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A multiple-relaxation time (MRT) lattice Boltzmann (LB) model on a D2Q9 rectangular grid 
is designed theoretically and validated numerically in the present work. By introducing 
stress components into the equilibrium moments, this MRT-LB model restores the isotropy 
of diffusive momentum transport at the macroscopic level (or in the continuum limit), 
leading to moment equations that are fully consistent with the Navier–Stokes equations. 
The model is derived by an inverse design process which is described in detail. Except one 
moment associated with the energy square, all other eight equilibrium moments can be 
theoretically and uniquely determined. The model is then carefully validated using both 
the two-dimensional decaying Taylor–Green vortex flow and lid-driven cavity flow, with 
different grid aspect ratios. The corresponding results from an earlier model (Bouzidi et al. 
(2001) [28]) are also presented for comparison. The results of Bouzidi et al.’s model show 
problems associated with anisotropy of viscosity coefficients, while the present model 
exhibits full isotropy and is accurate and stable.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Direct numerical simulations (DNS) are routinely used to study turbulent flows. In many engineering applications, tur-
bulent flows are usually anisotropic and inhomogeneous due to, for example, solid boundary confinements. Consider DNS of 
a turbulent channel flow: the velocity gradients in the wall normal direction are much larger than that in the streamwise 
and spanwise directions. Therefore, to resolve all the details in the flow, a finer grid resolution is needed in the wall normal 
direction, especially in the near-wall region where the largest velocity gradients are present [1]. On the other hand, a suf-
ficient domain length in the streamwise direction is required to realistically simulate flow statistics, especially higher-order 
statistics [2–5]. These two considerations call for different grid resolutions in different spatial directions, as often configured 
in conventional or macroscopic computational fluid dynamics (CFD) methods based on directly solving the Navier–Stokes 
(N–S) equations [2,6].

In the last three decades, the lattice Boltzmann method (LBM) has been rapidly developed as a mesoscopic approach 
to solve fluid flows in the continuum limit. With its simplicity of implementation, flexibility of boundary treatments, as 
well as excellent parallel-computing capability, LBM has been proven to be an efficient tool for large-scale flow simula-
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tions, especially for those with multiple flow scales and complex geometries, such as turbulent flows laden with finite-size 
particles [7–11].

Indeed, LBM models incorporating non-uniform or irregular meshes have been considered to improve the competitive-
ness of this mesoscopic approach, when compared to the conventional CFD methods. Local grid-refinement techniques, for 
example, have been developed for LBM [12–17], where a dense grid is embedded for certain portions of the computational 
domain. Relationships between the distribution functions at two different mesh resolutions have been developed to ex-
change information at the coarse-fine grid interfaces, in a manner that maintains the continuity of hydrodynamic variables 
(e.g., velocity, pressure, viscosity, stress). This approach has been widely used in LBM applications involving, for example, 
moving fluid–solid interfaces [9,18–21].

Alternatively, the streaming step in LBM can be decoupled from the lattice grid, by either using interpolation [22–24] or 
introducing finite difference/finite volume schemes [25,26]. When the interpolation is used to map off-grid distributions to 
the on-grid distributions, the accuracy of the simulation is still constrained by the resolution of the inherent lattice grid, and 
additional errors and numerical dissipation are introduced by the interpolation. Incorporating finite difference/finite volume 
schemes into LBM also introduces additional numerical diffusion and dispersion to the flow. Usually, those schemes are also 
more complicated than the regular LBM, making the implementation more difficult.

The direct extension of LBM to an anisotropic mesh is therefore preferred, but requires a re-design of the collision oper-
ation. The very first effort in this direction was the work of Koelman [27], who proposed a lattice Bhatnagar–Gross–Krook 
(BGK) model on a rectangular grid, by employing a low Mach-number expansion of the Maxwell–Boltzmann equilibrium 
distribution to obtain the equilibrium distribution on rectangular lattices. Although his model can calculate hydrodynamic 
variables correctly, it fails to recover the N–S equations with isotropic transport coefficients when the grid aspect ratio a is 
different from one [28]. Inspired by the work of Koelman, Bouzidi et al. [28] proposed a multiple-relaxation time (MRT) LB 
model on a D2Q9 (two-dimension nine-velocity) rectangular grid. Utilizing the greater flexibility in MRT LBM, this model 
partly eliminates the previous anisotropy problem by coupling properly the relaxation parameters of the energy and normal 
stress moments to that of shear stress moment. Although this model yielded correct results in several test cases, it was 
later shown to be not fully isotropic [29]. Two other attempts were made by Zhou [30,31], who considered both lattice 
BGK and MRT models on a D2Q9 rectangular grid [30,31]. Like Bouzidi et al.’s model, Zhou’s models do not recover the 
correct hydrodynamics, as shown in [29,32]. Hegele et al. [33] concluded that, for the popular D2Q9 lattice and D3Q19 
(three-dimension nineteen-velocity) lattice, the degrees of freedom are not enough to cancel out the anisotropy resulting 
from the use of anisotropic lattice, when the BGK collision operator is used. Thus they suggested that lattice BGK models on 
D2Q11 and D3Q23 lattice grids can successfully recover the isotropic stress tensor, although the detailed Chapman–Enskog 
analysis was not presented. Their D2Q11 model was validated using the 2D Taylor–Green vortex flow, but no numerical 
validation was shown for the D3Q23 model. Hegele et al. [33] incorrectly stated that Bouzidi’s model could reproduce the 
N–S equations.

Recently, Zong et al. [29] (thereafter the θ model) proposed another MRT LBM on a D2Q9 rectangular grid, in which 
the energy and normal stress moments in Bouzidi et al.’s model were coupled through an additional parameter θ which 
is related to the rotation angle of the corresponding two-dimensional moment sub-space. Using this additional degree 
of freedom, Zong et al. were able to fully restore the isotropy and reproduced the exact N–S equations. The model was 
validated using both the lid-driven cavity flow and the Taylor–Green vortex flow.

In this work, an alternative and more general approach is explored to design a MRT LB model on a D2Q9 rectangular 
grid. The basic idea is to introduce stress components into the equilibrium moments to offset the anisotropy in the stress 
tensor resulting from the use of a rectangular lattice. This approach was previously used by Inamuro [34] to improve the 
stability of lattice BGK model, which allowed the relaxation time to be tuned independent of the viscosity. In this man-
ner, flows at higher Reynolds numbers (Re) can be simulated. Later, Yoshino et al. [35] applied the same idea to simulate 
non-Newtonian fluid flows, where the local viscosity depends on the local flow strain rate. Wang et al. [36] further im-
proved Yoshino et al.’s work by ensuring the local mass-conservation in the approach. Recently, Meng and Guo developed 
a MRT model for miscible flows with large viscosity ratios and Peclet numbers, in which the stress is incorporated in the 
equilibrium moments [37].

Compared with the θ model, the present model has several preferable features. First, all leading-order equilibrium mo-
ments are unchanged, so the model is simpler and more concise, making it easier to be extended to other lattice types, 
e.g., 3D lattice grids. Second, the present model inherits the feature in [34–36] that the relaxation time can be adjusted, 
independent of the flow viscosities. Therefore, it has more flexibility than the θ model in terms of the numerical stability 
and the range of flow Reynolds numbers that can be simulated.

The remainder of the paper is arranged as follows. In Sec. 2, a detailed inverse design analysis of a new MRT LB model 
is presented. General guidelines for setting adjustable parameters in the proposed model are provided in Sec. 3. In Sec. 4, 
the present model will be validated using a steady 2D lid-driven cavity flow and an unsteady decaying Taylor–Green vortex 
flow. Section 5 contains a summary of main conclusions and an outlook.
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Fig. 1. Discrete velocities of the D2Q9 rectangular lattice grid.

