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a b s t r a c t

In this work, we revisit implementation issues in the lattice Boltzmann method (LBM)
concerningmoving rigid solid particles suspended a viscous fluid. Three aspects relevant to
the interaction between flowof a viscous fluid andmoving solid boundaries are considered.
First, the popular interpolated bounce back scheme is examined both theoretically and
numerically. It is important to recognize that even though significant efforts had previously
been devoted to the performance, especially the accuracy, of different interpolated bounce
back schemes for a fixed boundary, there were relatively few studies focusing on moving
solid surfaces. In this study, different interpolated bounce back schemes are compared
theoretically for a moving boundary. Then, several benchmark cases are presented to
show their actual performance in numerical simulations. Second, we examine different
implementations of themomentumexchangemethod to calculate hydrodynamic force and
torque acting on a moving surface. The momentum exchange method is well established
for fixed solid boundaries, however, for moving solid boundaries there are still open
issues such as unphysical force fluctuations and Galilean invariance errors. Recent progress
in this direction is discussed, along with our own interpretations and modifications.
Several benchmark cases, including a particle-laden turbulent channel flow, are used to
demonstrate the effects of different modifications on the accuracy and physical results
under different physical configurations. The third aspect is the refilling scheme for
constructing the unknown distribution functions for the new fluid nodes that emerge from
the previous solid region as a particle moves relative to a fixed lattice grid. We examine
and compare the performance of the refilling schemes introduced by Fang et al. (2002),
Lallemand and Luo (2003), and Caiazzo (2008). We demonstrate that improvements can
be made to suppress force fluctuations resulting from refilling.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulent flows laden with solid particles are ubiquitous in engineering, biological and environmental applications.
Examples include fluidized bed reactors, spray atomization, bubble columns, plankton contact dynamics in ocean water,
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transport of blood corpuscles in the human body, sediment transport, warm rain process, volcanic ash eruptions,
dust storms, and sea sprays. In these applications, particles are usually suspended in a turbulent carrier fluid. The
interactions between the dispersed and the carrier fluid phases impact the dynamics of suspended particles (e.g., dispersion,
deposition rate, collision rate, settling velocity) and the bulk properties of the multiphase flow (e.g., wall or surface drag,
turbulence intensity). In some of these applications, the particle size is comparable to or larger than the flow Kolmogorov
length [1], which introduces a finite-size effect greatly complicating the description of the flow system. Currently, the
only rigorous method is to numerically resolve the disturbance flows around particles, known as the particle-resolved
simulation (PRS). This requires an explicit implementation of the no-slip boundary condition on the surface of each moving
particle.

PRS of turbulent particle-laden flows requires direct simulation of the turbulent carrier flow and explicit and accurate
treatment of manymoving fluid–solid interfaces, such that all scales from turbulence integral scale to dissipation scales and
particle size are adequately resolved with realistic scale separations that depend on applications. In recent years, several
PRS methods based on the Navier–Stokes (N–S) equation have been developed, with the particle–fluid interfaces treated by
the immersed boundary method [2,3], direct-forcing [4], local analytical treatment [5], overset grid [1], force-coupling [6],
or penalization method [7]. As reviewed in [8,9], these studies have contributed to the understanding of flow modulation
by the inertial particles and the dynamic effects due to finite particle size.

As an alternative approach, lattice Boltzmannmethod (LBM) has also been applied as a PRSmethod for turbulent particle-
laden flows [10,8,9]. The LBM approach features a high-level data locality essential to efficient implementation of PRS.
Another advantage is that LBM has the flexibility and simplicity (i.e., via local bounce-back) for implementing interfacial
boundary conditions. This offers the potential for themethod to be applied to treat turbulent flows ladenwith non-spherical
and deformable particles.

In LBM, a set of mesoscopic distribution functions are solved. The number of microscopic velocities at a give lattice node
is usually several times larger than the number ofmacroscopic hydrodynamic variables in the continuumN–S equation. This
feature provides LBMwith amuch simpler evolution equation and greater flexibilities, but leads to an implementation issue
at boundaries or fluid–solid interfaces. Although the macroscopic boundary conditions (i.e., no penetration and no-slip) are
clearly established, the method to construct the missing microscopic distribution functions is no unique since the number
of unknowns is larger than the number of boundary conditions.

For particle-laden flow simulations, this results in three general issues. First, the unknown distribution functions must
be carefully constructed to satisfy the no-penetration and no-slip boundary conditions at the moving fluid–solid interfaces
and other considerations of physical consistency and numerical accuracy. Second, to simulate the motion of moving solids
in the fluid, hydrodynamic forces need to be accurately calculated from the microscopic distribution functions. Third, for
flows with moving fluid–solid interfaces, every time when a previous solid node becomes a fluid node, the information at
such a new fluid node needs to be filled.

