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a b s t r a c t 

The spurious currents observed in multiphase flow simulations with pseudo-potential lattice Boltzmann 

(LB) models are usually understood to be the result of the lack of isotropy of the model-generated in- 

teraction force between phases. Remedies have been proposed to utilize larger stencils to compute the 

interaction force with higher orders of isotropy. In this document, we point out the incompleteness in 

the current understanding and propose a new consistent implementation to more effectively suppress 

the spurious currents. We also demonstrate theoretically that certain low-level spurious currents cannot 

be eliminated by increasing isotropy if the local hydrostatic balance inside the diffuse interface is not 

established in the LB models. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The pseudo-potential multiphase lattice Boltzmann (LB) mod-

ls, (also known as the Shan-Chen models [1,2] , have been widely

pplied to study a wide range of multiphase flow problems. De-

pite their successes, the existence of non-physical flux around a

teady and static two-phase interface, known as spurious currents,

till plagues most multiphase applications and remains an unre-

olved problem. 

Many efforts were made to explore the origin of these spurious

urrents and to suppress them. Those effort s are comprehensively

eviewed in the literature [3,4] . Wagner pointed out that spurious

urrents were introduced by an incompatible discretization of the

nteraction force in the two-phase LB model [5] . Shan [6] and Li

nd Fischer [7] both realized that when the discretization schemes

f the interaction force in the multiphase LB models lack isotropy,

purious currents would emerge. Yuan and Schaefer reported that

ertain equation of state (EOS) could potentially reduce the level

f spurious currents [8] . Yu and Fan found that, compared to the

ingle-relaxation-time (SRT) LB models, the multiple-relaxation-

ime (MRT) LB models could be used to suppress the spurious cur-

ents by tuning the relaxation parameters irrelevant to the Navier–
∗ Corresponding author. 
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tokes equation [9] . Guo et al. concluded that spurious currents

ere inevitable due to intrinsic imbalance of interaction force and

he density gradient in the pseudo-potential multiphase LB models

10] . Mattila et al. suspected that the existence of spurious currents

ould be associated with the second-order accuracy of LB models

ue to the trapezoidal time-integration scheme, they therefore pro-

osed to use higher-order LB models to suppress the spurious cur-

ents. 

. Shan’s improvement and its incompleteness 

Among all these explanations, a rather well-known explanation

f the origin of spurious currents in the psuedo-potential LB mod-

ls was given by Shan, who realized that the high-order terms

n the Taylor series of the interaction force, i.e. , the interaction

orce exerted on one phase due to the existence of another phase

round, lack the required isotropy [6] . The interaction force F in

he pseudo-potential multiphase LB models is computed as 

 ( x , t ) = −Gψ ( x , t ) 
∑ 

α

w α( | e α| ) ψ ( x + e αδt , t ) e α, (1)

here G is a parameter measuring the intensity of the interaction,

 is the field potential that is a function of local fluid density ρ ,

 α is the vector stencil employed in the computation of interaction

orce, which is not necessarily the same as the discrete velocity set

n LB models, w α is the corresponding weighting factor and δt is

https://doi.org/10.1016/j.compfluid.2019.104257
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104257&domain=pdf
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Fig. 1. Velocity stencils: (a) D2Q9, (b) D2Q13, (c) D2Q25. 
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the time step size. Eq. (1) can be expanded in terms of a Taylor

series at x and t , using tensor notations, as 

F i = −Gψ 

∑ 

α

w αe αi 

[
ψ + δte α j ∂ j ψ 

+ 

1 

2 

δt 2 e α j e αk ∂ j ∂ k ψ + 

1 

6 

δt 3 e α j e αk e αl ∂ j ∂ k ∂ l ψ + · · ·
] 
. (2)

Except the first term, each term in the above Taylor series contains

a part 
∑ 

α w α e αi e α j e αk e αl · · ·︸ ︷︷ ︸ 
n e α

, which is a n th order tensor. Shan

pointed out that spurious currents were originated from the lack

of complete isotropy of these high-order tensors, when the num-

ber of e α is finite. As a remedy, Shan employed larger stencils to

compute F i , which allowed additional tensors to be isotropic and

increased the order of isotropy in the computed interaction force

F i . For example, in two space dimensions, the highest order of the

isotropy realizable can be increased from fourth with the velocity

stencil shown in Fig. 1 a to eighth with the stencil in Fig. 1 c. 