2. Derivation of an MRT LB model on a rectangular grid

2.1. The basic model setup

We first describe the basic model setup, which are similar to those discussed in [28,29]. The nine discrete velocities ei
for a rectangular D2Q9 lattice grid are shown in Fig. 1, which are

ei =

⎧⎪⎪⎨
⎪⎪⎩

(0,0)c, i = 0,

(±1,0)c, i = 1,3,

(0,±a)c, i = 2,4,

(±1,±a)c, i = 5–8,

(1)

where a = δy/δx is the grid aspect ratio for the rectangular lattice, c = δx/δt is the lattice velocity [m · s−1] in the x direction, 
δx [m] and δy [m] are lattice spacings in the x and y directions, respectively, and δt [s] is the time step size. Physical units 
are explicitly stated here to help check the consistency of our derivations.

In the MRT models, the collision relaxation is applied to moments, and the lattice Boltzmann equation is written as 
[38,39]

f(x + eiδt, t + δt) − f(x, t) = −M−1S
[

m(x, t) − m(eq)(x, t)
]
, (2)

where x and t are the spatial and time coordinate, respectively. f [kg · m−3] denotes the distribution function vector associ-
ated with the discrete velocities ei . The matrix M (and its inverse M−1) transforms the distribution functions to moments 
as

m = Mf, f = M−1m. (3)

The vector m contains 9 components, namely,

m = ∣∣ρ, e, ε, jx,qx, j y,qy, pxx, pxy
〉
, (4)

where the ρ is the density, e is related to the kinetic energy, ε is related to energy square; jx and j y are the momentum 
in x and y directions, respectively; qx and qy are associated with the x and y components of energy flux, respectively; pxx

and pxy are the moments related to the normal and shear stress, respectively. The equilibrium moments m(eq) are functions 
of the conserved moments i.e., ρ , jx , and j y , whose exact forms will be determined by an inverse design analysis. S is the 
diagonal relaxation matrix S = diag

(
sρ, se, sε, s j, sq, s j, sq, sn, sc

)
, where each element controls the relaxation rate of a given 

moment and has been normalized by the time step size.
Similar to the previous studies [28,29], the transform matrix M in the present model is defined as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
−2r1 r2 r3 r2 r3 r1 r1 r1 r1

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 a 0 −a a a −a −a
0 0 −2a 0 2a a a −a −a

−2r4 r5 r6 r5 r6 r4 r4 r4 r4
0 0 0 0 0 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where r1 = a2 + 1, r2 = 1 − 2a2, r3 = a2 − 2, r4 = a2 − 1, r5 = a2 + 2, r6 = −1 − 2a2. The rows of the M matrix are orthogonal 
to one another.

Accordingly, the inverse matrix M−1 is simply the transpose of M, with a proper normalization for each column of M−1. 
It is given as
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M−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

9
− r1

9r7

1

9
0 0 0 0 − r4

9r7
0

1

9

r2

18r7
− 1

18

1

6
−1

6
0 0

r5

18r7
0

1

9

r3

18r7
− 1

18
0 0

1

6a
− 1

6a

r6

18r7
0

1

9

r2

18r7
− 1

18
−1

6

1

6
0 0

r5

18r7
0

1

9

r3

18r7
− 1

18
0 0 − 1

6a

1

6a

r6

18r7
0

1

9

r1

18r7

1

36

1

6

1

12

1

6a

1

12a

r4

18r7

1

4
1

9

r1

18r7

1

36
−1

6
− 1

12

1

6a

1

12a

r4

18r7
−1

4
1

9

r1

18r7

1

36
−1

6
− 1

12
− 1

6a
− 1

12a

r4

18r7

1

4
1

9

r1

18r7

1

36

1

6

1

12
− 1

6a
− 1

12a

r4

18r7
−1

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where r7 = a4 + 1. Note that the row vectors of M are orthogonal, and the column vectors of M−1 are orthogonal.

2.2. The inverse design analysis

In this subsection, we shall build a new MRT-LB model by following the same inverse design procedure as described 
in [29]. Multiplying Eq. (2) by the transform matrix M, and applying Taylor expansion to the left-hand side (LHS) of the 
equation, we can write the evolution function in terms of moments as

D̂m + δt

2
D̂2m = − S

δt

[
m − m(eq)

]
, (7)

where D̂ = I∂t + Ĉα∇α = I∂t + MCαM−1∇α , I is an identity matrix and Cα is the diagonal matrix containing eiα . The index 
α denotes the spatial directions.

We now perform a Chapman–Enskog multiscaling analysis to derive the moment equations. The moments m, the time 
and spatial derivatives in Eq. (7) are expanded as

m = m(0) + εm(1) + ε2m(2) + · · · , (8a)

∂

∂t
= ε∂t1 + ε2∂t2 + · · · , (8b)

∇α ≡ ∂α = ε∂1α + · · · , (8c)

where ε is a small parameter proportional to the Knudsen number (i.e., the ratio between molecular mean free path to the 
macroscopic length).

Different from the previous MRT-LB models, the equilibrium moments m(eq) in the present model are also expanded as

m(eq) = m(0,eq) + εm(1,eq) + · · · . (9)

Substituting Eq. (8) and Eq. (9) into Eq. (7), and grouping the terms according to the order of ε , we obtain

O (1) :
m(0) = m(0,eq),

(10a)

O (ε) :(
I∂t1 + Ĉα∂1α

)
m(0) = − S

δt

(
m(1) − m(1,eq)

)
,

(10b)

O
(
ε2
)

:

I∂t2m(0) +
(

I∂t1 + Ĉα∂1α

)(
I − S

2

)
m(1) +

(
I∂t1 + Ĉα∂1α

) S

2
m(1,eq) = − S

δt
m(2).

(10c)

For the three conservative moments, as in the standard MRT LBM, we set m(0)
1 = δρ [kg ·m−3], m(0)

4 = ρ0u [kg ·m−2 · s−1], 
m(0) = ρ0 v [kg · m−2 · s−1], where δρ and ρ0 are the local density fluctuation and the constant background density per the 
6
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incompressible formulation in He and Luo [40], respectively. Without external forcing, it follows that m(k)
1,4,6 = 0 for k ≥ 1. 

Consequently, the first, fourth and sixth rows of Eq. (10b) yield

∂t1δρ + ∂1x (ρ0u) + ∂1y (ρ0 v) = − sρ
δt

[
−m(1,eq)

1

]
, (11a)

∂t1 (ρ0u) + ∂1x

[
2

3
c2δρ + 1

3r7
m(0,eq)

2 + a2

3r7
m(0,eq)

8

]
+ ∂1y

[
am(0,eq)

9

]
= − s j

δt

[
−m(1,eq)

4

]
, (11b)

∂t1 (ρ0 v) + ∂1x

[
am(0,eq)

9

]
+ ∂1y

[
2a2

3
c2δρ + a4

3r7
m(0,eq)

2 − a2

3r7
m(0,eq)

8

]
= − s j

δt

[
−m(1,eq)

6

]
. (11c)

The above equations should be designed to match the Euler equations, namely,

∂tδρ + ∂x (ρ0u) + ∂y (ρ0 v) = 0, (12a)

∂t (ρ0u) + ∂x

(
p + ρ0u2

)
+ ∂y (ρ0uv) = 0, (12b)

∂t (ρ0 v) + ∂x (ρ0uv) + ∂y

(
p + ρ0 v2

)
= 0, (12c)

where p [kg · m−1 · s−2] = δρc2
s , cs is the speed of sound [m · s−1]. It follows that all the equilibrium moments appearing 

in Eq. (11) can be determined and they are: εm(1,eq)
1 = εm(1,eq)

4 = εm(1,eq)
6 = 0, m(0,eq)

9 [kg · m−1 · s−2] = ρ0uv/a, m(0,eq)
2 [kg ·

m−1 · s−2] = 2δρ
(
3c2

s − c2r1
)+ 3ρ0

(
u2 + v2

)
and m(0,eq)

8 [kg · m−1 · s−2] = (r4/a2
) (

3r1c2
s − 2c2a2

)
δρ + 3ρ0

(
a2u2 − v2/a2

)
.