Over the past 25 years, many efforts have been devoted to these three topics for moving fluid–particle problems. While
many different implementations of the velocity boundary condition have been developed for a fixed straight boundary (see
the review by Latt et al. [11]), for a moving curved boundary the early efficient implementation may be traced to studies
of Ladd and co-workers [12,13]. In those early studies, the standard (or mid-link) bounce back scheme was used, causing
a curved boundary to be effectively approximated by a zigzag staircase. Later on, different interpolated (and sometime
extrapolated) bounce back schemes are proposed to capture more precisely the real fluid–solid interface [14–21]. Even
though each boundary treatment scheme has been separately tested and applied to different physical problems, to our
knowledge, they are yet to be systematically compared and benchmarked under same conditions. For the users of LBM, it
is still not clear which boundary-condition implementation scheme to choose, especially when the solid boundaries are
moving in a nonuniform flow.

Regarding hydrodynamic force evaluation in LBM, the most popular and efficient approach is the momentum exchange
method (MEM), whose general concept has been introduced in the early studies [12,18,22]. Recently, the Galilean variance
property of MEM has been questioned and remedies are proposed in several studies [23–26]. This problem was largely
ignored in early works because of three reasons. First, benchmark cases used to test a force evaluation model were mostly
limited to fixed solid boundaries where the Galilean invariance is not an issue. Second, while the Galilean invariance errors
resulting from MEM may be present at every boundary node, for simple cases with symmetric solid particle shapes, it is
usually thought that the local errors can cancel with each other such that the calculated net hydrodynamic force acting on
a moving particle remains accurate. Third, because the local Galilean invariance error typically has a magnitude of O


Ma2


,

where Ma is the Mach number, it is normally thought to be negligible. In light of the very recent developments [24,25],
we will point out some incorrect suggestions made in the literature in attempt to restore Galilean invariance, as well as
the subtle difference in the recent correct treatments by Wen et al. [25] and Chen et al. [26]. We will demonstrate that a
lack of Galilean invariance could lead to unphysical results in more general situations (e.g., particle-laden turbulent flows).
Therefore, careful and thorough tests are still required to re-examine previous MEMmodels when applied to complex flow
configurations. The recent studies [25,26] have demonstrated the deficiencies of previous MEM implementations, using
simple to moderately complex moving-particle problems.

The refilling scheme for a new fluid node has been considered in several previous studies [27–31]. Lallemand and Luo [27]
suggested a scheme based on quadratic extrapolation along the solid local outer normal direction. Fang et al. [28] averaged
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the information from all neighboring fluid nodes as an approximation to the unknown distribution functions at the new fluid
nodes, known as averaged extrapolation refilling scheme [28]. Caiazzo [29] partitioned the unknown distribution functions
into the equilibrium and non-equilibrium parts, and obtained each part separately by direct calculation and propagation. In
all the above schemes, the non-equilibrium parts of the unknown distribution functions are obtained from extrapolation.
Different from them, Shin et al. [30] constructed the non-equilibrium parts as well from the local strain rate. Later, based
on the same idea, Krithivasan et al. [31] used a more general Grad approximation to refill the information at the newly
uncovered node points. Because the refilling process only happens locally around the particle surfaces, it might have only
limited effects on the overall results of LBM simulation, especially for viscous flows with low Reynolds number. However,
the effects of a refilling scheme on the calculated local flow and the hydrodynamic force acting on a solid particle have
not been systemically studied using an adequate range of benchmark cases. From some preliminary results in a turbulent
flow (e.g., Fig. 8 in [9]), the noisy results of the local physics are likely related to the flaws in the refilling scheme. We will
demonstrate that, if the refilling scheme is not properly implemented, it can be a source of significant problems affecting
both the accuracy of the force evaluation and the numerical stability of fluid–particle systems, especially when the flow and
particle Reynolds numbers are high.

This study has two general objectives. First, by reviewing and critically re-examining previous studies especially those
recent ones, we attempt to delineate implementation issues in LBM simulationswithmoving fluid–solid interfaces and their
potential impacts on the physical results. Second, by comparing different methods using a wide range of benchmark cases,
we attempt to develop a few general guidelines for choosing optimized implementations in moving particle simulations.
All three aspects mentioned above will be considered. We shall emphasize that these aspects are inter-connected, and it
is important to treat all of them correctly in order to achieve a successful and accurate simulation of a moving particle
system.

This paper shall be arranged as follows. Section 2 provides a brief description of the lattice Boltzmann approach. Different
interpolated bounce back schemes for moving fluid–solid boundary are reviewed, tested, and compared in Section 3. In
Section 4, we focus our discussions on differentMEM implementations to compute hydrodynamic forces acting on amoving
solid particle. Recent developments and improvements are particularly stressed. In Section 5, different filling schemes are
discussed and compared, and a newvelocity-constrained filling scheme is introduced. A summary and outlook are presented
in Section 6. Based on the criteria of the least unphysical fluctuations in the resulting hydrodynamic force and the best
numerical stability, we conclude that the velocity-constrained filling scheme provides the best overall performance when
compared to other filling schemes.

