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a b s t r a c t 

The interpolated bounce-back schemes and the immersed boundary method are the two most popular 

algorithms in treating a no-slip boundary on curved surfaces in the lattice Boltzmann method. While 

those algorithms are frequently implemented in the numerical simulations involving complex geome- 

tries, such as particle-laden flows, their performances are seldom compared systematically over the same 

local quantities within the same context. In this paper, we present a systematic comparative investiga- 

tion on some frequently used and most state-of-the-art interpolated bounce-back schemes and immersed 

boundary methods, based on both theoretical analyses and numerical simulations of four selected 2D and 

3D laminar flow problems. Our analyses show that immersed boundary methods (IBM) typically yield a 

first-order accuracy when the regularized delta-function is employed to interpolate velocity from the Eu- 

lerian to Lagrangian mesh, and the resulting boundary force back to the Eulerian mesh. This first order in 

accuracy for IBM is observed for both the local velocity and hydrodynamic force/torque, apparently dif- 

ferent from the second-order accuracy sometime claimed in the literature. Another problem of immersed 

boundary methods is that the local stress within the diffused fluid-solid interface tends to be signifi- 

cantly underestimated. On the other hand, the interpolated bounce-back generally possesses a second- 

order accuracy for velocity, hydrodynamic force/torque, and local stress field. The main disadvantage of 

the interpolated bounce-back schemes is its higher level of fluctuations in the calculated hydrodynamic 

force/torque when a solid object moves across the grid lines. General guidelines are also provided for 

the necessary grid resolutions in the two approaches in order to accurately simulate flows over a solid 

particle. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the last thirty years, the lattice Boltzmann method (LBM)

as been actively developed and has become a reliable tool for

imulating flow problems with complex geometries, such as flow

n porous media [1] , fluid structure interaction [2] and particle-

aden turbulent flows [3,4] . In these applications, the treatment of

he no-slip boundary condition at the fluid-solid interfaces is of-

en an important issue that affects the overall accuracy, numeri-

al stability, and computational efficiency of the lattice Boltzmann
ethod. 
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As a mesoscopic method based on the Boltzmann equation but

ith the goal to solve the macroscopic Navier-Stokes equations,

he treatment of a no-slip boundary within LBM can be flexible

s either the no-slip boundary treatment schemes used in con-

entional computational fluid dynamics (CFD) or the microscopic

roperties in the Boltzmann equation may be applied and im-

lemented. There are mainly two categories of no-slip boundary

reatment in LBM simulations. The first is the immersed boundary

ethod (IBM). IBM is a popular no-slip boundary treatment devel-

ped in conventional CFD [5–7] , but it can be easily incorporated

ithin LBM algorithms [8,9] . The idea of IBM is to represent the

ffect of the no-slip condition as a boundary force applying to the

eighboring region of the fluid-solid interface. In order to ensure

hat the no-slip condition is enforced at precisely the location of

he boundary, a body-fitted Lagrangian grid is usually attached to

he surface of each solid object besides the Eulerian grid covering
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the whole computational domain. A regularized delta function is

employed to interpolate information between the Eulerian and La-

grangian grids [5,6] . Depending on how the boundary force that

enforces the no-slip condition is calculated, IBM can be grouped as

penalty IBM [10] or direct-forcing IBM [11] . For problems involving

only non-deformable rigid surfaces, direct-forcing IBM is preferred

due to its clearer physical picture and better numerical stability. 

The second category of no-slip boundary treatment in LBM is

to directly construct the unknown distribution functions at the

boundary nodes using the known ones while observing the hydro-

dynamic constraints. This type of algorithm is known as bounce-

back schemes. The early bounce-back scheme such as that pro-

posed by Ladd [12] approximates a curved surface as a stair-

case shaped polylines when applied to a complex geometry. The

improved bounce-back schemes were developed later to address

this deficiency [13–17] . While the detailed algorithms are not

unique, the idea of these improved schemes are similar, which is

to construct the unknown distribution functions to have at least

a second-order accuracy. These schemes are typically referred to

as the interpolated bounce-back (IBB) schemes. It is known that

the hydrodynamic equations can be obtained from the Chapman-

Enskog expansion of the Boltzmann equation, however, it is not

completely clear whether IBB schemes are consistent with the

Chapman-Enskog expansion at the boundary nodes. The accuracy

and numerical stability of IBB schemes are typically examined only

by numerical tests. 

In the past, both IBM and IBB were extensively used by the LBM

community in a wide range of applications. Although each method

is validated in a few numerical tests on its own, systematic com-

parative studies between the two sets of methods are rare. Peng

& Luo [18] compared performances of Bouzidi et al.’s quadratic

IBB scheme [13] and Feng & Michaelides’s direct-forcing IBM-LBM

[8] , focusing on evaluating the drag and lift coefficients of a cylin-

der placed at different location facing a uniform stream. They ob-

served that while the numerical error in the integrated force eval-

uation generally followed a second-order convergence rate, the re-

sults from IBB scheme are much more accurate than those from

IBM-LBM. As will become clearer later with the present work, al-

though in certain cases the hydrodynamic force/torque evaluation

does possess a second-order accuracy, such observation may not be

generalized for arbitrary flows. Chen et al. [19] compared a few IBB

schemes and IBM-LBM algorithms in simulating the acoustic waves

scattering on static and moving cylinder surfaces. They reported

that while IBB schemes outperformed in accuracy in static cylin-

der cases, IBM-LBM could be a better choice in cases with moving

objects in terms of suppressing the high-frequent fluctuations ( i.e. ,

the grid jitter problem) associated with objects crossing the grid

mesh lines. 

While these previous comparative studies are useful, a re-

examination of the inter-comparison of the two treatments is still

necessary, for several reasons. First, in the aforementioned studies,

the benchmark results used as standards are usually from other

simulations, rather than from the theory. This brings difficulty to

rigorously gauge the accuracy of a method. For example, in the

study of Peng & Luo [18] , as will be shown, IBM-LBM method is

of only first-order accuracy; it remains a puzzle that the first-order

accurate IBM-LBM could lead to second-order converged drag and

lift force evaluations. In many validation studies of IBM, the Taylor-

Green flow without a solid-fluid interface was employed [6,20] .

This validation is not so meaningful since the accurate flow field

can be obtained with or without the IBM. Second, it is impor-

tant to follow the recent developments in both categories of meth-

ods in order to make unbiased conclusions. For example, Breugem

[7] proposed an improved IBM by retracting the locations of the

Lagrangian grid points from the surface of a solid object towards

the interior of the solid object. It is claimed this retraction could
mprove the accuracy of IBM from first-order to second-order. Zhou

 Fan [21] incorporated this improvement to LBM that seemed to

each a similar conclusion. On the other hand, IBB schemes are also

nder further developments. A good example is the single-node

econd-order accurate IBB scheme by Zhao & Yong [22] , which al-

ows the second-order accurate no-slip boundary to be realized us-

ng the information only on the boundary node itself. This scheme

s particularly useful for cases such as dense particle suspension

here the gap between two solid surfaces is too narrow for other

BB schemes to be executed. Whether these new developments

ould alter the conclusions made in the previous comparative

tudies is yet to be examined. 

In this paper, we examine the performance of several selected

BM algorithms and IBB schemes in flows with reliable benchmark

esults. Those IBM algorithms and IBB schemes are chosen be-

ause they have been implemented in complex simulations such

s direct numerical simulations of particle-laden turbulent flows

3,4,23–25] . In order to assess the reliability of the reported results,

t is important to test the accuracy and robustness of these meth-

ds in relatively simpler laminar flows that are easier to analyze.

he rest of the paper is arranged as the following. In Section 2 , we

riefly introduce LBM and the selected IBB schemes and IBM al-

orithms to be examined. Then, the performances of these no-slip

oundary treatments are compared in some carefully chosen two-

imensional and three-dimensional laminar flow tests in Section 3 .

inally, the key observations will be summarized in Section 4 . 

. The lattice Boltzmann method and its no-slip boundary 

reatments 

The evolution equation of LBM can be viewed as a fully discrete

orm of the Boltzmann Bhatnagar—Gross—Krook (BGK) equation in

pace and time, with a selected set of particle velocities 

f i ( x + e i δt , t + δt ) − f i ( x , t ) = − 1 

τ

[
f i ( x , t ) − f (eq ) 

i ( x , t ) 
]

+ F i ( x , t ) ,

(1)

here f i is the particle distribution function for the discrete veloc-

ty e i , x and t are the spatial coordinate and time, respectively. δt 

s the time step size, f 
(eq ) 
i 

is the equilibrium distribution of f i , F i is

he term representing the body force in the Boltzmann equation.

is the non-dimensional relaxation time, which is related to the

inematic viscosity ν as 

= ( τ − 0 . 5 ) c 2 s δt , (2)

ith c s being the speed of sound. 

Eq. (1) is known as the lattice BGK equation, whose collision

perator (right-hand side of Eq. (1) ) contains only one relaxation

ime τ . Alternatively, if the collision operator is constructed in the

oment space through linear transformation, different moments

an be relaxed at different rates, the evolution equation of LBM

an then be expressed as 

 ( x , e i δt , t + δt ) − f ( x , t ) = −M 

−1 S 
[
m ( x , t ) − m 

(eq ) ( x , t ) 
]

+ M 

−1 �( x , t ) . (3)

hich possesses larger flexibility in the model design. f is the

ector expression of f i . m, m 

( eq ) , and � are the moment vector,

quilibrium moment vector, and the forcing vector, respectively. M

s the transform matrix that relates the moment vector and vec-

or of distribution functions as m = Mf and f = M 

−1 m . LBM using

q. (3) as the evolution equation is known as the multi-relaxation

ime (MRT) LBM. More details regarding Eqs. (1) and (3) can be

ound in the textbooks [26] and other classic articles of LBM

27,28] , thus they are not repeated here. 
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.1. Immersed boundary-lattice Boltzmann method 

The standard LBM can be viewed as a mesoscopic alternative of

he incompressible Navier-Stokes solver in the weakly compress-

ble limit. The no-slip boundary treatments in conventional CFD

ay be incorporated in LBM. The most popular method that has

een used widely in CFD for the no-slip boundary treatment on

rbitrarily shaped surface is the immersed boundary method. The

rst incorporation of IBM into LBM has been achieved by Feng &

ichaelides [29] . Since then, there have been many variations of

he method in terms of the calculation the boundary force and

he incorporation of this force into the evolution equation of LBM.

he boundary force in IBM-LBM can be calculated by the penalty

eedback forcing [29] , direct forcing [8] , and momentum exchange

orcing [30] . Among these three force calculation methods, the di-

ect forcing is the most popular one due to its simplicity and the

apability to use larger CFL numbers [6] . The direct-forcing IBM

as been made particularly efficient to realize the no-slip con-

ition on rigid particle surfaces in particle-laden flows [4,23,24] .

n this study, we focus our attention on the evaluation of direct-

orcing IBM algorithms that has been frequently used in the three-

imensional flow simulations with a large number of particles. In

hese algorithms, two sets of grids, a fixed Eulerian grid is used

o store the information of the flow field, and a Lagrangian grid

ttached to the solid surface is used to ensure the no-slip condi-

ion is enforced precisely on the physical location. Uhlmann sig-

ificantly simplified the algorithm of direct-forcing IBM as five key

teps [6] . First, the known velocity field stored at the Eulerian grid

 

n is evolved to a temporary velocity field 

˜ u by solving the N-S

quations without considering the boundary force. 