Next, we proceed to the O
(
ε2
)

equations. To simplify the expressions, we set A =
(

I − S

2

)
m(1) and B = S

2
m(1,eq) , where 

Ai and Bi have the same physical unit as mi , in particular, A2, B2, A8, B8, A9, B9 all have the unit of [kg · m−1 · s−2]. Then 
Eq. (10c) becomes

∂t2m(0) +
(

I∂t1 + Ĉα∂1α

)
(A + B) = − S

δt
m(2). (13)

The first, fourth and sixth rows of Eq. (13) are

∂t2δρ = 0, (14a)

∂t2 (ρ0u) + ∂1x

[
(A2 + B2)

3r7
+ a2 (A8 + B8)

3r7

]
+ ∂1y [a (A9 + B9)] = 0, (14b)

∂t2 (ρ0 v) + ∂1x [a (A9 + B9)] + ∂1y

[
a4 (A2 + B2)

3r7
− a2 (A8 + B8)

3r7

]
= 0. (14c)

Eq. (14a) is consistent with the continuity equation at the higher order. Eqs. (14b) and (14c) are required to recover the 
viscous terms in the N–S equations, namely,

∂t2 (ρ0u) − ∂x

{
νV [∂x (ρ0u) + ∂y (ρ0 v)

]+ ν
[
∂x (ρ0u) − ∂y (ρ0 v)

]}
− ∂y

{
ν
[
∂y (ρ0u) + ∂x (ρ0 v)

]}= 0,
(15a)

∂t2 (ρ0 v) − ∂y

{
νV [∂x (ρ0u) + ∂y (ρ0 v)

]− ν
[
∂x (ρ0u) − ∂y (ρ0 v)

]}
− ∂x

{
ν
[
∂y (ρ0u) + ∂x (ρ0 v)

]}= 0,
(15b)

where ν [m2 · s−1] is the shear viscosity and νV [m2 · s−1] is the bulk viscosity. Therefore, matching Eq. (14) with Eq. (15), 
we have

− νV [∂x (ρ0u) + ∂y (ρ0 v)
]− ν

[
∂x (ρ0u) − ∂y (ρ0 v)

]= ε (A2 + B2)

3r7
+ εa2 (A8 + B8)

3r7
, (16a)

− νV [∂x (ρ0u) + ∂y (ρ0 v)
]+ ν

[
∂x (ρ0u) − ∂y (ρ0 v)

]= εa4 (A2 + B2)

3r7
− εa2 (A8 + B8)

3r7
, (16b)

− ν
[
∂y (ρ0u) + ∂x (ρ0 v)

]= aε (A9 + B9) . (16c)

The above equations represent our design constraints. Once all are fulfilled, the MRT-LB model shall reproduce the N–S 
equations exactly.
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In order to impose these constraints on the equilibrium moments, we need to first determine (A2 + B2), (A8 + B8) and 
(A9 + B9). Taking the second, eighth and ninth rows of the moment equation on the order of O (ε), i.e., Eq. (10b), we obtain 
that

A2 + B2 = m(1,eq)
2 −

(
2 − se

2se

)
δt

{
∂1x

[
a2m(0,eq)

5

]
+ ∂1ym(0,eq)

7

}

−
(

2 − se

2se

)
δt

[(
3c2 + 2c2a2 − 6c2

s

)
∂1x (ρ0u) +

(
3c2a2 + 2c2 − 6c2

s

)
∂1y (ρ0 v)

]
,

(17a)

A8 + B8 = m(1,eq)
8 +

(
2 − sn

2sn

)
δt

{
∂1xm(0,eq)

5 − ∂1y

[
a2m(0,eq)

7

]}

−
(

2 − sn

2sn

)
δt

[(
3c2a2 − 3r1r4c2

s

a2
− 2c2

)
∂1x (ρ0u) +

(
2c2a2 − 3c2 − 3r1r4c2

s

a2

)
∂1y (ρ0 v)

]
,

(17b)

A9 + B9 = m(1,eq)
9 −

(
2 − sc

2sc

)
δt

[
1

3a
∂1xm(0,eq)

7 + a

3
∂1ym(0,eq)

5

]

−
(

2 − sc

2sc

)
δt

[
2c2

3a
∂1x (ρ0 v) + 2c2a

3
∂1y (ρ0u)

]
.

(17c)

Note that in Eq. (17) all the terms on the order of O
(
Ma3

)
or higher have been eliminated.

Now we shall match the LHS of Eq. (16) with the corresponding right-hand side (RHS) of Eq. (17), to determine the 
unknown equilibrium moments. There are five unknown moments in Eq. (17), namely, m(1,eq)

2 , m(0,eq)
5 , m(0,eq)

7 , m(1,eq)
8 , and 

m(1,eq)
9 .

As a first step, we combine Eq. (16c) with Eq. (17c) to obtain

− ν
[
∂y (ρ0u) + ∂x (ρ0 v)

]= aεm(1,eq)
9 − a

(
2 − sc

2sc

)
δt

[
1

3a
∂xm(0,eq)

7 + a

3
∂ym(0,eq)

5

]

− a

(
2 − sc

2sc

)
δt

[
2c2

3a
∂x (ρ0 v) + 2c2a

3
∂y (ρ0u)

]
.

(18)

Since the known terms in Eq. (18) only contain the cross velocity gradients, it is natural to set

m(0,eq)
5 = a1c2ρ0u, m(0,eq)

7 = a2c2ρ0 v, (19)

where a1 and a2 are dimensionless constants to be determined. On the LHS of Eq. (18) the coefficients for the two cross 
velocity gradients are equal. Due to the presence of the term aεm(1,eq)

9 , there are multiple possibilities to design m(0,eq)
5

and m(0,eq)
7 . For convenience, we assume m(1,eq)

9 is proportional to c2
[
∂y (ρ0u) + ∂x (ρ0 v)

]
, which leads to the following 

relationship between a1 and a2:

a1 = a2 − 2r4

a2
. (20)

Following the same notation as in [28,29], we set a2 = γ

2
. Then the two moments m(0,eq)

5 and m(0,eq)
7 can now be written 

as

m(0,eq)
5 = γ − r4

2a2
c2ρ0u, m(0,eq)

7 = c2γ

2
ρ0 v. (21)

Using the above expressions for m(0,eq)
5 and m(0,eq)

7 , Eq. (17) and Eq. (16) can be combined to provide three equations for 
the remaining three unknown moments{

1

3r7
s∗

e

(
5c2 − 6c2

s + c2γ

2

)
δt + a2

3r7
s∗

n

[
3c2a2 − c2 (γ + 4)

2a2
− 3r1r4c2

s

a2

]
δt − νV − ν

}
∂x (ρ0u)

+
{

1

3r7
s∗

e

(
3c2a2 + c2γ

2
− 6c2

s + 2c2
)

δt + a2

3r7
s∗

n

[
(4 + γ ) c2a2

2
− 3r1r4c2

s

a2
− 3c2

]
δt − νV + ν

}
∂y (ρ0 v)

