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In this paper, we study systematically the effects of forcing time scale in the large-
scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in
direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the
simulated flow structures and statistics of forced turbulence. Using direct numerical
simulations, we find that the forcing time scale affects the flow dissipation rate and
flow Reynolds number. Other flow statistics can be predicted using the altered flow
dissipation rate and flow Reynolds number, except when the forcing time scale is
made unrealistically large to yield a Taylor microscale flow Reynolds number of 30
and less. We then study the effects of forcing time scale on the kinematic collision
statistics of inertial particles. We show that the radial distribution function and the
radial relative velocity may depend on the forcing time scale when it becomes
comparable to the eddy turnover time. This dependence, however, can be largely
explained in terms of altered flow Reynolds number and the changing range of flow
length scales present in the turbulent flow. We argue that removing this dependence is
important when studying the Reynolds number dependence of the turbulent collision
statistics. The results are also compared to those based on a deterministic forcing
scheme to better understand the role of large-scale forcing, relative to that of the
small-scale turbulence, on turbulent collision of inertial particles. To further eluci-
date the correlation between the altered flow structures and dynamics of inertial
particles, a conditional analysis has been performed, showing that the regions of
higher collision rate of inertial particles are well correlated with the regions of lower
vorticity. Regions of higher concentration of pairs at contact are found to be highly
correlated with the region of high energy dissipation rate. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4906334]

I. INTRODUCTION

In recent years, a homogeneous and isotropic turbulence (HIT) simulated by the pseudo-spectral
algorithm has been widely used to study statistics, structure, and dynamics of small-scale turbulence
and dynamics of suspended inertial particles under the one-way coupling and two-way coupling.1

Such simulations have been used to address a number of applications ranging from turbulent collision
of cloud droplets,2,3 clustering of aerosol particles,4 combustion processes,5 and scalar transport.6,7
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The main advantage of the pseudo-spectral approach is the spectral accuracy. HIT makes use of peri-
odic boundary conditions and can be made statistically stationary by employing a large-scale forcing,
where the kinetic energy is continuously injected into the large scales of the flow. Restricting the
forcing to large scales only is thought to ensure that the small scales of the flow are unaffected by the
forcing.8 However, in the pseudo-spectral simulations, the dynamics at small scales may be affected
by the numerical method for reducing the “aliasing” error.9 The large-scale forcing is most cleanly
done in the Fourier space, which can be conveniently integrated into the pseudo-spectral approach.

The large-scale forcing can be either deterministic10,11 or stochastic.12 In this study, we focus
mainly on the stochastic method developed by Eswaran and Pope.12 This forcing was carefully de-
signed to ensure a statistically stationary turbulence is maintained at every time instant. It has been
employed in a large number of direct numerical simulations of homogeneous isotropic turbulence
and related simulations of turbulent particle-laden flows. An important parameter of this scheme
is the forcing time scale. Its value is typically made much smaller than the large-eddy turnover
time but larger than the time step, in order to generate a desired energy dissipation rate. One may
argue that different forcing time scales relative to the flow physical time scales could be used to
represent different mechanisms of the energy input. For example, a short forcing time scale mimics
random energy input, while a forcing time scale comparable to the flow integral time scale could
be viewed as an energy transfer from larger scales that are not included in the simulation. In this
sense, different choices of the forcing time are physically meaningful. However, the implications of
different treatments are not fully understood. In their original paper, Eswaran and Pope12 showed
the impact of forcing time scale on the simulated turbulence, but their work was limited to low
flow Reynolds numbers at that time. We found recently that the ratio of the forcing time scale
to the Kolmogorov time could affect the statistics and structure of the simulated flow as well as
the dynamics and collision statistics of inertial particles. We note that typical deterministic forcing
methods add energy at the time scale corresponding to the integral time scale of the flow, as implied
by the dynamics of the large-scale flow field.

In this study, we conduct a thorough and systematic investigation, by means of direct numerical
simulations (DNS), of the effects of forcing time scale on both the characteristics of simulated HIT
and collision statistics of suspended inertial particles. The dynamics of an inertial particle depend
on its own inertial response time, or more precisely, the ratio of the inertial response time to the
characteristic time scales of the flow.13 It is important to understand any effect of the forcing time
scale as this also represents a time scale (although somewhat artificial) that is being introduced into
the flow, and to be able to interpret such resulting effects.

The paper is organized as follows. In Sec. II, we describe briefly the essential details of the
relevant numerical method and the stochastic forcing scheme. In Sec. III, a wide range of forcing
time scales (compared to the time step size, Kolmogorov time, and integral time) will be considered
and the simulated flow statistics will be compared and interpreted. The resulting collision statistics
for suspended inertial particles will also be analyzed and interpreted in Secs. IV and V. Section VI
contains a summary and main conclusions.

II. THE NUMERICAL METHOD

We consider simulations of forced HIT and collision statistics of suspended inertial particles.
The details and the most recent implementation have been summarized by Rosa et al.,1 along with a
parallel implementation method based on two-dimensional domain decomposition. Under the condi-
tions that the particle to fluid density ratio is high (∼1000), the particle volume fraction is low (10−5 or
less), and the particle diameter dp is much smaller than the flow Kolmogorov length η (dp/η < 0.1),
it is assumed that the background turbulence is not affected by the suspended particles. In this study,
particle-particle local hydrodynamic interactions14 will not be considered.