˜ u − u 

n 

δt 
= −ρ( u · ∇ ) u − ∇p + μ∇ 

2 u . (4)

Next, this temporary velocity field at the Eulerian grid x is in-

erpolated to the Lagrangian grid X . 

˜ 
 ( X ) = 

∑ 

x 

˜ u ( x ) δh ( x − X ) h 

3 , (5) 

here δh is the interpolation kernel which typically has a form of

he regularized delta function [5] . By default, the four-point delta-

unction [5] 

δh = 

1 

h 

3 
φ
(

x 1 
h 

)
φ
(

x 2 
h 

)
φ
(

x 3 
h 

)
, 

( r ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , | r| ≥ 2 , 

1 
8 

(
5 − 2 | r| − √ 

−7 + 12 | r| − 4 r 2 
)
, 1 ≤ | r| < 2 

1 
8 

(
3 − 2 | r| + 

√ 

1 + 4 | r| − 4 r 2 
)
, 0 ≤ | r| < 1 , 

(6) 

erived by Peskin is used for all the simulations presented below,

nless specified otherwise. h 3 is the volume of a Eulerian grid cell.

y default, we use the uppercase letters to represent the properties

n the Lagrangian grid and the lowercase letters to represent the

roperties on the Eulerian grid. Next, the boundary force F ( X ) used

o enforce the no-slip condition on the Lagrangian grid should be

alculated as 

 (X ) = 

U 

d (X ) − ˜ U (X ) 

δt 
. (7) 

Then, this boundary force is distributed back to the Eulerian

rid. 

 ( x ) = 

∑ 

X 

F ( X ) δh ( x − X ) �V, (8) 

here �V is the control volume of a Lagrangian grid, which is typ-

cally chosen as �V ≈ h 3 [6] . At last, the obtained force field is used

o update the velocity field from 

˜ u to u 

n +1 . 

 

n +1 = 

˜ u + f δt , (9)
Eq. (4) to Eq. (9) well describe a direct-forcing IBM algorithm

n CFD. There are different ways to incorporate the above algo-

ithm into the frame of LBM [9,20,31,32] . Since the interpolation

ia delta function only has a first-order accuracy on a general fluid-

olid surface (which will be proven later) [5,32] , the choice of a

pecific algorithm may not affect the accuracy of the simulation re-

ults that much. Of course, it is more reasonable to use the meso-

copic forcing terms in the evolution equations of LBM, i.e., F i in

q. (1) or � in Eq. (3) , which ensures a second-order accuracy

hen applied to a non-uniform force field, as the boundary force

edistributed back to the Eulerian grid is a non-uniform force field.

hen the lattice BGK equation is employed, both Guo’s scheme

28] and Cheng & Li’s scheme [33] possess the second-order accu- 

acy when applied to a non-uniform force field. These two schemes

re actually identical (proven in [20] ). When the MRT-LBM equa-

ion is used, the forcing term can be constructed using the inverse

esign, as demonstrated in [34] . 

In the direct-forcing IBM algorithm described in Eq. (4) to

q. (9) , the boundary force is defined as a correction force that

rings the fluid velocity to target one at the next time step n + 1 .

he IB-LBM algorithm that corresponds to this algorithm is the im-

licit velocity correction based IB-LBM developed by Wu & Shu

9] . In this algorithm, Guo’s forcing scheme [28] is used. Kang &

assan [20] developed a similar algorithm using Cheng & Li’s forc-

ng scheme [33] . The only concern about these correction-based

B-LBM algorithms is whether they are fully consistent with the

hapman-Enskog expansion. When Guo’s forcing scheme is used,

alf of the force is added when calculating the velocity field from

he distribution functions [28] . However, in the correction based

B-LBM, this half force is absent in order to calculate an “unforced”

elocity field. The same issue can be identified in Kang & Hassan’s

lgorithm with Cheng & Li’s forcing scheme. The implicit force field

hat should be added right after the propagation of the distribution

unctions is postponed after the update of the hydrodynamic prop-

rties (density, velocity, etc.) as a correction [20] . A more consis-

ent algorithm of the correction-based IB-LBM may be the one de-

eloped by Zhang et al. [32] recently. In this algorithm, the implicit

orce field added after the propagation of the distribution functions

s obtained through iterations [32] . However, in simulations with a

arge number of solid surfaces, the iteration is usually undesired. 

The specific IB-LBM algorithm we examine in this paper is a

elatively simple one. At each step, prior to the evolution of dis-

ribution functions, the boundary force is fist calculated as Eq. (7) .

his boundary force is then distributed to the Eulerian grid, and

sed for evolving the distribution functions according to Eq. (1) or

q. (3) . The boundary force in this algorithm is therefore a force

esponding to the presence of a solid force at the current time,

ather than a force that enforce the no-slip condition at the next

ime step. 

.2. Interpolated bounce-back schemes 

The essence of bounce-back schemes is to directly construct the

nknown distribution functions from the known ones and the hy-

rodynamic constraints at the boundary nodes. With the boundary

onfiguration in Fig. 1 , a simple bounce-back scheme can be writ-

en as [12] 

f i 
(
x f , t + δt 

)
= f ∗

ī 

(
x f , t 

)
+ 2 ρ0 w i 

e i · u w 

c 2 s 

, (10)

here f i 
(
x f , t + δt 

)
and f ∗

ī 

(
x f , t 

)
are the bounce-back distribution

unction and the incident distribution function, both locate at the

oundary node x f and with e i = −e 
ī 
. u w 

is the velocity at the wall

ocation x w 

. The last term on the right-hand side is used to en-

ure the no-slip condition when the solid boundary is moving.

q. (10) means that the post-collision particles traveling towards a
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Fig. 1. A sketch of a fluid-solid interface in a LBM simulation. 
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wall return back along the same location after bouncing back from

the wall, thus the scheme obtained its name. Since a distribution

function travels precisely one grid spacing from t to t + δt , parti-

cles start from x f can end precisely at the same location only when

x f is half a grid spacing from the wall. In fact, when this condi-

tion is not satisfied, the bounce-back scheme of Eq. (10) only has a

first-order accuracy, which restricts its application on an arbitrarily

shaped surface. 

In order to ensure that the second-order spatial accuracy in a

bounce-back process for more general cases, interpolation is usu-

ally required. Since the number of unknown distribution func-

tions is usually larger than the number of hydrodynamic con-

straints, strategies to design interpolated bounce-back schemes are

not unique. Two representative interpolated bounce-back schemes

are the conditional scheme proposed by Bouzidi et al. [13] , and the

unified scheme by Yu et al. [16] . In Bouzidi et al.’s scheme, when

the relative distance from the boundary node point to the wall lo-

cation, i.e. , q = | x f − x w 

| / | x f − x b | , is smaller than 0.5, a virtual dis-

tribution function is interpolated first at x i so that the molecules

represented by this virtual distribution function ends precisely at

x f after the bounce back from the wall. Apparently, x i locates be-

tween x f and the neighboring fluid node x ff, thus the virtual distri-

bution function can be interpolated from the corresponding distri-

bution functions at x f , x ff, and x fff . On the other hand, when q ≥ 0.5,

x i locates between x f and x w 

, the interpolation becomes extrapola-

tion, which could result in numerical instability. To avoid this, the

streaming is proceeded first, i.e. , the distribution function at x f first

bounce-back from the wall and ends at a temporary location x t .

Then the unknown distribution function at x f is interpolated with

the corresponding distribution functions at x t , x ff, and x fff . Bouzidi

et al.’s interpolated bounce-back scheme can be summarized as 

f i 
(
x f , t + δt 

)
= q ( 2 q + 1 ) f ∗

ī 

(
x f , t 

)
+ ( 1 + 2 q ) ( 1 − 2 q ) f ∗

ī 

(
x f f , t 

)
− q ( 1 − 2 q ) f ∗

ī 

(
x f f f , t 

)
+ 2 ρ0 w i 

e i · u w 

c 2 s 

, q < 0 . 5 , (11a)

f i 
(
x f , t + δt 

)
= 

1 

q ( 2 q + 1 ) 

[
f ∗
ī 

(
x f , t 

)
+ 2 ρ0 w i 

e i · u w 

c 2 s 

]

+ 

2 q − 1 

q 
f i 
(
x f f , t + δt 

)
− 2 q − 1 

1 + 2 q 
f i 
(
x f f f , t + δt 

)
, q ≥ 0 . 5 . (11b)

Alternatively, Yu et al. designed a unified IBB scheme for all val-

ues of q from 0 to 1. Their idea is straightforward. First, a virtual

distribution function is interpolated between x f and x ff, which ends

exactly at the wall location after streaming a grid spacing towards

the wall, i.e. , 
f ī ( x w 

, t + δt ) = 

q ( q + 1 ) 

2 

f ∗
ī 

(
x f , t 

)
+ ( 1 + q ) ( 1 − q ) f ∗

ī 

(
x f f , t 

)
− q ( 1 − q ) 