2. Lattice Boltzmann method

The lattice Boltzmann (LB) equation is a fully discrete approximation in velocity, time and space, of continuous Boltzmann
equation. Different from the conventional CFD methods based on the N–S equation, in the LB approach we solve the kinetic
equation for the molecular distribution function fα(x, t) at position x, time t and with molecular velocity eα . A typical LB
equation with the single-relaxation-time or BGK collision term is written as

fα (x + eαδt, t + δt) − fα (x, t) = −
1
τ


fα(x, t) − f (eq)

α (x, t)

, (1)

where δt is the time step size, τ is the dimensionless relaxation time and is related to the kinematic viscosity ν = (τ − 0.5)
c2s δt , cs is themodel speed of sound. The number of the discrete velocities (eα) depends themodel details and dimensionality
of the physical space. The equilibrium distribution function f (eq)

α is typically expressed as

f (eq)
α = ρwα


1 +

1
c2s

(eα · u) +
1
2c4s

(eα · u)2 −
1
2c2s

u2


, (2)

where wα is the weighting factor, ρ is fluid density, and u is the hydrodynamic velocity. Further details can be founded
in [32–34]. The above LB equation can be divided into two processes

The collision step: f̃α(x, t) = fα(x, t) −
1
τ


fα(x, t) − f (eq)

α (x, t)


(3)

The streaming step: fα(x + eαδt, t + δt) = f̃α(x, t). (4)

With proper lattice symmetry and equilibrium distributions, the LB equation can be designed to reproduce the N–S equation
under the multiscale Chapman–Enskog expansion [35]. Multiple designs of the lattice structure, lattice velocities, and
equilibrium distribution are possible. The most popular lattice models are the D2Q9 model (nine velocities in two space
dimensions) and the D3Q19 model (nineteen velocities in three space dimensions), as shown in Fig. 1. The moments of fα
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a b

Fig. 1. Lattice structure and lattice velocities in (a) D2Q9 and (b) D3Q19.

provide the macroscopic quantities, namely, the density, velocity and stress tensor can be obtained as

ρ =


α

fα

ρu =


α

fαeα

pδij + ρuiuj =


α

f (eq)
α eαieαj

Πij = −


1 −

1
2τ

 
α


fα − f (eq)

α


eαieαj

(5)

where eαi denotes the i-component of the microscopic velocity eα , p is the pressure, and Πij = ρν

∂ui/∂xj + ∂uj/∂xi


is

the viscous stress tensor.

2.1. Multi-relaxation time (MRT) LBM

Given a set of discrete velocities eα and their corresponding distribution functions fα , in principle one can construct
the same number of independent moments of f . These moments can be linked to macroscopic modes such as density,
momentum, stress, energy, energy flux, etc. In kinetic theory it is well known that various physical processes in fluids can
be approximately described by the coupling and interactions among these modes [36]. Unlike the LBGK model given by
Eq. (1), different modes may be associated with different relaxation processes (or transport coefficients), thus relaxation in
the moment space provides more flexibility. For the D2Q9 model, the 9 independent moments in the moment space are

|m⟩ =

ρ, e, ε, jx, qx, jy, qy, pxx, pxy

T
, (6)

where ρ is the density, e is related to the kinetic energy, ε is related to the kinetic energy squared, jx and jy are the x and y
components of the momentum, qx and qy are proportional to the energy flux in x and y directions, pxx and pxy are related to
the diagonal and off-diagonal components of the viscous stress tensor. The distribution functions and moments are related
through a transform matrixM

|m⟩ = M| f ⟩, |f ⟩ = M−1
|m⟩ (7)

where |f ⟩ = (f0, f1, f2, f3, f4, f5, f6, f7, f8)T .
The density andmomentmoments are conserved variables during collision. The other six non-conservedmoments could

relax at different rates, leading to the Multiple-relaxation-time (MRT) LBM as

fα(x + eα, t + δt) − fα(x, t) = −M−1SM

fα(x, t) − f (eq)

α (x, t)

, (8)

where S is a diagonal relaxation matrix S = diag (0, s1, s2, 0, s4, 0, s4, sν, sν). Specifically, sν is related to the kinematic
viscosity as ν = (s−1

ν − 1)c2s δt , s1 is related to the bulk viscosity, s2 and s4 are adjustable parameters that have no effects
on the N–S equation. At lowMach number, s1, s2, and s4 may be used to improve numerical stability [36,37] and accuracy of
the boundary condition implementation [19,38]. Therefore, a main benefit of the MRT model over LBGK model is its better
numerical stability, especially for flows with high Reynolds numbers [38,37].

It should be noted that in MRT LBM, the equilibrium distribution functions f (eq)
α may not be identical to its counterparts

in LBGK, as the equilibrium distributions for some moments may be irrelevant to the N–S equation. As mentioned in [36],
the equilibrium of the energy squared moment in D2Q9 MRT model has a form of ϵ(eq)

= aρ + b(j2x + j2y), with a and b
being free parameters. By choosing a = 1 and b = −3, the standard f (eq)

α given in Eq. (2) can be recovered. Furthermore, by
modifying the configuration of the moment space and related relaxation processes, the lattice geometry of the LB approach
can be expanded. For example, usingMRT LBM, a correct N–S hydrodynamicmodel can be constructed even on a rectangular
lattice grid, as shown in [39]. In this study, all results from different benchmark cases are obtained by using the MRT LBM.
We note that the LBGK model is a special case of MRT LBM where all relaxation parameters are equal to 1/τ . More details
can be found in [36] for 2D MRT model and [37] for 3D MRT models.
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Fig. 2. Sketch to show notations used to construct a bounce back scheme at the fluid–solid boundary.