The fluid flow is simulated by a standard pseudo-spectral method,15 which solves the Navier-
Stokes equation on a 3D uniform mesh with N equally spaced grid points in each spatial direction.
The motion of a large number of inertial particles is followed by a Lagrangian approach. Parti-
cle tracking and collision detection are handled by a specially designed parallel algorithm with
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optimized data communication between processes. The algorithm employs the cell-index method
and the concept of linked lists16 for efficient detection of closely spaced particles. The fluid solver
utilizes an efficient 3D fast Fourier transform (FFT).17 The new FFT is based on 2D domain decom-
position of 3D data field and a sequence of 1D FFT from the FFTW library (www.fftw.org) in
each spatial direction. The approach provides an optimal balance between computation and commu-
nication on a scalable computer with O(10 000) to O(100 000) processors. The code is designed
mainly to run on supercomputers with distributed memory. For data communication, the standard
MPI (Message Passing Interface) library is used. A complete description of the code together with
results of numerical experiments and scalability analysis can be found in study by Ayala et al.18

The first step in the simulation is to develop a homogenous isotropic turbulent flow in a cubic
domain of size (2π)3. The incompressible Navier-Stokes (N-S) equations,

∂U
∂t
= U × ω − ∇

(P
ρ
+

1
2

U2
)
+ ν∇2U + f(x, t), (1)

∇ · U(x, t) = 0, (2)

are solved by applying periodic boundary conditions in all the three directions. Here, ω ≡ ∇ × U is
the vorticity vector, P is the pressure, ρ is fluid density, and ν is fluid kinematic viscosity (i.e., the
air viscosity). For a given resolution (N) of the computational mesh, the viscosity is specified as

ν ≈ 0.45
(N/32)4/3 (3)

in the spectral units (meaning that the domain size is set to 2π in length). Such specification ensures
that, on the one hand, the smallest scales are adequately resolved, and, on the other hand, a large
flow Reynolds number can be obtained. In this paper, the viscosity is made to only depend on N .

In the pseudo-spectral method, the computation in the physical space of the nonlinear term in
the Navier-Stokes equation introduces aliasing errors.9 In an undealiased pseudo-spectral simula-
tion, harmonic modes with wavenumbers above the largest resolved wavenumber may contaminate
some of resolved modes. To partially remove the aliasing errors, high modes with wavenumber
|k| ≥ N/2 − 1.5 are filtered.

The flow is driven by the forcing term f(x, t), which is nonzero only for the 80 low-wavenumber
modes in the Fourier space (|k| < √8). The specification of the acceleration forcing is based on
Uhlenbeck-Ornstein random processes.12 In the spectral space, the forcing term f̂(k, t) is defined as

f̂(k, t) =
3
j=1

Aj(k, t)e2πir (k, t, j), (4)

where r is a random real number in the range of [0, 1]. The amplitude Aj(k, t) is a function of an
acceleration variance σ2

f , forcing time scale t f , integration time step ∆t, and a second independent
random number θ in the range of [0, 1]

Aj(k, t) =

−4σ2

f
ln θ(k, t, j)∆t

t f
. (5)

The continuity condition k · f̂(k, t) = 0 is forced by taking the projection onto the plane normal to
k. To conclude, there are two characteristic input parameters defining the stochastic forcing scheme,
namely, the acceleration variance σ2

f and forcing time scale t f . The time scale t f is typically made
smaller than the eddy turnover time Te, otherwise the stochastic forcing may become correlated
with the flow, and the level of energy input will be reduced. Eswaran and Pope12 showed that the
average rate of energy input (which is also the average dissipation rate for a statistically stationary
turbulence) could be expressed as

ϵ = 4Nfσ
2
f t f ×

1
1 + t f (σ2

f
t f Nf k2

0)1/3/β
, (6)

where the number of modes being forced is Nf = 80, the lowest wavenumber is k0 = 1, and the
fitting coefficient β was found to be 0.8. In all performed simulations at different grid resolutions,
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we kept the reference dissipation rate ϵ0 = 4Nfσ
2
f t f , at ϵ0 = 3600. Having established the values of

the viscosity ν and the forcing parameter ϵ0, we then define t f and σ2
f as

t f = t∗


ν

ϵ0
, σ2

f =
ϵ0

4Nf t f
. (7)

Namely, we have transformed the raw input parameters N , σ2
f , and t f to three input parameters N ,

σ2
f , and t∗. In our simulations, t∗ is in the range of 0.01–10 000. It should be noted that a change

in the time scale results also in the change of the acceleration variance σ2
f . The above settings are

designed to yield roughly t f /τK = t∗ when t∗ is small, as in this limit the actual flow dissipation
rate is the same as ϵ0. If t∗ is not small, then the realized dissipation rate will be less than ϵ0 and
consequently t f /τK < t∗. In the analysis and interpretation of the flow to be presented later in the
paper, we further transform the specification of the flow in terms of three independent parameters:
the viscosity ν, the actual realized average flow dissipation rate ϵ , and the Taylor-microscale flow
Reynolds number Rλ. Other combinations of three parameters may occasionally be used in some
plots. These different choices of problem specification are all equivalent.

To initialize the velocity field, we used a random phase algorithm with a prescribed Kol-
mogorov energy spectrum as E(k) ∝ |k|−5/3.19 However, the stationary flow field does not depend
on this initial energy spectrum. The initial spectrum only affects the transition time from the initial
flow to the stationary flow.

Once the background turbulent velocity field U(X, t) is established, inertial particles are ad-
vanced by solving their equation of motion20 including particle inertia, viscous drag, and the body
force

dV(k)(t)
dt

= −V(k)(t) − U(Y(k)(t), t)
τ
(k)
p

+ g, (8)

dY(k)(t)
dt

= V(k)(t), (9)

where k is the particle number, τ(k)p is the Stokes inertial response time, V(k)(t) is actual particle
velocity, U(Y(k)(t), t) denotes the fluid velocity at the actual particle location Y(k)(t), and g is the
gravitational acceleration. Particles are initially introduced to the flow at random locations. In this
study, we focus on inertial particles relevant to cloud droplets of radius from 10 to 60 µm. For such
particles, the Reynolds number is of the order 1 or less, and the Stokes drag is assumed. Since our
study was motivated by the growth of cloud droplets due to collision-coalescence which is primarily
governed by differential sedimentation, the gravity force must be included in the droplet equation
of motion. In the present simulations, droplets were allowed to overlap and move independently,
namely, they were treated as ghost particles.

