid curve). Open square, boundary node in solid
with at least a link intersected by the surface; open circle, mid-point of the link of boundary no
DBB scheme is applied at the filled squares (e.g., point B).
et al. [28] investigated a settling suspension with focus on the influence
of domain boundary at low flow Reynolds numbers. More recently,
Uhlmann et al. [29] emphasized on the effect of clustering on the set-
tling of spheres in periodic domain at moderate Reynolds numbers.

All the aforementioned studies concerned the no-slip particles,
i.e., assuming that the fluid and solid share the same velocity at the
solid-fluid interface. Such boundary condition (BC) can be violated in
some circumstances, such as the self-cleaning lotus leaf and cicada
wing, and other artificial super-hydrophobic surface [30]. Apparent
slip can also be found at porous surface [31] and channel flow with ef-
fect of electric double layer [59]. Moreover, gas flow generates a slip ve-
locity in some systems with characteristic dimension at the order of
micrometers or smaller [32]. The slip effect can be generally modeled
by the Navier slip BC (see Eq. (10)) [33] characterized by the slip length
ls, which is strongly influenced by the physical properties of both fluid
and solid. Actually, the effect of slip on the drag reduction of a sphere
had long been noticed ever since Basset [34] where a classic drag-
correlation was derived by solving the Stokes equation coupled with
theNavier slip BC. Theworkwas advanced subsequently to further con-
sider the effects of particle-fluid viscosity ratio [35], finite Reynolds
number [36], the presence of slip or no-slip walls [37] and even other
particles [38]. Recently, the slip effect has beenused to optimally control
the wake of cylinder by carefully designing the distribution of slip re-
gion on the surface [39,40]. Daniello et al. [41] further investigated the
vortex-induced vibration (VIV) of a super-hydrophobic cylinder, while
Van et al. [42] considered the VIV of a three dimensional cylinder with
one end fixed at the wall in a slip flow.

The dynamics of slippery particles suspended freely in Newtonian
fluids had also been reported for vanishing Re in some recent works.
Mandal et al. [43] studied the cross-streamline migration (CSM) of a
slippery drop in an unbounded Poiseulle flow, and found a nontrivial
phenomenon that the particle with significant interface slippage always
moved to the centerline of channel. The interception of two slippery
spheres in a linear Stokes flow was investigated by Luo et al. [44]. A
with at least a link intersected by the particle surface; filled square, boundary node in fluid
des in fluid and solid; open triangle, intersection point between the link and the wall. The
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critical slippagewas suggested belowwhich the surface of two particles
collided after a finite time. Some works have also been reported on the
suspensions of Janus particles, where half of the surface obeys the no-
slip and the other half obeys the slip BC, also known as the stick-slip
BCs. For example, Sun et al. [45] studied the Stokesian dynamics of
pill-shaped Janus particles, and quantified the strength of the force
and torque experienced by such particles. Ramachandran et al. [46] in-
vestigated analytically the dynamics of a Janus sphere in a linear flow.
Itwas found that the stick-slip sphere undergoes a Jeffery orbit. Most re-
cently, Trofa et al. [47] exhibited the CSM behavior of a slippery sphere
suspended in a channel. The non-Newtonian effect of fluid was consid-
ered, under the Stokes flow conditions.

As outlined above, most works in the literature for suspension flow
of slippery particles are limited to the Stokes regime, and the subject
of a slippery particle settling under gravity at finite Re numbers has
not been well studied, and even fewer works consider the effect of slip
on the sedimentation dynamics of particle clusters. In this study, we
will present some direct numerical simulations of the settling behaviors
of one, two and multiple slippery spheres, via the lattice Boltzmann
method coupled with the Navier slip boundary condition. Themain ob-
ject of thepresentwork is to quantify the effect of particle surface slip on
the dynamics of finite Re suspensions.

The remaining part of this paper is organized as follows. A brief intro-
duction of the lattice Boltzmannmethod for particulate flows is provided
in Section 2, which is validated in Section 3 with three test cases. In
Section 4,wepresent the simulation results of one, two andmultiple slip-
pery spheres settling under gravity, focusing on the effect of slip on the
dynamics of sedimentation. Finally, conclusions are given in Section 5.
2. Methodology

2.1. Lattice Boltzmann method

The viscous Newtonian fluid immersedwith dispersed particles is governed by the Navier-Stokes (N-S) equations. There aremany numerical ap-
proaches to solve theN-S equations, such as the classical CFDmethods and the LBM. Asmentioned previously, the LBM is adopted in the presentwork
for its efficiency in computation and handling the complex boundaries. A detailed description of themethod can be found in previous studies [6,7]. A
brief introduction is given below.