In this document, we would like to point out the incomplete-

ness in Shan’s recommended remedy and its implementation. In

fact, there is a second aspect in terms of isotropy that has usu-

ally been ignored but plays an important role in inducing spuri-

ous currents. To explain this, let us recall the algorithm of the LB

method 

f β ( x , t + δt ) = f β ( x − c δt , t ) 

− 1 

τ

[ 
f β ( x − c δt , t ) − f (eq ) 

β ( x − c δt , t ) 

] 
+ φβ( x − c δt , t ) (3)

where c β is the discrete velocity set in LB model that may be dif-

ferent from e α , τ is the relaxation time. The equilibrium distribu-

tion f 
(eq ) 
β

and the forcing function φβ are defined as 

f (eq ) 
β

= ρw β

[
1 + 

c · u 

c 2 s 

+ 

( c · u ) 
2 

2 c 4 s 

− u · u 

2 c 2 s 

]
, 

φβ = 

(
1 − 1 

2 τ

)
w β

[
c − u 

c 2 s 

+ 

( c · u ) c 

c 4 s 

]
· F δt, (4)

where c s is the speed of sound, which is an input parameter in

a specific LB model based on numerical quadrature requirements.

The forcing function in Eq. (4) is the one proposed by Guo [11] ,

which ensures a second-order accurate body force term in the re-

produced Navier–Stoke equation. We further assume a zero veloc-

ity field u (t) = 0 is reached at the current time t , then Eq. (4) is

simplified as 

f (eq ) 
β

= ρw β, φβ = 

(
1 − 1 

2 τ

)
w β

c · F 

c 2 s 

δt, (5)

Finally, for demonstration purposes, a special case τ = 1 is as-

sumed, which greatly simplifies the mathematics. The density at
 + δt is calculated as 

( x , t + δt ) = 

∑ 

β

w β

[
ρ( x − c δt , t ) + 

1 

2 

c βi F i ( x − c δt , t ) 

c 2 s 

δt 

]

= 

∑ 

β

w β

[ 
ρ + 

1 

2 

δt 2 c β j c βk ∂ j ∂ k ρ

+ 

1 

24 

δt 4 c β j c βk c β l c βm 

∂ j ∂ k ∂ l ∂ m 

ρ + · · ·
] 

− 1 

2 

∑ 

β

w β

[
δt 2 

c 2 s 

∂ j F i c βi c β j 

+ 

δt 4 

6 c 2 s 

∂ j ∂ k ∂ l F i c βi c β j c βk c β l + · · ·
]
, (6)

here all the odd-order terms in the Taylor series are zero due

o the symmetry of the discrete velocity set. Physically, we should

hen require the n th order tensors 
∑ 

β w β c βi c β j c βk c β l · · ·︸ ︷︷ ︸ 
n c β

to be

sotropic, as otherwise the density field ρ(t + δt) would have al-

eady contained errors due to deviations from isotropy. Having es-

ablished that, it is straightforward to realize the incompleteness

f Shan’s remedy: without concurrently enforcing the isotropy in

q. (6) to a similar order at the same time, the isotropy of a mul-

iphase LB simulation would not be effectively improved. This is

robably the reason why spurious currents were not reduced as

ignificantly as expected with Shan’s remedy, only by a factor of

 when the isotropy of the interaction force was increased from

th-order to 8th-order [6] . 

. A complete remedy for the lack of isotropy 

Essentially, this second aspect of isotropy concerns the distri-

ution of the interaction force back to the lattice nodes, while the

rst aspect in Shan’s analysis concerns the calculation of the in-

eraction force. This second isotropy is determined by w β and c β ,

hich could not be remedied without expanding the discrete ve-

ocity sets in the LB model. It has been proven that the nearest-

eighboring LB models, such as D2Q9, D3Q15, D3Q19, and D3Q27

an only achieve a fourth-order isotropy with their discrete ve-

ocity sets [6] . However, with the stencils in Fig. 1 b and c, we

an easily construct a D2Q13 model and a D2Q25 model to in-

rease the second isotropy to 6th- and 8th-order, respectively.

hese two models can have the same form of equilibrium dis-

ribution function and forcing function as the regular LB mod-

ls, except that the weighting factor w β and the speed of sound

 s have to be redefined. These parameters are given in Table 1 .

ther models allowing even higher-orders of isotropy can be for-

ulated using the same philosophy. The velocity stencils and the

orresponding weighting factors given in literature [6,12] can be

sed as references, the remaining job is to design the equilibrium
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Table 1 

Parameters in the D2Q9, D2Q13 and D2Q25 models. 

c 2 s w (0) w (1) w (2) w (3) w (4) w (5) w (6) w (7) w (8) 

