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In lattice Boltzmann simulations involving moving solid boundaries, the momentum exchange between the
solid and fluid phases was recently found to be not fully consistent with the principle of local Galilean invariance
(GI) when the bounce-back schemes (BBS) and the momentum exchange method (MEM) are used. In the past,
this inconsistency was resolved by introducing modified MEM schemes so that the overall moving-boundary
algorithm could be more consistent with GI. However, in this paper we argue that the true origin of this violation
of Galilean invariance (VGI) in the presence of a moving solid-fluid interface is due to the BBS itself, as the VGI
error not only exists in the hydrodynamic force acting on the solid phase, but also in the boundary force exerted
on the fluid phase, according to Newton’s Third Law. The latter, however, has so far gone unnoticed in previously
proposed modified MEM schemes. Based on this argument, we conclude that the previous modifications to the
momentum exchange method are incomplete solutions to the VGI error in the lattice Boltzmann method (LBM).
An implicit remedy to the VGI error in the LBM and its limitation is then revealed. To address the VGI error
for a case when this implicit remedy does not exist, a bounce-back scheme based on coordinate transformation
is proposed. Numerical tests in both laminar and turbulent flows show that the proposed scheme can effectively
eliminate the errors associated with the usual bounce-back implementations on a no-slip solid boundary, and it
can maintain an accurate momentum exchange calculation with minimal computational overhead.

DOI: 10.1103/PhysRevE.95.013301

I. INTRODUCTION

In the past 30 years, the lattice Boltzmann method (LBM)
has been developed into a viable alternative for solving the
Navier-Stokes (NS) equations governing viscous fluid flows.
An important reason for its popularity is its apparent simplicity
in handling the no-slip boundary condition within complex
geometries, which makes it extremely suitable in simulating
particle-laden flows [1–4] and flows through porous media
[5–7]. In such simulations, the no-slip boundary condition
on moving or fixed (typically curved) solid surfaces is usually
realized by a bounce-back scheme, which was first proposed in
a simple direct bounce-back form [1] and was later modified
to achieve at least second-order accuracy on curved bound-
aries [5,6,8,9]. Also inherited from the gas kinetic theory,
the hydrodynamic force acting on a solid body in a LBM
simulation can be evaluated by summing the net momentum
change between the incident and reflected fluid particles at
the boundary nodes during the bounce-back process. This
mesoscopic treatment is known as the momentum exchange
method (MEM) [1,10]. It is computationally more efficient
than its macroscopic counterpart, namely the stress integration
method (SIM), as demonstrated in [10,11].

While bounce-back schemes together with the MEM
allow different complex geometries to be implemented in
the LBM, the existence of a potential violation of Galilean
invariance (VGI) in these methods has been exposed both
theoretically and numerically [12–16]. By VGI error, we
mean that the physical result of the flow, such as the
momentum exchange between solid and fluid phases, could
change if a constant translational velocity is added to the
entire system. Although it is well known that Galilean-
invariant NS equations can be derived from the LBM scheme
via different methods, e.g., Chapman-Enskog analysis [17],

asymptotic expansion [18,19], or linear analysis [20], these
derivations often do not consider the presence of a solid
boundary. In the LBM, popular solid boundary schemes can
be roughly grouped into two categories: (i) constructing the
mesoscopic distribution functions at the boundary by, e.g.,
bounce-back rules [1,5,6,8,9] and by directly formulating from
the local fluid pressure, velocity, and stress information [21];
and (ii) satisfying the boundary constraints at the level of
macroscopic or NS equations [e.g., the immersed boundary
method (IBM)] [22,23]. For example, the hydrodynamic forces
in IBM-LBM are evaluated according to the NS equations on a
set of Lagrangian points attached to the solid surfaces [22,23].
Such forces are then inverted and interpolated as an effective
body force exerted on the fluid phase. Thus, in the second
category, Galilean invariance is expected to be preserved, and
we will no longer consider this category in our paper.

In past studies [12–16], the VGI error was attributed to the
MEM. Therefore, in order to correct the VGI error associated
with the treatment of a moving solid boundary, several
different modifications of the MEM have been proposed to
improve or restore Galilean invariance (GI) in the calculation
of hydrodynamic force acting on a solid boundary. To our
knowledge, Caiazzo and Junk [12] were among the first
to realize the lack of Galilean invariance in the MEM,
and they proposed a corrected MEM by subtracting the
linkwise VGI error directly on each link. Such linkwise
correction is a brute-force treatment that ensures the error
will be eliminated on all boundary links. Later, Clausen and
Aidun [13] presented a straightforward correction that acts
in a nodewise manner for an arbitrarily orientated surface.
The nodewise correction is designed to remove the overall
VGI error on each boundary node. Compared to the linkwise
treatment, the major issue for such nodewise correction is

2470-0045/2017/95(1)/013301(18) 013301-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.013301


PENG, GENEVA, GUO, AND WANG PHYSICAL REVIEW E 95, 013301 (2017)

that its performance may be affected by the boundary link
configuration. Another problem for both correction methods is
that they require the VGI errors to be formulated and calculated
beforehand so that the precise errors can be subtracted in their
algorithms. Such calculations of VGI errors involve certain
assumptions (e.g., the system is fully relaxed), and they are
independent of the flow around, so these corrections may not
be accurate. Chen et al. [14] proposed a corrected MEM to
incorporate the impulsive force [2] when a solid node becomes
a fluid node, or vice versa. Although it was not intended to
eliminate VGI error, their treatment was later interpreted as a
linkwise correction that essentially achieves similar nodewise
correction in certain ideal cases [24]. More recently, Wen et al.
designed a Galilean-invariant momentum exchange method
(GIMEM) in which the lattice fluid velocity relative to the
wall was used to realize nodewise Galilean invariance [15].
Compared with its alternatives, this formulation does not
require explicit computation of the VGI error. Since its
correction term depends on flow information, i.e., boundary
distribution functions, this method could potentially work
better under insufficient grid resolutions. A similar correction
was proposed by Krithivasan et al. [16] around the same time.
Numerical simulations of both laminar and turbulent particle-
laden flows indicate that the above-mentioned corrected force
evaluation schemes in Refs. [12–15] lead to physically correct
solid-particle motions [15,24,25]. Further details on these
methods are discussed in Wen et al.’s review article [26].

In this paper, we argue that all the above-mentioned
modifications shall not be considered as complete solutions
to the VGI errors in the LBM. Their incompleteness can be
easily seen by considering Newton’s Third Law. Namely, if
there exists a VGI error in the hydrodynamic force acting on
the solid phase, there must be a corresponding VGI error in
terms of interaction force experienced by the fluid phase, with
the latter being equal and opposite to the former. However, the
latter issue remains essentially unnoticed by all the proposed
corrections since none of them changes the core algorithm
of the LBM, i.e., the evolution of distribution functions near
a moving fluid-solid interface. The amount of momentum
change in the fluid phase due to the moving solid boundary in
the LBM is purely determined by the bounce-back process,
which is left unchanged no matter what postprocessing
modifications are made to the momentum exchange scheme.
In other words, the focus of these modifications is on the
evaluation of the hydrodynamic force and torque acting on
the solid phase, but ignoring the feedback effect of the fluid
phase. Without fixing the VGI error on the fluid phase, the
one-way correction on the hydrodynamic force evaluation can
lead to the violation of Newton’s Third Law. In this regard,
the previous modifications to the MEM are flawed. We will
discuss this issue in detail in Sec. II.