III. RESULTS ON FLOW STATISTICS

We shall first discuss and analyze the structure and statistics of the simulated turbulent flows.
In Figure 1, we present visualizations of instantaneous vorticity fields during the stationary stage,
obtained using four different forcing time scales. Flows simulated with shorter time scales, namely,
t∗ < 1 all resemble the flow with t∗ = 1 in Figure 1.

Each simulation was performed at the grid resolution of 1283 with the same time step size.
The figure provides qualitative insight into the structures of the flows and clearly illustrates how the
characteristic features of the flow depend on t∗. Shorter forcing time scale results in finer vortical
structures and higher density of the structures. The size of eddies grows with the forcing time scale.
It is also worth emphasizing that a larger magnitude of the vorticity is observed in simulations with
a shorter t f . To quantify the effect of the forcing time scale on the vorticity field, two basic statis-
tics have been computed. Table I shows maximum (ωmax) and mean (⟨ω⟩) values of the vorticity
magnitude. The statistics were computed in eight simulations using different forcing time scales.
Both quantities were averaged over 30 000 time steps. We conclude that, in the statistical sense, the
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FIG. 1. Vorticity isosurfaces (in red) and vorticity magnitude inside vortex structures at the boundaries of the domain (shown
with color mapping) for the simulated flows with different forcing time scales (N = 1283). Red isosurfaces represent the
magnitude at 2 times the local-in-time field mean. The color-map range is from 2 to 5 and corresponds to the actual value of
vorticity normalized by the mean.

vorticity field does not change when t f < τK . The relative difference in ⟨ω⟩, between flows forced
with t∗ < 1, is within statistical uncertainty.

Apart from the vortical tubes such as those shown in Figure 1, the turbulent flow contains also
regions of high strain rate. The regions of high strain rate and low vorticity are typically the places

TABLE I. Statistics of vorticity field and their uncertainties in DNS units. ωmax refers to the maximum value of the vorticity
magnitude while ⟨ω⟩ represents the mean value averaged over 30 000 time steps. Each simulation was performed at the grid
resolution of 1283.

t∗ 0.02 0.05 0.1 1 10 100 1000 10 000

ωmax 1916.5 1915.3 1918.9 1919.4 1587.9 751.9 238.9 73.8
δωmax 24.9 21.9 21.2 26.9 25.2 12.2 8.3 5.1
⟨ω⟩ 179.1 179.3 179.1 181.0 146.1 79.6 33.3 12.5
δ⟨ω⟩ 2.3 2.7 1.8 3.0 1.9 0.9 0.7 0.2
ωmax/⟨ω⟩ 10.7 10.7 10.7 10.6 10.9 9.4 7.2 5.9
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FIG. 2. Visualization of the second invariant of the velocity gradient tensor, normalized by its r.m.s. (local-in-time) value, on
the boundaries of the domain. Different panels correspond to different forcing time scales. The snapshots presented here are
for the same time instants used for the snapshots presented in Figure 1.

where heavy particles tend to cluster. To distinguish vortices from shear layers, an alternate quantity
is considered. Figure 2 presents the second invariant of the deformation tensor I I2

21 normalized by
its r.m.s. value. I I2 is defined as

I I2 = −
1
2
∂ui

∂x j

∂u j

∂xi
=

1
2

(
ωiωi

2
− Si jSi j

)
, (10)

where Si j is the rate of strain, and ωi is the vorticity. Regions where I I2 is large and negative are
regions of high strain rate. The regions where I I2 is large and positive are regions of high vorticity.
This interpretation is consistent with the visualizations presented in Figure 2. The red areas indicate
the location of the vortex tubes. Since Figures 1 and 2 show the same flows, we can observe
correlations between the vorticity magnitude and I I2.

Figure 3 shows the probability density functions for the normalized vorticity. Different lines
correspond to simulations with different time scales of the forcing scheme. We present only the
results from simulations at the resolution of 5123. Plots from lower resolutions show similar trends.
The data for each case represent averages over 3000 time steps. Vorticity fields were collected after
10Te (Te is eddy turnover time), i.e., when turbulence is homogenous and statistically stationary.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.4.74.211 On: Tue, 03 Mar 2015 17:17:51



015105-7 Rosa et al. Phys. Fluids 27, 015105 (2015)

FIG. 3. Probability density function of the normalized vorticity from simulations at mesh sizes 5123 with different t f values.

Our results are compared with the DNS result of Moisy and Jimenez,22 showing a remarkable agree-
ment when the Rλ is comparable. The differences in the tail result mainly from different Reynolds
numbers, with some minor effect of the different truncation radii in the dealiasing filter. Figure 3
shows also that the shorter the time scale, the more extended the tail is. Essentially, this is an effect
of the flow Reynolds number as a shorter forcing time yields a larger flow Reynolds number. A
large flow Reynolds number implies a wider scale separation between the large scales and the small
scales, which is consistent to the smaller vortical structures seen in Figure 1 for smaller forcing time
scale. There is clear evidence that the probability density function (PDF) curves converge as the
flow Reynolds number is increased.

In Figure 4, we show the normalized energy spectra of the simulated flows at two different resolu-
tions. The experimental data of grid-generated turbulence obtained by Comte-Bellot and Corrsin23 are
also shown for comparison. In the experiment,23 the measurement station was located at x/M = 98,
far from the turbulence-inducing grids, to ensure that the flow is homogenous and isotropic. The
spectrum has been computed using the method described in Wang and Maxey,24 i.e., by dividing the
wavenumber space into N/2 shells of unit width according to the value of |k|, and then summing
the kinetic energy in each shell. Several important conclusions result from this comparison. First, in
the inertial and dissipation ranges, energy spectra from the numerical simulations are in excellent
agreement with the experimental spectrum. Second, the smallest scales being resolved for different
values of t∗ or t f are different. For larger t f , all scales are better resolved. At the same time, less large
scales compared to the Kolmogorov scale are simulated. Third, for a given grid resolution, the spectra
obtained with different t f overlap except when t f is too large leading to a too small Rλ.