2.2. Nearly incompressible formulation of the lattice Boltzmann equation

For all benchmark cases to be developed in this paper, since the Mach numberMa is assumed to be low, we take the sug-
gestion made in [40] to use the nearly incompressible formulation of the lattice Boltzmann equation. In the incompressible
formulation, it is assumed the local density fluctuation is small compared to the mean density and we write

ρ = ρ0 + δρ, (9)
where the density fluctuation δρ has the magnitude of O


Ma2


. By substituting the above relation into the equilibrium

distribution, Eq. (2), and neglecting terms of O

Ma3


or higher, the equilibrium distribution becomes

f (eq)
α = wα


δρ + ρ0


eα · u
c2s

+
(eα · u)2

2c4s
−

u2

2c2s


. (10)

Though the Chapman–Enskog procedure, the LBGK model yields the following hydrodynamic equations

∂δρ

∂t
+ ∇ · u = 0 (11a)

∂u
∂t

+ u · ∇u = −
1
ρ0

∇p + ν∇
2u (11b)

where p = δρc2s , is the pressure.
It is obvious that Eq. (11a) will enforce incompressibility for steady flows. For transient flows, the incompressible formu-

lation also has less compressibility effects than the regularmodel [40]. For example, the incompressible formulation can sig-
nificantly reduce the intensity of numerical pressure waves and improve the precision of transient simulations with respect
to incompressibility and predicted pressure [41]. Therefore, in this paper, all benchmark cases will be developed using this
incompressible formulation. The same density decomposition can be applied within MRT LBM to achieve the same benefits.

3. Boundary treatments in the solid–fluid interface

In the macroscopic fluid dynamics, the no-penetration no-slip boundary condition is usually assumed at the fluid–solid
interface. Since the number of unknown mesoscopic distribution functions at the fluid–solid interface is larger than the
number of macroscopic boundary conditions, the implementation of the boundary condition in terms of the distribution
functions is not unique and numerous possibilities have been developed over the years [12,14–19,21,27,42–44], all with the
goal to fill in the missing distribution functions streaming from solid nodes. Among all these different implementations, the
bounce back scheme is the most popular one due to its physical simplicity and robustness. On the fluid–solid boundary, the
bounce back scheme can be written as:

fᾱ

xf , t + δt


= f̃α


xf , t


−


f̃ (eq)
α


xw, t+


− f (eq)

ᾱ


xw, t+


= f̃α


xf , t


+ 2wαρ0

eᾱ · uw

c2s
, (12)

where xf indicates the boundary fluid node as shown in Fig. 2, eα points into the solid region and eᾱ = −eα , t+ denotes the
time when the distribution f̃α


xf , t


arrives at the fluid–solid boundary. Basically, it is assumed that the non-equilibrium

part of the distribution on a boundary link remains unchanged during bounce back.
The simple bounce back scheme, Eq. (12), is known to be of second-order accuracy only when the solid surface is located

half lattice spacing from the boundary node f . When the solid surface is not at the mid-link position, its accuracy is of first
order only which is inconsistent with the deign of the LB equation. Or equivalently, the curved surface is approximated
by zig-zag staircases [12]. To capture the actual shape of the solid surface and maintain the second-order accuracy, an
interpolation scheme is used to construct the missing distribution function fᾱ


xf , t + δt


. Some of the known interpolation

schemes are discussed next, followed by a systematic comparison using a few benchmark problems.
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3.1. Interpolated bounce back schemes

3.1.1. Bouzidi’s interpolated bounce back scheme [14]
The scheme of Bouzidi et al. [14] considers two different situations based on the relative location of the boundary node

xf relative to the solid boundary xw , using the parameter q = |xf − xw|/|xf − xb| (see Fig. 2). For q ≤ 0.5, the distributed
is interpolated at the temporary location D between xf and xff by the distributions at xf and xff (and xfff for a quadratic
interpolation), such that the interpolated population at D will stream exactly to xf after bounce back during one time step.
For q ≥ 0.5, the population at xf is first streamed and bounced back to a temporary location D′ located between xw and xf ,
then together with the population at xff (and xfff for a quadratic interpolation) to obtain the unknown population at xf again
by interpolation. For q ≤ 0.5, the interpolation expressions are

Linear : fᾱ

xf , t + δt


= 2qf̃α


xf , t


+ (1 − 2q) f̃α


xff , t


+ 2wαρ0

eᾱ · uw

c2s
(13)

Quadratic : fᾱ

xf , t + δt


= q (2q + 1) f̃α


xf , t


+ (1 + 2q) (1 − 2q) f̃α


xff , t


− q (1 − 2q) f̃α


xfff , t


+ 2wαρ0

eᾱ · uw

c2s
(14)

and for q ≥ 0.5:

Linear : fᾱ

xf , t + δt


=

1
2q


f̃α


xf , t


+ 2wαρ0

eᾱ · uw

c2s


+

2q − 1
2q

fᾱ

xf , t


(15)

Quadratic : fᾱ

xf , t + δt


=

1
q (2q + 1)


f̃α


xf , t


+ 2wαρ0

eᾱ · uw

c2s


+

2q − 1
q

fᾱ

xf , t


−

2q − 1
1 + 2q

fᾱ

xff , t


. (16)