We will reveal in detail later in this paper, for some cases,
that the VGI error on the fluid may be corrected impulsively
through momentum gain or loss when a given lattice node
switches phase, i.e., a fluid node becomes a solid node or vice
versa. However, in some other cases in which this impulsive
fix does not occur, e.g., the case in which the wall moves
along a fixed line (in two dimensions) or surface (in three
dimensions) relative to the fixed lattice nodes, the VGI error on

the fluid phase is left uncorrected. For such specific situations,
the existing bounce-back schemes need to be improved to
address this issue, which is the main focus of this paper.

The rest of this paper is arranged as follows. In Sec. II,
we first demonstrate that the true origin of VGI error lies in
the bounce-back scheme (the core algorithm) instead of the
momentum exchange method (the postprocessing part). Based
on this argument, we briefly introduce the previous modified
momentum exchange schemes and assess their incompleteness
both theoretically and numerically. An implicit remedy to the
VGI error in the LBM and its limitations are then revealed.
To eliminate the VGI error in the absence of such a remedy,
a boundary scheme is presented that will restore GI for both
fluid and solid phases. The proposed scheme is validated in
Sec. IV using a Poiseuille flow between two inclined walls, a
turbulent channel flow, and a turbulent pipe flow. Finally, the
contents of this work are highlighted in Sec. V with a summary
of key conclusions.

II. ANALYSIS OF DEVIATIONS FROM THE GALILEAN
INVARIANCE IN THE LBM

In the LBM, the mesoscopic fluid-particle distribution
function fi(x,t) is governed by

fi(x + ei ,t + δt ) − fi(x,t) = �i, (1)

where i refers to a discrete particle velocity ei , x and t

are the discrete node and time, respectively, and δt is the
time step size. The right-hand side (RHS) of Eq. (1) is the
collision operator, which can take different forms depending
on the specific collision model being chosen. The first typical
collision model is the single-relaxation-time [or Bhatnagar-
Gross-Krook (BGK)] model

�i = − 1

τ

[
fi(x,t) − f

(eq)
i (x,t)

]
, (2)

where τ is a nondimensional relaxation time that is related
to the kinematic viscosity ν as ν = c2

s (τ − 0.5)δt (where cs

is the model speed of sound), and f
(eq)
i is the corresponding

equilibrium distribution function. The second commonly used
collision model is the multi-relaxation time (MRT) model

�i = −M−1SM
[
fi(x,t) − f

(eq)
i (x,t)

]
, (3)

where M and M−1 are the transform matrix and its inverse,
respectively, that relate the distribution functions with the same
number of independent moments. S is the diagonal matrix
that defines the relaxation coefficient of each moment. The
macroscopic (continuum) density and fluid momentum are
obtained in terms of the zeroth- and first-order moments of the
distribution functions fi .

A. Momentum exchange between solid and fluid phases

As mentioned in the Introduction, in the past the VGI issue
in the LBM was dealt with only partially by modifying the
momentum exchange method [12–16]. Such modifications
impact the solid phase only, without a corresponding effect
on the fluid phase. As we shall see shortly, this one-way
change is flawed and incomplete. The true origin of the VGI
error lies in the inappropriate construction of the unknown
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distribution functions at boundary points near the moving
solid-fluid interface, namely the bounce-back scheme itself.

To understand our argument more clearly, let us consider a
simple case in which a fluid flow with some initial momenta
is present in a pipe. This flow is decelerated due to the wall
drag force. In this case, the only force that changes the total
momenta of the fluid is the drag force exerted by the wall F′.
Based on the principle of Galilean invariance, the fluid inside
the pipe should decelerate at the same rate regardless of the
frame of reference used. The total momentum change of the
fluid phase between t and t + δt can be formulated as

m(t + δt ) − m(t) = F′δt . (4)

In the LBM, the fluid momenta m are calculated as

m(t + δt ) =
∑
x,i

fi(t + δt )ei , m(t) =
∑
x,i

fi(t)ei , (5)

where the above summations are over all the lattice directions
i and all the fluid node points x in the volume considered.

When the external body force or mean pressure gradient is
absent, we have the following relationship between postcolli-
sion and precollision fluid momenta:∑

x,i

fi(t)ei =
∑
x,i

f ∗
i (t)ei , (6)

where fi(t) and f ∗
i (t) are the pre- and postcollision distribution

functions at a given time step.
Substitute Eqs. (5) and (6) into Eq. (4), we have

F′δt =
∑
x,i

fi(t + δt )ei −
∑
x,i

f ∗
i (t)ei . (7)

If we consider the fluid phase as a whole, we note that
the inner propagation (or streaming) between two fluid nodes
does not change the total momenta of the fluid. The only
contribution to the fluid momentum change is governed by the
fluid particles incident and reflected off the solid boundary.
Therefore, Eq. (7) can be rewritten as

F′δt =
∑

Blinks

[fī(t + δt )eī − f ∗
i (t)ei]

= −
∑

Blinks

[fī(t + δt ) + f ∗
i (t)]ei , (8)

where fī(t + δt )eī represents the momenta carried by the fluid
particles coming from the solid phase, and f ∗

i (t)ei is the
momenta carried by the fluid particles entering the solid phase.

It should be noted that Eq. (8) is a general fact in the LBM
that does not change regardless of the algorithm one uses to
evaluate the hydrodynamic force acting on the solid phase. In
fact, to satisfy Newton’s Third Law, the force exerted on the
fluid phase must be precisely opposite to the hydrodynamic
force F acting on the solid phase, which leads to

Fδt = −F′δt =
∑

Blinks

[fī(t + δt ) + f ∗
i (t)]ei . (9)

As we shall realize soon, Eq. (9) is simply the summation
form of the conventional MEM, which accurately describes the
momentum exchange between solid and fluid phases. Clearly,
we have identified a fundamental inconsistency in all the

FIG. 1. Configuration of a boundary node that interacts with a
moving wall.

previous studies that modify the conventional MEM in order to
restore Galilean invariance, which motivated the current study.

B. The VGI error in the momentum exchange

In this subsection, we shall discuss the Galilean variant
issue of momentum exchange between solid and fluid phases
and reveal its true origin. Consider a moving solid wall
and a lattice node (xb) next to the solid wall in the fluid
domain, as illustrated in Fig. 1. There are several fluid lattice
particles sitting at xb that will travel along the boundary links.
These lattice particles interact with the solid boundary causing
momentum exchanges between the solid boundary and the
fluid. The net momentum exchange between this fluid node
and the wall should be identical whether the whole system is
at rest or moving with a constant velocity. This is the principle
of Galilean invariance. This fundamental principle must be
preserved in any nonaccelerating inertial frame of reference.

