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Abstract. Parallel algorithms for particle tracking are central to the
modeling of a wide range of physical processes including cloud formation,
spray combustion, flows of ash from wildfires and reactions in nuclear sys-
tems. Here we focus on tracking the motion of cloud droplets with radii
in the range from 10 to 60 µm that are suspended in a turbulent flow
field. The gravity and droplet inertia are simultaneously considered. Our
codes for turbulent flow and droplet motion are fully parallelized in MPI
(message passing interface), allowing efficient computation of dynamic
and kinematic properties of a polydisperse suspension with more than
107 droplets. Previous direct numerical simulations (DNS) of turbulent
collision, due to their numerical complexity, are typically limited to small
Taylor microscale flow Reynolds numbers (∼ 100), or equivalently to a
small physical domain size at a given flow dissipation rate in a turbulent
cloud. The difficulty lies in the necessity to treat simultaneously a field
representation of the turbulent flow and free movement of particles. We
demonstrate here how the particle tracking and collision can be handled
within the framework of a specific domain decomposition. Our newly
developed MPI code can be run on computers with distributed memory
and as such can take full advantage of available computational resources.
We discuss scalability of five major computational tasks in our code: col-
lision detection, advancing particle position, fluid velocity interpolation
at particle location, implementation of the periodic boundary condition,
using up to 128 CPUs. In most tested cases we achieved parallel efficiency
above 100 %, due to a reduction in effective memory usage. Finally, our
MPI results of pair statistics are validated against a previous OpenMP
implementation.

1 Introduction

Air turbulence plays an important role in warm rain development. The process
has been extensively investigated in many scientific studies [1, 2, 3], but com-
plete quantitative understanding is still insufficient. The general description of



the multiscale interaction of cloud droplets with turbulent air flow is a chal-
lenging task due to inherent nonlinearities, inhomogeneities and coupling over
disparate length and time scales. One of the main tools being used for cloud
microphysics study is direct numerical simulation (DNS). Numerical complex-
ity limits the DNS of turbulent collision to small Taylor microscale Reynolds
number (Rλ ∼100). In real clouds the value is a few orders of magnitude larger
(Rλ ∼ 104). Achieving such high Reynolds numbers in numerical simulation
is not feasible, but fortunately small flow structures are mainly responsible for
droplets collision thus a truncated representation of turbulence is useful. Here,
we intend to bring the numerical modeling closer to the physical conditions by
extending the size of the computational domain. Serial codes or codes paral-
lelized in OpenMP (e.g. [4]) for particle tracking can be run only on computers
with shared memory where computational resources are limited to a single node.
This restricts the grid resolution typically below 2563. To perform simulation of
turbulent collision on 5123 grid or higher, different method of parallelization has
to be applied.

In this paper, we report on the development of DNS of turbulent collision
with parallel MPI library so the resulting code can be run on platforms with
a distributed memory. Such a treatment allows the use of a larger number of
processors (up 1024), memory, and improved cache utilization, leading to a much
better overall computational efficiency. Our basic strategy of parallelization is
domain decomposition, similar to what was previously utilized by Homman et al.

[5]. The whole computational domain is divided into thin slabs in one direction
and number of slabs corresponds to number of processors used. The differences
between our implementation and Homman’s lie in velocity interpolation and
computation of particle pair statistics. Our new code computes in parallel radial
distribution function (RDF [6] - a measure of the deviation of density distribution
from uniform distribution), pair relative velocity, and dynamic collision rate. The
parallel efficiency of these computations will be examined here.

2 Methodology

2.1 Flow simulation

The usual pseudo spectral method is employed to perform DNS of a forced
isotropic homogenous turbulent flow. The incompressible Navier-Stokes and the
continuity equation:

∂U
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+
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)

+ ν∇2U + f (x, t) , (1)

∇ · U = 0 (2)

are solved in a periodic cubic box. The flow domain is discretized uniformly into
N3 grid points, where in this study N takes the value of 128, 256, or 512. ω

and P denote the fluid vorticity and pressure, respectively. The random forcing
term f (x, t) is nonzero only for very low wave numbers (i.e., k ≤ 2.5), provid-
ing an energy source to sustain the air turbulence. Further details can be found



in [7]. The main difference between the current and previous implementation
is the implementation of FFT (fast fourier transform). FFT demands free ac-
cess to data from every grid point in the whole computational domain. Domain
decomposition limits access of a given process to data in a given subdomain.
This difficulty was overcome by splitting the full 3D (three dimensional) FFT
into a series of 2D FFTs, parallel matrix transposition and then 1D FFTs. The
transposition step reorganizes data to facilitate 2D and 1D FFTs within each
process. To minimize the transpose operation, the domain is decomposed into
slabs in the kz direction in the wavevector space, but along the y−direction in
the physical space [8]. The kinetic energy from low wave numbers propagates to
small scales until viscous dissipation becomes active, eventually a quasi-steady
kinetic energy balance is reached and flow becomes statistically stationary. This
typically takes about 4 to 5 eddy turnover times after a random initialization of
the flow field.