3.1.2. Mei’s interpolated bounce back scheme [15–17]
This interpolation scheme was originally proposed by Filippova and Hänel [15] and later improved by Mei et al. [16,17]

for better numerical stability. The interpolation is expressed as:

fᾱ (xf, t + δt) = (1 − χ) f̃α

xf , t


+ χ f ∗

b (xb, t) + 2wαρ0
eᾱ · uw

c2s
(17)

where f (∗)
b (xb, t) is the fictitious equilibrium distribution:

f (∗)
b (xb, t) = wα


δρ


xf , t


+ ρ0


1
c2s

eα · ubf +
1
2c4s


eα · uf

2
−

1
2c2s

uf · uf


. (18)

This interpolation scheme also considers two cases, namely, the parameter of χ and ubf are given as

for q < 0.5 : ubf = uf , χ =
2q − 1
τ − 1

(19)

for q ≥ 0.5 : ubf =
q − 1
q

uf +
1
q
uw, χ =

2q − 1
τ

. (20)

Later, through numerical tests, it was noticed that the scheme becomes unstable when the absolute value of χ is large.
According to Eq. (19), there is a large unstable region around τ = 1 and stretching all the way close to τ = 0.5 when
q < 0.2 [16]. Therefore, this scheme can only have good performance for large values of τ . For high Re number flows, where
the lowviscosity is usually achieved by having small τ , the original scheme is inadequate. To improve the numerical stability,
Mei et al. [16] suggested that χ and ubf can be modified as:

for q < 0.5 : ubf = uff , χ =
2q − 1
τ − 2

for q ≥ 0.5 : ubf =
q − 1
q

uf +
1
q
uw, χ =

2q − 1
τ

(21)

where the unstable region is moved to τ close to 2.
For higher Reynolds number flows, Mei et al. [17] further suggested the following modification

for q < 0.5 : ubf = uff , χ =
2q − 1
τ − 2

for q ≥ 0.5 : ubf =


1 −

3
2q


uf +

3
2q

uw, χ =
2q − 1
τ + 0.5

.

(22)



C. Peng et al. / Computers and Mathematics with Applications 72 (2016) 349–374 355

Again, this modification originates from the consideration that for high Re flow, when τ is only slightly greater than 0.5, the
value of χ could exceed the stability region when q is close to 1 [17]. In the followed test, unless explicitly specified, Mei’s
scheme implies the scheme presented by Eq. (22).

3.1.3. Yu’s double interpolation [18]
The two bounce-back interpolation schemes introduced above need to treat q < 0.5 and q ≥ 0.5 separately. In the

double interpolation treatment originated by Yu et al. [18], all values of q are handled with a same expression. Three steps
are included in the realization of this boundary treatment. First, by using the existing populations at fα


xf , t


and fα


xff , t


(and fα


xfff , t


), the population at a temporary location is interpolated, which, during the streaming process, will propagate

exactly to the wall

Linear : f̃α (xw, t + δt) = qf̃α

xf , t


+ (1 − q) f̃α


xff , t


(23)

Quadratic : fα (xw, t + δt) =
q (1 + q)

2
f̃α


xf , t


+ (1 − q) (1 + q) f̃α


xff , t


−

q (1 − q)
2

f̃α

xfff , t


. (24)

Second, an instantaneous bounce-back operation at the wall yields

fᾱ (xw, t + δt) = fα (xw, t + δt) + 2wαρ0
eᾱ · uw

c2s
. (25)

Finally, the unknown population is interpolated from fᾱ (xw, t + δt) and fᾱ

xff , t + δt

 
and fᾱ


xfff , t + δt


as

Linear : fᾱ

xf , t + δt


=

1
1 + q

fᾱ (xw, t + δt) +
q

1 + q
fᾱ


xff , t + δt


(26)

Quadratic : fᾱ

xf , t + δt


=

2
(1 + q) (2 + q)

fᾱ (xw, t + δt) +
2q

1 + q
fᾱ


xff , t + δt


−

q
2 + q

fᾱ

xfff , t + δt


. (27)

3.1.4. Ginzburg’s multireflection [19]
While the above bounce-back schemes are claimed to be of second-order accuracy, the relative errors of those boundary

schemes are viscosity-dependent [19]. Ginzburg [19] proposed a viscosity-independent bounce back scheme known as
multireflection boundary condition. This boundary scheme is derived using the Chapman–Enskog expansion at planar
boundary and involves 6 populations at the fluid boundary node and their neighboring nodes. The general mathematical
form is written as

fᾱ

xf , t + δt


= κ1 f̃α


xf , t


+ κ0 f̃α


xff , t


+ κ−1 f̃α


xfff , t


+ κ̄−1 f̃ᾱ


xf , t


+ κ̄−2 f̃ᾱ


xff , t


+ wqwαρ0

eᾱ · uw

c2s
+ wα

F pc
α

c2s
. (28)

All coefficients κi on the RHS are functions of q, which are given in TABLE II in [19]. The last term is proportional to the second-
order non-equilibrium part of the distribution so it will be purposely ignored for the sake of simplicity. By specifying the
values of those coefficients, the simple bounce back, Eq. (12), and Bouzidi’s interpolated bounce back schemes, Eqs. (13)–(16)
can be recovered [19].