D2Q9 1/3 4/9 1/9 1/36 

D2Q13 2/5 2/5 8/75 1/25 1/300 

D2Q25 4/7 72/245 16/147 16/315 1/105 8/2205 1/8820 

Fig. 2. Density contours and velocity vectors around a stationary drop at the steady state at reduced temperature T /T c = 0 . 725 : (a) D2Q9, 4th-order isotropy, (b) D2Q9, 

8th-order isotropy, (c) D2Q25. 
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istribution function and the forcing function i.e. , f 
(eq ) 
β

and φβ to

atisfy the constraints that lead to the reproduction of the Navier–

tokes equation. It is worth mentioning that Mattila et al. also

entioned that LB models with larger sets of discrete velocities

ould be employed to reduce the level of spurious currents [13] .

owever, their models were designed to incorporate higher-order

ime-integration schemes to replace the trapezoidal rule in stan-

ard LB models rather than to maximize the order of isotropy.

herefore, their models with the largest number of discrete veloc-

ties did not show the most significant reduction of spurious cur-

ents. The relationship between the lack of isotropy in the distri-

ution of interaction force and the appearance of spurious currents

as not explicitly stated. 

We employ a simple test case of a droplet suspended in a

D periodic domain in vapor. The grid resolution of the test is

0 × 60, and a droplet with an initial radius of r 0 = 15 is placed

t the center of the domain ( x c , y c ). The initial density distribution

s defined as ρ0 (x, y ) = 

ρl + ρv 
2 − ρl −ρv 

2 tanh 

[ 
2 
√ 

( x −x c ) 
2 + ( y −y c ) 

2 −r 0 
W 

] 
,

here ρ l and ρv are the liquid and vapor density, respec-

ively, at a given temperature T below the critical temperature

 c . The equation of state (EOS) used in the simulations is the

eng-Robinson (P-R) EOS [14] , p = 

ρRT 
1 −bρ

− aα(T ) ρ2 

1+2 bρ−b 2 ρ2 , where

 = 2 / 49 , b = 2 / 21 , R = 1 , as defined in Yuan and Schaefer [8] ,

(T ) = [1 + (0 . 37464 + 1 . 54226 ω − 0 . 26992 ω 

2 )(1 −
√ 

T /T c )] 2 , ω
s chosen to be 0.344 for water. The pseudo-potential function ψ is

alculated as ψ = 

√ 

2(p−c 2 s ρ) 

Gc ′ 2 s δt 
, c 2 s = 

∑ 

β w βc βi c βi , c 
′ 2 
s = 

∑ 

α w αe αi e αi .

he exact difference method (EDM) [15] is adopted as the forcing

cheme to distributed the interaction force in LB models. At a

educed temperature T /T c = 0 . 725 , the steady state density con-

ours and velocity fields generated with the standard D2Q9 model,

he modified D2Q9 model under Shan’s improvement with the

ighth-order isotropy to compute the interaction force, and D2Q25

odel are shown in Fig. 2 . Clearly, although Shan’s improvement

as able to reduce the magnitude of the spurious velocity to
ertain extent, it is not so effective compared to the D2Q25 model.

ore importantly, the azimuthal-dependent flow patterns still

xist with Shan’s best improvement, which indicates that there

re remaining errors due to the lack of isotropy. The same flow

atterns are no longer exist with the D2Q25 model, the remaining

purious currents are almost perpendicular to the interface. 

To quantify the reduction of spurious currents by the proposed

odels, we calculated the maximum spurious velocity and the

eld-averaged spurious velocity for a larger range of the reduced

emperature. These results are shown in Fig. 3 . For D2Q13 and

2Q25 models, two different relaxation times are used. One is cho-

en identical to the relaxation time in the D2Q9 models τ = 1 . 0 ,

hich are labeled as D2Q13T and D2Q25T. The other is designed to

esult in the same viscosity as in the D2Q9 models, i.e. , τ = 11 / 12

or the D2Q13 model and τ = 19 / 24 for the D2Q25 model. The lat-

er two simulations are labeled as D2Q13V and D2Q25V. For the

xamined reduced temperature range, 0.6 ≤ T / Tc ≤ 0.95, which cov-

rs a range of liquid-to-vapor density ratio (from 4 to 800), D2Q13

nd D2Q25 models always reduce the magnitude of the spurious

elocity by another order of magnitude compared to Shan’s im-

rovement. It is worth noticing that Shan’s improvement becomes

neffective at small reduced temperatures. As we shall see shortly,

his is probably because Shan’s improvement increases the ther-

odynamic inconsistency that offsets the benefit of increasing the

sotropy in calculating the interaction force. 