= 1
εm(1,eq)

2 + a2

εm(1,eq)
8 ,

(22)
3r7 3r7
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{
a4

3r7
s∗

e

(
5c2 − 6c2

s + c2γ

2

)
δt − a2

3r7
s∗

n

[
3c2a2 − c2 (γ + 4)

2a2
− 3r1r4c2

s

a2

]
δt − νV + ν

}
∂x (ρ0u)

+
{

a4

3r7
s∗

e

(
3c2a2 + c2γ

2
− 6c2

s + 2c2
)

δt − a2

3r7
s∗

n

[
(4 + γ ) c2a2

2
− 3r1r4c2

s

a2
− 3c2

]
δt − νV − ν

}
∂y (ρ0 v)

= a4

3r7
εm(1,eq)

2 − a2

3r7
εm(1,eq)

8 ,

(23)

[
s∗

c
c2 (γ + 4)

6
δt − ν

][
∂y (ρ0u) + ∂x (ρ0 v)

]= aεm(1,eq)
9 , (24)

where s∗
e = (2 − se) / (2se), s∗

n = (2 − sn) / (2sn) and s∗
c = (2 − sc) / (2sc). Two remarks are noteworthy in the above three 

equations. First, the three unknown moments m(1,eq)
2 , m(1,eq)

8 , and m(1,eq)
9 are purposely moved to the RHS of each equation, 

while the LHS in each equation has the form of strain-rate tensor. The balance between the two sides of each equation 
guarantees the exact reproduction of stress components in the N–S equations. Second, the ε factor in certain terms on the 
LHS of the above three equations have been merged with ∂1α to convert back to ∂α .

The above equations allow εm(1,eq)
2 , εm(1,eq)

8 , and εm(1,eq)
9 be specified as

εm(1,eq)
2 = [x1∂x (ρ0u) + x2∂y (ρ0 v)

]
c2δt, (25a)

εm(1,eq)
8 = [x3∂x (ρ0u) + x4∂y (ρ0 v)

]
c2δt, (25b)

εm(1,eq)
9 = x5

[
∂x (ρ0 v) + ∂y (ρ0u)

]
c2δt, (25c)

where the coefficients are all dimensionless and can be determined. They are

x1 = 1

2

[
s∗

e

(
10 − 12

c2
s

c2
+ γ

)
− 12νV

c2δt

]
, (26a)

x2 = 1

2

[
s∗

e

(
4 − 12

c2
s

c2
+ γ + 6a2

)
− 12νV

c2δt

]
, (26b)

x3 = s∗
n

2

[
6a2 − γ + 4

a2
− 6r1r4

a2

c2
s

c2

]
− 3r1r4

a2

νV

c2δt
− 3r7

a2

ν

c2δt
, (26c)

x4 = s∗
n

2

[
a2 (γ + 4) − 6 − 6r1r4

a2

c2
s

c2

]
− 3r1r4

a2

νV

c2δt
+ 3r7

a2

ν

c2δt
, (26d)

x5 = s∗
c
γ + 4

6a
− 1

a

ν

c2δt
. (26e)

Eq. (26a) shows that the bulk viscosity νV can be written as

νV =
[

1

12
s∗

e

(
10 − 12

c2
s

c2
+ γ

)
− 1

6
x1

]
c2δt, (27)

while Eq. (26e) yields an expression for the shear viscosity ν

ν =
(

s∗
c
γ + 4

6
− ax5

)
c2δt . (28)

Therefore, the addition of the two free parameters, x1 and x5, allows the two relaxation times be adjusted, independent of 
the two viscosities. As noted in the Introduction, this feature is quite desirable because it can be used to either enhance 
the numerical stability or the model flexibility for simulating flows of different Reynolds numbers or even non-Newtonian 
flows [34–36]. It should also be noted that the present MRT model is more general than the standard BGK LBM, since the 
bulk and shear viscosities can be changed independently. An augmented bulk viscosity was found useful for suppressing the 
acoustic waves resulting from the compressible nature of the LBM in previous studies [41,42]. In Zong et al.’s design [29], 
this feature is not available.

2.3. A summary of the proposed model

So far, by designing our model to reproduce the N–S equations, we have determined, explicitly, 8 leading-order equilib-
rium moments in m(0,eq) and 6 higher-order moments in εm(1,eq) . The other moments are irrelevant to the N–S equations. 
For the only flexible leading-order moment, we assume that it has the form m(0,eq)

3 = ξ1c4δρ + ξ2c2ρ0
(
u2 + v2

)
as in the 

square D2Q9 model, where ξ1 and ξ2 are free parameters. For the irrelevant terms in εm(1,eq) , namely, εm(1,eq) , εm(1,eq), 
3 5
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and εm(1,eq)
7 , we can set them to 0 for simplicity. To summarize, the equilibrium moments derived from the inverse design 

process in the present model can be expressed as

m(eq) = m(0,eq) + εm(1,eq)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δρ

2δρ(3c2
s − r1c2) + 3ρ0(u2 + v2)

ξ1c4δρ + ξ2c2ρ0(u2 + v2)

ρ0u
c2ρ0(γ − 4r4)u

2a2

ρ0 v
c2ρ0γ v

2
r4

a2
(3r1c2

s − 2c2a2)δρ + 3ρ0(a2u2 − v2

a2
)

ρ0uv

a

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0[
x1∂x (ρ0u) + x2∂y (ρ0 v)

]
c2δt

0
0
0
0
0[

x3∂x (ρ0u) + x4∂y (ρ0 v)
]

c2δt

x5
[
∂x (ρ0 v) + ∂y (ρ0u)

]
c2δt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
(29)

where the hydrodynamic variables δρ , ρ0u and ρ0 v are obtained as in the standard MRT models as

δρ =
∑

i

f i, ρ0u =
∑

i

f ieix, ρ0 v =
∑

i

f ieiy .

In the standard MRT-LBM on a square lattice, the equilibrium moments are only functions of conserved quantities, i.e., 
density and momentum. However, in the present model, the equilibrium moments contain εm(1,eq) that are functions of 
the strain rate tensor, i.e., ∂xu, ∂y v and 

(
∂x v + ∂yu

)
. The moment equations obtained from the Chapman–Enskog analysis 

reveal that the strain rate can be calculated as

∂xu = c4seεm(1)
2 − c2snεm(1)

8

ρ0 (c1c4 − c2c3) c2δt
, (30a)

∂y v = c3seεm(1)
2 − c1snεm(1)

8

ρ0 (c2c3 − c1c4) c2δt
, (30b)

(
∂x v + ∂yu

)= scεm(1)
9

ρ0c5c2δt
, (30c)

where εm(1)
i = mi − m(0)

i = m − m(0,eq)

i , and

c1 =
(

sex1 − 5 + 6c2
s

c2
− γ

2

)
, (31a)

c2 =
(

sex2 − 3a2 − γ

2
+ 6c2

s

c2
− 2

)
, (31b)

c3 =
[

snx3 − 3a2 + (γ + 4)

2a2
+ 3r1r4

a2

c2
s

c2

]
, (31c)

c4 =
[

snx4 − (γ + 4)a2

a
+ 3r1r4

a2

c2
s

c2
+ 3

]
, (31d)

c5 =
[

scx5 − (γ + 4)

6a

]
. (31e)

As implied by Eq. (30c), the assumption we made about the form of m(1,eq)
9 previously leads to an explicit and fully meso-

scopic expression for the shear strain rate. Therefore, while we introduce εm(1,eq) into our model, the model remains fully 
mesoscopic, and the collision is still local.