As we discussed before, the momentum exchange between
the fluid at the boundary node point xb and the solid wall must
be

F(xb)δt = −F′(xb)δt =
∑

Blinks

[fī(t + δt ) + f ∗
i (t)]ei

=
∑

i=1,5,8

[fī(t + δt ) + f ∗
i (t)]ei . (10)

Here we use the notation F(xb)δt to indicate the momentum
change of the solid phase, and F′(xb)δt for the momentum
change of the fluid phase. Typically, in the bounce-back
scheme they are related by

fī(t + δt ) = f ∗
i (t) − 2wiρ0

c2
s

(ei · uw), (11)

where uw is the velocity of the solid boundary and wi is
the weighting factor. Here, the incompressible formulation
of He and Luo [27] has been adopted, namely the density
is decomposed into a mean reference density ρ0 and a local
fluctuation δρ. The second term on the RHS in the above
equation approximates the no-slip boundary condition on a
moving wall.

In a “fully relaxed system,” in which the whole flow field
is at the same state (i.e., velocity, temperature, etc.) as the
solid boundary, we can represent both f ∗

i and fī with their
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corresponding equilibrium distributions in terms of the local
density fluctuation δρ and velocity uw at the wall,

f
(eq)
i = wiδρ + ρ0wi

[
(ei · uw)

c2
s

+ (ei · uw)2

2c4
s

− (uw · uw)

2c2
s

]
.

(12)

Substituting the equilibrium distribution into the MEM
equation, Eq. (9), one can express the momentum exchange as

F(xb)δt =
∑

Blinks

{
2wieiδρ + ρ0wiei

[
(ei · uw)2

c4
s

− (uw · uw)

c2
s

]}
.

(13)

Assuming a D2Q9 lattice grid and summing over all boundary
links in the case of Fig. 1 results in the nodewise momentum
exchange as

F(xb)δt = 1

3
δρcn + ρ0

c
uwxuw ≈ 1

3
δρcn + ρ0

c
(uw · n)uw,

(14)

where n is the unit wall normal vector [n = (1,0) in this
case] pointing from the boundary fluid node xb to the wall
surface. The first term on the RHS of Eq. (14) is precisely
the hydrodynamic force due to the fluid pressure (pn). Since
the system is in a fully relaxed state, this should be the only
force acting on the solid boundary. Therefore, the second term
on the RHS of Eq. (14), which depends on the wall velocity
magnitude uwx and uwy , represents the VGI error in force
evaluation, namely,

FVGI(xb)δt = ρ0

c
(uw · n)uw. (15)

It should be noted that the last expression in Eq. (14) is
approximate as, due to the discretization and lattice grid
layout, the intermediate expression remains correct even if
the local wall normal deviates slightly from the horizontal
direction. Again, it is necessary to emphasize that Eq. (13) is
the actual momentum exchange between the fluid at boundary
xb and the solid wall, which is independent of the scheme
that is used to evaluate it. The VGI error exists in both the
hydrodynamic force acting on the solid wall as well as the
reaction force exerted on the fluid phase. However, in previous
studies [12,13,15], the latter was not realized. The efforts to
date have been focused on modifying the force evaluation
scheme to enforce the Galilean invariance of the former only.
These corrections are thus part of the postprocessing, instead
of eliminating the VGI error from its true origin. As one
could observe in Eq. (9), the only flexibility that can be taken
advantage of to restore Galilean invariance in the momentum
exchange between phases is the distribution function fī(t + δt )
being constructed via the boundary schemes. Therefore, better
bounce-back schemes need to be proposed to resolve this issue
fully.

C. Modified momentum exchange methods

For the completeness of our discussion, we shall first review
the previous efforts to address the VGI errors, i.e., the improved
momentum exchange schemes proposed in Refs. [12–15].
Among these efforts, the schemes of Caiazzo and Junk [12],

Clausen and Aidun [13], and Chen et al. [14] all require direct
computation of the VGI error in terms of distributions under
the fully relaxed assumption, so they are discussed together.

Since the momentum exchange between solid and fluid
phases should be independent of the wall reference velocity,
the velocity-dependent part in Eq. (9) should be viewed as a
source for the VGI error, and it shall be offset in the calculation
of hydrodynamic force acting on the solid wall. Starting
from that point, Caiazzo and Junk [12] proposed a corrected
momentum exchange algorithm by directly subtracting the
velocity-dependent part from the momentum exchange to
enforce GI on each boundary link, as

F(xb)δt =
∑

Blinks

{
[fī(t + δt ) + f ∗

i (t)]ei − ρ0wiei

×
[

(ei · uw)2

c4
s

− (uw · uw)

c2
s

]}
. (16)

This correction is straightforward to implement. Since GI is
enforced on each link, the force evaluation at each node point is
expected to have the same property, regardless of the boundary
link configuration.

Different from Caiazzo and Junk, Clausen and Aidun [13]
designed a modified MEM by correcting the VGI error in
the force evaluation in a nodewise manner. In Ref. [13], the
nodewise VGI error in Eq. (15) is simply subtracted from the
actual momentum exchange, i.e., Eq. (9), to restore Galilean
invariance. When the wall is arbitrarily oriented, with n =
(nx,ny), where n is the unit wall normal vector pointing from
the boundary fluid node xb to the wall surface, the momentum
exchange evaluated by Clausen and Aidun’s modified scheme
can be approximated as

F(xb)δt =
∑

Blinks

(f ∗
i + fī)ei − ρ0

c
(uw · n)uw. (17)

It should be noted that in the original formulation proposed
by Clausen and Aidun, the term δρcn/3 in Eq. (14) was
also treated as part of the VGI error. However, this term
clearly represents the pressure’s contribution in the momentum
exchange, which can be nonzero even if the fluid at xb is
stationary relative to the wall. Thus, in this paper, this term is
not considered as part of the VGI error, contrary to Clausen
and Aidun’s original proposal.

Alternatively, Chen et al. [14] pointed out that there
existed a nonzero fluid mass being displaced by the moving
fluid-solid interface in Eq. (11). This displaced fluid mass
contains momenta that are ignored in the conventional MEM.
Therefore, they corrected the momentum exchange calculation
as

F(xb)δt =
∑

Blinks

[
(f ∗

i + fī)ei − 2wiρ0

c2
s

(ei · uw)uw

]

=
∑

Blinks

(f ∗
i + fī)ei − ρ0

c
uw

∑
Blinks

6wi

(ei

c
· uw

)
,

where the last term represents the momentum exchange
contributed by the displaced fluid mass. It is noted that Chen
et al.’s method is a linkwise correction. The total amount of
correction depends on the boundary link configuration, and the
last summation in Eq. (18) generally cannot be converted to
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the form in Eq. (17) or Eq. (16). However, in some ideal cases,
for example a horizontal or a vertical wall, Eqs. (16), (17),
and (18) become identical. Nevertheless, the correction terms
in the above three schemes are very similar in form, and they
have no dependence on the local flow, i.e., the distribution
functions, rather they are determined solely by the state of the
solid phase (and the boundary link configuration in the case of
Chen et al.). These schemes also require explicit computation
of the VGI error under the assumption of a fully relaxed system
and a simple bounce-back rule, i.e., bounce-back without
interpolation, which could potentially contain numerical errors
when an interpolated bounce-back scheme is used.