The dissipation spectrum D(k) is related to E(k) by

D(k) = 2νk2E(k). (11)

The dissipation rate decreases with the forcing time scale, but with Kolmogorov scaling, all the
spectra collapse to one curve (see Figure 5) except the two cases of lowest Rλ. An interesting
observation is that the position of the peak remains at kη ≈ 0.2 for all cases.

Now we examine the key flow characteristics and their dependence on the forcing time scale.
Presented in Figures 6–8 are the two statistics that determine the nature of the simulated turbulent
flow. These are the average energy dissipation rate ⟨ϵ⟩ (Figures 6 and 7) and Taylor microscale
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FIG. 4. The normalized energy spectra of the simulated flows at two different resolutions 1283 (dashed lines) and 5123

(solid lines). ⟨ϵ⟩ is the average energy dissipation rate in the whole computational domain. The colors correspond to different
forcing time scales. The experimental data23 are plotted for comparison. Analytical representation for the inertial subrange25

is plotted with a black dotted line.

Reynolds number (Figure 8) Rλ = u′λ/ν where u′ is the r.m.s. fluctuating velocity and λ is the
transverse Taylor microscale.

Energy dissipation rates are plotted in DNS units and are compared to the model Eq. (6).
Several important conclusions can be drawn from Figures 6 and 7. First, energy dissipation rate is

FIG. 5. Normalized dissipation rate spectra.
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FIG. 6. Panel (a) energy dissipation rates as function of t∗. The model predictions, Eq. (6), are also shown with β = 0.8.
Panel (b) energy dissipation rate from DNS in log-log scale, with the x-axis being the forcing time scale Eq. (7) normalized
by eddy turnover time. The vertical dashed line corresponds to t f = 0.1Te. Panel (c) ⟨ϵ⟩ as in panel (b), with the x-axis being
the forcing time scale normalized by the Kolmogorov time. The vertical dashed line corresponds to t f = tK .

not sensitive to forcing time scale if t f ≤ τK , in agreement with the model prediction. Second, when
t f > τK , the actual energy dissipation rate decreases with the forcing time scale, suggesting that
less energy is supplied to the system. This observation confirms the theoretical model of Eswaran
and Pope12 that the energy-input rate tends to decrease with increasing t f . The simulation results
are in good agreement with the model. We confirmed that the fitting coefficient β = 0.8 gives fine
prediction of expected energy dissipation rate in a wide range of forcing time scales. However, for
t∗ = 1, better agreement with DNS data is obtained with β = 1.5 (see Figure 7(b)). We note that
actual dissipation rate depends on the grid size and is larger for higher resolutions.

Similarly to ϵ , the Taylor microscale Reynolds number is also not sensitive to forcing time scale
(see Figure 8) if t f ≤ τK . For larger t f , Rλ decreases with the forcing time scale. This observation is
consistent with qualitative information presented in Figure 1. By proper combinations of viscosity
and forcing time scales, we are able to obtain the same Rλ at different grid resolutions. Figure 8(b)
indicates that a turbulent flow with Rλ = 120 can be obtained from two different resolutions (2563

and 5123) by using different forcing times.
As indicated previously, the system can be described in terms of three parameters, and from

now on, we will use ν, ϵ , and Rλ to describe other flow statistics. The Kolmogorov scales (η, τK , vK)
are determined only by ν and ϵ while u′ = 15−1/4vKR1/2

λ
, Te = 15−1/2τKRλ, and λ = 151/4ηR1/2

λ
.26,27
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FIG. 7. Panel (a) energy dissipation rates as a function of t∗. Markers represent results from DNS at resolution N = 256.
Dashed lines—model predictions (Eq. (6)) for different β values. Panel (b) energy dissipation rate from DNS (black markers)
for t∗ = 1 at different resolutions. Color lines represent analytical predictions Eq. (6).

An interesting question to pose is whether this set of parameters is complete or whether the forc-
ing time scale also plays a role. As the forcing scheme mainly affects the large scales, the potential
contribution from the scheme may appear in longitudinal integral length scale. In Figure 9, we present
the normalized longitudinal integral length scale as a function of the forcing time scale normalized by
the eddy turnover time. There are two interesting conclusions. First, in simulations at large resolution
5123, the quantity remains constant for a wide range of forcing time scales. Second, in simulations
at low resolutions, the normalized L f does not change only when t f ≤ τK and then for larger t f it
rapidly increases. The slope of this increase depends on the resolution of computational grid.
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FIG. 8. (a) Taylor microscale Reynolds number normalized by 3N 2/3 and (b) Taylor microscale Reynolds number as a
function of forcing time scale.

Finally, we examine two dimensionless parameters: flatness (F) and skewness (S) of the longi-
tudinal velocity gradient. The parameters characterize non-Gaussian and asymmetric behavior of
the turbulence. Both were computed on the fly.24 Figure 10(a) shows the flatness factor as a func-
tion of t∗. The characteristic feature of F is the monotonic dependence on the grid resolution or
equivalently on the flow Reynolds number. It should be noted that in Figure 10(a), we have a double
dependence of F on the Rλ. By changing forcing time scale, we change also Rλ. However, in both
cases, the flatness factor is monotonic and increasing function of Rλ. Ishihara et al.28 claimed that in
the ordinary forced turbulence, the F factor monotonically increases as Rλ increases. Based on DNS
results, they proposed an empirical formula that relates F with Rλ (F ∼ 1.14R0.34

λ
). Our numerical
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FIG. 9. Normalized longitudinal integral length scale plotted as a function of t∗.

results are consistent with their study. Figure 10(b) shows the normalized flatness factors computed
in current simulations and normalized by analytic formula (1.14R0.34

λ
). For most simulations, except

for those performed at small grid resolutions and large t∗, we observe good agreement between our
DNS results and the empirical formula. It is worth noting that the sensitivity of the flatness factor on
the forcing time scale depends on the grid resolution. For simulations performed at resolution 5123,
F is not sensitive to the forcing time scales if t∗ < 100. For low resolution simulations (323), the
dependence on the forcing time scale is observed already at t∗ = 10.