The thermodynamic inconsistency is another critical issue in

seudo-potential models. The lack of the thermodynamic inconsis-

ency can usually be seen from the deviations of the numerically

btained liquid and vapor densities from the corresponding val-

es obtained by the Maxwell equal area rule, for a given EOS of a

ure substance. In the literature, there are many attempts to quan-

ify the magnitude of such derivations in the suspending droplet

ase shown above. However, the droplet case should not be used

o evaluate such deviations from the results of the Maxwell equal

rea rule, as the curved liquid–vapor interface in this case leads to

ifferent pressures in the liquid and vapor bulk phases while the
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Fig. 3. The magnitude of spurious velocity of a stationary drop at the steady state as a function of reduced temperature: (a) maximum spurious velocity, (b) field-averaged 

spurious velocity. 

Fig. 4. The coexisting liquid–vapor densities as functions of reduced temperature 

in a flat interface test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The Interface thicknesses as functions of reduced temperature in a flat in- 

terface test. 
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Maxwell equal area rule is based on a same pressure in the two

phases. A more appropriate case to measure the thermodynamic

inconsistency in the pseudo-potential models is a 1D flat interface

case. In this case, we have measured the numerically obtained liq-

uid and vapor densities at different reduced temperatures with P-R

EOS. The new models (D2Q13, D2Q25) in general do not alter the

coexisting liquid–vapor densities significantly, as shown in Fig. 4 .

In fact, they slightly improve the liquid–vapor densities at smaller

reduced temperatures compared to Shan’s improvements (D2Q9

ISO6, D2Q9 ISO8). The larger deviations from the thermodynamic

consistency with Shan’s improvement may explain its failure to re-

duce the spurious velocity at small reduced temperatures observed

in Fig. 3 . It is worth mentioning that there are also many available

ways to improve the thermodynamic consistency in the literature,

such as using a coupled form to construct the intermolecular force

[15] , modifying EOS [16] , and introducing correction terms in the

forcing schemes of LBM [17] . These available improvements can be

used to improve the thermodynamic consistency in our models.

Therefore, we do not address the issue of thermodynamic incon-

sistency in the present study. 
The major side effect of using D2Q13 and D2Q25 modes is the

ncreased interface thickness. In the 1D flat interface case, the in-

erface thickness, defined as the region with 1.05 ρv ≤ρ ≤ 0.95 ρ l ,

here ρv and ρ l are the numerically obtained vapor and liquid

ensities in the two-phase bulk regions with each model, are mea-

ured and shown in Fig. 5 . The increased interface thickness comes

rom two aspects. First, by using large stencils to compute the

nteraction force in the pseudo-potential models, the local force

epends on the potential ψ from more neighboring grid points,

hich makes the interface broader. This aspect also impacts the

nterface thickness when using Shan’s improvement, but it has not

een emphasized in the literature. Second, the use of large lat-

ice models allows a local grid point to directly communicate with

ot just the nearest neighboring nodes, but also the next layer

f neighboring nodes, which adversely affects the locality of LBM.

his aspect also makes the interface thicker. If the thickening inter-

ace has to be avoided in a certain application, the D2Q13 model

ould be a better choice compared to the D2Q25 model. 
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Fig. 6. Density contours of a droplet contacting with a flat wall: (a) D2Q9, 4th-order isotropy, ρw = 1 . 5 (b) D2Q9, 4th-order isotropy, ρw = 4 . 5 , (c) D2Q9, 8th-order isotropy, 

ρw = 1 . 5 , (d) D2Q9, 8th-order isotropy, ρw = 4 . 5 , (e) D2Q13, ρw = 1 . 5 , (f) D2Q13, ρw = 4 . 5 , (g) D2Q25, ρw = 1 . 5 , (h) D2Q25, ρw = 4 . 5 . 
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Finally, we would like to briefly comment on the no-slip bound-

ry treatment for the proposed models. In general, the no-slip

oundary can still be treated following the bounce-back schemes.