2 

f ∗
ī 

(
x f f f , t 

)
. (12)

ext, an instantaneous bounce-back happens right after the virtual

istribution function arrives at the wall location 

f i ( x w 

, t + δt ) = f ī ( x w 

, t + δt ) + 2 ρ0 w i 

e i · u w 

c 2 s 

(13)

t last, the unknown distribution function f i 
(
x f , t + δt 

)
is interpo-

ated from f i ( x w 

, t + δt ) , f i 
(
x f f , t + δt 

)
and f i 

(
x f f f , t + δt 

)
as 

f i 
(
x f , t + δt 

)
= 

2 

( 1 + q ) ( 2 + q ) 
f i ( x w 

, t + δt ) 

+ 

2 q 

1 + q 
f i 
(
x f f , t + δt 

)
− q 

2 + q 
f i 
(
x f f f , t + δt 

)
. (14)

n practice, it is more efficient to combine the above three steps

nto a single equation involving up to five distribution functions,

hich reads 

f i 
(
x f , t + δt 

)
= 

q 

2 + q 
f ∗
ī 

(
x f , t 

)
+ 

2 ( 1 − q ) 

1 + q 
f ∗
ī 

(
x f f , t 

)
− ( 1 − q ) q 

( 1 + q ) ( 2 + q ) 
f ∗
ī 

(
x f f f , t 

)
+ 

2 q 

1 + q 
f i 
(
x f f , t + δt 

)
− q 

2 + q 
f i 
(
x f f f , t + δt 

)
+ 

4 

( 1 + q ) ( 2 + q ) 
ρ0 w i 

e i · u w 

c 2 s 

. (15)

While these two schemes are constantly used in LBM for no-

lip boundary treatment on curved surfaces. A potential issue is

hat they require not only the information at the boundary node

tself, i.e. , x f , but also the distribution functions at x ff and x fff to

rocess the interpolation. When two solid surfaces sit very close,

hich frequently happens in particle-laden flows with dense parti-

le suspensions, Eq. (10) has to be used instead, where the overall

ccuracy of the boundary treatment might be contaminated. This

otential issue is resolved with the recently proposed single-node

econd-order bounce-back scheme by Zhao & Yong [22] , which

eads 

f i 
(
x f , t + δt 

)
= 

2 q 

1 + 2 q 
f ∗i 

(
x f , t 

)
+ 

1 

1 + 2 q 
f ī 

(
x f , t 

)
+ 

2 

1 + 2 q 
ρ0 w i 

e i · u w 

c 2 s 

. (16)

nlike the previous two IBB schemes that construct f i 
(
x f , t + δt 

)
urely from the post-collision distribution functions. Zhao & Yong’s

cheme utilize both the pre-collision and post-collision distribution

unctions to fulfill the “interpolation”. The second-order accuracy

f this scheme can be rigorously proven by an asymptotic analysis

22] . It is also worth mentioning that an alternative single-node

econd-order bounce-back scheme was recently proposed by Tao

t al. [35] . We were made aware of this scheme quite late thus it

s not included in our comparisons shown below. 

These three IBB schemes, i.e. , Bouzidi et al.s scheme, Yu et al.s

cheme, as well as Zhao & Yong’s scheme will be used in the

umerical examinations in Section 3 . With the use of bounce-

ack schemes, the natural way to calculate the hydrodynamic force

nd torque acting on a solid surface is the momentum exchange

ethod (MEM) [12,36,37] . Although the combinations of bounce-

ack schemes and MEM do not ensure Galilean invariance in in-

tantaneous force and torque calculation [38] , their accuracy has
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Fig. 2. A sketch of a Taylor-Couette flow. 
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p  
een proven to be sufficient in most simulations [39,40] . In partic-

lar, the Galilean invariant momentum exchange method (GIMEM)

roposed by Wen et al. [37] , 

 δt = 

∑ 

x f ,i 

[
f ∗
ī 

(
x f , t 

)(
e ī − u w 

)
− f i 

(
x f , t + δt 

)
( e i − u w 

) 
]
, (17a) 

 δt = 

∑ 

x f ,i 

( x w 

−Y c ) ×
[

f ∗
ī 

(
x f , t 

)(
e ī −u w 

)
− f i 

(
x f , t + δt 

)
( e i − u w 

) 
]
, 

(17b) 

ill be used in the subsequent numerical examinations to reduce

he “grid locking” (“grid locking” will be discussed in detail later)

39] . This is different from the original MEM [12,36] . 

. Numerical examinations 

Appropriately chosen validation cases help us better evaluate

he performance of the boundary treatment schemes. In the earlier

nvestigations, the accuracy of IBM was often validated in the flow

f a two-dimensional Taylor-Green vortex flow. These tests, in our

iew, are not so meaningful since the accurate flow field can be

btained with or without the boundary forcing. The only informa-

ion one may obtain from these tests is perhaps that IBM does not

ontaminate the second-order accuracy of LBM when it is applied

o a smooth flow field 

1 . Unfortunately, the velocity across a real

olid-fluid interface is usually not smooth [5] . Another often used

est flow is a uniform flow passing a 2D cylinder or 3D sphere at

nite Reynolds number. In this case, since the analytic solution is

navailable, while it is safe to validate whether a boundary treat-

ent method is generating reasonable results, it is difficult to as-

ess rigorously the accuracy and compare the results among differ-

nt methods. 

In this paper, we choose four test flows to benchmark the

erformances of IBB schemes and IBM algorithms. The two-

imensional circular Couette flow and the three-dimensional lami-

ar pipe flow are chosen since analytic solutions are available that

an help benchmarking the accuracy of each boundary treatment

hen an actual curved wall presents. A case of two-dimensional

ylinder settling in a quiescent flow is used to examine the per-

ormance of each boundary treatment in predicting the motion of

he objects in a viscous fluid. At last, a case of a uniform flow

assing a static sphere is employed to assess the grid resolution

equirement for each boundary treatment in order to obtain reli-

ble hydrodynamic force acting on a spherical particle at different

eynolds numbers. 

.1. Transient circular Couette flow 

The purpose of the present study is to assess the performance

f the boundary treatment schemes in general cases with curved

nd moving boundaries. For this purpose, the circular Couette flow,

r Taylor-Couette flow between two concentric cylinders is em-

loyed. A sketch of this flow is shown in Fig. 2 . The analytic so-

ution of this flow is available in [41] . We repeat it in Appendix A

imply for readers’ convenience. 

In the simulations presented below, the inner cylinder is fixed

hile the outer cylinder rotates with an angular velocity that de-

nes the flow Reynolds number Re = ( R 2 − R 1 ) �2 R 2 /ν = 45 . The

atio of the outer to inner cylinder radius, γ , is set to 2. The simu-

ations are conducted using the D2Q9 MRT collision model but run

ith a single relaxation time, i.e. , the equilibrium and the body

orce terms are defined in the moment space but all the relaxation

imes in matrix S are identical. 
1 the smooth flow field is defined as a field where the velocity gradient normal 

o the interface is continuous, see Peskin [5] . 

0  

B  

i  

I  
Unlike in LBM-IBB simulations where the boundary treatment is

urely determined by the information from the fluid region (white

egion in Fig. 2 ), in LBM-IBM simulations the whole domain, in-

luding the solid region (gray region in Fig. 2 ), is filled with the

ame fluid and the flows outside and inside the solid region may

e inter-connected through the N-S equations. Therefore, how the

ow in the solid region is treated may affect the flow within the

uid region. Specifically, in the Circular Couette flow, appropriate

reatment of the boundary of the computational domain (red solid

ines in Fig. 2 ) plays an important role in ensuring the correctness

f the results, especially when the outer cylinder is rotating. To

emonstrate this point, we present the velocity profiles at differ-

nt non-dimensional times ( t ∗ = tν/ (R 2 − R 1 ) 
2 ) from two LBM-IBM

imulations, both use Breugem’s IBM [7] with a retraction distance

.3 δx to treat the two no-slip conditions on the cylinder surfaces,

ut with Dirichlet boundary (a) u r = 0 , u θ = 0 , (b) u r = 0 , u θ = �2 r

n the edges of the computational domain. The grid resolution

sed for the simulations is R 1 = 25 δx . The profiles are generated by

veraging the velocity at the grid nodes sitting in 25 equal-width

ins with the width of dr = (R 2 − R 1 ) / 25 . Obviously, with setting

a), the velocity profiles of the simulation deviate from the theo-

etical solution, while with setting (b), the velocity profiles match

he theoretical solution quite well. This observation leads to the

rst remark that cautions must be given to the treatment of flow

n the solid region when IBM is used. As we shall observe later

nyes Fig. 6 , even setting (b) can result in a significant error in

he hydrodynamic force evaluation. Unfortunately, the treatment

n the edges of the computational domain is usually irrelevant to

he physical description of the flow. LBM-IBB simulations, on the

ther hand, do not suffer from the same problem. The construc-

ion on the unknown distribution functions at the boundary nodes

urely depends on the information in the fluid region. The velocity

rofiles of the LBM-IBB simulation with Bouzidi et al.’s quadratic

nterpolation scheme are in good agreement with the theory, as

hown in Fig. 3 (c). 

To quantify the numerical error of the results in a simulation,

he L1- and L2-errors, defined as 

 L 1 = 

∑ 

x ‖ 

Q s ( x ) − Q t ( x ) ‖ ∑ 

x ‖ 

Q t ( x ) ‖ 

, ε L 2 = 

√ ∑ 

x [ Q s ( x ) − Q t ( x ) ] 
2 √ ∑ 

x [ Q t ( x ) ] 
2 

, (18)

re calculated, where Q s and Q t are the numerical result and the-

retical result, respectively. The convergence rates of L2-errors of

he velocity fields at the steady state are presented in Fig. 4 ,

or three LBM-IBM simulations, i.e. , with the IBM scheme of

y Uhlmann (“LBM-IBM-Uhlmann”), and with the IBM scheme

roposed by Breugem with two different retraction distances,

.3 δx and 0.4 δx (“LBM-IBM-Breugem, R d = 0 . 3 ” and “LBM-IBM-

reugem, R d = 0 . 4 ”), as well as three LBM-IBB simulations, us-

ng the quadratic interpolation schemes by Bouzidi et al. (“LBM-

BB-Bouzidi”) and Yu et al. (“LBM-IBB-Yu”), and the single-node
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Fig. 3. Velocity profiles of a transient Taylor-Couette flow: (a) LBM-IBM simulation with Breugem’s IBM scheme with a retraction distance of 0.3 δx , the velocity on the 

edges of the computational domain is set as u r = 0 , u θ = 0 ; (b) same as (a), except that the velocity on the edges of the computational domain is set as u r = 0 , u θ = �2 r; 

(c) LBM-IBB simulation with Bouzidi et al. ’s quadratic interpolated bounce-back scheme. “S” and “T” in the legend of each plot represent “simulation result” and “theoretical 

result”, respectively. 