3. General guidelines for setting adjustable parameters in the proposed model

For the proposed model, we may conclude from Eq. (26) and (29) that all the parameters are functions of two model 
parameters (γ and c2

s ), three relaxation parameters (se , sn and sc), and two other free parameters (ξ1 and ξ2). The other 
four relaxation parameters, i.e., sρ , s j , sε and sq are irrelevant to the N–S equations, so we can set their values arbitrarily. 
Without any external forcing, the usual practice is to set the two relaxation parameters of conserved moments (sρ and s j) 
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to 0, while the other two are specified for better numerical stability. Before presenting the numerical validation results 
of our proposed model, it is important to address how to specify all these parameters, especially the newly introduced 
ones.

First, the two free parameters ξ1 and ξ2 have no effect on the N–S equations and thus they may be chosen arbitrarily. 
A common (but not necessarily the best) choice is to set ξ1 = 1 and ξ2 = −3 so the energy square moment is consistent 
to the equilibrium distribution in the standard D2Q9 lattice BGK model. Next, for the model parameter γ , we realize that 
when a = 1, it must recover its value of −2 as in the standard MRT model. Using this value as a baseline, we suggest that 
γ be chosen in the range of −4 < γ < 0. This ensures that the first term on the RHS of Eq. (28) is maintained positive 
since the viscosity should always be positive in the absence of the additional term involving x5. When the aspect ratio a
changes, the variation of γ can be qualitatively described from the knowledge of kinetic theory. When a < 1, the lattice 
velocity in y direction is reduced, leading to a smaller overall diffusivity due to the smaller molecular mean-free-path. At 
the macroscopic level, the reduction of diffusivity implies a smaller shear viscosity. Therefore, the shear viscosity needs to 
be lowered as a is decreased. Therefore, from Eq. (28) we may conclude that a smaller γ should be applied for smaller a, 
and vice versa. This is the guideline for setting γ for different a values used in the simulations to be discussed later.

The speed of sound, cs , on the other hand, is an intrinsic tunable parameter in the MRT models [38]. It is usually set 
to δx/(

√
3δt), to be consistent with the corresponding lattice BGK model. In LBM, the value of cs affects the valid range of 

velocity magnitude as local Ma must be kept small. For the proposed rectangular-lattice model, we expect that the value 
of cs depends on both δx/δt and δy/δt . If we set δx = 1, it follows that, as the grid aspect ratio a is increased, cs is likely 
increased. On the other hand, the value for cs may be reduced for a smaller a. This inherent dependence of cs on a implies 
that the valid velocity magnitudes in the rectangular lattice model would also depend on the value of a.

Finally, we need to specify the three key relaxation parameters in the present model. Once γ is chosen and the physical 
shear viscosity ν is known, sc can be determined from Eq. (28). In order to maintain a good stability of the model, we can 
always set sc close to one, regardless of the physical shear viscosity, due to the inclusion of the parameter x5 in Eq. (28).

In the previous designs of MRT-LB models on a rectangular lattice [28,29], the following relationships are derived as 
partial requirements for isotropy of the viscosity coefficients:

s∗
e =

2 (γ + 4)
[(

12c2
s

c2 − γ
)

r1 − 2
(
5a2 + 1

)]
r1
(
γ + 1 − 3a2

)(
γ + 10 − 12c2

s
c2

)
+ 6

[
a4 (γ − 2) − 3r4

] s∗
c , (32a)

s∗
n =

2 (γ + 4)
[(

12c2
s

c2 − γ
)

r1 − 2
(
3a4 + 5r1

)]
r1
(
γ + 1 − 3a2

)(
γ + 10 − 12c2

s
c2

)
+ 6

[
a4 (γ − 2) − 3r4

] s∗
c . (32b)

However, in the present model, due to the introduction of εm(1,eq) and the five additional degrees of freedom x1 to x5, 
the above two relationships are not necessary and one is encouraged to fully explore the different choices of relaxation 
parameters. In the numerical validations to be presented in Sec. 4, for the purpose of fair comparisons between results from 
the present model and Bouzidi et al.’s model, the above relations are still used unless indicated otherwise.

4. Numerical validations

In order to validate the present model, two different flows will be considered: an unsteady 2D decaying Taylor–Green 
vortex flow and a steady lid-driven cavity flow. The simulation results from the present models are compared to theoretical 
results or other numerical results. Since the present model is an improvement over Bouzidi et al.’s model, we also compare 
results from our model to those based on Bouzidi et al.’s model.

4.1. The decaying Taylor–Green vortex flow

The 2D decaying Taylor–Green vortex flow is an array of periodic vortices that maintain their structure with the velocity 
magnitude decaying in time due to the viscous dissipation. The flow is governed by the incompressible N–S equations. In a 
physical domain of (x, y) ∈ (0 : Lx,0 : L y

)
with periodic boundary conditions in both spatial directions, the flow is described 

by the time-dependent analytical solution

u (x, y, t) = −U0 cos (kxx) sin
(
ky y

)
e−k2νt, (33a)

v (x, y, t) = kx

ky
U0 sin (kxx) cos

(
ky y

)
e−k2νt, (33b)

p (x, y, t) = −1

4
ρ0U 2

0

[
cos (2kxx) +

(
kx

ky

)2

cos
(
2ky y

)]
e−2k2νt + P0, (33c)
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where U0 is the initial velocity magnitude, ν is the kinetic viscosity, kx = 2π/Lx and ky = 2π/L y are the wave numbers in 

x and y directions, respectively, k =
√

k2
x + k2

y , and P0 is a constant background pressure, which can take an arbitrary value. 
We consider a square domain with Lx = L y = L, the solution becomes

u (x, y, t) = −U0 cos

(
2πx

L

)
sin

(
2π y

L

)
e
− 8π2νt

L2 , (34a)

v (x, y, t) = U0 sin

(
2πx

L

)
cos

(
2π y

L

)
e
− 8π2νt

L2 , (34b)

p (x, y, t) = −1

2
ρ0U 2

0 cos

[
2π

L
(x − y)

]
cos

[
2π

L
(x + y)

]
e
− 16π2νt

L2 + P0, (34c)

which leads to expressions of normal and shear stress τxx , τyy , and τxy as

τxx = ρ0ν
(
∂xu − ∂y v

)= 4πρ0νU0

L
sin

(
2πx

L

)
sin

(
2π y

L

)
e
− 8π2νt

L2 , (35a)

τyy = −τxx = −4πρ0νU0

L
sin

(
2πx

L

)
sin

(
2π y

L

)
e
− 8π2νt

L2 , (35b)

τxy = ρ0ν
(
∂x v + ∂yu

)= 0. (35c)

Since this is an unsteady flow, a consistent mesoscopic initial condition is essential [43]. Such an initial condition specifies 
not only the velocity field, but also the initial pressure and stress fields. For the Taylor–Green flow, there are two different 
methods to configure the initial distribution functions. The first method is to use the moment equations resulting from the 
first-order Chapman–Enskog analysis, namely, Eq. (10b), to specify the initial εm(1)

i , as

εm(1)
1 = εm(1)

4 = εm(1)
6 = 0, (36a)

εm(1)
2 = ρ0

δt

se

[(
sex1

δt
− 5 + 6c2

s − γ

2

)
∂xu +

(
sex2

δt
− 3a2 − γ

2
+ 6c2

s − 2

)
∂y v

]
, (36b)

εm(1)
3 = −ρ0

δt

sε

[(
γ + 4 − 4a2

)
2a2

∂xu + γ

2
∂y v

]
, (36c)

εm(1)
5 = −ρ0

δt

sq

[(
6a2 − γ − 4

2a2

)(
u∂y v + v∂xu

)+(ξ1 − 4

3c2
s

+ 4a2 − γ

2a2

)
∂x p

ρ0

]