As a kinetic method, the fluid fictitious particles in LBM are subject to the lattice Boltzmann equation

f i xþ eiδt; t þ δtð Þ− f i x; tð Þ ¼ Ωi fð Þ; i ¼ 0;1; :::; b−1; ð1Þ

which describes the evolution of distribution function fi on Cartesian grids with selective velocity ei. Ωi(f) denotes the discrete collision operator, δt
the time step and b the total number of discrete velocities. The most widely used collision operator in LBM is the Bhatnagar-Gross-Krook (BGK) or
single-relaxation-time model. However, it is pointed out in some studies that the lattice BGK may suffer from unphysical numerical artifacts at
solid boundary and numerical instability [48]. To avoid the problem, we choose the so-called multi-relaxation-time (MRT) model [6] in this work,
which is given by

Ωi fð Þ ¼ −∑
j

M−1SM
� �

ij
f j− f eqj
� �

; ð2Þ

whereM is a b× b transformmatrix, and S is a diagonal relaxationmatrix; fjeq is the equilibrium distribution functionwhich depends on the density ρ,
velocity u, and temperature T of the gas and is typically defined as [49]

f eqj ¼ ω jρ 1þ e j:u
c2s

þ e j:u
� �2
2c4s

−
u2

2c2s

 !
; j ¼ 0;1; :::; b−1; ð3Þ

whereωj is themodel-dependentweight coefficient, cs=
ffiffiffiffiffiffi
RT

p
(R is the gas constant) the lattice sound speed. For isothermalflows, cs is set to be c/

ffiffiffi
3

p

with c = δx/δt, where δx is the lattice spacing (c = 1 in this paper). Through the Chapman-Enskog expansion, the macroscopic fluid density ρ, and
velocity u, can be derived as the zeroth and first order moments of fi respectively,

ρ ¼ ∑
b−1

i¼0
f i; ρu ¼ ∑

b−1

i¼0
ei f i: ð4Þ

The fluid pressure is defined directly as p=cs
2ρ, and the viscosity of fluid is related to the relaxation time τs for the shear moment (defined in

Eq. (9)) as

μ ¼ ρc2s τs−1=2ð Þδt: ð5Þ

For simplicity andwithout loss of generality, the D3Q19model (three dimensions with nineteen lattice velocities) is employed in this study [49],
in which the velocity set and the corresponding weight coefficients are defined as

ei ¼
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

2
4

3
5; ð6Þ

ωi ¼
1=3; i ¼ 0
1=18; i ¼ 1;2; :::;6
1=36; i ¼ 7;8; :::;18

8<
: ð7Þ
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The transform matrix M is given by [6]

M ¼

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ð8Þ

and the relaxation matrix is

S ¼ diag τρ; τe; τε; τd; τq; τd; τq; τd; τq; τs; τπ ; τs; τπ ; τs; τs; τs; τt ; τt ; τt
� �−1

; ð9Þ

where τρ and τd are the relaxation times for conserved moments and can take arbitrary values. The other relaxation times are related to the non-
conserved moments and their values are N0.5.

2.2. Kinetic boundary condition for slippery particle

In this work, the unified interpolated bounce-back scheme [14] is applied to the curved boundary of no-slip particle. As for the slippery particle, it
becomes an important issue for LBM to specify a suitable boundary condition. Although the bounce-back (BB) or interpolated BB method is widely
used to realize the no-slip BC, it does not work for a slip wall.

For the slip BC, the macroscopic Navier-type scheme [33] has been widely used and is adopted in this study, which is given by

us ¼ ls∂nuτ ; ð10Þ

where n is the unit vector normal to thewall, and ls is the slip lengthwhich is strongly influenced by the physical properties of both fluid and particle,
us and uτ are the slip and tangential velocities. It is known that the slip BC given by Eq. (10) cannot be directly implemented in LBM. Several types of
kinetic schemes [7,50] have been proposed to realize the slip BC on flat walls. However, most of those available BCs are not suitable for flows in the
present study, where the curved geometry of spherical wall is considered. On the other hand, the curved slip BC based on the diffusive bounce-back
method (DBB, i.e., a combination of the diffuse reflection scheme and the bounce-back rule), which has good performance in the simulations of slip
flowwith complex boundaries [51], can serve such purpose and therefore is adopted in the present study. In the curved DBB scheme, the unknown
distribution function at the boundary node, such as B in Fig. 1 is specified as

f i ¼ rfþ
i
þ 1−rð Þ f eqi ; ð11Þ

where the parameter r denotes the portion of bounce-back part,�i is the opposite direction of i, fi+ is the post-collision distribution function and fi
eq the

equilibrium distribution function from the wall. In order to retain the integrity of the wall boundary, the value of r should be chosen as [51]

r ¼ τs þ q−1−NKn
τs−qþ NKn

: ð12Þ

Here, (1− q) represents the relative distance from the boundary point to the solid wall, N denotes the number of lattices along the characteristic
length D and Kn = ls/D is the dimensionless slip length.