Fig. 4. Error convergence rates of the velocity field in the LBM-IBM and LBM-IBB 

simulations. The dash line and the solid line are references of slop -1 and -2, re- 

spectively. The same applied to all figures in the rest of the paper. 

 

 

 

 

 

 

 

 

t  

o  

t  

q  

t  

p  

i  

 

o  

u  

a  

t  

f  

u  

a  

d  

t  

T  

b  

c  

d  

f

 

e  

w  

f  

a  

0  
bounce-back scheme by Zhao & Yong (“LBM-IBB-Zhao”). The

boundary force in the three LBM-IBM simulations are iterated for 5

times to ensure the representation of the no-slip boundary on the

Lagrangian points is sufficiently accurate. As clearly demonstrated

in Fig. 4 , the velocity fields in the three LBM-IBM simulations are

always of first-order accuracy, while these from all the three LBM-

IBB simulations are of second-order accuracy. 

The first-order accuracy of the LBM-IBM is a result of the fact

that the delta-function used to interpolate information between
he Eulerian and Lagrangian grids possesses second-order accuracy

nly for a smooth interface where the velocity gradient normal to

he interface is continuous [5,6,42] . While this remark is already

uite well-known in IBM, we here provide a theoretical proof in

he Appendix B. The idea of this proof is to assume the velocity

rior to the boundary forcing process is exact, and examine what

s the order of the error generated in the boundary forcing process.

Although the retraction of Lagrangian grid does not improve the

rder of accuracy of the velocity calculation in the LBM-IBM sim-

lation, it does significantly reduce the magnitudes of the error at

ll resolutions (the results labeled Uhlmann in Fig. 4 is equal to

he case with zero retraction distance). Breugem examined the ef-

ect of the retraction distance in a few flow examples, such as a

niform flow passing a fixed sphere and the laminar pipe flow,

nd suggested that R d = 0 . 3 δx was the general optimal retraction

istance. Zhou & Fan also confirmed such observation in LBM-IBM

hat an optimized retraction distance should be 0.3 δx ≤ R d ≤ 0.4 δx .

he three-point delta-function of Roma et al. [43] was adopted in

oth studies to draw this conclusion. Intuitively, since the physi-

al fluid-solid interface is diffused at different levels by different

elta-functions, the optimal retraction distance to offset such dif-

usion should be delta-function dependent. 

To confirm this point, we simulate the same TC flow with differ-

nt combinations of three delta-functions, i.e. , the four-point piece-

ise delta-function used above, the three-point piecewise delta-

unction by Roma et al., and the two-point linear delta-function,

nd five retraction distances R d = 0 , R d = 0 . 1 δx, R d = 0 . 2 δx, R d =
 . 3 δx, and R d = 0 . 4 δx . It should be noted that the three-point
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Fig. 5. The convergence rates of velocity field with different delta-functions, (a) two-point linear delta-function, (b) three-point delta-function, (c) four-point delta-function. 
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iecewise delta-function and the two-point linear delta-function

iffuse the physical fluid-solid interface less than their four-point

ounterpart, which may bring a negative impact on the numeri-

al stability. In fact, with all the other simulation setup param-

ters being identical to what were used earlier, switching to the

hree-point and two-point delta-functions made the code diverge.

o ensure numerical stability with all combinations, a smaller

ow Reynolds number Re = (R 2 − R 1 )�2 R 2 /ν = 15 is used instead.

he convergence rates of the steady state velocity fields in differ-

nt cases are shown in Fig. 5 . In each simulation, the boundary

orce is still iterated for 5 times to ensure better no-slip bound-

ry representation. As shown in Fig. 5 , when the two-point lin-

ar delta-function is used, the retraction distances of R d = 0 . 1 δx

nd R d = 0 . 2 δx result in the most accurate velocity field. With

ore diffusive delta-functions, the optimized retraction distance

ecomes larger in magnitude. With the three-point delta-function,

he optimized retraction distance is between R d = 0 . 2 δx and R d =
 . 3 δx ; while with the four-point delta-function, the best result

s observed when R d = 0 . 3 δx and R d = 0 . 4 δx . Another observation

orth mentioning is that, for the current Reynolds number Re =
5 , with four-point delta function ( Fig. 5 (c)), the retraction distance

f R d = 0 . 4 δx only results in slightly more accurate velocity field

han the retraction distance of R d = 0 . 3 δx . However, as shown in

ig. 4 , when the Reynolds number increases to Re = 45 , the results

mprove much more significantly when R d is increased from 0.3

o 0.4. A Reynolds number dependence of the optimized retraction

istance may also be expected. 

Unlike LBM-IBM, the interpolated bounce-back schemes can

reserve the second-order spatial accuracy when curved no-slip

urfaces are present. This is because the interpolation schemes en-

ure the construction of the unknown distribution functions at the
oundary grid points is of second- or higher-order spatial accu-

acy. Particularly, the single-node bounce-back scheme by Zhao &

ong is able to achieve a second-order accuracy using only the in-

ormation at the boundary node itself. This scheme is useful when

imulating flow in porous media, or flows with dense particle sus-

ensions, where narrow gaps can form between two solid sur-

aces that disables multiple-point interpolations. With the contri-

ution of Zhao & Yong’s bounce-back scheme, the no-slip bound-

ry treatment via IBB should possess second-order accuracy in any

ituation. 

We next examine the accuracy of simulated hydrodynamic force

n LBM-IBM and LBM-IBB. In LBM-IBM, the boundary force and

orque have already been calculated at each Lagrangian grid, ob-

aining the total hydrodynamic force and torque acting on the solid

bjects simply amounts to summing up the contributions over all

he Lagrangian grid points. When LBM-IBB is used, the hydrody-

amic force and torque are calculated with Eq. (17) . A slight dif-

erence to note is that when LBM-IBB is used, the force calculated

ith the momentum exchange method contains a hydrostatic pres-

ure contribution in the wall-normal direction since there is no

uid inside the solid domain. On the other hand, the force cal-

ulated in LBM-IBM contains only the viscous stress, as fluid ex-

sts on both sides of the boundary. Fig. 6 shows the torques act-

ng on the inner and outer cylinders for the same cases shown in

ig. 3 (b) and (c). The two solid black lines represent the analytic

orque on the inner and outer cylinders at the steady state. While

he torque results of LBM-IBB match well with the analytic results

n both cylinders, the result of LBM-IBM has a significant deriva-

ion from the theory on the outer cylinder. This is again due to the

oor treatment on edges of the computational domain. Rather than

etting the Dirichlet boundary u r = 0 , u θ = �2 r, a better boundary
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Fig. 6. The time-dependent torque acting on the inner and outer cylinders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

i  

o  

b

 

f  

a  

b  

d  

“  

[  

t  

w  

r  

fi  

p  

s  

c  

f  

t  

c

 

 

 

w  

n

m  

s  

c  

E  

fi  

l  

d  

a  

s  

m

 

condition potentially reduces the error. However, this information

is not available in the physical problem description. The accuracy

of torque evaluation in different simulations is presented in Fig. 7 .

The results of the torque on the outer cylinder in LBM-IBM sim-

ulations are no longer included. Again, the torque evaluations in

the three LBM-IBM simulations are still first-order accurate, with

or without retracting the Lagrangian grid. This observation seems

to conflict with the conclusion reported in the literature that the

retraction of Lagrangian grid in IBM results in a second-order accu-

rate total force/torque. As shown in Appendix B, the local velocity

fields in IBM have only first-order accuracy, which constrains the

accuracy of local force evaluation to be the first order. Whether

the first-order error at each Lagrangian grid point can be canceled

out to result in a second-order accurate total force/torque depends

on the specific flow patterns. In a Taylor-Couette flow, the flow is

azimuthally independent, which means the local error of hydro-

dynamic force calculation at each Lagrangian grid point should be

the same. In this case, the first-order local errors cannot be can-

celled out, as such the total hydrodynamic force remains to have

only a first-order accuracy. On the other hand, in cases of a uni-

form flow passing a fixed cylinder or sphere, symmetric flow pat-

tern may form around the cylinder/sphere. In such cases, the first-

order local error contributed by each Lagrangian point may cancel

out precisely to yield a second-order accuracy for the total force.

The latter observation has been widely reported in the literature

[7,18,21] , and also confirmed by our own simulation in Section 3.4 .

We emphasize that the hydrodynamic force/torque calculation in

IBM cannot reach the second-order accuracy in general. On the

contrary, the torques calculated with momentum exchange method
Fig. 7. The convergence rates of the torque evaluation error. 
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o  
n the LBM-IBB simulations are always second-order accurate. This

s because the bounced-back distribution function in Eq. (17) are

f second-order accuracy, same as the accuracy of the interpolated

ounce-back schemes. 