− ρ0
δt

sq

[
2u

(
ξ2

3
− γ − 4r4

2a2

)
∂xu + 2v

(
ξ2

3
+ 2

a2

)
∂x v

]
,

(36d)

εm(1)
7 = −ρ0

δt

sq

{(
1 − γ

2

)(
u∂y v + v∂xu

)+ [2a2 + a2 (ξ1 − 4)

3c2
s

− γ

2

]
∂y p

ρ0

}

− ρ0
δt

sq

[
2a2u

(
ξ2

3
+ 2

)
∂yu + 2v

(
a2ξ2

3
− γ

2

)
∂y v

]
,

(36e)

εm(1)
8 = ρ0

δt

sn

[
snx3

δt
− 3a2 + (γ + 4)

2a2
+ 3r1r4c2

s

a2

]
∂xu

+ ρ0
δt

sn

[
snx4

δt
+ 3 + a2 (γ + 4)

2
+ 3r1r4c2

s

a2

]
∂y v,

(36f)

εm(1)
9 = ρ0

δt

sc

[
scx5

δt
− (γ + 4)

6a

](
∂x v + ∂yu

)
. (36g)

Combine εm(1)
i with the leading-order m(0)

i = m(0,eq)

i (δρ, u, v), we obtain an adequate approximation of all initial moments. 
They can be transformed to determine the initial distribution functions by f = M−1

(
m(0) + εm(1)

)
. The second method is to 

apply the iterative method similar to the one introduced in [43]. Since the initial pressure field is well defined, the purpose 
of the iteration is to only converge the distribution functions to yield the correct stress fields. The iteration is performed as 
follows:

1. Begin by setting m(x, t = 0) = m(0,eq) [δρ(x, t = 0), u(x, t = 0), v(x, t = 0)].
2. Perform the collision step and then streaming step.
3. Calculate moments m after the streaming step, but replace δρ , jx , and j y by their initial solutions.
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Table 1
The model parameters and simulation setting for the decaying Taylor–Green vortex flow.

Case # a nx × ny U0 ν νV γ

1 4.0 200 × 50 0.1 0.2 0.3158 −0.2
2 2.0 200 × 100 0.125 0.25 0.0603 −1.6
3 0.5 200 × 400 0.05 0.1 0.0323 −2.9
4 0.25 200 × 800 0.016 0.032 0.032 −3.95

Case # c2
s se sn sc x1 x5

1 0.4 1.2258 0.9923 1.2258 −1.1053 0.0
2 0.4 1.7938 0.956 0.8889 −0.2586 0.0
3 0.15 1.5943 0.5194 0.9565 0.1432 0.0
4 0.03 1.000 1.5725 1.000 1.2305 −0.1113

4. Calculate the normal and shear stress components, if they are converged as

max

[∣∣∣∣τxx (i, j, δt) − τxx (i, j, t = 0)

4πνρ0U0/L

∣∣∣∣
]

< ζ, max

[∣∣∣∣τxy (i, j, δt) − τxy (i, j, t = 0)

4πνρ0U0/L

∣∣∣∣
]

< ζ, (37)

where i, j are grid indices, ζ is a small threshold value and is set to 10−9, the initialization is done. Otherwise, update 
τxx (i, j, t = 0) and τxy (i, j, t = 0) with τxx (i, j, δt) and τxy (i, j, δt), respectively, and repeat Step 2 to Step 4.

According to our tests, the two initialization methods yield the same consistent results of the initial distribution func-
tions. In the following tests, only the first method is applied.

The initial flow Reynolds number Re = U0L/ν is set to 100. The present model is tested with different values of the grid 
aspect ratio a. The model parameters for different cases are presented in Table 1. Of significance is to observe the sensitive 
dependence of γ and cs on a, as discussed in Sec. 3. Consequently, the velocity magnitude U0 and the shear viscosity ν
must also depend on a. For Case 1 and Case 4, the relationship between se and sc , Eq. (32a), is not used, due to otherwise 
the extreme value of se we would obtain. The parameter x1 and x5 are used to enhance the numerical stability, by keeping 
both se and sc close to one.

First, we present the velocity and pressure profiles along a vertical line at x = 0.1475L across the whole domain at the 
normalized time tν/L2 = 0.005 in Fig. 2. The location x = 0.1475L is chosen for comparison as both velocity and pressure 
at this position have non-trivial values and no interpolation is needed (this position coincides with a grid mesh line). Fig. 2
shows that both the present model and Bouzidi et al.’s model yield accurate velocity profiles that are in excellent agreement 
with the theoretical solution. However, the pressure profiles obtained from Bouzidi et al.’s model deviate from the theoretical 
solution significantly, while the pressure profiles from the present model still match the theoretical benchmark, with only 
very minor differences. The very minor errors in the present model are due to insufficient resolutions in y directions when 
a large a value is used, as well as the influence of the acoustic waves which will be addressed in detail later. The large 
deviations in the results from Bouzidi et al.’s model, however, mainly result from the anisotropic viscosities in the two 
directions.

To further reveal the level of errors in different models, the time evolutions of pressure and pressure gradient at two 
locations (x, y) = (0.15L,0.2L) and (0.15L,0.3L) will be discussed next. Again, two locations chosen for probing are based 
on the lattice nodes so no interpolation is needed. In different cases, because the boundary lattice nodes are always half 
lattice distance away from the physical boundary, the physical locations will be slightly different for different grid resolu-
tions. Therefore, we do not compare the results between different resolutions. Only the results from Case 3 and Case 4 are 
presented. The time evolutions of pressure p, pressure gradient ∂x p and ∂y p are shown in Fig. 3, 4, and 5, respectively.

Figs. 3 to 5 clearly illustrate the discrepancy between the pressure results of Bouzidi et al.’s model and the corresponding 
theoretical solutions. The results from the present model, on the other hand, agree well with the theoretical benchmarks. 
Due to the anisotropic viscosities in Bouzidi et al.’s model, the velocity components in x and y directions decay at different 
rates. However, the continuity equation is still satisfied, which corrects the different decaying rates through the pressure 
redistribution. Unfortunately, the exchange in the two directions by pressure does not fully remove the anisotropic decay 
rates, and this dynamics causes significant oscillations in the local pressure. Such oscillations are not caused by the acoustic 
waves since they always appear on one side of the corresponding theoretical results. On the other hand, the much smaller 
oscillations in the results of the present model are related to the acoustic waves, such minor pressure oscillations had also 
been observed in the previous studies, for example, the bottom-left plots of Fig. 1 and Fig. 2 in [43], and confirmed by our 
own test results from the standard MRT model with the same physical settings in Fig. 6.

Fig. 7 displays the normal stress profiles across the same vertical line at the same time as in Fig. 2. In order to examine 
the isotropy of both our model and Bouzidi et al.’s model, we defined νx and νy as the shear viscosities associated with the 
normal stress components in the resulting hydrodynamic equations in the x- and y-directions, respectively, following the 
definitions by Zong et al. [29]. The theoretical results for Bouzidi et al.’s model are provided in [29], which, in our notation, 
can be stated as
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Fig. 2. The profiles of conserved moments along the vertical line at x = 0.1475L through the flow domain: (a) normalized u, (b) normalized v , (c) normal-
ized p.

Fig. 3. The time evolution of pressure at two selected locations. Probe 1 is at location (0.15L,0.2L) and probe 2 at (0.15L,0.3L). (a) a = 0.5, (b) a = 2.0.