3.1.5. Chun’s equilibrium interpolation [21]
For flows with dense particle suspension, the gap between two particles might be too small that no sufficient fluid nodes

could be used for interpolation. To address this problem, Chun and Ladd proposed an equilibrium interpolation [21]. The
idea is originated from the observation that, according to the Chapman–Enskog expansion, the non-equilibrium part of a
distribution function is always one order smaller than the equilibrium part, which was also noted in Guo et al. [20]. Hence,
an interpolated bounce back scheme for the equilibrium part combined with a simple bounce back for the non-equilibrium
part can still give the second-order accuracy. This scheme also needs to be divided into two situations according to q, when
q ≤ 0.5, the scheme is similar to Bouzidi’s linear interpolation, Eq. (13), but only interpolate for the equilibrium part:

f (eq)
ᾱ


xf , t + δt


= 2qf (eq)

α


xf , t


+ (1 − 2q) f (eq)

α


xff , t


+ 2wαρ0

eᾱ · uw

c2s
. (29)

One the other hand, when q > 0.5, the fictitious equilibrium distribution at the wall point xw (see Fig. 2) can be defined
based on the local density ρw and wall velocity xw . Then, an interpolation based on the equilibrium distributions at xw and
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Fig. 3. The 2D Poiseuille flow with a moving top wall.

xf can be done before streaming happens. By streaming, the bounced back population at the boundary node xf is obtained.
The process can be expressed as:

f (eq)
ᾱ


xf , t


=

1 − q
q

f (eq)
α


xf , t


+

2q − 1
q

f (eq)
α (xw) (30)

where f (eq)
α (xw) = f (eq)

α (δρw,uw). The density here can be either local fluid density or mean fluid density. When there is
only one fluid node between two solid surfaces, in the case of q < 0.5, one can construct equilibrium distribution at both
surface to conduct the interpolation:

f (eq)
ᾱ (xf , t + δt) =

q′
+ 2q − 1

q′
f (eq)
α (x′

w) +
2q − 1

q′
f (eq)
α (xw) (31)

where f (eq)
α (xw) and f (eq)

α (x′
w) are the equilibrium distributions at the wall surface points xw and x′

w , respectively. q is the
relative distance from the boundary node point xf to xw , while q′ is the relative distance between xf and x′

w . Note that the
interpolation only happens when q′ > 1 − 2q, otherwise one should use the simple bounce back, Eq. (12), instead.

3.2. Benchmark cases and comparison results

To maintain the overall accuracy of the LBM simulations, the boundary treatment schemes should at least be of second-
order accuracy. At the same time, they should be numerically stable and robust to handle different physical situations,
especially for flows with complex geometries or at high Reynolds number. For the implementations listed in Section 3.1,
the accuracy and stability have been well established in each original publication and can be examined both theoretically
and numerically. However, even though these boundary schemes are frequently used in different flows involving moving
surfaces [45,46,26], their performances have not been compared adequately and systematically to allow others to chose one
from the others. In this sections, these schemes are compared for three different benchmark cases: (1) Poiseuille channel
flowwith one wall moving; (2) a cylinder translating in a horizontal channel, and (3) an ellipsoidal particle falling freely in a
vertical channel. In all the test cases discussed here, the Galilean invariancemomentum exchangemethod (to be introduced
in Section 4) by Wen et al. [25] is employed to obtain the hydrodynamic forces and torque acting on a solid particle. The
velocity-constrained normal extrapolation scheme (to be introduced in Section 5) is used to refill the missing information
at new fluid nodes.

3.2.1. Case problem 1 (CP1): 2D Poiseuille flow with a moving top wall
The physical problem is sketched in Fig. 3. The viscous flow is driven by both a moving top wall and a constant pressure

gradient. The theoretical solution with zero initial velocity can be obtained as

u = −
gx
2ν

y2 +

 gx
2ν

H +
uw

H


y +

∞
n=0

Ane
−

−n2π2

H2 νt sin
nπy

H


(32)

where H is the width of the channel, An =
gx
ν

H2

n3π3 [(−1)n − 1]+ 2uw

nπ (−1)n. At steady state, the theoretical solution reduces
to

u = −
gx
2ν

y2 +

 gx
2ν

H +
uw

H


y. (33)

First, the accuracy of different interpolate bounce back schemes are numerically examined for different values of q. We first
consider two values of q (0.25 and 0.75), and examine the relative error of the numerical solution relative to the analytical
solution at the steady state. The number of grid points N in the channel width direction varies from 30 to 120, which a step
of 30. In CP1, the relaxation parameters being used are S = diag (0, 5/3, 1.54, 0, 1.9, 0, 1.9, 5/3, 5/3). In Fig. 4, we show
the results of relative numerical errors, defined as (u − utheo)/utheo and averaged over the channel width, where utheo is the
theoretical results obtained by Eq. (33). The red lines show a slope of−2 in the log–log plots. It is confirmed that all boundary
schemes can maintain a second-order accuracy even with the moving top boundary. However, the absolute value of errors
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a b

Fig. 4. Themagnitude of relative error in velocity as a function ofH in lattice units, (a): q = 0.25, Mei’s method are identical in [16] and [17]; (b): q = 0.75,
the results indicated as Mei et al., 1999 and Mei et al., 2000 are obtained by using the scheme in [16,17], respectively.