2.2 Particle tracking

When the turbulent flow reaches the statistically stationary stage, we introduce
particles at random positions with a uniform distribution. The random numbers
for setting the initial particle location are generated only by one master process.
Then, the master process sends position data for particles within a given sub-
domain to an appropriate process. Although, such a treatment is not parallel,
it is usually fast and only needs to be performed once. For example, generat-
ing positions of 5 million particles and distributing them among 64 processors
takes only 0.7 [s]. This method ensures a true random distribution in the whole
computational domain as only one seed for the random number generator is
needed.

Assuming that the particles are small in comparison with the Kolmogorov
microscale and particle density is much larger than the fluid density, the following
equation of motion [9]

{

dV(t)
dt

= u(Y,t)−V(t)+W

τp

dY(t)
dt

= V(t)
(3)

is solved, where V(t) and Y(t) are the velocity and the centre position of parti-
cle, respectively, τp is the particle inertial response time, u is the fluid velocity at
the particle location, W = τpg is the still-fluid terminal velocity, and g is grav-
itational acceleration. Equation 3 was solved by the 4th order Adams Bashford
method. The initial particle velocity is set to the fluid velocity at the particle
location plus the terminal velocity.

2.3 Velocity interpolation

To compute the drag force acting on a particle, the fluid velocity at the par-
ticle location has to be interpolated from the solved fluid velocity field on a
regular grid. Several different interpolation techniques have been developed pre-
viously, some of the more popular ones are shown in Table 1. In our MPI code



Table 1. Available interpolation schemes for fluid velocity at particle position.

Yeung, P. K. and S. B. Pope 1989 [10] Third order,
thirteen-point fourth-order cubic spline

Balachandar S, Maxey MR, 1989 [11] 6-pt Lagrangian interpolation
Squires, K. D. and J. K. Eaton 1990 [12] Tri-linear
Rovelstad et al. 1994 [13] Spectral, Tri-linear, Cubic spline, Hermite -

mathematically equivalent to tri-cubic
Rouson et al. 1997,2008 [14, 15] Tri-linear
Bec J 2005 [16] Spectral (few modes)
Franklin et al. 2005, 2007 [17, 18] Tri-linear
Lekien and Marsden 2005 [19] Tri-cubic (implementation no DNS)
Busse et al. 2007 [20] Tri-cubic
Homann et al 2007a, 2007b [5, 21] Tri-cubic an tri-linear

we implemented a Lagrangian interpolation scheme using 6 grid points in each
spatial direction [11, 7]. This requires data communication between neighboring
processes in order to make sure that the full stencil of grid-based fluid veloc-
ity is always available when a particle is located in the vicinity of subdomain
boundaries.

2.4 Periodic boundary condition

Particles moving in the turbulent flow field constantly change their subdomains
or leave the computational box. When a particle moves into a different subdo-
main, the dynamic data occupied on the old process have to be transferred to a
new process. Since the displacement of a particle during a time step is small, the
particle will travel only to a neighboring slab. When a particle leaves the compu-
tational domain, periodic boundary condition is used to place the particle into a
proper new process. Periodicity is realized by adding or subtracting the length
of the computational box size from the particle coordinates. The communica-
tion time for moving data through processes depends on machine architecture
and the number of nodes employed. Setting up separate communication between
processors for sending and receiving data for every single particle is time con-
suming. Instead, we first made copies of the data in temporary buffer and then
transferred the whole buffer in one operation. The original data table for par-
ticles within a given process is updated by removing selected items associated
with particles that have left the subdomain, adding new particles just entered,
and then re-indexing the whole table.

2.5 Collision detection

The algorithm for collision detection implemented in the MPI code follows the
idea presented by Wang et al. [22], with several modifications resulting from
different memory management. Dynamic collision detection is executed in two
steps. In the first step, collisions within a given subdomain are detected using an
efficient linked list method [23]. In the second step the algorithm detects collisions



occurring between particles from two different processes. The second step is faster
because searching is limited only to a narrow slice covering overlapping region
between two neighboring processors. To perform this step, the complete set of
data with particles location, velocity and particles size has to be transferred to a
neighboring process. The above treatment retains full parallelism and minimizes
amount of data which has to be sent and received between CPUs.

2.6 Radial distribution function and relative velocity

Radial distribution function is computed based on the definition proposed in
[6]. Domain decomposition introduces additional boundaries inside the domain
and complicates the detection of all particle pairs with separation distance in
the range from r − δ to r + δ. This problem was solved again by a two-step
procedure, similar to that used in the collision detection. Namely, particle pairs
inside any given subdomain are detected first, then additional pairs involving
particles from different processes are found. Relative velocity is computed for
every pair used for the RDF calculation. These kinematic statistics are further
averaged over time.

3 Parallel performance

To examine the scalability of the MPI code, a number of numerical experiments
were performed. All tests presented in this paper were conducted on an IBM
Power 575 cluster (4064 POWER6 processors running at 4.7 GHz) at NCAR’s
supercomputing center.