It should be noted that, in the original scheme [51], the slip effect is generated from the rarefaction of fluid, where the relaxation time τs is deter-
mined by Kn (defined by λ/D with λ the molecular mean free path of gas) under the consistency requirement as [7]

τs ¼ 1
2
þ NKn

ffiffiffi
6
π

r
: ð13Þ

However, when the working fluid is a liquid, the above τs–Kn relationship no longer exists, and the value of τs is obtained from Eq. (5), just the
same as for continuum flows.
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2.3. Hydrodynamic and collision forces

To update the position of a freely moving particle, the force and torque exerted on it have to be calculated first. The hydrodynamic force coming
from the ambient fluid can be obtained directly using the momentum exchange (ME) method in LBM. It should be noted that there is no fictitious
fluids in the solid particle. Therefore, the ME process happens only outside the particle [61], and we will adopt the corrected ME scheme [16]
which is given by

Fs ¼ ∑
x f

∑
i

δ3x
δt

− ei f i xbð Þ−ei f
�
i xbð Þ

� �
þ ΔM

h i
; ΔM ¼ −

ωiρ
c2s

ei:uw

� �2
c2s

−u2
w

0
B@

1
CAei ð14Þ

where xb is the boundary node, uw is the particle velocity at the point of intersection between the link and the particle surface, andΔM is included to
fulfill the Galilean invariance [16]. The torque can then be determined similarly. For the case of multiple particles confined in a container, the colli-
sions of particle-particle and particle-wall may be inevitable. There are mainly two classes of methods to model such interactions in the literature,
i.e., the discrete element method [52] and the repulsive force model [17]. The latter scheme will be used in the present study, where the collision
force is given by

Fc ¼
0; xi−x j

�� ��NRi þ Rj þ ζ ;
cij
εc

xi−x j
�� ��−Ri−Rj−ζ

ζ

� 	2 xi−x j

xi−x j
�� ��

 !
; xi−x j
�� ��≤Ri þ Rj þ ζ :

8><
>: ð15Þ

Here, cij is the force scale defined as the buoyancy force in the suspension flows; εc is the stiffness parameter for collisions and is set to be 0.01; Ri
and Rj are the radii, and xi and xj are the corresponding centers of two particles; ζ is the threshold gap distance and takes a value of 1.5δx in this paper.
As for particle-wall collision, xj is the position of a fictitious particlewhich is located symmetrically on the other side of thewall and Rj= Ri. It is worth
mentioning that the collision force always points to the center of sphere and hence it does not contribute to the torque on the particle. After the force
and torque exerted on the particle are obtained, the trajectory can then be tracked by the Newton's second law,

Ms
dus

dt
¼ Fs þ Fe; Is

dϕs

dt
¼ T s; ð16Þ

where Ms and Is are the mass and the inertia moment of particle, respectively; us and ϕs are the translational velocity and the rotational velocity of
particle (uw = us + ϕs × (xw − xc), xw and xc are the positions of intersecting point and particle center respectively); Fs and Ts are the force and the
torque coming from the surrounding fluid, and Fe is other external force, such as the body force or the collision force. The translation and rotation
velocities of the particle are updated by solving Eq. (16) with the first-order Euler method,

unþ1
s ¼ un

s þ δt Fs þ Feð Þ=Ms; ϕnþ1
s ¼ ϕn

s þ δtT s=Is; ð17Þ

The particle position xs and rotation angle θ can then be obtained as

xnþ1
s ¼ xns þ un

s δt þ
1
2
δt2 Fs þ Feð Þ=Ms; θnþ1

s ¼ θns þ ϕn
s δt þ

1
2
δt2T s=Is: ð18Þ
3. Validation

In this section, we validate the LBM by considering three test cases:
the slip flow in a long cylindrical channel, the sedimentation of a sphere
in a closed box, and the DKTprocess of two spheres settling in a contain-
er. The reliability is confirmed by comparing the results with the avail-
able experimental and numerical data in the literature. The relaxation
times are chosen as τe = 1/1.19, τε = τπ = 1/1.14, τq = (8τs −
1)/(16τs − 8) and τt = 1/1.98 following Refs. [6,50], which are found
to have negligible influence on the simulation results.