In Ref. [15], a Galilean invariant momentum exchange
method (GIMEM) is introduced, and the momentum exchange
is computed instead as

F(xb)δt =
∑

Blinks

[f ∗
i (ei − uw) − fī(eī − uw)]. (18)

This scheme follows a simple physical principle that the
momentum exchange between two objects should be expressed
based on their relative velocity, in this case between the fluid
lattice particle and the solid boundary, as opposed to the
absolute velocity of the lattice particle. Contrary to the schemes
in Refs. [12–14], the correction term in this method is related to
the actual value of both incident and bounce-back populations.
Thus the method by Wen et al. is arguably more compatible
when an interpolated bounce-back scheme is used.

We can also compare the correction terms in the above four
methods in the limiting case of a fully relaxed state in Fig. 1.
It is easy to prove the following identities:

uw

∑
i=1,5,8

(−f ∗
i + fī)

= uw

∑
i=1,5,8

[ − f
(eq)
i + f

(eq)
ī

]

= −uw

ρ0

c
(uw · n)

= −ρ0

c
uw

∑
i=1,5,8

6wi

(ei

c
· uw

)

= −
∑

i=1,5,8

{
ρ0wiei

[
(ei · uw)2

c4
s

− (uw · uw)

c2
s

]}
. (19)

The above discussions show that the four different corrections
in the literature, although not identical, are closely related.

However, regardless of what modifications are made, they
do not correct the VGI error in the actual momentum exchange
between solid and fluid phases, rather they make the expression
of hydrodynamic force acting on the solid phase appear to be
Galilean-invariant. Since these modifications only change the
force evaluation on the solid phase, they could potentially
break Newton’s Third Law, as the force they obtain may not
be equal to its opposite force exerted on the fluid phase.

D. An implicit remedy of correcting the VGI error in the LBM

In addition to the bounce-back interaction on the fluid-solid
surface, the momentum exchange between fluid and solid
phases also occurs when a fluid node is covered by a moving

solid body or when a solid node is uncovered. We will
refer to this process as node-type switching. When a fluid
node becomes a solid node, all the momentum at this node
disappears in the fluid domain, which should be converted
as a force acting on the solid phase, and vice versa. As we
shall see shortly, such impulsive momentum exchange between
the two phases can be viewed as a discrete correction to
the accumulative VGI errors that take place continuously. To
demonstrate this, let us reexamine the case shown in Fig. 1.
Recalling Eq. (8), Eq. (15) suggests that there is a VGI error to
the fluid phase during each time step, which can be expressed
as

F′
VGIδt = −ρ0

c
(uw · n)uw. (20)

Assuming that the wall moves with constant velocity uw, this
correction shall happen in c/(uw · n) time steps before the solid
node xw on the right is uncovered. The VGI error to the fluid
momentum in this process accumulates as

MVGI,tot = F′
VGIδt · c

uw · n
= −ρ0uw. (21)

On the other hand, once the node xw changes from a solid to
a fluid node, the distribution functions at this node need to be
constructed or initialized. Such reconstruction is also known
as the refilling process [24,28–30]. Due to the constraint of
non-slip boundary condition, the velocity at xw is expected to
be identical with the wall velocity uw, so the momentum gain
for the fluid phase is

Mgain(xw) = ρ0uw, (22)

which cancels precisely with the total VGI error previously
accumulated. The same cancellation can be observed when
the wall moves in the opposite direction and eventually covers
the boundary node xb.

For the fluid phase, such impulsive correction is carried out
naturally with a moving solid boundary with respect to the
lattice grid itself, and it provides a self-healing mechanism
that maintains the overall Galilean invariance for the fluid
phase over a time scale of the order cδt/(uw · n). However,
since this self-healing mechanism relies on the solid boundary
to physically move with respect to the lattice, covering or
uncovering specific nodes, its drawback is obvious. For a flow
in which the moving solid boundary does not shift relative
to the lattice grid and node-type switching is absent, such
as the case in which the wall moves along a fixed line (in
two dimensions) or surface (in three dimensions) relative to
the lattice nodes, the VGI error in the fluid phase resulting
from the bounce-back can no longer be naturally fixed. It is
worth pointing out that for the configuration in Fig. 1 (i.e.,
a flat vertical wall), the VGI error is zero when uwx = 0,
as indicated by Eq. (15). But the VGI error can become
nonzero when the wall is either inclined or curved, or when
an interpolated bounce-back scheme is needed, as shown by
simulation examples below and in Sec. IV.

To explicitly demonstrate the VGI error for the fluid phase,
we present a simple numerical test case of a Poiseuille flow
between two inclined walls driven by a body force. The flow
schematic is shown in Fig. 2. Here we choose to make the
channel walls inclined to mimic the more general case of
curved boundaries. In the simulations, we set θ = tan−1(1/2),
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FIG. 2. Sketch of a Poiseuille flow driven by a constant body
force between two inclined walls.

h = 10, L = 20, and the channel width H = 40. The fluid is
driven by a constant body force to have a centerline velocity
uc = 0.01 (relative to the channel walls), in parallel with
the channel centerline. The simulation is carried out with a
MRT LB model introduced in [20], using the same suggested
relaxation parameters for those moments that are irrelevant
to the NS equations. The viscosity is chosen as ν = 0.02.
Several simulations were performed, with the walls moving
in the direction opposite to the flow driving force, with
wall velocity magnitude varying from uw = 0.05 to 0.15. To
resolve the solid boundaries with second-order accuracy, two
popular linear interpolated bounce-back schemes developed
by Bouzidi et al. [8] and Yu et al. [5] are tested. For
completeness of our discussion, the same simulation with the
simple bounce-back [1] scheme is also presented in parallel. It
is noted that, to demonstrate the VGI error on the fluid phase,
we purposely introduce a large velocity of the moving frame,
relative to the flow velocity change across the channel.

The velocity profiles at the steady state with different wall
translation velocities uw are plotted in Fig. 3. As clearly
illustrated in the plots, the velocity profiles with large wall
velocity magnitudes deviate significantly from the theoretical
results with the two interpolated bounce-back schemes. Such
results imply that the VGI error introduces additional wall
drag to the fluid phase, which causes a reduction in the
steady-state flow speed. Since in this case the solid boundary
does not shift with respect to the lattice nodes, the self-healing
mechanism previously mentioned is absent, so that the VGI
error accumulates, resulting in reduced overall accuracy of the
simulation. On the other hand, the velocity profiles with the
simple bounce-back scheme do not present significant VGI
error, as the profiles with different wall velocities collapse
together. When the simple bounce-back scheme is employed,
the momentum exchange between solid and fluid phases only
depends on the information at the boundary nodes, which
makes our idealized analysis in Sec. II B applicable. As implied
by Eq. (15), in this situation the VGI error on each link cancels
out and results in a negligible error at each boundary node.
However, since the simple bounce-back has only first-order
accuracy, the numerical error due to insufficient discretization
is much larger than the two cases with interpolated bounce-
back schemes. Although the simple bounce-back scheme can
be viewed as free of VGI error, it is not recommended in the
LBM simulations involving complex geometries.