νB
x =

[
− r4s∗

e

2r7
+ s∗

n

12r7
(2r7 + 6r4 − r7γ )

]
c2δt, (38a)

νB
y =

[
a4r4s∗

e

2r7
+ s∗

n

12r7
(2r7 + 6r4 − r7γ )

]
c2δt . (38b)
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Fig. 4. The time evolution of pressure gradient ∂x p at two selected locations. Probe 1 is at location (0.15L,0.2L) and probe 2 at (0.15L,0.3L). (a) a = 0.5, 
(b) a = 2.0.

Fig. 5. The time evolution of pressure gradient ∂y p at two selected locations. Probe 1 is at location (0.15L,0.2L) and probe 2 at (0.15L,0.3L). (a) a = 0.5, 
(b) a = 2.0.

Fig. 6. The time evolution of pressure and pressure gradients at a point (0.15L,0.2L) from the standard MRT model on a square lattice.
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Table 2
The model viscosity coefficients for the cases considered for the decaying Taylor–Green vortex flow.

Case # νB
x νB

y ν P
x ν P

y ν

1 0.1072 0.2928 0.2 0.2 0.2
2 0.2069 0.2931 0.25 0.25 0.25
3 0.1239 0.0761 0.1 0.1 0.1
4 0.0338 0.0302 0.032 0.032 0.032

Fig. 7. The normal stress profiles on a vertical line at x = 0.1475L and tν/L2 = 0.005: (a) the present model, (b) Bouzidi et al.’s model.

While for the present model, they are derived from Eq. (22) and Eq. (23), as

ν P
x =

[
− r4s∗

e

2r7
+ s∗

n

12r7
(2r7 + 6r4 − r7γ ) − (x1 − x2)

6r7
− a2 (x3 − x4)

6r7

]
c2δt, (39a)

ν P
y =

[
a4r4s∗

e

2r7
+ s∗

n

12r7
(2r7 + 6r4 − r7γ ) + a4 (x1 − x2)

6r7
− a2 (x3 − x4)

6r7

]
c2δt . (39b)

Since the second terms of Eq. (38a) and Eq. (38b) are identical, for Bouzidi et al.’s model, the only case that the fully 
isotropy, νB

x = νB
y , can be restored is when a = 1, i.e., in the square lattice. It is also noteworthy that the present model 

can be reduced to Bouzidi et al.’s model by having x1 = x2 and x3 = x4. For all cases in Table 1, we listed these directional 
viscosity values in Table 2. It is clear from the results that Bouzidi et al.’s model fails to satisfy this isotropy condition.

Due to this lack of isotropy, the normal stress profiles from Bouzidi et al.’s model also deviate significantly from the 
theoretical solutions, which can be clearly observed in Fig. 7(b). The level of errors corresponds precisely to the level of 
relative difference between νx and νy in Table 2, namely, Case 1 is the worst case. The normal stress profiles calculated 
from the present model, on the other hand, are all in excellent agreement with the theory, except a very minor error for 
Case 1 (a = 4.0) which could result from the insufficient resolution in that case.

Finally, we examine the time evolution of the ratio of the average kinetic energy in the x direction to that in the y
direction, for different grid aspect ratios (Fig. 8). Theoretically, the average kinetic energy in the two directions can be 
evaluated as

Ēx = 1

2

〈
u2 (x, y, t)

〉
= Ē y = 1

2

〈
v2 (x, y, t)

〉
= 1

8
U 2

0e−2k2νt . (40)

Thus the theoretical ratio is one at all times. As shown in Fig. 8, for Bouzidi et al.’s model, the ratios obtained from different 
a values deviate much more significantly from 1, when compared to results from the present model. The minor oscillations 
in the present model are related to the acoustic waves as indicated earlier.

So far, through benchmarking the results related to the pressure, the normal stress, and energy decaying rate, we have 
confirmed the isotropy of viscosity coefficients in the present model. The next question of concern is whether the model 
can preserve the second order accuracy of the regular MRT-LB models. Comparing to the regular MRT-LB models, the only 
difference in the present model is the addition of strain-rate components in εm(1,eq) . As the strain rate tensor is obtained 
mesoscopically, we expect that the second-order accuracy is preserved [44].
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Fig. 8. The ratio of averaged kinetic energy in the x direction to that in the y direction: (a) Case 1 and 2; (b) Case 3 and 4.

Table 3
The L1 and L2 error norms and the order of accuracy for the velocity and normal stress at half-life time, for a = 2.0.

nx × ny u (L1) order u (L2) order τxx (L2) order τxx (L2) order

50 × 25 5.9555E–3 (−) 1.8769E–2 (−) 6.6101E–3 (−) 6.0545E–3 (−)

100 × 50 1.5863E–3 1.91 6.4678E–3 1.54 1.7869E–3 1.89 1.6247E–3 1.90
200 × 100 3.5561E–4 2.16 2.2513E–3 1.52 3.9487E–4 2.18 3.6011E–4 2.17
400 × 200 1.0020E–4 1.83 7.9386E–4 1.50 1.0154E–4 1.96 9.2616E–5 1.96
Overall 1.96 1.52 2.01 2.01

Table 4
The L1 and L2 error norms and the order of accuracy for the velocity and normal stress at half-life time, for a = 0.5.

nx × ny u (L1) order u (L2) order τxx (L2) order τxx (L2) order

25 × 50 4.0963E–3 (−) 3.9733E–3 (−) 1.2166E–2 (−) 1.1592E–2 (−)

50 × 100 1.4699E–3 1.48 1.4612E–3 1.44 3.0278E–3 2.01 2.8681E–3 2.02
100 × 200 1.2796E–4 3.52 1.2445E–4 3.55 6.7774E–4 2.16 6.4487E–4 2.15
200 × 400 8.1722E–5 0.65 8.0761E–5 0.62 1.8772E–4 1.85 1.7777E–4 1.86
Overall 1.88 1.87 2.01 2.01

To confirm this, for different a values, we simulate the Taylor–Green flow with different grid resolutions and calculate 
the L1 and L2 error norms using with theoretical solution as the benchmark. The L1 and L2 error norms are defined as

εL1 (t) =
∑

x,y | qn (x, y, t) − qt (x, y, t) |∑
x,y | qt (x, y, t) | , (41a)

εL2 (t) =
√∑

x,y | qn (x, y, t) − qt (x, y, t) |2√∑
x,y | qt (x, y, t) |2

, (41b)

where qn and qt represent the numerical solution and the theoretical solution, respectively. For each a value, we choose 
Re = 10 and ν = νV for faster dissipation of the acoustic waves. The other parameters are kept identical to the values in 
Table 1. The L1 and L2 error norms are calculated at the half-life time of the flow, when the flow velocity magnitude decays 
to half of the initial value. The results of a = 2.0 and a = 0.5 are shown in Table 3 and Table 4, respectively.

From these two tables we conclude that almost all the results suggest a roughly second-order convergence for both 
velocity and stress. The only exception is the L2 norm of velocity in a = 2.0 case, which shows a 1.5 order convergence. 
Generally, due to the effects of acoustic waves, the convergence speed of velocity oscillates around 2. On the other hand, 
since the normal stress depends less on the leading-order equilibrium moments, the variation of the convergence speed is 
also expected to be less, as demonstrated by the data in these tables.

4.2. The 2D lid-driven cavity flow

The lid-driven cavity flow has been widely used as a standard benchmark case in many numerical studies [42,45–47]. 
In this section, we consider the flow driven by the moving lid (lid velocity uw ) over a square cavity where the aspect ratio 
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Table 5
Model parameters and simulation setting used in the 2D lid-driven cavity flow.