3.1. Slip flow in a tube

The first test problem is the slip flow in a cylindrical tube. It is a clas-
sical problem and has an analytical solution [53]. The steady-state flow
is driven by a pressure gradient ∂p/∂x in a tube with radius R, and
governed by the reduced N-S equation which can be expressed in the
cylindrical coordinate as

1
r
:
∂
∂r

r
∂u
∂r

� 	
¼ 1

μ
:
∂p
∂x

; ð19Þ
where u is the streamwise velocity and r is the radial distance. The slip
and symmetry boundary conditions are given by

us ¼ ls
∂u
∂r






r¼R;
∂u
∂r






r¼0 ¼ 0: ð20Þ

The velocity profile can be obtained as

u rð Þ ¼ 1
4μ

∂p
∂x

r2−R2 1þ 4Knð Þ
h i

; r ¼ 0 � R: ð21Þ

with Kn = ls/(2R).
In the simulations, the pressure gradient is realized by specifying dif-

ferent fluid densities at the tube inlet and outlet, with ρin = 1.0001 and
ρout = 0.9999 respectively. The pressure boundary conditions are then
realized by the non-equilibrium extrapolation method [62]. The curved
DBB scheme, i.e., Eq. (11), is implemented to exert the slip BC at the cy-
lindrical wall of the tube. The ratio of tube length to diameter is 10:1,
and the grid spacing is D/16, where D = 2R is the tube diameter. It is
found that the length of the tube is long enough to eliminate the en-
trance effect. Fig. 2 shows the velocity profiles of the flow at Kn =
0.02 and 0.06, with u0=−R2(∂p/∂x)/4μ the maximum streamwise



  Analytical, Kn = 0.02

  Kn = 0.06

  Present, Kn = 0.02

  Kn = 0.06

Fig. 2.Velocity profiles of theflow in a cylindrical channel at Kn=0.02 and 0.06. Symbols:
analytical solutions; lines: present LBM results.
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velocity of no-slip flow. As can be seen, the results are in good agree-
ment with the analytical solution of the N-S equation.

3.2. Sedimentation of a sphere in a closed box

A sphere settling in a closed rectangular cavity is investigated as the
second test case, for which experimental and numerical data are avail-
able in the literature [19,26]. The size of the closed box is 10 × 16 ×
10 cm3, and is filled with a viscous Newtonian fluid. Four sets of density
and dynamic viscosity are considered, namely, (ρf, μ) = (0.97 g/cm3,
3.73 g/cm s), (0.965 g/cm3, 2.12 g/cm s), (0.962 g/cm3, 1.13 g/cm s)
and (0.96 g/cm3, 0.58 g/cm s), respectively. A sphere with diameter
D = 1.5 cm and density ρp = 1.12 g/cm3 starts to fall under gravity
(g = 980 cm/s2) at a gap distance of Hp = 12 cm from the sphere to
the bottom wall of the channel. The corresponding particle Reynolds
numbers (Re=VDρf /μwithV the terminal velocity of the settling sphere)
are 1.5, 4.1, 11.6 and 31.9, which have been reported in Ref. [19] from the
experimental measurements using the particle image velocity (PIV)
technique.

In analogy to the experiments [19], the present simulations are per-
formed in a vertical channel of size 120 × 192 × 120 in lattice units. This
implies that the sphere is resolved by 18 lattices, and initially located at
a height of 153 lattices. The boundaries of channel in all the three direc-
tions are static walls, and realized by a non-equilibrium extrapolation
method in LBM [62]. The relaxation time τs is set to be 1.0. Then the ac-
celeration of gravity is determined from dimensional analysis. The time
histories of the vertical position and velocity of the particle are present-
ed in Fig. 3. As can be seen, the sphere settles faster with increasing Re.
0 1 2 3 4

0
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8

Re = 31.9, 11.6, 4.1, 1.5

H
/
D

t(s)

Howllow scatter: Cate et al. [19]

Filled scatter: Liao et al. [26]

Line: Present

-0

-0

-0

0

V
(
m

/
s
)

(a)

Fig. 3. Time histories of the vertical gap to the channel bottom and velocity for a sphere settling
1.5, 4.1, 11.6 and 31.9 correspond to the cases with (ρf, μ) = (0.97 g/cm3, 3.73 g/cm s), (0.965 g
In general, there are three regimes in the sedimentation process: accel-
eration, steady sedimentation and deceleration when approaching the
bottom wall. The present LBM have reproduced these stages of
sedimentation, as shown in Fig. 3(b). The results agree well with the
experimental data [19] and the numerical results [26].

3.3. DKT process of two settling spheres

In particulate flows, a particle not only interacts with the fluid, but
also undergoes inter-particle interactions in the presence of other parti-
cles. Therefore, the simulation of a particle pair settling under gravity is
performed to further evaluate the LBM in modeling multiple particle
systems. This standard test case has been investigated by several au-
thors. In the present study, the parameters are chosen from Refs. [24,
25,54]. The domain of the container is [0, 6D] × [−6D, 24D] × [0, 6D]
with D = 1/6 cm being the sphere diameter. The fluid density and dy-
namic viscosity are respectively ρf = 1.0 g/cm3 and μ = 0.01 g/cm s.
The upper and lower spheres are identical with a density of ρp =
1.14 g/cm3. The initial positions of the two spheres are (3.03D, 21D,
3.03D) and (2.97D, 18.96D, 2.97D), respectively. No-slip boundary con-
ditions are applied at all the domain boundaries [62]. The no-slip BC at
the moving particles is realized by a unified interpolated bounce-back
scheme [14]. In the simulations, the sphere is resolved by 14 lattices,
which corresponds to a lattice system of 84 × 420 × 84 for the compu-
tational domain.