Fig. 5. The relative errors in velocity as a function of q.

can differ by up to one order of magnitude. It is interesting to observe that while the quadratic schemes are more accurate
than the linear schemes for q = 0.75, the linear schemes perform better at q = 0.25.

The dependence of relative errors on q for each case is shown in Fig. 5. The value of q is varied from 0 to 1.0, with N fixed
at 60. Several observations can be made from Figs. 4 and 5. The errors from the linear interpolation schemes (Chun, Mei,
Bouzidi’s linear and Yu’s linear) not only changemore dramatically with the value of q, but also have largermagnitudes than
those from quadratic interpolation schemes (Bouzidi’s quadratic, Yu’s quadratic and Ginzburg). These results show that the
quadratic schemes have better overall accuracy in the sense that the error is not strongly dependent on q. It is worth pointing
out that this weaker dependence on q for the quadratic interpolation schemes could be an important advantage for flows
withmoving solid surfaces, where q is constantly changingwith time. This could imply smaller fluctuations in the computed
hydrodynamic quantities, especially the forces acting on solid particles (to be discussed later). Moreover, it is observed that
none of the linear scheme has converged error at q = 0 and q = 1, while all quadratic schemes have identical error at those
two extremes, indicating better consistency for quadratic schemes.

3.2.2. Case problem 2 (CP2): a cylinder translating with a constant velocity in 2D Couette flow
In this case, a cylinder is translatingwith a constant velocity in a horizontal Couette flowdriven by two oppositelymoving

walls. The cylinder is located slightly away from the centerline of the channel and moves horizontally with a prescribed
constant velocity and zero angular velocity (see Fig. 6). The parameters are Nx = 201, Ny = 101, D = 25.25, a = 54.0,
uw = 0.1, and up = 0.02. The kinematic viscosity is 1/9.

We shall compare the resulting hydrodynamic forces acting on the cylindrical particle computed by the samemomentum
exchange method (the Galilean-invariant momentum exchange method [25]) and the same refilling scheme (velocity-
constrained normal extrapolation scheme, see Section 5). The resulting hydrodynamic forces acting on the cylinder in x
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Fig. 6. Sketch showing a cylinder translating in a 2D Couette flow.

a b

Fig. 7. Time evolution of the hydrodynamic force component Fx: (a) the whole time interval, (b) a zoom-in view.

a b

Fig. 8. Time evolution of the hydrodynamic force component Fy: (a) the whole time interval, (b) a zoom-in view.

and y directions are shown in Figs. 7 and 8, respectively. There are significant force fluctuations, with the fluctuation level
depending on the interpolation scheme. According to Galilean invariance, the physical problem is unchanged when up is set
to zero. In this case, the resulting force is smooth and shall be used as a benchmark to compute the level of fluctuations. For
the case of up = 0, different schemes yield similar results (with relative difference less than 0.3%). When quantifying force
fluctuations, we use the results of the respective scheme with up set to zero as the benchmark. The unphysical fluctuations,
as discussed in [27], partly result from the fact that the relative position of the each boundary node is always changing as the
cylinder moves in time. Therefore, carefully choosing the interpolation scheme can play an important role in reducing this
fluctuation. As shown in Figs. 7 and 8, the fluctuationswhen the quadratic interpolation schemes (Bouzidi, Yu and Ginzburg)
are used are generally much smaller than those based on the linear interpolation schemes (Mei and Chun). We computed
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Table 1
The level of normalized force fluctuations for the case of cylinder translating in a 2D Couette flow: [a] up = 0.02; [b] up = 0.03.

Bounce back schemes σ [a]
x σ [a]

y σ [b]
x σ [b]

y

Chun et al. (linear) 1.3545 × 10−2 5.8856 × 10−2 1.4715 × 10−2 7.1256×10−2

Mei et al. (linear) 1.3412 × 10−2 4.0017 × 10−2 1.5267 × 10−2 5.0011×10−2

Bouzidi et al. (quadratic) 1.9575 × 10−3 1.6082 × 10−2 2.7440 × 10−3 1.9372×10−2

Yu et al. (quadratic) 3.0536 × 10−3 2.2175 × 10−2 4.0325 × 10−3 2.5513×10−2

Ginzburg et al. (quadratic) 2.9348 × 10−3 1.7314 × 10−2 4.0760 × 10−3 2.1588×10−2

Fig. 9. The initial configuration of an elliptic particle settling freely in a vertical channel.

the standard deviations (normalized by the maximum Fx value for the fixed-cylinder benchmark case) in Fx and Fy for each
moving particle simulation, using data from roughly the last 1/3 time interval. The results are compiled in Table 1, which
demonstrates that, by choosing the higher-order interpolation schemes, the force fluctuation can be reduced by a factor of
5–7 in the x direction and a factor of 2–4 in the y direction. All quadratic schemes have a similar level of fluctuations, with
Bouzidi’s scheme being the best. The two linear interpolation schemes also yield similar results. When the particle velocity
increases, the force fluctuations from all five interpolation schemes become larger, indicating that the force fluctuation
will become a more severe issue for high-Re flows. Therefore, for the force fluctuations in moving particle simulations,
we conclude that the quadratic (or higher-order) interpolation schemes are strongly preferred over linear interpolation
schemes.