A similar analysis has been performed for the skewness. Figure 11(a) shows the S factor as
a function of t∗. In the current analysis, we refer again to the study by Ishihara et al.28 They
showed that skewness has a weaker dependence on the Rλ than flatness. Analytical formula for S,
proposed in their study, is as follows S ∼ −0.32R0.11

λ
. It implies that S monotonically decreases with

FIG. 10. (a) Flatness as a function of t∗ and (b) flatness normalized by empirical formula of Ishihara et al.,28 plotted as a
function of the forcing time scale normalized by the eddy turnover time.
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FIG. 11. (a) Skewness as a function of t∗ and (b) skewness normalized by empirical formula of Ishihara et al.,28 plotted as a
function of the forcing time scale normalized by the eddy turnover time.

increasing Rλ. Our DNS results are in general agreement with the their findings. Figure 11(b) shows
the skewness factor normalized by −0.32R0.11

λ
. For wide range of t∗, the normalized S is close to

1. Significant deviation is observed only in data computed in simulations at low resolution with
forcing time scales t∗ > 100. Since in this regime the domain is quite small and only large turbulent
structures are present the deviation may result from too low the value of flow Reynolds number.

In Figures 6–10, the standard deviation σA of any given time-averaged quantity A has been
calculated following Eswaran and Pope,12 by σA = 2σ2

A
T/∆T , where A represents the time aver-

aged value of A (where A is typically a volume-averaged quantity at a given time instant), T is the
integral time scale of A, ∆T is the total time duration, and σA is the standard deviation of A. The
integral time scale T was estimated by the time delay when the autocorrelation coefficient of the
quantity takes a value of 0.5.

IV. KINEMATIC AND DYNAMIC STATISTICS FOR INERTIAL PARTICLES

In the second part of this study, we examine the impact of the forcing time scale on the geo-
metric collision statistics of inertial particles. We focus on particles relevant to cloud droplets of
radius from 10 to 60 µm. Therefore, in all simulations, gravity (g = 9.8 m/s) is included. The effects
of gravity on the kinematic and dynamic statistics and on the acceleration and pair statistics have
been carefully investigated in our recent studies.1,29 The physical flow dissipation rate is assumed
to be 400 cm2/s3 with physical viscosity set to that of the air. These are used to scale the DNS
units to match the conditions of cloud droplets, as explained by Ayala et al.30 Under these physical
conditions, the Stokes number defined as the ratio of the particle’s inertial response time to the Kol-
mogorov time St = τp/τK varies from 0.063 to 2.28 and the velocity ratio Sv = vp/vK from 0.446 to
16.1. Detailed dimensionless parameters are given in Table II. The inertial particles considered here
have significant inertia relative to the Kolmogorov time thus may experience significant clustering.
However, their inertia is not significant when compared to the large turbulence eddies.

The first quantity examined here is the monodisperse radial distribution function RDF(r) at con-
tact (r = 2a).30,31 The RDF is a measure of the effect of preferential concentration of droplets on the
collision rate. Preferential concentration refers to the tendency of particles to accumulate in regions
of the flow associated with, for example, high flow strain rate or low flow vorticity.24 Figures 12, 13,
and 14 show how the accumulation of inertial particles depends on the characteristic features of the
turbulent flow and the Stokes number, these figures correspond to droplets of radius a = 20, 30, and
50 µm, respectively. The snapshots presented in subsequent panels (a)-(d) illustrate the distribution of
particles suspended in flows forced with different time scales and having different Rλ. All simulations
have been performed at the same resolution of the computational grid (N = 128). Since the values of
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TABLE II. Basic properties of cloud droplets. (∗) Based on DNS simula-
tions at N = 128 with t∗ = 1.

a (µm) St Sv a/η τp/T
∗
e

10 0.063 0.446 0.017 0.0029
15 0.143 1.004 0.025 0.0065
20 0.254 1.784 0.034 0.0115
22.5 0.321 2.258 0.038 0.0146
27.5 0.480 3.374 0.046 0.0218
30 0.571 4.015 0.051 0.0260
40 1.015 7.138 0.068 0.0462
50 1.585 11.153 0.084 0.0722
60 2.283 16.060 0.101 0.1039

FIG. 12. Distributions of particles with Stokes number of 0.254 (droplet radius a = 20 µm) and the second invariant in a
two-dimensional horizontal cross-section of the computational domain. Color indicates the field of the second invariant of the
deformation tensor I I2 normalized by its r.m.s. value. Contour lines show particle concentration field (defined as the number
of particle per grid cell, smoothed using a 3 × 3 point horizontal filter) using 0.25 as interval. All particles from two grid
cell layers adjacent to the I I2 plane are included. Different panels correspond to simulations performed with different forcing
time scales (a) t∗ = 1, (b) t∗ = 100, (c) t∗ = 1000, and (d) t∗ = 10 000.
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FIG. 13. Same as in Figure 12 but for particles with Stokes number 0.571 (droplet radius a = 30 µm). Different panels
correspond to simulations performed with different forcing time scales (a) t∗ = 1, (b) t∗ = 100, (c) t∗ = 1000, and (d)
t∗ = 10 000.