Fig. 4 presents the instantaneous positions of the two spheres during
the settling process. TheDKTphenomenon is clearly reproduced. Initial-
ly, the two spheres are located along the centerline of channel with a
relatively small gap. After released from rest in the still fluid, both parti-
cles begin to descend under gravity. While the leading sphere is falling
down, it creates a wake with lower pressure. As the trailing particle
comes close to the leading one, it is drafted into the wake and experi-
ences a much smaller drag. Hence, the trailing sphere moves faster
than the leading one, and eventually catches up, and then kisses and im-
pels the latter. This stage persists for several periods, during which the
spheres form a doublet and fall downwards together. However, that
state is unstable as indicated in Refs. [23,27], because of some symmetry
breakings such as the fluctuating wake. As a result, the sedimentation
process turns into the tumbling stage, where the particles start to sepa-
rate from each other. The time histories of the distance between the
spheres and the vertical velocities of the particles are given in Fig. 5. It
can be seen that after about 0.15 s, the settling velocity of the trailing
sphere increases faster and exceeds that of the leading one (Fig. 5(b)),
and the gap decreases dramatically (Fig. 5(a)). At about t = 0.33 s, the
distance approaches to a local minimum value (Fig. 5(a)), indicating a
contact with each other, and this kissing stage lasts about 0.21 s. Finally,
at about t=0.54 s, the distance increases and the particles start to sep-
arate. As shown in Fig. 5, the DKT processes predicted by the LBM agree
well with those reported by Yang et al. [25] using the immersed
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boundarymethod and Apte et al. [24] using the fictitious domainmeth-
od. However, the tumbling stages show significantly differences among
the different simulations. As indicated in Refs. [23,27], the difference can
be expected in that the implementation of tumbling relies heavily on
the growth rate of the numerical uncertainties and the boundary treat-
ments aswell as the collisionmodels. Therefore, the present LBMmodel
can be generally considered to be able to give reasonable results for the
DKT dynamics of two no-slip spheres.
4. Results and discussions of sedimentation of slippery spheres

In this section, the simulations of one, two and multiple slippery
spheres settling under gravity in a channel with a square cross-section
are performed respectively to investigate the effect of particle surface
slip on the sedimentation dynamics. When the simulations involve
more than one particle, the influences of the number of slippery parti-
cles and the initial geometric arrangement are also investigated. For
all cases considered below, thefluid density, viscosity and the sphere di-
ameter are set to ρf = 1.0 g/cm3, μ= 0.01 g/cm s and D = 0.08 cm, re-
spectively. The particle density ρp and channel width W are adjustable,
which provide two control parameters, i.e., the density ratio ρr = ρp/ρf
and the blockage ratio W⁎ = W/D. The channel length is H, and the
Knudsen number defined by ls/D is b0.12 in the simulations.
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4.1. Single slippery sphere settling in a narrow open channel

The sedimentation of a slippery sphere in a narrow open channel is
first investigated, with W⁎ = 4.0 and ρr = 1.001. In the simulations,
the particle diameter takes 20 lattices and the channel has a length of
H=30D. The fluid at the lower end of the channel is assumed to be sta-
tionary, and free-stream boundary condition is applied to the upper
end; no-slip boundary conditions are applied to the channel walls
[62]. To reduce the entrance effect, the sphere always stays at the center
of channel, i.e., with a distance of 15D to the two vertical boundaries of
channel. It is accomplished by moving the computational domain a lat-
tice downwards once the sphere descends a lattice. Fig. 6 displays the
instantaneous positions of a settling slippery sphere at Kn= 0.1, the re-
sults of a no-slip sphere are also included for comparison. It is clearly ob-
served that the particle with surface slip falls faster than the one
without slip, suggesting that the resistance experienced by the slippery
particle is reduced. Actually, the terminal settling velocities are
0.0234 cm/s and 0.0191 cm/s, for the slip and no-slip cases, respectively.
It can be found that in both cases the particle Reynolds number is b0.2.