FIG. 3. The steady-state velocity profiles when different refer-
ence (moving-wall) velocities are applied: (a) with Bouzidi et al.’s [8]
bounce-back scheme, (b) with Yu et al.’s [5] bounce-back scheme,
and (c) with a simple bounce-back scheme [1].
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In Table I, we calculate the L1 and L2 error norms of the
velocity, which are defined as

εL1 =
∑

x |un(x) − ut (x)|∑
x |ut (x)| , (23a)

εL2 =
√∑

x |un(x) − ut (x)|2√∑
x |ut (x)|2 , (23b)

where un and ut are the numerical and theoretical streamwise
velocity, respectively. When the wall velocity is large, the VGI
error severely affects the accuracy of LBM simulation when
the interpolated bounce-back schemes are used. According to
our previous analysis in Eq. (20), the magnitude of the VGI
error is expected to be on the order of O(u2

w). In Table I, the L1
and L2 error norms shown in the parentheses are those minus
the corresponding error with uw = 0 and then normalized by
(uw/uc)2. Indeed, in each case, it is confirmed that the VGI
error scales with u2

w. This feature does not apply very well
for the simple bounce-back case. For the simple bounce-back
scheme, the numerical errors are mainly contributed by its
intrinsic first-order accuracy. The L1 and L2 norms only have
a weak dependence on the reference wall velocity.

Figure 4 shows the total hydrodynamic force F acting on
the two walls with five momentum exchange schemes, i.e., the
conventional momentum exchange method, and four modified
schemes by Caiazzo and Junk [12], Clausen and Aidun [13],
Chen et al. [14], and Wen et al. [15], respectively. The black
straight line indicates the total driving force G applied to the
system. When the flow reaches a steady state, the total driving
force should be balanced with the total drag F′ exerted by
the walls, i.e., G + F′ = 0. Additionally, Newton’s Third Law
requires that the hydrodynamic force acting on the wall and the
drag force acting on the fluid be equal and opposite, F = −F′,
which yields G = F.

With both bounce-back schemes, Wen et al.’s [15] one-
sided correction fails to satisfy Newton’s Third Law. The
breakdown of Newton’s Third Law originates from the
imbalance between Eqs. (18) and (8). On the other hand,
the correction terms in Refs. [12–14] vanish due to the fact
that both corrections are independent of the local flow and
mesoscopic distributions. More specifically, here uw · n = 0,
thus Clausen and Aidun’s [13] correction is then zero. Caiazzo
and Junk’s [12] and Chen et al.’s [14] corrections are also zero
in this case because the link configurations for the top and
bottom walls are mirrored. Although the distribution functions
at a boundary node near the top wall may be different from
the distribution functions at a boundary node near the bottom
wall, both Caiazzo and Junk’s and Chen et al.’s correction
terms are not affected by such a difference. Therefore, the
schemes of Caiazzo and Junk, Clausen and Aidun, and Chen
et al. maintain Newton’s Third Law in this case. Wen et al.’s
correction term, however, is affected by this difference in
the distribution functions. Thus Wen et al.’s scheme violates
Newton’s Third Law in this case.

III. A BOUNCE-BACK SCHEME BASED ON COORDINATE
TRANSFORMATION

In the previous section, we analyzed the origin of VGI
errors for both the solid and fluid phases, along with the
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FIG. 4. The time-dependent total hydrodynamic force acting on the two walls calculated with different momentum exchange schemes: (a)
with Bouzidi et al.’s [8] bounce-back scheme; (b) zoom-in plot of (a); (c) with Yu et al.’s [5] bounce-back scheme; and (d) zoom-in plot of (c).
L0 = √

h2 + L2.

previous efforts to restore Galilean invariance on the solid
phase. Without a simultaneous correction to the fluid phase,
the previous efforts are deemed incomplete. The correction on
the fluid phase depends entirely on the details of the bounce-
back scheme. When the solid boundary undergoes shifting
relative to the lattice nodes, a self-healing mechanism can be
triggered, as explained in Sec. II C. Although the correction of
hydrodynamic force evaluation on the solid phase and the self-
healing mechanism on the fluid phase together may not satisfy
either Galilean invariance or Newton’s Third Law at each step,
they seem to work well when integrated over time, as indicated
by the reasonable results of particle dynamics in the previous
simulations of turbulent particle-laden flow [14,15,24,25]. The
VGI error on the fluid phase does emerge when the moving
solid boundary is stationary relative to the lattice nodes, and
when the self-healing mechanism for the VGI error in the fluid
phase is not present. Since the boundary force exerted on the

fluid is intrinsically determined by Eq. (8), where the only
degree of freedom is the bounce-back population fī , to restore
the Galilean invariance we need to design better boundary
schemes.

In this paper, we present a bounce-back scheme to remove
the VGI error when the moving boundary is stationary relative
to the lattice nodes, i.e., when the node-type switching is
absent. Our basic idea is to replace the bounce-back that
occurs in a frame fixed to lattice nodes to a bounce-back
implementation in a frame moving with the wall. This ensures
that the bounce-back is always performed in a transformed
frame where the wall is static. To achieve this, the distribution
functions on the boundary nodes in the transformed frame
need to be constructed. In the LBM, we can always partition
the distribution function fi into two parts: the equilibrium
part f

(eq)
i and the nonequilibrium part f

(neq)
i . The equilibrium

part contains information on the conserved quantities (density,

013301-8
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bx
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q xδ

xδ
wu

wx

ie
ie

FIG. 5. Sketch of a boundary node that interacts with a moving
wall, used to illustrate our proposed bounce-back implementation.

momentum) and thus can be calculated directly from the
conserved quantities that are known in both frames of
reference. On the other hand, the nonequilibrium part contains
information on the nonconserved quantities (stress, energy
flux, etc.), which in general can be approximated as functions
of only strain rates [21]. Therefore, the nonequilibrium part
is not affected by the constant frame velocity or the VGI
error. Thus based on this understanding of the LBM, we can
transform distribution functions between a static frame and a
moving frame of reference.

For a boundary configuration shown in Fig. 5, our proposed
bounce-back implementation consists of the following steps:

(i) After the collision substep, starting with the distribution
functions in the fixed coordinate system (i.e., the coordinate
system attached to the lattice grid), we construct the distribu-
tion functions in the coordinate system moving with the wall
(the moving coordinate system) for all distribution functions
that reach the boundary fluid node xb after propagation. These
distribution functions include two sets, namely the distribution
functions that arrive at xb from direct propagation (including
the one at rest) and those from bounce-back. For the first group,
we have

f ′
i (t + δt ,xb) = f ′∗

i (t,xb − ei), (24)

where f with a superscript prime indicates the distribution
functions in the moving coordinate system, while ∗ indicates
the postcollision distribution functions. For the second set
of distribution functions, a certain bounce-back scheme is
applied. Note that the scheme could be any bounce-back
scheme per the user’s own choice. For demonstration purposes,
we use the double linear interpolation scheme proposed by Yu
et al. [5],

f ′̄
i
(t + δt ,xb) = q

1 + q
f ′∗

i (t,xb) + 1 − q

1 + q
f ′∗

i (t,xf )

+ q

1 + q
f ′∗

ī
(t,xb). (25)

All the involving postcollision distribution functions in the
moving coordinate system are transformed from the fixed
coordinate system as

f ′∗
i (t,x) = f

(neq),∗
i (t,x; u∗,δρ∗) + f

(eq),∗
i (t,x; u∗ − uw,δρ∗),

(26)

where u∗ and δρ∗ are the postcollision local velocity and
density fluctuation at the location x.