Stokes number are on the order of one, significant preferential accumulation can be observed. Based
on these plots, two general conclusions can be drawn. First, the length scale of the particle accumu-
lation changes with the forcing time scale, due to the increase in the size of the Kolmogorov eddies
when the forcing time scale is increased. Second, the droplets with larger inertia (50 µm) form more
non-uniform structures than droplets with lower inertia (20 µm or 30 µm). We must note that both
particle inertia and gravitational sedimentation affect the level of particle accumulation, as shown, for
example, by Woittiez et al.,32 Rosa et al.,1 and Park and Lee.33 Under certain combination of inertia
and sedimentation, droplets form vertical bands of high concentration,33 which can be observed in
Fig. 15, where visualizations on a vertical slice are shown. This explains why the strongest overall
accumulation (encompassing all scales) happens for 50 µm particles.

The level of accumulation can be quantified by the RDF, which is defined as the ratio of the
number of particle pairs found at a given separation distance to the expected number in a nominally
uniform suspension

RDF(r; t) = Npairs/Vs

Ni(Ni − 1)/2VB
, (12)

where i indicates a particular particle size and Npairs is the total number of pairs detected with a
separation distance (r) falling in a spherical shell of inner radius equal to R − δ and outer radius
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FIG. 14. Same as in Figure 12 but for particles with Stokes number 1.585 (droplet radius a = 50 µm). Different panels
correspond to simulations performed with different forcing time scales (a) t∗ = 1, (b) t∗ = 100, (c) t∗ = 1000, and (d)
t∗ = 10 000.

equal to R + δ. Here, δ is a small fraction (1%) of R = 2a.31 Vs is the volume of the spherical
shell, Vs = 4π[(R + δ)3 − (R − δ)3]/3. Ni is the total number of ai droplets used in the simulation,
and VB is the volume of computational domain. RDF(r; t) is further averaged over time to obtain
RDF(r = R). It is important to note that this RDF only quantifies the level of accumulation at the
scale of collision radius, not all scales visualized in Figs. 12–14.

In this study, we compute the RDF using recently developed two-step algorithm1 which mini-
mizes numerical uncertainties. Figure 16 shows the RDF at contact (r = R) as a function of the
Stokes number and particle size for the two different grid resolutions (1283 and 2563). In both
simulations, we observe a similar trend. The RDF increases very quickly with particle radius
for a ≤ 30 µm (St ≈ 0.5) and then saturates. This initial rapid increase is due to the increase of
droplet Stokes number. The observation is consistent with the visualizations presented in Figures 12
and 13. The saturation of accumulation at the scale of collision radius for St > 0.5 is a combined
result of gravitational sedimentation and inertia. When the gravity is included, the settling droplets
accumulate in the downward flow regions forming elongated (filament-like) structures (see Figure
15), but these structures have a length scale larger than the collision radius thus do not contribute
significantly to the RDF here. We should emphasize that the saturation of the RDF here concerns
nearly touching droplets i.e., at a separation r = R. Figure 16 does not reflect accumulation at larger
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FIG. 15. Same as in Figure 14 (St = 1.585, droplet radius a = 50 µm) but for a vertical cross-section. Different panels
correspond to simulations performed with different forcing time scales (a) t∗ = 1 and (b) t∗ = 10 000.

separation distances. The elongated structures are stable and remain for a long time because the
gravitational settling dominates the mechanism of turbulent mixing. This may be explained by the
fact that gravity reduces the interaction time of particles with intermittent eddies. The stability of
such structures tends to maintain the relative distance between droplets and hence the saturation
of the RDF. This effect was discussed in detail by Rosa et al.1 Gravity-driven clustering of inertial
particles is also documented in other independent studies.33,34

The RDF computed in simulations with larger grid resolutions (2563) takes somewhat larger
values (except when the forcing time scale is very large t∗ = 10 000). The difference is greater for
particles with larger inertia and this results from larger Rλ. The dependence on the Taylor microscale
flow Reynolds number is consistent with observations reported in other studies.1,31,35,36

Sensitivity of the kinematic statistics on t f is lower for smaller Stokes numbers. For larger Stokes
numbers, the data points show significant statistical scatter. We conclude that for St < 0.5, the RDF
takes greater values for longer forcing time scales. For a very long t∗ such as t∗ = 10 000, the shape of
the RDF is visibly different: first, the RDF has an apparent maximum; second, for the small droplets
a ≤ 30 µm the values of RDF are greater (than for the other simulations with a shorter t f ) while for
larger particle a > 30 µm the values are smaller. We note that, for a given particle size, there is a finite
range of flow length scales that contribute to particle accumulation and the RDF. Outside this range,
turbulent motion mixes the particles and erases the accumulation. Gravity affects the interaction time
of inertial particles with an eddy. Consequently, the RDF tends to be larger for small-size droplets as
the large-scale mixing homogenization is limited when t f is large. On the other hand, for large-size
droplets, the lack of large-scale eddies implies that the gravitational effect is stronger leading to insuf-
ficient time for the droplets to interact with small eddies, thus unable to cause a large RDF. We must
stress again here that the RDF mainly measures accumulation at small scales.

To be complete, we also present in Figure 16 the RDF computed using deterministic forcing.10,11

Apart from the simulations performed with very large forcing time scale (t∗ = 10 000), the radial
distribution functions computed using different forcing methods are in quantitative agreement if St
< 0.5. The difference between deterministic and stochastic schemes appears for particles with larger
inertia (St > 0.5). This can be explained by the fact that the particles with larger inertia interact with
a wider range of turbulent scales and some of the scales (these corresponding to low wave numbers)
can be influenced by the forcing method. The flow forced with deterministic scheme has a larger
Taylor microscale flow Reynolds number at the same mesh size. This implies that the flow under the
deterministic forcing contains a slightly wider range of flow length scales leading to a slightly different
RDF. For the two resolutions 1283 and 2563, we obtained Rλ = 120.9 and Rλ = 196.9, respectively.
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FIG. 16. Radial distribution function at contact (r = 2a) as a function of droplet Stokes number and radius obtained in
simulations with two different grid sizes (a) 1283 and (b) 2563. Different colors correspond to simulations with different
forcing time scales. Energy dissipation rate was set to ϵ = 400 cm2 s−3. Dashed line represents results from DNS performed
with deterministic forcing scheme.1 The black solid lines at RDF(2a) = 1 refer to a uniform particle concentration.