For the sedimentation of a particle in a relatively narrow channel, it
is important to investigate the effect of channel blockage on the settling
process. This influence is generally described quantitatively by the so-
called wall correction factor K, which is defined as

K ¼ Cd

Cd0
; Cd ¼ Fd

3πμVD
; Cd0 ¼ 1þ 4Kn

1þ 6Kn
: ð22Þ

Here, Fd is the drag force and V the terminal settling velocity of par-
ticle, Cd is the drag coefficient and Cd0denotes the value of Cd for a sphere
in the unbounded Stokes flow (Re b 0.2). The value of Cd0 has been ob-
tained analytically by many works, such as Basset et al. [55] and Feng
et al. [36], where the Stokes equations coupled with the Navier slip BC
over a sphere were solved. In the present simulations, W⁎ ranges from
2.0 to 10.0, andρr is adjusted to guarantee Re b 0.2. The predicted results
of K are given in Fig. 7. The correction factor for a no-slip sphere moving
in a cylindrical tube along the axis reported by Happle et al. [56],

K ¼ 1

1−2:10443 W�ð Þ−1 þ 2:08877 W�ð Þ−3−0:94813 W�ð Þ−5−1:372 W�ð Þ−6

þ3:87 W�ð Þ−8−4:19 W�ð Þ−10

" # ;

ð23Þ

is also included for comparison (open symbols in Fig. 7). It is clear that
the wall correction factor generally decreases with increasing Kn. This
is consistent with the findings in Fig. 6where spherewith slip BC settles
faster. This can also be explained by the fact that the effective no-slip
size of the particle becomes smaller when slip occurs at the surface,
compared to its real physical diameter; hence, the blockage ratio
K decreases. Furthermore, K is a monotonic decreasing function of the
blockage ratio W⁎. In particular, asW⁎ is larger than 4, the effect of slip
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is weakened significantly. When Kn is close to zero, the present results
can generally reduce to those obtained from Eq. (23). The deviation,
particularly for smaller W⁎ can also be found because Eq. (23) is for a
sphere settling in a cylindrical tube, while the cross-section of channel
is a square in the present work.

In order to explore the effect of slip for finite Re, simulations are also
performed with a larger density ratio at ρr = 1.1. The results are
presented in Fig. 8, which shows that the particle Reynolds number,
Re, defined in terms of the terminal velocity, increases nonlinearly
with Kn, and the relative increase in the settling rate from Kn = 0 to
Kn = 0.12 appears to be independent of the blockage ratio.

4.2. Sedimentation of two slippery spheres in a container

We now investigate the effect of slip on the DKT dynamics of two
spheres settling in a container with static walls. Two cases are consid-
ered here, i.e., (i) a slippery sphere and a no-slip one; and (ii) both slip-
pery spheres. For Case-I, the slippery particle can be placed above or
below theno-slip one, denoted as the slip-up and the slip-down, respec-
tively (shown in Fig. 9(a)). In the simulations, we setW⁎=6.0 and ρr=
1.05; the channel length is H=30D. The particles are released from the
centerline of channel with an initial gap of 1.04D.

Fig. 9 presents the distance between the two spheres in Case-I. It can
be seen that, in the drafting phase, the particle gaps in the slip-down
and slip-up setups are respectively larger and smaller than that for the
case of two no-slip spheres. Hence, the occurrence of particle collision
can be postponed in the former case, while accelerated in the latter
case. Such results can be attributed to two factors. One is that, as
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Fig. 7. The wall correction factor K as a function of Kn at different blockage ratioW⁎. Open
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outlined in Section 3.3, the trailing particle is located in the lowpressure
wake of the leading one, such that it experiences a lower drag and
moves faster. The other is because the slip effect also contributes to a
faster translation, as indicated in Section 4.1. Therefore, if the slippery
particle is placed above the no-slip one, i.e., the slip-up setup, the two
factors are mutually reinforced so that the gap decreases more rapidly.
On the other hand, in the slip-down setup, the two factors are in compe-
tition and as such weaken each other, hence resulting in slower ap-
proaching of the two spheres. Particularly, for the slip-down setup, a
short period of increasing gap is even observed clearly at Kn = 0.03
and 0.06. At Kn = 0.12, the gap continues to increase as the slip effect
dominates, but decreases abruptly at around t = 1.72 s due to the fact
that the leading particle has already reached the bottom wall, as
shown in Fig. 9(b). Hence, it can be expected that there exists a critical
Knudsen number (Kn)c and gap (δ/D)c for the slip-down setup, beyond
which the trailing no-slip particle can never catch up with the leading
slippery particle. To find out such (Kn)c and (δ/D)c, simulations with
small increments of Kn (at δ/D=1.04) and δ/D (at Kn= 0.06) are per-
formed, respectively, for the slip-down setup. The results are presented
in Fig. 10. It is clear that the time for the occurrence of kissing will be
postponed with larger Kn and initial gap. A critical Knudsen number,
(Kn)c = 0.085, and initial gap, (δ/D)c = 1.5, respectively, can be found
under which the two spheres collide with each other just in time
when the leading slippery particle reaches the bottom of container.
For Kn b 0.085 and δ/D b 1.5, the kissing process occurs before the lead-
ing sphere reaches the bottom. No kissing is observed for Kn N 0.085 at
δ/D = 1.04, or δ/D N 1.5 at Kn = 0.06.