We last examine the calculation of the dissipation rate in dif-

erent LBM-IBM and LBM-IBB simulations. The dissipation rate is

n important quantity in turbulent flows that affects the energy

udget in a flow. In turbulent flows, the dissipation rate is often

efined as ε = 2 νs ′ 
i j 

s ′ 
i j 
, where s ij is the velocity strain rate tensor,

′ ” indicates its fluctuation part in the Reynolds decomposition

44] . Here in the laminar flow, the velocity is not decomposed and

he dissipation rate is defined as ε = 2 νs i j s i j instead. In the frame-

ork of LBM, there are two different ways to calculate the strain

ate tensor s i j = 0 . 5 
(
∂ u i /∂ x j + ∂ u j /∂ x i 

)
. The first way is to use a

nite-difference approximation, as adopted in conventional CFD. To

reserve the accuracy, a second- or higher-order finite-difference

cheme is usually required. Alternatively, s ij in LBM can be cal-

ulated directly as a moment of the non-equilibrium distribution

unctions. According to the Chapman-Enskog expansion and taking

he D2Q9 MRT collision operator used in the simulation, the three

omponents in s ij can be calculated as 

∂u 

∂x 
= − s e 

4 ρ0 δt 
εm 

(1) 
e − 3 s n 

4 ρ0 δt 
εm 

(1) 
n 

− 1 

4 ρ0 

[ (
s e 

2 − s e 

)
ψ e + 

(
3 s n 

2 − s n 

)
ψ n 

] 
, (19a)

∂v 
∂y 

= − s e 

4 ρ0 δt 
εm 

(1) 
e + 

3 s n 

4 ρ0 δt 
εm 

(1) 
n 

− 1 

4 ρ0 

[ (
s e 

2 − s e 

)
ψ e −

(
3 s n 

2 − s n 

)
ψ n 

] 
, (19b)

1 

2 

(
∂u 

∂y 
+ 

∂v 
∂x 

)
= − 3 s c 

2 ρ0 δt 
εm 

(1) 
c − 1 

2 ρ0 

(
3 s c 

2 − s c 

)
ψ c , (19c)

here s e , s n and s c are the relaxation parameters for the energy,

ormal stress and shear stress moments, respectively. εm 

(1) 
e ≈

 e − m 

(eq ) 
e , εm 

(1) 
n ≈ m n − m 

(eq ) 
n , εm 

(1) 
c ≈ m c − m 

(eq ) 
c are their corre-

ponding leading-order non-equilibrium part. ψ e , ψ n , ψ c are the

orresponding components in the mesoscopic forcing term � in

q. (3) , whose definition can be found in [34] . Compared to the

nite-difference approximation, the mesoscopic method of calcu-

ating the strain rate tensor from the non-equilibrium moments (or

istribution functions if LBGK collision operator is used) ensures

 second-order accuracy even when the velocity field in the LBM

imulation is of the same second-order accuracy [45,46] , which

akes it generally preferred. 

The profiles of dissipation rate in the two simulations shown in

ig. 3 (b) and 3 (c) are exhibited in Fig. 8 (a). For the LBM-IBM simu-

ation, the dissipation rate is calculated in three different ways, i.e. ,

) with the second-order central finite-difference scheme (FD1), 2)

se the second-order central difference scheme in the bulk fluid

egion, but replace with a second-order upwind scheme near the

wo solid surfaces to exclude the grid points in the solid region

rom the calculation (FD2), and 3) from the non-equilibrium mo-

ents (ME). In the LBM-IBB simulation, for the sake of simplic-

ty, only the mesoscopic method is employed. As shown in Fig. 8 ,

o matter which method is employed to calculate the dissipation

ate in the LBM-IBM simulation, the results are always significantly

maller than the theory. This is probably because IBM smooths out

he sharp fluid-solid interfaces and reduces the local velocity gra-

ient in the interface region. Excluding the grid points inside the

olid volume improves the accuracy of dissipation rate calculation

ear the boundary but a large part of the error still remains. In the

uid region away from boundary (1.2 ≤ r / R 1 ≤ 1.8), the dissipation

ate results of the LBM-IBM simulations become acceptable, with

nly a slight over-prediction of the dissipation rate. The local dis-
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Fig. 8. The profiles of the dissipation rate. 
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Fig. 10. The convergence rates of the total dissipation rate in the whole fluid do- 

main. 
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ipation rate result in LBM-IBB, on the other hand, is in excellent

greement with the theory. In the fluid region away from bound-

ry (1.2 ≤ r / R 1 ≤ 1.8), the calculated dissipation rate from LBM-IBM

s acceptable, but it is still worse than that in LBM-IBB. This indi-

ates that the overall accuracy of IBB in terms of no-slip boundary

reatment is much better than that in IBM. 

The convergence rates of dissipation rates calculation in the

BM-IBM and LBM-IBB are presented in Fig. 9 . Since the non-

niform distributions of the error in the LBM-IBM simulations (see

ig. 8 ) tend to amplify L2 errors, only L1 errors are presented.

or conciseness, only the dissipation rates calculated by the meso-

copic way are presented. Clearly, the dissipation rate calulation

n LBM-IBM is of only a first-order accuracy, while the dissipation

ate calculation in LBM-IBB is of a second-order accuracy. The L1

rror in the latter is about one to two orders of magnitude smaller.

hile using IBM to treat the no-slip boundary can lead to signifi-

ant numerical errors in dissipation rate results near the fluid-solid

nterfaces, results of the total dissipation summing over the whole

uid domain are more acceptable. Corresponding results are shown

n Fig. 10 . This is because the underestimated dissipation rates near

he fluid-solid interfaces due to the diffused boundary are offset by

heir overestimated counterparts away from the interfaces, which

an be seen in Fig. 8 . Nevertheless, the above comparisons indi-

ate that the regular definition of dissipation rate may need to be

mproved in order to account for the diffused boundary effect in

BM. This aspect receives little attention in the past, thus further

nvestigations are certainly required. 
Fig. 9. The convergence rates of the dissipation rate calculation. 
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.2. Sedimentation of a cylinder in a vertical channel 

Next we compare the performance of the interpolated bounce-

ack schemes and immersed boundary methods in calculating the

orce/torque on a moving solid object. For a solid object immersed

n a viscous fluid, the governing equations for its translational mo-

ion and angular rotation read 

p V p 
d � v 
dt 

= 

∮ 
∂s 

(
�
 �
 τ · � n 

)
ds + 

(
ρp − ρ f 

)
V p � g + 

�
 F int + · · · , (20a) 

 p 
d � ω 

dt 
= 

∮ 
∂s 

�
 r ×

(
�
 �
 τ · � n 

)
ds + 

�
 T int + · · · , (20b) 

here ρp and ρ f are the densities of the solid and fluid phases,

espectively. V p is the volume of the solid object, � g is the grav-

tational acceleration, � F int and 

�
 T int are the force and torque due

o the interaction with other solid objects. Other sources of force

nd torque may also be included. In LBM-IBB simulations, the hy-

rodynamic force and torque are computed from the amount of

omentum/angular momentum exchanges. On the other hand, in

BM-IBM simulations, since the solid object is also filled with fluid,

he fluid inertia inside the solid object appears in the momen-

um/angular momentum balances as 

∮ 
∂s 

(
�
 �
 τ · � n 

)
d s = 

d 

d t 

∫ 
∂V 

�
 u d V −

∫ 
∂V 

�
 f d V, (21a) ∮ 

∂s 

�
 r ×

(
�
 �
 τ · � n 

)
d s = 

d 

d t 

∫ 
∂V 

( � r × �
 u ) d V −

∫ 
∂V 

(
�
 r × �

 f 
)
d V. (21b) 

here ∂ S and ∂ V are the surface and volume of a solid object.

hen calculating the hydrodynamic force/torque, the treatment of

he fluid inertia inside the particle clearly plays an important role.

 straightforward treatment is to assume the fluid inside the solid

bject is following rigid body motion, as did by Uhlmann [6] . With

uch assumption, Eq. (20) becomes 

ρp − ρ f 

)
V p 

d � v 
dt 

= −
∫ 
∂V 

�
 f dV + 

(
ρp − ρ f 

)
V p � g + 

�
 F int + · · · , (22a) 

 p 

(
1 − ρ f 

ρp 

)
d � ω 

dt 
= −

∫ 
∂V 

(
�
 r × �

 f 
)
dV + 

�
 T int + · · · . (22b) 

An obvious problem of Eq. (22) is that the left-hand sides van-

sh when ρp ≈ρ f . When the density ratio ρp / ρ f is below a limit,

imulations employing Eq. (22) are not stable. To overcome such

tability deficiency, Feng & Michaelides [47] proposed a specific

ime discretization of Eq. (22) as 
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Fig. 11. A sketch of a cylinder settling in a quiescent flow. 
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ρp V p 

�
 v n +1 − �

 v n 

δt 
= ρ f V p 

�
 v n − �

 v n −1 

δt 
−

∫ 
∂V 

�
 f dV 

+ 

(
ρp − ρ f 

)
V p � g + 

�
 F int + · · · , (23a)

I p 
�
 ω 

n +1 − �
 ω 

n 

δt 
= I p 

ρ f 

ρp 

�
 ω 

n − �
 ω 

n −1 

δt 
−

∫ 
∂V 

(
�
 r × �

 f 
)
dV + 

�
 T int + · · · . 

(23b)

Alternatively, one can directly compute the fluid inertia inside

the solid object to avoid singularity when the density ratio is close

to unity. Kempe et al. [48] used a level set functions to compute

such terms as ∫ 
∂V 

�
 u dV = 

n x ∑ 

1 

n y ∑ 

1 

n z ∑ 

1 

�
 u i, j,k h 

3 αi, j,k , 

∫ 
∂V 

�
 r × �

 u dV = 

n x ∑ 

1 

n y ∑ 

1 

n z ∑ 

1 

�
 r i, j,k × �

 u i, j,k h 

3 αi, j,k , (24)

where 

αi, j,k = 

∑ 8 
l=1 −φl H ( −φl ) ∑ 8 

l=1 ‖ φl ‖ 

, (25)

φl is a signed distance function, 

φl = 

√ (
�
 x i, j,k − �

 x c 
)2 

a 2 
+ 

(
�
 y i, j,k − �

 y c 
)2 

b 2 
+ 

(
�
 z i, j,k − �

 z c 
)2 

c 2 
− 1 (26)

where ( � x c , � y c , � z c ) is the center location of a particle, a, b, c are

the lengths of the three axes of an ellipsoidal shaped particle. Ap-

parently, one should obtain φl > 0 outside and φl < 0 inside the

particle, H ( φl ) is the Heaviside function. The summation is over

the 8 corners of a three-dimensional grid cell, or 4 corners of a

two-dimensional grid cell. In the following test, both Eqs. (23) and

(24) will be examined in LBM-IBM simulations of moving particles

in viscous flows. 

The benchmark case chosen here is a cylinder settling in a ver-

tical channel. A sketch of the flow is shown in Fig. 11 . The pa-

rameters in physical units are chosen as D = 0 . 1 cm, L = 4 cm, H =
0 . 4 cm, a = 0 . 324 cm, g = 980 cm 

2 /s 2 , and the density ratio ρp /ρ f =
1 . 03 to match the arbitrary Lagrangian Eulerian (ALE) simulation

performed by Hu et al. [49] . First, the two ways of considering
he inertia of fluid inside the cylinder, i.e. , Eqs. (23) and (24) are

ompared in the LBM-IBM simulations. Eq. (22) is not included as

t results in instability with the density ratio 1.03. The trajectory,

ngular velocity, vertical and horizontal translational velocities of

he cylinder are presented in Fig. 12 (a), (b), (c), and (d), respec-

ively. The results are obtained with a grid resolution of D = 30 δx .

he results are not sensitive to how the inertia of the fluid in the

ylinder is treated. Assuming the fluid inside the two-dimensional

ylinder follows the rigid body motion appears to be safe. Com-

ared to Uhlmann’s IBM with zero retraction distance, Breugem’s

BM with a retraction distance of r d = 0 . 4 δx clearly improves the

ccuracy of simulating the particle motion. Particularly, the termi-

al velocity of the cylinder with Uhlmann’s IBM is smaller than

he benchmark result. This is because the diffused fluid-solid in-

erface creates a larger effective hydraulic radius that over predicts

he drag force. The retraction of Lagrangian grid points helps to

ffset such over prediction [7] . 