The values of Rλ for the stochastic forcing are about 30% lower (at shorter time scale), namely, Rλ = 86
at 1283 and Rλ = 145 at 2563.

The radial relative velocity wr is defined in terms of the relative velocity w between two droplets
with the separation vector r as wr = w · r/|r|. The methodology for computing wr between particles
is similar to that described by Rosa et al.1 Figure 17 presents the monodisperse wr of nearly touching
particles as a function of the particle radii for two different resolutions (1283 and 2563).
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FIG. 17. Radial relative velocity of settling particles at contact (r = 2a) as a function of droplet radius obtained in
simulations with two different grid sizes (a) 1283 and (b) 2563. Similarly, as in Figure 16, different colors correspond to
simulations with different forcing time scales. For comparison, data from simulations with a deterministic scheme have been
added (black dashed line).

Several observations can be made from Figure 17. For small particles a ≤ 30 µm, the relative
velocity increases monotonically with the particle size. It is due to increasing contributions from
larger scale of turbulent motion and increasing nonlocal effects (e.g., caustics). All the results
(except that one for t∗ = 10 000) collapse to the same curve. For larger particles a > 30 µm, the
gravity gradually diminishes the effect of turbulent motion due to shorter droplet-eddy interaction
time, leading to slowly decreasing wr with increasing droplet size. For this range (a > 30 µm), we
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observe a noticeable dependence of wr on the forcing time scale. The dependence results from the
varying range of scales present in the turbulent flow. Simulations with shorter time scales yield
higher values of relative velocity due to a wider range of scales in the flow. Similarly, as for the
radial distribution function, the statistics of wr obtained in simulations with very long time scale
t∗ = 10 000 are very different than others obtained with shorter time scales. The values of wr are
larger (especially at resolution 2563), which could be due to a higher energy level of the far inertial
subrange and dissipation-range eddies (see, for example, Figures 4 and 5).

V. KINEMATIC AND DYNAMIC STATISTICS FOR INERTIAL PARTICLES CONDITIONED
ON LOCAL ENSTROPHY AND ENERGY DISSIPATION RATE

The three-dimensional vorticity fields presented in Figure 1 show that different forcing time
scales result in different flow structures. To further elucidate the correlation between the altered flow
structures and dynamics of suspended inertial particles, a conditional analysis has been performed.
Conditional statistics are a convenient tool which greatly facilitates the analysis and have been
employed frequently in other studies21,36–38 to extract information on the coupling between a fluid
and a set of Lagrangian particles. Here, we present a series of results illustrating the two-point
statistics conditioned on the local enstrophyΩ = 0.5|ω̄|2 and the energy dissipation rate.

The statistics were computed using the method proposed by Wang and Maxey.24 First, we
evolved the flow (grid size 1283) with particles up to 120 000 time steps (16.9-94.7Te depends on t∗).
This time was necessary and sufficient to reach a statistically stationary state of the monodisperse
systems. The number of particles in each simulation depends on the volume fraction and ranges
between 90 000-400 000. The collision and flow statistics were collected during 280 000 successive
time steps. Due to the large amounts of data, the statistics were computed on the fly. The time period
(280 000 time steps) used for the data collection expressed in eddy turnover time corresponds to
224Te for the shortest forcing time scale (0.1) and 40Te for the forcing time t∗ = 10 000.

The data presented in Figure 18 were computed as follows. The normalized enstrophy Ω/Ωmax

was divided into one of m = 300 bins (i − 1) ≤ m · Ω/Ωmax < i, i = 1, 2, . . . , m. Then, all the 1283

grid points at each time steps were scanned to find the number of grid points, where the value of
enstrophy fell into the range for the i-th slot. At the post-processing stage, the data were normal-
ized to determine the probability density function PDF(Ω). At the same time, we counted number
of colliding pairs at each enstrophy level. The algorithm for collision detection follows the idea

FIG. 18. Correlation between the local collision rate and enstrophy as a function of normalized enstrophy. Series of
simulations were performed for two monodisperse systems with (a) 20 µm and (b) 50 µm droplets. ⟨NC |Ω⟩ defines
conditional expectation of the number density (collisions). ⟨NC⟩ is the average collision rate. PDF(Ω) refers to probability
density function of the fluid enstrophy. Normalization by PDF is required since different enstrophy occupy different amount
of physical space.
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FIG. 19. Correlation between the local collision rate and energy dissipation rate as a function of normalized energy
dissipation rate. Panel (a) monodisperse systems with 20 µm droplets; (b) monodisperse systems with 50 µm droplets.

presented by Wang et al.,39 with several modifications resulting from different memory manage-
ment in the MPI code. The conditionally averaged concentration of colliding pairs is defined as
⟨NC |Ω⟩/⟨NC⟩/PDF(Ω) where ⟨NC |Ω⟩/⟨NC⟩ is the conditional expectation of the number density of
colliding pairs normalized by the field mean.

A similar analysis has been performed for collision statistics conditioned on the local energy
dissipation rate. Figure 19 shows correlation between the local collision rate and energy dissipation
rate as a function of normalized energy dissipation rate.

Figures 18 and 19 demonstrate that the collision statistics computed with different forcing
time scales are actually quite similar. Figure 18 indicates that there is no qualitative difference
between the simulations performed with different droplet sizes. Our results are consistent with the
observations made in Wang and Maxey.24 The regions of higher collision rate are well correlated
with the regions of lower vorticity. Interestingly, the conditional statistics saturate at Ω = ⟨Ω⟩ and
then increase for very large Ω. The increases at very large Ω may result from non-local dynamics
of inertial particles. Some collisions occur between particles approaching from large separations.
Such particles experience more energetic turbulence and can collide in regions where Ω is relatively
large. A different trend is observed in collision statistics related to the local energy dissipation rate.