(ii) Next, use f ′
i (t + δt ,xb) to update the density fluctuation

and velocity at xb in the moving coordinate system,

δρ ′(t + δt ,xb) =
∑

i

f ′
i (t + δt ,xb), ρ0u′(t + δt ,xb)

=
∑

i

f ′
i (t + δt ,xb)ei . (27)

(iii) Finally, transform all distribution functions at xb in the
moving coordinate system back to the fixed coordinate system
as

fi(t + δt ,xb) = f
′(eq)
i (t + δt ,xb; u′ + uw,δρ ′)

+ f
′(neq)
i (t + δt ,xb; u′,δρ ′). (28)

Since in step (iii) all distribution functions are updated,
the momentum exchange between solid and fluid phases at a
boundary node obviously contains two parts. The first part is
realized via momentum exchange during the bounce-back. At
the same time, the momentum carried by the direct streaming
from the neighboring nodes could also have been modified.
This part of the momentum change should be taken into
consideration in order to obey Newton’s Third Law locally. In
summary, the hydrodynamic force acting on the solid surface
should be calculated as

F(xb,t)δt =
∑

Blinks

[fī(t + δt ,xb) + f ∗
i (t,xb)]ei

+
∑
others

[fi(t + δt ,xb) − f ∗
i (t,xb − eiδt )]ei ,

(29)

where the first summation is over the boundary links, while
the second summation is over the remaining links at xb.

A few comments can be made regarding the proposed
bounce-back scheme. First, it can be applied to any existing
bounce-back scheme. Although we illustrate our method with
Yu et al.’s [5] interpolated bounce-back scheme, the same
process can be applied to other bounce-back schemes. Second,
this bounce-back implementation should not be considered as a
universal solution for all cases with moving boundaries. When
node-type switching exists (e.g., in a solid-particle suspen-
sion), the self-healing mechanism will automatically take care
of the VGI error for the moving boundaries, thus this proposed
bounce-back scheme is arguably unnecessary. Ideally, the
bounce-back scheme should be designed so that it can precisely
address the remaining VGI error (if any) when the self-healing
mechanism exists. However, it is not possible to know the
magnitude of the corrections during this process in advance,
thus a universal solution is unlikely to exist. In this paper,
we constrain ourselves to the cases in which the self-healing
mechanism is absent. Finally, although a similar philosophy
of transforming distribution functions between a fixed grid
and a moving grid has already been applied in the multiblock
technique [31] and the immersed boundary method [32],
the present scheme still has its own advantages. A second
grid set in the moving frame is unnecessary in the present
bounce-back scheme. The present bounce-back scheme is
only applied to boundary nodes. Furthermore, when the whole
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computational domain is attached with a reference velocity, the
implementation of the multiblock technique or the immersed
boundary method will be much harder than the present scheme.

IV. NUMERICAL VALIDATIONS

In this section, the proposed bounce-back is examined
in three test cases without node-type switching: a two-
dimensional Poiseuille flow between two inclined straight
walls (the same case already considered in Sec. II), a three-
dimensional direct numerical simulation (DNS) of a turbulent
channel flow, and a three-dimensional DNS of a turbulent pipe
flow.

A. A Poiseuille flow between two inclined straight walls

First, the Poiseuille flow between two inclined straight
walls, driven by a body force, is tested with the proposed
bounce-back scheme. As we have demonstrated in Sec. II,
due to the VGI error for the fluid phase, the resulting fluid
momentum deviates significantly from the theoretical solution.
The test runs utilize the same parameter settings as in Sec. II.
The proposed bounce-back scheme is implemented using both
Bouzidi et al.’s [8] and Yu et al.’s [5] bounce-back schemes,
and the corresponding results of velocity profiles with a wall
velocity uw = 15uc at different times are presented in Fig. 6.
For complete assessment, the same results based on the simple
bounce-back scheme [1] are also provided in parallel.

As shown in Fig. 6, when the interpolated bounce-back
schemes are used, the velocity profiles at different times
collapse well with the corresponding theoretical results, even
with this largest wall velocity. This is in contrast with the large
derivations in Fig. 3, which indicates that the VGI error has
been significantly suppressed with the proposed bounce-back
scheme. On the other hand, the velocity profiles based on the
simple bounce-back scheme deviate from the theory at later
times, which is mainly due to the first-order accuracy of the
simple bounce-back scheme. Similar to Sec. II, the steady-state
velocity profiles with different wall velocities and their error
norms are presented in Fig. 7 and Table II, respectively. The
values in parentheses in Table II again represent the error
norms after subtracting their corresponding norms with uw =
0 and then divided by (uw/uc)2. Compared with the results in
Fig. 3 and Table I, we can clearly observe that the proposed
bounce-back scheme has successfully reduced the error in
the velocity calculation by at least one order of magnitude
when incorporating the two interpolation schemes. On the
contrary, when the simple bounce-back scheme is used, the
error norms become slightly larger. As we have demonstrated
before, the VGI error (if it exists) is not significant with the
use of the simple bounce-back scheme, which makes our
correction arguably unnecessary. Furthermore, unlike the error
norms shown in Table I due to VGI, for the two interpolated
bounce-back schemes, the error norms in Table II no longer
scale with O(u2

w), implying that the majority of the original
VGI errors have been eliminated by the proposed coordinate
transformation method. For the simple bounce-back case, the
error norms in the parentheses still scale with O(u2

w).
The hydrodynamic force as a function of time is shown

in Fig. 8 for different wall velocity magnitudes. Due to the

FIG. 6. The velocity profiles at different times using the proposed
bounce-back scheme with uw = 15uc: (a) based on Bouzidi et al.’s [8]
bounce-back scheme, (b) based on Yu et al.’s [5] bounce-back
scheme, and (c) based on a simple bounce-back scheme [1]. The
dimensionless time is defined as t∗ = H 2/(4ν).

013301-10



ISSUES ASSOCIATED WITH GALILEAN INVARIANCE ON . . . PHYSICAL REVIEW E 95, 013301 (2017)

FIG. 7. The steady-state velocity profiles using the proposed
bounce-back scheme with different reference velocities: (a) based on
Bouzidi et al.’s [8] bounce-back scheme, (b) based on Yu et al.’s [5]
bounce-back scheme, and (c) based on a simple bounce-back
scheme [1].
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FIG. 8. The time-dependent total hydrodynamic force acting on the two walls with different wall velocities using the proposed bounce-back
scheme: (a) based on Bouzidi et al.’s [8] bounce-back scheme; (b) zoom-in plot of (a); (c) based on Yu et al.’s [5] bounce-back scheme; and
(d) zoom-in plot of (c). L0 = √

h2 + L2.

consideration of the Newton’s Third Law in the proposed
method, the hydrodynamic force is clearly equal to the driving
force when the flow reaches steady state, as indicated in Fig. 8,
for all wall velocity magnitudes tested.