owever, the uses of certain bounce-back schemes, such as the

alf-way bounce-back may not be straightforward, as it is difficult

o place a solid wall precisely half-way for all links. On the other

and, schemes such as the standard bounce-back [18] and modi-

ed bounce-back [19] are not affected. Additional attention to be

aid is that the unknown boundary distribution functions have to
e constructed on the first two layers of interior grid points. As a

emonstration, a test case of a droplet contacting with a flat wall

as been added. The P-R EOS is still used and the temperature is

et to T = 0 . 9 T c . The standard bounce-back scheme is adopted to

nforce the no-slip condition. The varying wettability in the two

ew models can still be achieved by tuning the virtual density of

he wall ρw 

as in Ref. [20] . The density contours and the velocity

ectors at the steady state in each case are shown in Fig. 6 and

ig. 7 , respectively. While the D2Q25 model suppresses the
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Fig. 7. Velocity vector plots of a droplet contacting with a flat wall: (a) D2Q9, 4th-order isotropy, ρw = 1 . 5 (b) D2Q9, 4th-order isotropy, ρw = 4 . 5 , (c) D2Q9, 8th-order 

isotropy, ρw = 1 . 5 , (d) D2Q9, 8th-order isotropy, ρw = 4 . 5 , (e) D2Q13, ρw = 1 . 5 , (f) D2Q13, ρw = 4 . 5 , (g) D2Q25, ρw = 1 . 5 , (h) D2Q25, ρw = 4 . 5 . 
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spurious currents most effectively, its resulting interface thickness

has also been significantly increased. This leads to an obviously

reduced liquid region, as more fluid mass appears within the in-

terface. With ρw 

= 1 . 5 , the area of interface, which is defined as

the region corresponding to a density 1 . 05 ρv ≤ ρ ≤ 0 . 95 ρ , ρv =
l 
 . 58007 , ρl = 5 . 90796 , occupies 22.5%, 27.0%, 26.9%, and 38.9% of

he total fluid volume for D2Q9 ISO4, D2Q9 ISO8, D2Q13, and

2Q25 model, respectively. With ρw 

= 4 . 5 , the corresponding val-

es becom 24.5%, 30.5%, 30.2%, and 42.6% for the four com-

ared models. Again, to balance the benefit of suppressing the
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purious currents and the side effect of increased interface thick-

ess, the D2Q13 model might be a better choice over the D2Q25

odel. 

. Conclusion and discussion 

In this work, we point out the incompleteness of the previous

nderstanding of the spurious currents in the multiphase flow sim-

lation with the pseudo-potential LB models. There are two types

f isotropy requirements: the first concerns the macroscopic force

alculation, and the second is the mesoscopic redistribution. The

wo should be considered together in order to more effectively re-

uce spurious currents. We proposed two LB models with more

iscrete velocities that can reduce spurious currents by one order

f magnitude. 

The remaining spurious velocities are associated with the dis-

rete nature in LB models. Following the same analysis in Eq. (6) ,

he momentum at (x , t + δt) can be computed as 

u i ( x , t + δt ) = 

∑ 

β

w β

[
ρ( x − c δt , t ) + 

1 

2 

c β j F j ( x − c δt , t ) 

c 2 s 

δt 

]
c βi + 

1 

2 
F i ( x , t ) δt

= 

∑ 

β

(
−w βc βi c β j δt∂ j ρ − 1 

6 
c βi c β j c βk c β l δt 3 ∂ j ∂ k ∂ l ρ + . . . 

)

+ 

1 

2 

∑ 

β

(
δtF j 

c 2 s 

w βc βi c β j + 

δt 3 ∂ k ∂ l F j 

2 c 2 s 

c βi c β j c βk c β l + · · ·
)

+ 

1 

2 
F i δt 

= δt 
(
F i − c 2 s ∂ i ρ

)
+ δ3 

t 

3 c 2 s 

4 
∂ k ∂ k 

(
F i −

2 c 2 s 

3 
∂ i ρ

)
+ . . . (7)

egardless of whether the truncated high-order tensors are

sotropic or not, ρu i (x , t + δt) appears always non-zero since the

rst two terms cannot be zero at the same time. Even if we only

eep the leading-order term in Eq. (7) , the coefficient δtF i /c 2 s −
t∂ j ρδi j may not be precisely zero. Ideally, on the N–S equation

evel this coefficient should vanish when a hydrostatic balance is

stablished, but once discretized, the precise balance is usually vi-

lated. The spurious currents due to this imbalance are aligned

long with the direction of pressure gradient, which corresponds to

hat we observed in Fig. 2 c. On a 1D flat interface, this spurious

urrent further reduces to what Guo et al. reported as inevitable

rtificial velocities in LB simulations [10] . The pseudo-potential LB

odels calculate the interaction force in a discretized form and

gain distribute this force to the discrete distribution functions,

oth inducing errors that could result in spurious currents. A con-

istent consideration of the two processes together may help fur-

her suppress or even remove the spurious current, which will be

ursued in the future. 
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