For Case-II (both being slip particles), the time history of particle gap
seems to be unaffected by Kn during the drafting stage (t b 0.64 s) com-
pared to the no-slip case, as shown in Fig. 11(a). Actually, from
Fig. 11(b), it is clear that the vertical velocities of both spheres are larger
than those for two no-slip spheres, as slippery surface contributes to a
lower drag. However, the velocity augmentations of the two spheres
are comparable to each other, leading to an almost unchanged gap dis-
tance. For different Kn, the particles begin to collide all at about t =
0.64 s, but the time period of the kissing stage is a decreasing function
of Kn, which can be qualitatively understood by the decreasing effective
particle size due to slip. The tumbling stage appears earlier for higher Kn
as observed in Fig. 11(a). This is reasonable since the occurrence of sym-
metry breaking is easier in the flowwith a higher Re. At about t=1.4 s,
the vertical velocities tend to be steady and their values are mainly de-
termined by Kn, as shown in Fig. 11(b).

4.3. Sedimentation of multiple slippery spheres in a closed box

In order to further explore the effect of slip on the sedimentation dy-
namics of a particle cluster, we now simulate the settling process of 96
spheres in a container. The initial configuration of the particles is
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arranged as a 4 × 4 × 6 block, as shown in Fig. 12(a). The computational
parameters in the simulation are summarized as follows,W/D=6.0, ρp/
ρf = 1.1 and δx = D/16. The length of the channel is H = 50D, and the
degree of slip is fixed at Kn = 0.1. Three main cases are considered
here: all the spheres are no-slip (no-slip); all the spheres are slip
(slip); half of the spheres are slip and half no-slip, respectively. The
third case is further dived into four sub-cases according to the arrange-
ments: the slippery spheres are all placed below the no-slip spheres
(no-slip + slip) or all placed above the no-slip ones (slip + no-slip),
and one layer of no-slip particles and one layer of slip particles that cy-
cles from Layers (1) to (6) (no-slip + slip + no-slip + slip), or reverse
the orders (slip+no-slip+ slip+no-slip). Therefore, a total number of
six cases are considered here. The characteristic velocity and time are
respectively defined as

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πD ρr−1ð Þg

2

r
; T ¼ D=U: ð24Þ
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Some other parameters that characterize the particle dynamics are
the fluctuation velocity v′ in the vertical direction, vertical r.m.s. disper-
sion h′, and the collision number CN, which are defined as

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Vi−V
� �2
NU2

s
; h0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 hi−h
� �2
ND2 ;

vuut
CN ¼ Cn

N
; ð25Þ

where N is the particle number, Cn the total collision number of a pair of
particles, Vi and hi are vertical velocity and position of the i-th particle,

respectively, V and h are the corresponding average values.
Fig. 12 presents the instantaneous vortex structures around the par-

ticles at different times. The spheres are all slippery with Kn = 0.1. As
can be seen from Fig. 12(b) to (d), the inner spheres in the cluster fall
faster than the outer ones, exhibiting unsteadiness similar to the
Rayleigh-Taylor instability. After that, i.e., as t N 47.8, the DKT dynamics
and particle rearrangements occur repeatedly. The cluster continues to
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develop in the vertical direction. At about t = 95.5 (Fig. 12(f)), some
spheres approach to the channel bottom, and the sphere cluster starts
to contract and is eventually packed at the bottom, as shown in Fig. 12(j).

Fig. 13 displays the time evolutions of the vertical fluctuation velocity
v′ and position h′, and the collision number CN during the sedimentation
process. It can be found in Fig. 13(a) that, despite of thedifferent geomet-
ric arrangements, the six particle clusters considered generally undergo
three stages, i.e., accelerated falling, steady falling and decelerated fall-
ing, corresponding to the time ranges 0 ≤ t b t1, t1 ≤ t b t2 and t N t2, respec-
tively. In the earlier stage, i.e., 0 ≤ t b t1, the fluctuation velocities of the
four cases with particles in staggered arrangements are generally larger
than those in the no-slip and the slip cases. As presented in Section 4.1,
slip particles move faster than the no-slip ones. Therefore, if slip and
no-slip spheres are placed in a staggered fashion, larger velocity differ-
ences are generated. Particularly, the slip + no-slip case produces the
greatest v′ at about t = t1. The snapshot of the velocity of each particle
at the time is also presented, and the no-slip case is shown as well for
comparison. From the two figures, it can be clearly observed that the
particle velocities can differ significantly in the slip + no-slip case, but
is relatively homogeneous in the no-slip case. For h′ shown in
Fig. 13(b), the value in the no-slip + slip case is generally larger than
that in the slip + no-slip case, while the relationship of velocity fluctua-
tion v′ of these two cases is just the opposite, as shown in Fig. 13(a). The
particle distributions at t = 25 also show that spheres in the latter case
are dispersed more homogeneously than those in the former case. This
finding is consistent with that from the slip-down case presented in
Layer (1)