We next compare the performance of LBM-IBB and LBM-IBM in

imulating the particle motion. The verticel velocity of the cylin-

er with Bouzidi et al.’s interpolated bounce-back scheme, and

reugem’s IBM with a retraction distance of 0.4 δx are presented

n Fig. 13 (a) and (b), respectively. Here we simulate the same flow

ith different grid resolutions from D = 10 δx to D = 45 δx . The re-

ults of LBM-IBB simulation almost converge at the grid resolution

f D = 10 δx, while the results of LBM-IBM simulation reach the

ame accuracy from the grid resolution of D = 15 δx . This is mainly

ue to the advantage of the second-order accuracy in IBB com-

ared to the first-order accuracy in IBM. Assuming the ALE bench-

ark results are accurate, the grid-independent numerical error of

he LBM-IBB simulation is slightly larger than that of the LBM-IBM.

his benefit is likely brought by the adjustable retraction distance

 d in the latter. 

At the end of this case, the level of “grid locking” in the hydro-

ynamic force/torque evaluations is examined. The “grid locking”

eans when a solid object crosses over the grid mesh, the cal-

ulated instantaneous hydrodynamic force/torque exerted on the

olid object have a slight dependence on the configuration of the

rid mesh and the solid object, and not being strictly Galilean in-

ariant [7] . The calculated instantaneous force and torque there-

ore present a high-frequency fluctuation which restores its ini-

ial value when the solid object displaces exactly one grid spac-

ng. The term “grid locking” was dubbed by Breugem but the phe-

omenon was discovered much earlier in IBM, e.g. , in [6,50] . LBM-

BB simulations also suffer from the same problem, as discussed

y Lallemand & Luo [51] , Peng et al. [39] and Tao et al. [40] .

ssentially, both the interpolation in IBB and the boundary dif-

usion in IBM have made the realization of no-slip condition on

he sharp interface depending on the information of multiple grid

oints around, which helps to suppress the fluctuation in force and

orque evaluation. In Fig. 14 (a) the effects of the two schemes, i.e. ,

eng & Michaelides’s scheme ( Eq. (23) ) and Kempe et al.’s scheme

 Eq. (24) ), for treating the fluid inertia inside the solid volume

n IBM are compared. At the initial stage, the scheme of Feng &

ichaelides presents a lower level of force fluctuation that the

cheme of Kempe et al., but the two schemes eventually lead to

he same prediction of the force, as shown in the inserted zoom-in

lot in Fig. 14 (a). Fig. 14 (b) shows the comparison of force evalu-

tion among four simulations, two LBM-IBB simulations with the

uadratic interpolation scheme of Bouzidi et al. ( Eq. (11) ) and the

ingle-node bounce-back scheme of Zhao & Yong ( Eq. (16) ), and

wo LBM-IBM simulations with Uhlmann’s IBM and Breugem’s IBM

ith a retraction distance of r d = 0 . 4 δx . The two LBM-IBM simu-

ations use Kempe et al.’s scheme to directly consider the inertia

f fluid inside particle region. Compared to IBB schemes, IBM re-

ults clearly better suppress the force fluctuation. This benefit is a

esult that the delta-functions employed in IBM diffuse the sharp
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Fig. 12. The effects of treatment of inertia of fluid inside cylinder on (a) particle trajectory, (b) particle angular velocity, (c) vertical translational velocity, (d) horizontal 

translational velocity. 

Fig. 13. The results of particle vertical translational velocity with different grid resolutions, (a) LBM-IBM with Breugem’s IBM, r d = 0 . 4 δx, (b) LBM-IBB with Bouzidi et al.’s 

quadratic interpolated bounce-back scheme. 

i  

I  

d  

m  

t  

f  

f  

t  

t  

s  

d  

t  

e  

i  
nterface more in IBM than in the interpolation schemes used in

BB. In IBM, the force contributed from a single Lagrangian node

epends the information from a maximum 4 × 4 (in 2D) subdo-

ain of the Eulerian mesh. On the contrary, in IBB, the force con-

ributed by a single boundary link depends on the information

rom no more than three node points. The latter system there-

ore has a much less inertia to suppress the high-frequency fluc-
uations. The force fluctuation in an IBM simulation might be fur-

her suppressed by using more diffusive delta-functions with larger

pans, as suggested in Ref. [50] . However, those more diffusive

elta-functions will introduce larger numerical viscosity and fur-

her reduce the accuracy of the IBM simulation in terms of av-

raged quantities. If the instantaneous force/torque computation

s not of particular importance and the simulation has sufficient
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Fig. 14. The horizontal component of the hydrodynamic force acting on the particle, D = 30 , (a) the effects of treatments on the inertia of fluid inside the solid region, (b) 

the comparison between LBM-IBB and LBM-IBM. 
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a  
numerical stability, less diffusive delta-functions should be rec-

ommended. We notice that many finite-volume based IBM stud-

ies ( e.g. , Ref. [6,7] ) recommended the three-point delta-function by

Roma et al. [43] , perhaps due to the balance between its ability to

suppress the force fluctuation and acceptable boundary diffusion.

In our LBM based IBM simulations, however, we found the use of

three-point delta-function leads to larger vulnerability for numeri-

cal instability (see Section 3.1 ). We therefore recommend the four-

point delta-function by Peskin [5] instead. 

Another source for the larger fluctuation in IBB is due to the re-

quirement that the distribution functions at a new grid point when

it is uncovered by the cylinder need to be initialized (known as

“refilling”), since no distribution function is assigned to nodes in-

side the solid region when IBB is used. Proper refilling schemes

may reduce fluctuation but its contribution cannot be removed

[39] . LBM-IBM, on the other hand, avoids the refilling process, as

the whole computational domain is filled with fluid and assigned

with distribution functions. 

3.3. Transient laminar pipe flow 

We now move to the two three-dimensional problems, with the

purpose of further supporting the remarks that have been made

using the two-dimensional flows discussed above. The first 3D flow

is the transient laminar pipe flow. Strictly speaking, this flow is a

two-dimensional flow, but is run on three-dimensional Cartesian

grids. Under a constant driving force, the flow that is initially static

in a circular pipe accelerates and reaches a steady state. The gov-

erning equation of this axi-symmetric flow reads as 

∂u z 

∂t 
= ν

1 

r 

∂ 

∂r 

(
r 
∂u z 

∂r 

)
+ g, (27)

where u z is the streamwise velocity in a cylindrical coordinate sys-

tem ( r, θ , z ), g is the constant body force driving the flow. Applying

periodic boundary condition in the streamwise direction and no-

slip condition on the pipe wall, the above governing equation can

be solved theoretically to obtain as Wang and Du [52] 

u z ( r, t ) = u 0 

[ (
1 − r 2 

R 

2 

)
−

∞ ∑ 

n =1 

8 J 0 ( λn r/R ) 

λ3 
n J 1 ( λn ) 

exp 

(
−λ2 

n νt 

R 

2 

)] 

, (28)

where u 0 = gR 2 / 4 ν is the centerline velocity at the steady state, J 0 
and J 1 are the Bessel function of the first kind J α for integer orders

α = 0 and α = 1 , λn is the n th root for J 0 . 

First, the velocity contours and profiles at the steady state with

(a) Zhao & Yong’s bounce-back, (b) Breugem’s IBM with R = 0 . 4 ,
d 
here the driving body force is applied only to the fluid do-

ain, (c) same as (b) but the driving body force is applied to the

hole computational domain are shown in Fig. 15 . The Reynolds

umber of the flow Re = 2 u 0 R/ν is 100, the radius of the pipe

 = 30 δx . The pipe is contained in a computational domain of

 x × n y × n z = 72 × 72 × 16 . While the velocity profiles with Zhao

 Yong’s bounce-back collapse well with the theoretical solutions

t different times, those profiles with Breugem’s IBM have slight

isible deviations from the theory at later times. Comparing the

elocity profiles in case (b) and case (c), we observe that applying

he driving force in the fictitious fluid domain (physical domain oc-

upied by solid phase) leads to larger derivations than restricting

he driving force in the physical fluid domain. This again suggests

hat how to appropriately treat the flow in the fictitious domain

ffects the accuracy of flow in the physical fluid domain, as the

wo parts can directly exchange information via advection and dif-

usion through the N-S equations. 

In order to better quantify the numerical errors in the laminar

ipe flow simulations, the convergence rates of L1 and L2 errors

f the steady state velocity are calculated and presented in Fig. 16 .

ere we examine six boundary treatment schemes, the linear in-

erpolated bounce-back schemes of Bouzidi et al. and Yu et al.,

hao & Yong’s bounce-back scheme, Uhlmann’s IBM, Breugem’s

BM with retraction distances of R d = 0 . 3 δx and 0.4 δx . The bound-

ry forces in three simulations with IBM are iterated for 5 times.

imilar to the case of circular Couette flow, numerical errors in the

hree cases with IBM generally have first-order convergence rate,

n contrast to the second-order convergence rates in the three IBB

ases. While retracting the Lagrangian grid to the solid side sig-

ificantly reduces the magnitude of the numerical error, the con-

ergence rate is only slightly improved, i.e., from 1.0 to 1.2 with

he retraction distance of R d = 0 . 4 δx . According to our derivation

n Appendix B , as long as the actual boundary is diffused more

han the retraction distance by the delta-function, the first-order

rror induced by the interpolation should always involve the flow

n both the fluid and solid regions. Therefore, the improved order

f accuracy claimed in previous IBM studies, e.g. , in [7] , may not

e generalizable, as we are unable to reproduce the second-order

ccuracy with the LBM-IBM here. 