B. Direct numerical simulation of a turbulent channel flow

Next, we apply our proposed bounce-back scheme in direct
numerical simulation of fully developed turbulent channel
flow. For a boundary node xb near a straight channel wall,
as shown in Fig. 9, the nodewise VGI error depends on the
bounce-back scheme being used. When the midlink bounce-
back is applied, although a certain VGI error is carried by the
bounce-back on a single link i, it cancels precisely with the
corresponding VGI error carried by link j , as one can prove
from Eq. (13). The straight wall guarantees the coexistence of

links i and j . When an interpolated bounce-back is used, on
the other hand, the VGI error carried by a single link not only
depends on the information at the boundary node xb, but also
on the extensional node(s) used in the interpolation. Due to the

FIG. 9. A sketch of boundary configuration in a turbulent channel
flow.
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FIG. 10. Grid arrangement in the turbulent channel flow
simulation.

high nonuniformity in the turbulent flow, the information at the
two extensional nodes ie and je is unequal, which prevents
the VGI errors from precise cancellation. Therefore, the VGI
errors may affect the overall results.

Based on the above analysis, our simulation is carried
out with the interpolated bounce-back. The channel center
is purposely shifted by 0.25 lattice spacing to create the
need to use an interpolated bounce-back to maintain overall
second-order accuracy, as shown in Fig. 10. A nonzero wall
velocity uw = −12u∗ that is opposite to the driving force

direction is added to both walls, where u∗ = √
τw/ρ is the

friction velocity, τw is the wall shear stress (per unit area), and
ρ is the fluid density. The interpolated bounce-back scheme
of Yu et al. [5] and the corresponding new bounce-back
scheme based on the same interpolation strategy are applied
to handle the no-slip boundary on the walls. Other than that,
the simulation parameters, the specific model parameters, the
initial condition, as well as the method to excite the transition
to turbulence are all identical to the “MRT” case as reported
in [33].

It is noteworthy that in the direct numerical simulations
of high Reynolds number flows, adding a nonzero velocity to
the whole system brings a desired benefit of enhancing the
numerical stability. For example, with the same simulation
setup, removing the wall velocity can cause severe checker-
board instability in the channel center region, which eventually
ruins the simulation, as indicated by the pressure contours in
Fig. 11. At present, we are still unsure as to what exactly
triggers the checkerboard instability, but such instability is
only observed when the maximum (Ma) of the flow reaches
a certain threshold. For channel flow where the Ma is
dominated by the mean velocity in the streamwise direction,
we can reduce the Ma at the channel center by adding an
opposite velocity (uw = −12u∗ as applied in our simulation)
to the system. After adding this constant translation to the
system, the simulations with both bounce-back rules are
stable.

(a) (b) (c)

y

zzz

(d) (e)

y

xx

FIG. 11. Pressure contours in a turbulent channel flow simulation indicating the existence of checkerboard instability. Top row: pressure
contours at a streamwise location x = nx/2 at (a) t = 7000, (b) t = 7500, and (c) t = 8000. Bottom row: pressure contours at a spanwise
location z = nz/2 at (d) t = 7000 and (e) t = 8000.
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y+

〈u+〉

FIG. 12. The averaged mean velocity profiles at the stationary
stage in the turbulent channel flow simulation.

Here we only discuss the average profiles when the flow
becomes statistically stationary. The mean velocity profiles on
a log-linear plot with both bounce-back rules are presented
in Fig. 12. To benchmark these profiles, two profiles from
pseudospectral simulations, denoted by “Stanford” [34] and
“Jimenez” [35], as well as our earlier result [33] (denoted
by “Wang et al.”) based on midlink bounce-back with the
same grid resolution, are also shown in the same plot. Except
for the small difference exhibited near the channel center,
the profile from the proposed bounce-back scheme matches
perfectly with the pseudospectral results in most of the
region. The small deviation at the channel center may be
due to the slight asymmetry in the current simulation or the
additional dissipation caused by the interpolation compared
to the midlink bounce-back in our earlier study [33]. On the
other hand, the mean velocity profile from Yu et al.’s original
bounce-back deviates significantly from the benchmark results
due to the VGI errors that originated from the boundary. This
comparison for the more complex nonuniform unsteady flow
clearly indicates that the lack of Galilean invariance in the
usual bounce-back schemes can lead to erroneous results, and
our proposed implementation can fix this problem.

Figures 13 and 14 show the Reynolds stress profiles and
the root-mean-square (rms) velocity profiles, respectively.
Compared to the mean flow property, the impact of the VGI
errors on the velocity fluctuation is relatively small. This might
be explained by the fact that the velocity fluctuations in a
turbulent flow are more directly associated with the stress
components, which are less affected by the VGI errors. Even
so, a slight improvement is still observed in the Reynolds
stress profiles with the proposed bounce-back scheme when
compared with results from Yu et al.’s [5] original interpolated
bounce-back scheme. The rms velocity profiles confirm that
the results from our proposed bounce-back scheme match
better with our earlier LBM results, which are free from the
VGI errors due to use of the midlink bounce-back compared
to Yu et al.’s original scheme.

y+

u +v +

FIG. 13. The averaged Reynolds stress profiles at the stationary
stage in the turbulent channel flow simulation.

Finally, at the stationary stage, we calculate the hydrody-
namic force on the two walls, normalized by the total driving
force. For Yu et al.’s bounce-back scheme, the hydrodynamic
force is evaluated based on both the conventional MEM
[Eq. (9)] and the GIMEM [Eq. (18)] by Wen et al. [15],
while for our proposed bounce-back scheme, the force is
calculated using Eq. (29). At the stationary stage, the average
hydrodynamic force is again expected to be equal to the total
driving force. As shown in Fig. 15, in this case, due to the
fact that all boundary nodes have the same set of symmetric
boundary links, the correction term in the GIMEM is es-
sentially zero. As a result, the MEM and the GIMEM give
identical total hydrodynamic forces when Yu et al.’s bounce-
back scheme is used. In more general cases, for example,
with curved boundaries, the GIMEM may create a nonzero
correction term that leads to the breakdown of Newton’s
Third Law, as we demonstrated in the case of viscous flow

y+

u+
rms

v+
rms

w+
rms

FIG. 14. The averaged rms velocity profiles at the stationary stage
in the turbulent channel flow simulation.
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FIG. 15. The normalized total hydrodynamic force acting on the
two walls at stationary state in the turbulent channel flow.

in the inclined channel. We will also confirm such a statement
in the next section with a direct numerical simulation of
turbulent pipe flow. On the other hand, the hydrodynamic
force calculation in our proposed bounce-back scheme always
satisfies Newton’s Third Law, as confirmed by the results
shown in Fig. 15. The time-averaged values of the ratio of
total hydrodynamic force to total driving force are 0.9962 and
0.9975 for Yu et al.’s original bounce-back scheme and our
proposed bounce-back scheme, respectively.

It is worth pointing out that although our proposed bounce-
back scheme appears to be much more complicated than
its corresponding original bounce-back rule, with careful
implementation the computational overhead is negligible since
the transformation is done on boundary nodes, which takes
only a small portion of the whole domain. In the case of DNS
of turbulent channel flow, we use two-dimensional domain
decomposition to divide the whole computational domain
into 200 subdomains; the time overhead of our bounce-back
scheme is only 1.1% (measured by wall clock time based on
two runs submitted on the same date and finished at about the
same time).