In the first test we compare times designated for five major parts of the
code: evolution of the turbulent flow, collision detection, velocity interpolation,
advancing particle position and the implementation of the periodic boundary
condition. The wall clock times using different number of processors and a given
number of time steps are collected to determine the scalability for each of the
tasks separately. The total measured time is the sum of computational and com-
munication time. Additional time spent for saving data is negligible compared to
either the computational or communication time. Maximal number of processors
used in the test is 128 (4 full nodes). Figure 2 shows the total time needed for
each task as a function of the number of processors.

The time spent for tasks related to the particle motion (collision detection,
velocity interpolation, advancing particle position and periodic boundary condi-
tion) is inversely proportional to the number of processors. For the flow evolution
the time also decreases but only for small number of processors (up to 32). For
larger number of processors (64 and 128), the computational time appears to sat-
urate, due to the increasing communication time associated with parallel FFT.

On the right panel of Fig. 1 we show the ratio of total computational time
over the total execution (computational plus communication) time as a function
of the number of processors. The computational time takes about half of the time
for intermediate numbers of processors, but less than one third for larger numbers
of processors. This shows that it is very critical to minimize the communication
overhead in the MPI code.
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Fig. 1. Left panel: Scalability of the five major tasks in the DNS code in terms of the
total execution time. Right panel: The ratio of Tcomputation/Ttotal as a function of the
number of processors. The grid size is 5123.
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Fig. 2. Scalability of computational and comunication time for the flow solver (left
panel) and the particle part (right panel), as a function of the number of processors.

In the second analysis, computational time and communication time for three
different grid sizes 1283, 2563 and 5123 are examined separately. Here the tasks
are only divided into two groups: the flow solver part and particle part. Separate
scaling performances are shown in figure 3. The computational time for both
parts decreases roughly linearly with the number of processors, in the log-log
plots. The dependence of the communication time on the number of processors
is more complex. For the flow evolution part, a reduction of communication
time is realized with an increase in the number of processors from 1 to 32. This
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Fig. 3. Comparison of speedup (left panel) and computational efficiency (right panel)
of the DNS codes parallelized with two different libraries (MPI and OpenMP). Grid is
5123.

can be explained because amount of data being transferred between processes
decreases with increasing number of processors. For larger number of processors
more connections have to be established and the communication time in fact
increases eventually with the number of processes. For the particle part the
communication time is insensitive to the number of processors used.

In the third analysis, we compare the performance of two codes: our new
MPI code and an OpenMP code developed previously by Ayala et al. [4]. Both
codes are functionally the same and yield identical results of collision statistics.
Here we compare the speedup, efficiency (fig. 4), and the memory usage (fig.
5) of the codes, under an identical setting (the same initial flow field, the same
number of particles, the same initial particle location and the same particle size).
The speedup presented in figure 4 is determined by simulating 2 and 5 million
particles starting from the same particle location and the same flow velocity
field. Results obtained with OpenMP code show that, for the maximum allowed
number of processors (32 on a single node), the speedup cannot exceed 10. In
contrast, the MPI code can be run on more than one node and as such can be run
on any number of processes. Figure 4 shows that, for the MPI code, the highest
achievable speedup for 2 million particles occurs at 64 processors while for 5
million particles the highest speedup is for 128 processors. We can conclude that
the speedup depends on the number of particles tracked. For 20 million particles,
we expect that more than 128 processors can be used to achieve an efficiency
close to 100%. In the Open MP code, efficiency decreases monotonically with
the number of processes and it does not exceed 30%.

The small difference between two MPI curves in Figure 5 shows that the
majority of memory is used for flow solver rather than for the particle part. The
memory usage for the particle part will not exceed 10 GB for 20 million particles.
The high increase of memory usage between 32 processors and 128 is due to the
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allocation of additional buffers needed for communication. In the MPI code the
matrices with particle data was oversized by around 30 % in order to handle the
particles which are moving between processes. Since in the Open MP code there
is no need to allocate such oversized matrices and particle data size is defined
precisely, memory usage is about 10 GB and is significantly less than in the MPI
code.

Finally, we compare dynamic and kinematic collision kernels computed using
the two codes (MPI and OpenMP). Figure 6 shows that the two codes give the
same results and differences are within the statistical uncertainties of the data.

4 Conclusions

MPI implementation has been developed for a code designed to study turbulent
collision of particles in a turbulent flow. This is a challenging task since turbulent
flow and particle transport require different implementation strategies. Here we
discussed major issues and implementation details, along with some ideas for
optimizing the MPI code. A number of numerical tests are used to show scala-
bility, speedup, and overall efficiency, and times required for different tasks are
compared. The MPI code performs better than an earlier OpenMP code, and
can take full advantage of distributed memory hybrid computers. Our next step
is the MPI implementation for particle-particle aerodynamic interaction which
requires considerations of both short and long-range interactions.
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Fig. 5. Comparison of dynamic and kinematic collision kernels for sedimenting droplets
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