FIG. 20. Statistics as in Figure 18 but for nearly touching droplets. Panel (a) monodisperse systems with 20 µm droplets; (b)
monodisperse systems with 50 µm droplets.
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FIG. 21. Statistics as in Figure 19 but for nearly touching droplets. Panel (a) monodisperse systems with 20 µm droplets; (b)
monodisperse systems with 50 µm droplets.

Figure 19(a) shows that for 20 µm droplets the regions with higher collision rate are correlated
with the region of high energy dissipation rate. However, for larger droplets (50 µm), the spatial
distribution of collision events corresponds closely to PDF(ϵ) of the flow. Hence, the correlation
factor is close to 1. This is due to the fact that the larger particles show a weaker tendency to
accumulate in regions of high energy dissipation rate. This mechanism is illustrated in Figure 15.

The next analysis concerns the probability of detecting pairs with a separation distance close
to geometric collision radius (nearly touching particles) (2a − δ < |r | < 2a + δ). Here, δ is a small
fraction of particle radius (2%). The statistics of nearly touching particles were conditioned on
the local enstrophy and energy dissipation. Again the focus is only on the monodisperse systems.
Figures 20 and 21 show conditional statistics of nearly touching pairs of size (a) a = 20 µm
and (b) a = 50 µm. The current analysis and the previous one concerning colliding particles are
inter-related. It stems from the fact that the local collision rates are proportional to the second
moment of local droplet concentrations.2

Figures 20 and 21 demonstrate a good agreement of simulation results with different forcing
time scales. We conclude that the forcing time scale does not significantly affect these conditional
statistics. The only difference is seen in ⟨NP |ϵ⟩/⟨NP⟩/PDF(ϵ). For nearly touching particles, the
correlation is less sensitive to ϵ than for colliding pairs (see Figure 19(a)).

To compute the conditional statistics, we faced with the problem of computing energy dissipa-
tion rate in the real space. The standard formula for dissipation rate40 2µe2

i j includes partial deriva-
tives terms ∂ui/∂x j. In our code, these terms were computed in the Fourier space and transferred to
the real space using inverse parallel FFT.

VI. CONCLUSIONS

Using direct numerical simulations, we have examined the effects of the forcing time scale
t f on the characteristics of the forced turbulent flows. The numerical simulations were developed
employing the well-known random forcing method developed by Eswaran and Pope.12 The main
focus was on the relationship between the forcing time scales and the vortical structures of turbulent
flows. A number of statistics characterizing the turbulent flow, such as Rλ, integral length scale,
flatness, and skewness, have been computed and analyzed. Also, effects of the forcing time scale
on the kinematic collision statistics of inertial particles have been investigated. The results provide
insights into simulations of forced turbulence and its applications.

A large number of simulations were performed with our new parallel implementation based
on two-dimensional domain decomposition.18 The energy spectra of the simulated flows computed
with different forcing time scales and at different grid resolutions are found to be consistent with
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experimental data, i.e., the energy spectra of grid generated turbulence in wind tunnel. The prob-
ability density functions for the normalized vorticity obtained with different forcing time scales
differ only in the tails. We argue that these differences result mainly from different flow Reynolds
numbers. The size of vortical structures at small scales increases with increasing t f . The energy
dissipation rate obtained in the numerical simulations agrees well with the analytical formula of
Eswaran and Pope12 using β = 0.8. However, for very small time scales, β = 1.5 was found to
yield a better agreement between theory and DNS results. Energy dissipation rate remains constant
for any t f smaller than τK or t f < 0.1Te. Similar conclusions can be drawn for the other flow
statistics. Taylor microscale flow Reynolds number, integral length scale, skewness, and flatness
do not change if t f ≤ τK . For large forcing time scales, the skewness and flatness show a strong
dependence on the t f , which could be a result of very low flow Reynolds numbers.

In a series of simulations, we investigated the effects of forcing time scale on the kinematic
collision statistics. The RDF does not reveal significant differences if t∗ ≤ 1000. As expected, these
differences are greater for heavier particles. Interestingly, for very large forcing scales t∗ = 10 000,
the differences in the RDF become important. It should be emphasized that the magnitude of these
differences depends much on the domain size and thus on Rλ.

Results of the kinematic collision statistics (RDF and relative velocity) obtained with stochastic
forcing scheme have been compared to the analogous statistics computed with deterministic forc-
ing. Simulations performed with different forcing methods give the same kinematic statistics for
small inertia particles (St < 0.5). The only exception are simulations performed with the very long
forcing time scale (t∗ = 10 000). The effect of the forcing method becomes clear for the particles
with larger inertia and especially in the RDF. For larger particles (a > 25 µm), the RDF computed
with deterministic scheme is about 15% greater. Radial relative velocity is less sensitive to the
forcing mechanism. Simulations at the 1283 resolution show that the difference in the radial relative
velocity computed with different forcing methods becomes smaller as t∗ decreases. For simulations
at higher resolution (2563), the statistics of wr are in the quantitative agreement.

In general, the results show that the RDF and radial relative velocity may depend on the forcing
time scale if it becomes large. This dependence, however, can be largely explained in terms of the
altered flow Reynolds number and the changing range of flow length scales present in the turbulent
flow. We conclude that both flow statistics and particles kinematic statistics are not sensitive to the
forcing time scales if the scales are smaller than τK . To avoid the undesirable dependency on t f , we
suggest to set the forcing time scales as dt ≤ t f ≤ τK .

Finally, conditional statistics have been obtained. We analyzed two-point statistics conditioned
on the local enstrophy and the energy dissipation rate. We found that the regions of higher collision
rate are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs
at contact are highly correlated with the region of high energy dissipation rate. The normalized
conditional statistics computed with different forcing time scales appear to be very similar, but they
depend nonlinearly on the particle size, local flow vorticity, and dissipation rate.
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