.4. Uniform flow passing a fixed sphere 

The last case we examine is a uniform stream passing a fixed

phere in an unbounded domain. A spherical particle with a di-

meter D is fixed at (x, y, z) = (6 D, 6 D, 6 D ) in a cuboid domain of

 size (Lx, Ly, Lz) = (24 D, 12 D, 12 D ) . A uniform unidirectional up-
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Fig. 15. The velocity contours and profiles of a laminar pipe flow at its steady state: (a) and (d), with Zhao & Yong’s bounce-back; (b) and (e), with Breugem’s IBM with a 

retraction distance of R d = 0 . 4 , the driving force only applied to the fluid region, (c) and (f), same as (b) and (e), but the driving force applied to the whole computational 

domain. 

Fig. 16. The convergence rates of the velocity in a laminar pipe flow. 
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tream flow with 

�
 u = (u x , u y , u z ) = (U i , 0 , 0) enters the inlet ( x = 0 )

f the domain and passes over the fixed particle. The four sides

re set to be stress-free, i.e. , u z = 0 , ∂ u x /∂ z = ∂ u y /∂ z = 0 at z = 0

nd z = Lz, and u y = 0 , ∂ u x /∂ y = ∂ u z /∂ y = 0 at y = 0 and y = Ly, to

imic the boundary condition in an infinitely large domain. The

ow exits the domain with the following outflow boundary con-

ition, ∂ (ρ0 � u ) /∂ t + U o ∂ (ρ0 � u ) /∂ x = 0 , where U o is the streamwise

elocity at the outlet [53] . 

The drag coefficients under three different particle Reynolds

umbers, Re p = U i D/ν = 20 , 50, and 150 are examined. With these

eynolds numbers, the flow after the sphere is steady and ax-
symmetric with closed recirculating wake [54] . At each Reynolds

umber, we vary the grid resolution, i.e., D / δx from 8 to 48, and

nvestigate the drag coefficient C D = 8 F D / (ρ f Re 2 p πν2 ) , with kine-

atic viscosity ν fixed when varying the grid resolution. The re-

ults of drag coefficient at Re p = 20 , 50, and 150 are presented in

igs. 17–19 , respectively. The vertical solid lines in each figure in-

icate the grid resolution gives an error of 1% using the result of

he current boundary treatment with the highest grid resolution as

enchmark. At all three Reynolds numbers, Zhao & Yong’s bounce-

ack scheme always reaches the converged drag coefficient with

he coarsest grid resolution among all four boundary treatments.

his is perhaps due to the fact that Zhao & Yong’s bounce-back

cheme has a second-order accuracy while the immersed bound-

ry algorithms only have first-order accuracy. The retraction of La-

rangian grid points again results in much more accurate results

ompared to zero retraction distance. R d = 0 . 4 δx always appears

o be the optimal retraction distance when the four-point delta-

unction is employed. According to our results, We recommend

hat Breugem’s Lagrangian grid retraction be used when IBM is

sed for no-slip boundary treatment. 

Finally, if we define a “sufficient” grid resolution as the grid

esolution that gives 1% relative error from the converged result,

he sufficient grid resolutions for Zhao & Yong’s bounce-back at

e p = 20 , 50, and 150 are about Dδx = 14 . 3 , 16.7 and 15.9. The

ame quantities are 37.1, 38.0, 36.3 with Uhlmann’s IBM, 29.5, 30.7,

5.0 with Breugem’s IBM with R d = 0 . 3 δx, and 25.0, 26.3, 20.8

ith Breguem’s IBM with R d = 0 . 4 δx . These results may provide

 criterion to assess whether a grid resolution is fine enough to

nsure trustworthy results when a certain scheme is adopted for

o-slip boundary treatment in a three-dimensional particle-laden

ow simulation, at the similar particle Reynolds number. 
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Fig. 17. The drag coefficients of a uniform flow passing a fixed sphere at Re p = 20 . 

Fig. 18. The drag coefficients of a uniform flow passing a fixed sphere at Re p = 50 . 

Fig. 19. The drag coefficients of a uniform flow passing a fixed sphere at Re p = 150 . 
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. Conclusions and remarks 

In this work, we systematically assessed two categories of

o-slip boundary treatment methods, which are the interpolated

ounce-back schemes and the immersed boundary method, on an

rbitrarily shaped surface in the context of the lattice Boltzmann

ethod. Three representative interpolated bounce-back schemes,

ncluding a recently proposed single-node second-order bounce-

ack scheme [22] , and two popular immersed boundary algorithms

re selected. Their performances, especially the accuracy of result-

ng velocity, hydrodynamic force/torque, and the viscous dissipa-

ion rate are carefully benchmarked in four selected flows. In all

he flows examined in the present study, the interpolated bounce-

ack schemes always lead to much more accurate results of veloc-

ty, force/torque, and dissipation rate than the immersed bound-

ry algorithms. The immersed boundary algorithms, on the other

and, outperform in suppressing the fluctuations of the calculated

ydrodynamic force/torque compared to the interpolated bounce-

ack schemes. The specific major observations of this present study

re summarized as follows. 

• With immersed boundary algorithms, cautions should be

taken to the treatment of the flow in the virtual fluid re-

gion, especially when the flow of interest is surrounded by

solid objects, such as the Taylor-Couette flow and the circu-

lar pipe flow. Unfortunately, the information of how to spec-

ify the flow in the virtual fluid region may not be available

in the description of physical problems. 
• Our simulations confirm that the immersed boundary al-

gorithms using the regularized delta-functions to interpo-

late information between the Eulerian and Lagrangian grids

have only the first-order accuracy in flow velocity calcu-

lation. This conclusion holds no matter whether the La-

grangian grid points are retracted towards the solid phase

or not. We prove with a theoretical analysis that information

exchange between the Eulerian and Lagrangian grids via the

regularized delta-function always induces a first-order error

term as long as the velocity gradient is discontinuous across

the solid-fluid interface. On the other hand, the interpolated

bounce-back schemes can ensure a second-order accuracy of

the simulated velocity. The magnitudes of the velocity er-

rors in the interpolated bounce-back schemes are also much

smaller than their counterparts from immersed boundary al-

gorithms. 
• The local hydrodynamic force and torque calculated with im-

mersed boundary algorithms are only first-order accurate.

These local first-order errors may cancel out to result in

an apparent second-order accurate integral force/torque, as

shown in Section 3.4 . However, this cancellation may not be

generalized. In the Taylor-Couette flow, the integral force is

still first-order accurate. The forces calculated with interpo-

lated bounce-back schemes and momentum exchange meth-

ods have a second-order accuracy in all the flows examined.
• The most serious problem we find for the immersed bound-

ary method is that the local dissipation rate can be sig-

nificantly underestimated. This is because the sharp fluid-

solid interface is diffused by the regularized delta-functions,

which results in a smaller velocity gradient near the in-

terface. The same problem is not present with the inter-

polated bounce-back schemes, which can be viewed as a

sharp-interface treatment for no-slip boundary. 
• For moving particle problems, the high-frequency fluctua-

tions in the force/torque are better suppressed in the im-

mersed boundary methods than the interpolated bounce-

back schemes. When the particle/fluid density ratio is close
to unity, both Feng & Michaelides’s scheme and Kempe

et al.’s scheme are suitable to update the particle motion. 
• We present convergence studies to find out the sufficient

grid resolution associated with each boundary treatment

method for 2D circular and 3D spherical particles. Since the

interpolated bounce-back schemes have better accuracy than

the immersed boundary method, their grid resolution re-

quirements for a converged result are lower. For 2D cir-

cular particles, the sufficient grid resolutions for using in-

terpolated bounce-back schemes and the immersed bound-

ary method are D/δx = 10 and D/δx = 15 , respectively. For

3D spherical particles, the sufficient grid resolutions become

D/δx = 15 and D/δx = 25 , respectively, for particle Reynolds

number between 20 to 150. Here the immersed boundary

method refers to Breugem’s IBM with an appropriate retrac-

tion distance. When Uhlmann’s IBM with zero retraction dis-

tance is used, the sufficient grid resolution should be further

increased. 
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ppendix A. Analytic solution of the Taylor-Couette flow 

The analytic solution of the transient Taylor-Couette flow was

erived by He [41] . Here we just repeat He’s derivation for readers’

onvenience. The simplified N-S equations for the Taylor-Couette

ow is written as 

∂u θ

∂t 
= ν

∂ 

∂r 

[
1 

r 

∂ 

∂r 
( ru θ ) 

]
, u θ ( t, R 1 ) = �1 R 1 , 

u θ ( t, R 2 ) = �2 R 2 , u θ ( t = 0 , r ) = 0 , (29) 

here u θ is the flow velocity in the angular direction, ν is the

inematic viscosity of the fluid, t and r are the time and radius

oordinate, respectively. R 1 and R 2 are the radius of the inner and

uter cylinders confining the flow, �1 and �2 are the correspond-

ng angular velocities, respectively. The time-dependent solution of

his flow can be expressed as [41] : 

 θ ( r, t ) = u 

S 
θ + 

∞ ∑ 

n =1 

A n e 
− νλ2 

n t 

( R 2 −R 1 ) 
2 

[
J 1 

(
λn r 

R 1 

)
− J 1 ( λn ) 

Y 1 ( λn ) 
Y 1 

(
λn r 

R 1 

)]
(30) 

here u S 
θ

is the steady state solution 

 

S 
θ = 

1 

r 

�1 − �2 

R 

−2 
1 

− R 

−2 
2 

+ 

�2 R 

2 
2 − �1 R 

2 
1 

R 

2 
2 

− R 

2 
1 

r, (31) 

 1 and Y 1 are the first-order Bessel function of the first and the

econd kind, λn is the n th root satisfies 

J 1 ( λn ) Y 1 ( λn γ ) − J 1 ( λn γ ) Y 1 ( λn ) = 0 , 

0 < λ1 < λ2 < λ3 < · · · < λn < · · · → ∞ . (32) 

here γ = R 2 /R 1 is the radii ratio between the outer and the inner

ylinder. The n th coefficient of the series A n is 

 n = 

∫ γ
1 

(
−u 

S 
θ

)
r 

R 1 

[
J 1 
(

λn r 
R 1 

)
− J 1 ( λn ) 

Y 1 ( λn ) 
Y 1 

(
λn r 
R 1 

)]
dr ∫ γ

1 
r 

R 1 

[
J 1 
(

λn r 
R 1 

)
− J 1 ( λn ) 