Case # a nx × ny uw ν νV

1 4.0 400 × 100 0.05 0.2 0.2
3 2.0 200 × 100 0.0625 0.125 0.125
3 0.5 200 × 400 0.05 0.1 0.0323
4 0.25 200 × 800 0.016 0.032 0.032

Case # γ c2
s se sn sc

1 −0.2 0.4 1.2258 0.9923 1.2258
3 −1.6 0.4 1.8913 1.2937 1.2308
3 −2.9 0.15 1.5943 0.5194 0.9565
4 −3.95 0.03 1.000 1.5725 1.000

Fig. 9. The velocity profile along the vertical line through the geometric center of cavity: (a) u; (b) v .

of L/H = 1, where L and H are the cavity width and height, respectively. To correctly handle the solid–fluid interface, the 
boundary walls are purposely placed half lattice length from the boundary fluid nodes so the exact mid-link bounce back is 
naturally conducted. Specially, at the top moving wall, the following bounce back scheme is applied

f ī (xb, t + δt) = f̃ i (xb, t) +
[

f (eq)

ī
(uw , δρw) − f (eq)

i (uw , δρw)
]
, (42)

where i is the lattice direction incident to the wall and ī is its opposite direction, i.e., eī = −ei , f̃ i is the distribution after the 
collision substep, f (eq)

i (uw , δρw) and f (eq)

ī
(uw , δρw) are obtained from the inverse transfer of the equilibrium moments.

With the flow Reynolds number Re = uw L/ν fixed at 100, we simulate the cavity flow with different grid aspect ratios, 
as shown in Table 5. After the flow reaches the steady state, the velocity profiles for different cases along the half channel 
width x = L/2 and half channel height y = H/2 are shown in Fig. 9 and Fig. 10, respectively. The benchmark results are 
obtained from a fractional-step second-order finite-difference scheme [47] on a 256 × 256 staggered grid. From both figures, 
we observe that the present model at all aspect ratios produces consistent and accurate results when compared to the 
finite-difference benchmark results.

We next investigate the normal stress (Fig. 11) and shear stress (Fig. 12) profiles along the same vertical and horizontal 
lines. The normal stress components τxx and τyy are computed from νx and νy and corresponding normal strain rates, 
respectively. The shear stress profiles, on the other hand, come directly from Eq. (36g). The corresponding results from 
Bouzidi et al.’s model are also presented for comparison.

As shown in Fig. 11, all the normal stress profiles from the present model are in excellent agreement with the finite-
difference benchmark except the sudden jumps close to the moving lid when the vertical grid resolution is low (i.e., large a). 
The jumps are due to the pressure kinks that had previously been observed by Luo et al. [42] in cavity flow simulations 
with the standard MRT-LB model on a square grid. Different from the standard MRT model that can address this issue by 
using the same relaxation parameters for the energy and normal stress moments, in the present model, due to the fact that 
such two moments are coupled with each other, there is no simple solution to eliminate the kinks with relatively low res-
olutions in the vertical direction. However, with the increase of the vertical resolution, the kinks can be effectively reduced, 
as shown by the results for small a cases. The shear stress profiles, on the other hand, match perfectly with the benchmark 
results without any jump close to the moving wall. This in a way confirms that the jumps in the normal stress profiles are 
related to the pressure kinks since the shear stress and pressure moments are decoupled. Bouzidi et al.’s model, however, 
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Fig. 10. The velocity profile along the horizontal line through the geometric center of cavity: (a) u; (b) v .

Fig. 11. The normal stress profiles along a vertical line ((a) and (b)) and a horizontal line ((c) and (d)) through the geometric center of cavity: (a), (c) τxx, 
the present model; (b), (d) τxx , Bouzidi et al.’s model.

again fails to provide correct results for the normal stress due to anisotropic viscosity coefficients, although the shear stress 
results can be correctly simulated when compared to the benchmark results.
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Fig. 12. The shear stress profile along a vertical line ((a) and (b)) and a horizontal line ((c) and (d)) through the geometric center of cavity: (a), (c) τxy , the 
present model; (b), (d) τxy , Bouzidi et al.’s model.

5. Summary and conclusions

In this paper, we have developed a new lattice Boltzmann model on a D2Q9 rectangular grid that is fully consistent with 
the Navier–Stokes equations. By introducing stress components into the equilibrium moments, the proposed model resolves 
the remaining anisotropy issue in Bouzidi et al.’s model [28,29]. A detailed Chapman–Enskog analysis was presented to guide 
an inverse design process. All the relevant equilibrium moments that play a role in shaping the hydrodynamic equations 
have been determined by matching the N–S equations.

Compared with the θ model [29] that also successfully reproduces the N–S equations on a rectangular grid, the proposed 
model is more general for the following reasons:

1. First, additional parameters are introduced into the expressions of the bulk viscosity and shear viscosity, making it 
possible to adjust the values of relevant relaxation times independent of the values of these viscosities. This feature 
can be used to enhance the numerical stability of the model, especially when the flow Reynolds numbers are high. 
The additional parameters can handle small viscosities while keeping the relaxation parameters close to one. With 
this appealing feature, it is also possible to apply the proposed model to the non-Newtonian flow simulations on a 
rectangular grid.

2. Second, in the θ model the relaxation times (se , sn) for the energy and normal stress moments must be related to the 
relaxation time (sc) for the shear stress moment, in order to satisfy the isotropy condition required by the Navier–Stokes 
equation. These relations are no longer required in the proposed model. This feature makes the proposed model more 
flexible, namely, the risk of having extreme relaxation parameters due to these relations can now be avoided. Further-
more, without these relations among relaxation parameters, we can set all the relaxation parameters to be identical. 
This implies the proposed model can be extended to lattice BGK collision operator. This possibility has recently been 
confirmed [48].
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3. Third, the proposed model uses the same moments as in Bouzidi et al.’s model [28], which makes both the derivation 
and computer implementation of the proposed model simpler than those in the θ model. It is also straightforward to 
extend the proposed model to a 3D cuboid lattice which has been recently performed by Wang et al. [49].

For the parameters introduced in the proposed model, general guidelines for specifying their values are provided. Even 
when the grid aspect ratio a, the shear viscosity ν , the bulk viscosity νV , the relaxation parameters sc , sn , se are speci-
fied, there are still 2 adjustable parameters cs and γ in addition to the 4 non-essential free parameters sq , sε , ξ1 and ξ2. 
Therefore, for the proposed model, there are multiple possibilities to determine the parameters. Additional considerations 
(e.g., numerical stability) may be used to further optimize the parameter settings, which is beyond the scope of the current 
paper. Future users of the proposed model are encouraged to pursue this direction to maximize the many potential benefits 
of the model.

To validate the proposed model, we have simulated both the 2D unsteady Taylor–Green vortex flow and the steady lid-
driven cavity flow, using different grid aspect ratios. Methods to initialize the mesoscopic distributions and to treat moving 
solid boundary have been discussed. In all cases, the results from the proposed model are in excellent agreement with either 
the theoretical solution or benchmark numerical solutions from a high-resolution finite-difference method. The convergence 
study of the proposed model has also been performed, showing that the model maintains the expected second-order ac-
curacy. The numerical validations discussed in this paper are more complete as we consider not only the accuracy of the 
simulated velocity field, but also the accuracy of the simulated pressure and stress fields.

Furthermore, the lack of full isotropy of viscosity coefficients in Bouzidi et al.’s model and its consequences are clearly 
demonstrated by comparing results from Bouzidi et al.’s model to those based on the proposed model and benchmark 
results. Interestingly, Bouzidi et al.’s model provides accurate results of velocity field and the shear stress for both flows, 
however, their results for the normal stress and pressure clearly show systematic errors.
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