Layer (6)

(b) (c)(a) (d) (e)

Fig. 12. The sedimentation dynamics of 96 slippery spheres in a containerwith Kn=0.1. (a): th
47.8, 71.6, 95.5, 119.4, 143.3, 167.1; (j): the snapshot of particle positions corresponding to (i)
Fig. 9(a) where the drafting no-slip particle cannot catch up with the
leading slippery particle in the earlier stage at Kn = 0.1. Hence, the set-
tlingdynamics of the no-slip+ slip cluster has some similar featureswith
those of a no-slip sphere drafted by a slip one. As to the collision number
shown in Fig. 13(c), CN in the slip + no-slip case ranks the first, and the
lowest CN comes from the slip case. The former can be explained by that
all the slippery particles are in the low pressurewake, the velocity differ-
ence between the no-slip and slip particles are further enlarged which
strengthens the particle mixing, hence generates the greatest CN. The
latter finding indicates that slippery surface contributes to a reduction
of particle-particle interaction, and the particle cluster will reach to a
quasi-steady state earlier.

During the steady falling stage (t1 ≤ t b t2), the particle velocities tend
to be stable, and therefore v′ descends and tends to a relatively stable
value, as shown in Fig. 13(a). Comparing the two instantaneous snap-
shots, B and C of the settling velocities of particles in the slip case, we
can observe that the distribution is fairly homogeneous during the
steady falling stage. From Fig. 13(b), it can be found that, the values of
h′ of the slip case and the no-slip case are the largest and the lowest,
and are the first and last to decease in the six cases, respectively. It fur-
ther confirms that the cluster of slippery particles reaches to a stable
state earlier than the no-slip cluster. The values of CN in this stable
stage stay at constant levels for each case, and the relationships between
the cases are almost the same to those in the accelerated falling stage.

As t ≥ t2, the sedimentation of the cluster comes to the final deceler-
ated falling stage. From Fig. 13(c), it can be seen that v′ and h′ both start
(f) (h) (j)(g) (i)

e initial configuration of particles at t=0; (b–i): Contours of vorticity at times t=4.8, 23.9,
.
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to descend, while CN starts to increase, significantly for all the six cases.
During this stage, the particles will approach to and rest on the bottom
of container in a narrow region, and consequently v′ and h′ both
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decrease rapidly with time, while CN increases sharply due to the closer
packing of the spheres. Particularly, it is noted that the incremental rate
of CN in the slip case is much more pronounced than those in the other
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cases, as shown in Fig. 13(c), while the CN in the no-slip case increases
most slowly. The above results suggest that the setupwith slippery par-
ticles surrounded by no-slip ones will generally increase the interaction
of particles.

5. Conclusions

The dynamics of slippery spheres settling in a Newtonian fluid is in-
vestigated by means of three-dimensional particle-resolved direct nu-
merical simulations. In particular, the effect of surface slip on the
sedimentation process is studied. The particle-fluid flow is solved by a
lattice Boltzmann method coupled with a kinetic boundary condition
for velocity slip at the curved particle surfaces. After a validation of the
method, simulations of one, two and multiple slippery spheres are
then carried out. Comparing with the corresponding cases where only
no-slip spheres are involved, the following conclusions can be drawn.

(i) For the single sphere case, the results show that the particle with
surface slip falls faster than the no-slip sphere; the wall correc-
tion factor decreases with increasing slip, particularly for narrow
channels. Thus, the slip effect increases the Reynolds number of
settling particles.

(ii) For the two spheres case, if the no-slip particle is placed below
the slip one, the two spheres will enter the kissing phase earlier
in comparison with two no-slip spheres. On the contrary, if
placed in the reverse order, with the no-slip particle placed
being above the slip particle, the DKT process does not always
occur. The critical gap (δ/D)c and slip degree (Kn)c, about 1.5
(for Kn = 0.06) and 0.085 (for δ/D = 1.04) respectively, are
found, over which the no-slip particle can never collide with
the slip one.When the two spheres are both slippery, the settling
dynamics are similar to the no-slip case, except for the earlier oc-
currence of tumbling process.

(iii) As for the case ofmultiple spheres, it is shown that the geometric
arrangement can have a significant influence on the sedimenta-
tion dynamics. Putting the slippery spheres inside the particle
cluster generally increases the fluctuations in vertical velocity
and position in the accelerated falling stage, and attenuates
these fluctuations in the decelerated stage.
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