Y ( λn ) 
Y 1 

(
λn r 
R 1 

)]2 
dr 

= 

top 

bottom 

. (33) 
1 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100005323


16 C. Peng, O.M. Ayala and L.-P. Wang / Computers and Fluids 192 (2019) 104233 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

F
 

F
 

a

u

 

S  

r  

x

�

 

�

 

 

r

u

u  

S

�

�

 

N  ∑
 

s  

c

The integrals in Eq. (33) can be calculated as 

top = − 1 

λ2 
n 

[ c 2 J 0 ( λn ) λn − 2 c 1 J 1 ( λn ) + c 1 J 0 ( λn ) λn + 2 αc 1 Y 1 ( λn ) 

−αc 1 Y 0 ( λn ) λn −c 2 αY 0 ( λn ) λn −c 2 J 0 ( λn γ ) λn + 2 c 1 γ J 1 ( λn γ )

− c 1 J 0 ( λn γ ) λn γ
2 − 2 αc 1 γY 1 ( λn γ ) + αc 1 Y 0 ( λn γ ) λn γ

2 

+ c 2 αY 0 ( λn γ ) λn ] (34a)

bottom = − 1 

2 λn 

{
λn [ J 1 ( λn ) ] 

2 − 2 J 0 ( λn ) J 1 ( λn ) + [ J 0 ( λn ) ] 
2 λn 

− 2 αJ 1 ( λn ) Y 1 ( λn ) λn + 2 αY 0 ( λn ) J 1 ( λn ) 

− 2 αY 0 ( λn ) J 0 ( λn ) λn 

+ 2 αJ 0 ( λn ) Y 1 ( λn ) + α2 [ Y 1 ( λn ) ] 
2 λn − 2 α2 Y 0 ( λn ) Y 1 ( λn ) 

+ α2 [ Y 0 ( λn ) ] 
2 λn −γ 2 [ J 1 ( λn γ ) ] 

2 λn + 2 γ J 0 ( λn γ ) J 1 ( λn γ ) 

−γ 2 [ J 0 ( λn γ ) ] 
2 λn + 2 αγ 2 J 1 ( λn γ ) Y 1 ( λn γ ) λn 

− 2 γαY 0 ( λn γ ) J 1 ( λn γ ) 

+ 2 αγ 2 Y 0 ( λn γ ) J 0 ( λn γ ) λn − 2 γαJ 0 ( λn γ ) Y 1 ( λn γ ) 

−α2 γ 2 [ Y 1 ( λn γ ) ] 
2 λn 

2 γα2 Y 0 ( λn γ ) Y 1 ( λn γ ) − α2 γ 2 [ Y 0 ( λn γ ) ] 
2 λn 

}
(34b)

where 

c 1 = 

�2 R 2 γ − �1 R 1 

γ 2 − 1 

, c 2 = 

�1 R 1 γ
2 − �2 R 2 γ

γ 2 − 1 

, α = 

J 1 ( λn ) 

Y 1 ( λn ) 
. 

(35)

Appendix B. A theoretical examination on the order of 

accuracy of immersed boundary method 

A configuration of Lagrangian–Eulerian grid system for a one-

dimensional fluid-solid interface is sketched in Fig. 20 , where x 1 
and x 2 are two Eulerian grid points on the fluid side and the solid

side of the Lagrangian grid point X . The interpolation of unforced

velocity from the Eulerian grid to the Lagrangian grid and the re-

distribution of the boundary force the other way around take place

at x 1 , x 2 , and X . Let us assume the velocity field prior to applying

the boundary forcing is accurate, i.e. , 

�
 u ( x 1 ) = 

�
 u exact ( x 1 ) , �

 u ( x 2 ) = 

�
 u exact ( x 2 ) . (36)

The boundary force on the Lagrangian point � F (X ) would be 

�
 F ( X ) δt = ρ

[
�
 U ( X ) − �

 u ( X ) 
]

= ρ
[
�
 U ( X ) − φ1 � u exact ( x 1 ) − φ2 � u exact ( x 2 ) 

]
, (37)

where φ1 = φ( x 1 − X ) and φ2 = φ( x 2 − X ) are the weighting fac-

tors obtained from the delta-function, φ1 + φ2 = 1 . The boundary
Fig. 20. The grid arrangement at a fluid-solid interface. 

�

�  

T  

t

 

�  

r  

p

orces distributed back to x 1 and x 2 are 

�
 

 ( x 1 ) δt = φ1 � F ( X ) δt = φ1 ρ
[
�
 U ( X ) − φ1 � u exact ( x 1 ) − φ2 � u exact ( x 2 ) 

]
, 

(38a)

�
 

 ( x 2 ) δt = φ2 � F ( X ) δt = φ2 ρ
[
�
 U ( X ) − φ1 � u exact ( x 1 ) − φ2 � u exact ( x 2 ) 

]
, 

(38b)

After applying the boundary forcing, the velocity at x 1 and x 2 
re 

˜ �
  ( x 1 ) = 

�
 u exact ( x 1 ) + 

1 

ρ
�
 F ( x 1 ) δt, ˜ �

 u ( x 2 ) = 

�
 u exact ( x 2 ) + 

1 

ρ
�
 F ( x 2 ) δt. 

(39)

ince the velocity field before applying the boundary forcing is al-

eady exact, the errors introduced by the boundary force at x 1 and

 2 are simply 

�
 u 1 = 

˜ �
 u ( x 1 ) − �

 u exact ( x 1 ) 

= φ1 ρ
[
�
 U ( X ) − φ1 � u exact ( x 1 ) − φ2 � u exact ( x 2 ) 

]
, (40a)

�
 u 2 = 

˜ �
 u ( x 2 ) − �

 u exact ( x 2 ) 

= φ2 ρ
[
�
 U ( X ) − φ1 � u exact ( x 1 ) − φ2 � u exact ( x 2 ) 

]
. (40b)

Performing a Taylor expansion for � u exact ( x 1 ) and 

�
 u exact ( x 2 ) with

espect to X, i.e. , 

�
  exact ( x 1 ) = 

�
 U ( X ) + 

d � u 

dx 
| f luid ( x 1 − X ) + O 

(
�x 2 

)
, 

�
  exact ( x 2 ) = 

�
 U ( X ) + 

d � u 

dx 
| solid ( x 2 − X ) + O 

(
�x 2 

)
, (41)

ubstitute Eq. (41) to Eq. (40) , we shall obtain 

�
 u 1 = φ1 

{
−φ1 

[
d � u 

dx 
| f luid ( x 1 − X ) + O 

(
�x 2 

)]

−φ2 

[
d � u 

dx 
| solid ( x 2 − X ) + O 

(
�x 2 

)]}
, 

�
 u 2 = φ2 

{
−φ1 

[
d � u 

dx 
| f luid ( x 1 − X ) + O 

(
�x 2 

)]

−φ2 

[
d � u 

dx 
| solid ( x 2 − X ) + O 

(
�x 2 

)]}
. (42)

ote that the delta-function should have the property
 

( x − X ) φ( x − X ) = 0 2 , i.e. , φ1 ( x 1 − X ) + φ2 ( x 2 − X ) = 0 . To

implify the notation, denote φ1 ( x 1 − X ) = c, φ2 ( x 2 − X ) = −c,

 ∼ O ( �x ), Eq. (42) becomes 

�
 u 1 = −cφ1 

(
d � u 

dx 
| f luid −

d � u 

dx 
| solid 

)
+ O 

(
�x 2 

)
, 

�
 u 2 = −cφ2 

(
d � u 

dx 
| f luid −

d � u 

dx 
| solid 

)
+ O 

(
�x 2 

)
. (43)

herefore, only when the velocity gradient is continuous, according

o the Taylor expansion 

d � u 

dx 
| solid = 

d � u 

dx 
| f luid + O ( �x ) , (44)

�
 u 1 and ��

 u 2 in Eq. (43) can then have a second-order accu-

acy. When the velocity gradient is discontinuous, the boundary
2 The 4-point cosine delta-function employed frequently does not possess this 

roperty strictly, but it does not affect the argument. 
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[  
orcing process shown above always induces a first-order error to

he velocity field. Generally speaking, the velocity gradient is, un-

ortunately, not continuous across a fluid-solid interface, thus IBM

sing the delta-function degrades the accuracy to the first-order. 

In IBM, The hydrodynamic force � F on a solid object is calculated

s 

�
 

 δt = 

∑ 

l 

�
 F ( X l ) δt�V l , (45) 

here X l is the location of the l th Lagrangian grid point, �V l is the

ontrol volume of X l . Similarly, we can define the exact hydrody-

amic force as 

�
 

 exact δt = 

∑ 

l 

�
 F exact ( X l ) δt�V l , (46) 

he error of hydrodynamic force in IBM is simply the difference

etween the two, i.e. , 

�
 F δt = 

�
 F δt − �

 F exact δt = 

∑ 

l 

[
�
 F ( X l ) − �

 F exact ( X l ) 
]
δt�V l 

= 

∑ 

l 

{[
�
 U ( X l ) − φ1 � u ( x 1 ) − φ2 � u ( x 2 ) 

]
−

[
�
 U ( X l ) − φ1 � u exact ( x 1 ) − φ2 � u exact ( x 2 ) 

]}
�V l 

= −
∑ 

l 

[ φ1 ��
 u ( x 1 ) + φ2 ��

 u ( x 2 ) ] �V l . (47) 

Substituting ��
 u ( x 1 ) and ��

 u ( x 2 ) obtained in Eq. (43) results in

�
 F δt = −

∑ 

l 

[(
cφ2 

1 + cφ2 
2 

)(d � u 

dx 
| f luid −

d � u 

dx 
| solid 

)
+ O 

(
�x 2 

)]
�V l ,

(48) 

here cφ2 
1 + cφ2 

2 is always positive (or negative) and on the order

f �x . Evidently, for the local first-order error in Eq. (48) to can-

el out in the summation, the difference of the velocity derivatives

cross the fluid-solid interface must be follow certain patterns, or

t least being positive on some Lagrangian nodes and being nega-

ive on the others. While we do observe this situation in the case

f a uniform flow passing a fixed sphere, which has also been re-

orted in the literature [7,18,21] , this observation may not be gen-

ralized. In the case of Taylor-Couette flow, the hydrodynamic force

alculation with IBM is only first-order accurate. 
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