C. Direct numerical simulation of a turbulent pipe flow

As a final demonstration, our proposed bounce-back
scheme is also examined in our recent direct numerical
simulation of a fully developed turbulent pipe flow. For a
similar reason to that demonstrated in Sec. IV B, the VGI
error carried by each link cannot be canceled out precisely
to restore the overall GI on boundary nodes due to the use of
the previous interpolated bounce-back schemes, which ensures
second-order accuracy on the boundary treatment. As shown in
Fig. 16, the flow in the circular pipe is driven by a constant body
force ρg (per unit volume) that maintains a friction Reynolds
number Reτ = u∗R/ν = 180. Again, a negative (opposite to
the driving force direction) wall velocity uw = −12u∗ is added
to the pipe wall so the flow speed at the pipe center can be
reduced in order to achieve better numerical stability, which
was the initial motivation for our development in this paper.

FIG. 16. Sketch of the turbulent pipe flow simulation.

On the pipe surface, the interpolated bounce-back scheme of
Yu et al. [5] and its corresponding bounce-back scheme with
the same interpolation strategy are tested.

The mean flow velocity profiles of both bounce-back
schemes are presented in Fig. 17 when the flow becomes
stationary. Here we use the spectral simulations done by
Loulou et al. [36] with the friction Reynolds number Reτ =
190 as the benchmark. Although this Reτ is slightly different
from the one in our simulations, its impact on the turbulent
statistics is expected to be insignificant. As in the turbulent
channel flow case, the mean velocity profile with Yu et al.’s
original bounce-back scheme deviates from the spectral result
significantly due to the additional drag caused by the VGI
error. On the other hand, our proposed bounce-back scheme
successfully eliminates the VGI error and results in a velocity
profile that is in excellent agreement with the benchmark.
The rms velocity profiles at the stationary stage are shown
in Fig. 18. Again, as in the turbulent channel flow case, the
VGI error only has a minor effect on the rms velocities in the
turbulent pipe flow. This makes sense since the rms velocities
measure the intensity of the velocity fluctuation, which is

δ+

u+
z

FIG. 17. The averaged mean velocity profiles at the stationary
stage, relative to the pipe wall, in the turbulent pipe flow simulation.
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FIG. 18. The averaged rms velocity profiles at the stationary stage
in the turbulent pipe flow simulation.

independent of the reference frame that we chose. Finally, we
examine the hydrodynamic force evaluation at the stationary
state to check if the equality between the total driving force
and the total hydrodynamic force is well captured, as is
required by Newton’s Third Law. Clearly, as shown in Fig. 19,
when Yu et al.’s bounce-back scheme is used, the normalized
hydrodynamic force evaluated by the MEM oscillates around
unity while that calculated by the GIMEM is generally smaller
than 1. This confirms our statement in Sec. IV B that the
GIMEM creates nonzero corrections in more general cases,
which leads to the breakdown of Newton’s Third Law. Again,
the force evaluation in our proposed bounce-back scheme
obeys Newton’s Third Law well, as the total normalized
hydrodynamic force varies around unity. The time-averaged
values of the normalized hydrodynamic force are 1.0004,
0.9709, and 1.0014 for the MEM and the GIMEM with Yu

tu∗/H

|F |/|G|

FIG. 19. The normalized total hydrodynamic force acting on the
two walls at stationary state in the turbulent pipe flow.

et al.’s bounce-back scheme and our proposed bounce-back
scheme, respectively.

V. CONCLUSIONS

In this work, we analyzed the problem of lacking Galilean
invariance in the momentum exchange between solid and fluid
phases when previous bounce-back schemes and a momentum
exchange method were used. We stressed the need to consider
Galilean invariance for both the hydrodynamic force acting
on the solid surface and the momentum exchange of the
fluid phase due to the fluid-moving wall interaction, as a
requirement from Newton’s Third Law.

Specifically, the main conclusions of this study are summa-
rized as follows:

(i) The lack of Galilean invariance in the force evaluation
based on the momentum exchange method has been widely
recognized in recent years. Different modified momentum
exchange schemes are proposed to eliminate the violation
of Galilean invariance (VGI) errors in force evaluation on a
solid body [12–15]. However, as required by Newton’s Third
Law, a corresponding error also exists in the fluid phase.
The error in the fluid phase is purely due to the inappro-
priate construction of the missing distribution functions on
a boundary node, which has not been addressed in previous
studies.

(ii) In the LBM simulations involving solid-fluid interac-
tions, the impulsive momentum exchange occurs between the
two phases, taking place when a solid node being uncovered
or a fluid node being covered can be viewed as an automatic
correction to the VGI error in the fluid phase. However, in the
cases without such a self-healing mechanism, the VGI error
in the fluid phase is intact and can cause severe inaccuracy
in the fluid velocity calculations. Furthermore, the one-sided
correction of the VGI error on the solid surface, without
a simultaneous correction on the fluid phase, could violate
Newton’s Third Law under certain circumstances. These
problems have been demonstrated using LBM simulations
of viscous flow in an inclined channel when a significant
translational velocity (uw) is added to the whole system; in
this case, we show that the VGI error is proportional to u2

w.
Clearly, this can ruin the default accuracy of the LBM, which
is know to have an inherent truncation error of O(u3).

(iii) A bounce-back scheme based on the coordinate
transformation is then proposed to address the VGI error in
the fluid phase where the node-type switching is absent. In
this scheme, the distribution functions at the boundary nodes
are transformed from a fixed coordinate system to a moving
coordinate system before the bounce-back is implemented.
Then, the post bounce-back distribution functions at the
boundary nodes are transformed back to the fixed coordinate
system. This coordinate transformation treatment can be easily
combined with the existing interpolated bounce-back schemes
to maintain the desired accuracy of the LBM simulations. The
force evaluation method is also modified to satisfy Newton’s
Third Law.

(iv) The new bounce-back scheme is tested in three
benchmark cases: a Poiseuille flow between two inclined
straight walls, a turbulent channel flow, and finally a turbulent
pipe flow. Compared with the existing bounce-back schemes,
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our proposed bounce-back scheme can significantly improve
the accuracy of the simulated flow velocity in both laminar
and turbulent flows.

(v) The additional computational cost brought about by
the use of our proposed bounce-back scheme compared
with the original scheme is negligibly small, typically only
around 1%.

It is hoped that the results in this study will generate a
renewed interest in revisiting rigorous implementation issues
in the LBM associated with a moving curved boundary, specif-
ically the enforcement of Galilean invariance and Newton’s
Third Law at the fluid-solid interface. The LBM can become a
very accurate computational fluid dynamics tool if unexpected
issues, such as those associated with a general moving solid
surface, which are recognized and treated in this study, can be
fully understood. Other methods could be developed to ensure
the simultaneous Galilean invariance of the simulated force on
the moving solid boundary and the resulting fluid flow.

Finally, we stress that the current study only considers the
case in which the solid boundary is moving along a fixed line
(in two dimensions) or a fixed surface (in three dimensions).

The case of a freely moving fluid-solid surface should be
reexamined. In particular, consideration of the full Galilean
invariance requirement outlined in this paper may help remove
the often-encountered oscillations of resulting hydrodynamic
force on the solid body [24]. However, determining how to
improve the implementation for that case remains an open
question.
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