3.2.3. Case problem 3 (CP3): an elliptic particle settling in a 2D vertical channel
Here we consider an elliptic particle settling freely in a vertical channel. This is a more complex case as the particle

shape is not rotationally symmetric. The results could depend more sensitively on the choice of boundary interpolation
schemes as the errors result from different origins may not cancel each other. The results are compared with those based on
an finite element method (FEM) in [45]. The FEM results are widely accepted as the benchmark for different numerical
methods mainly for two reasons. First, because of the body fitted mesh used in the FEM, it represents the boundary
geometry better than the numerical methods using a structured mesh. Second, the benchmark results come from arbitrary
Lagrangian–Eulerian (ALE)method, in which themeshwas reconstructed as the solid boundarymoved. This feature handles
the moving boundary more accurately compared to the use of a fixed grid.

The physical problem is sketched in Fig. 9. An elliptic particle is released at the top region of the channel, and settles
freely by the effect of gravity. The density ratio between particle and fluid is ρp/ρf = 1.1. Initially the particle is centered in
the channel with an angleπ/8 between itsmajor axis and the horizontal direction, so the particle also rotates because of the
unbalanced torque. The geometric parameters in this case are: Lx × Ly = 12 cm × 0.4 cm, a = 0.05 cm and b = 0.025 cm.
The fluid viscosity is ν = 0.01 cm2 s−1 and the gravity is gx = 980 cm/s2.
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d

b

c

a

Fig. 10. The time dependent hydrodynamic force on of elliptic particle: (a) x direction; (b) x direction zoom-in; (c) y direction; (d) y direction zoom-in.

Table 2
The level of fluctuations in the calculated Fx and Fy normalized by (ρp − ρf )Apgx ,
for the elliptic particle setting freely in a 2D vertical channel.

Bounce back schemes σx σy

Chun et al. 1.0416 × 10−2 1.0777×10−2

Mei et al. 6.2602 × 10−3 7.0853×10−3

Bouzidi et al. 4.1732 × 10−3 4.6196×10−3

Yu et al. 3.5729 × 10−3 6.8134×10−3

Ginzburg et al. 3.8693 × 10−3 7.1484×10−3

We first examine the time dependent hydrodynamic forces acting on the elliptic particle in x and y directions, as shown
in Fig. 10. For a better quantitative comparison, the standard deviation (normalized by (ρp − ρf )ApG, where Ap = πab)
of time-independent force fluctuation is also calculated and shown in Table 2. In this case, because of the unsteadiness of
particle motion, the benchmark value is defined as the averaged forces in every 1/400 second. Only the results after 1.5 s
are considered in the calculation of r.m.s. fluctuations. Once again, we conclude that quadratic interpolation schemes can
significantly reduce the level of fluctuations in the resulting forces acting on the particle. Bouzidi’s scheme appears to be the
best overall.

Furthermore, the effect of instantaneous force fluctuationsmay have a long-term effect on the particle trajectory, namely,
they may not cancel out when integrated over time. The center trajectory and angular orientation of the particle are shown
in Fig. 11 for each scheme. Indeed, at long times the trajectory obtained from the linear interpolation schemes departs from
that based on the quadratic schemes. The quadratic schemes yield almost the same trajectory. Note that even for the time
interval where FEM benchmark data exist, a close look indicates that the results from the quadratic schemes fit better to
the FEM data. The above observation shows that, for complex flows, the choice of interpolation schemes not only affects the
force evaluation, but also has an impact on the accuracy of particle velocities and trajectories. This implies that in a more
complex flow such as a turbulent flow the simulated result of fluid–solid particle interaction could be more sensitive to the
choice of the interpolation scheme. Especially, in a turbulent carrier flow, the frequencies of force fluctuations could overlap
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a b

Fig. 11. The time evolution of (a) the trajectory and (b) orientation angle for the case of the sedimentation of elliptic particle.

with fast time scales in the flow, which can make the choices of interpolation schemes even more important. Also, from
Table 1 we observe that the magnitude of force fluctuations increases with the solid particle velocity. For these two reasons,
we recommend that quadratic interpolation schemes be used instead of linear schemes in a turbulent carrier flow.

4. Force calculation methods in lattice Boltzmann method

In the context of particle-resolved simulations of turbulent particle-laden flows [8,9], it is important to capture the
motion of suspended solid particles accurately. This requires accurate and efficient computation of hydrodynamic force
and torque acting on each solid particle. In LBM, there are two methods to calculate the hydrodynamic force. The first is the
stress integration method (SIM), which, as in the N–S equation based CFD simulations, integrate the contribution of local
pressure and stress on the solid surface. The second approach is known as the momentum exchange method (MEM), which
simply sums up, over all boundary links, the local momentum change of the fluid lattice particles during the bounce back
process at the fluid–solid interface. In this section, the two methods are briefly introduced following the previous studies
[12,13,18,22,26,46,47]. The focus here is to review and compare different implementations of MEM in order to reveal the
best approach. Specifically, the local Galilean invariance of MEM is stressed. All numerical simulations shown in this section
utilize Bouzidi’s boundary implementation and the velocity-constrained refilling, as we focus only on comparing different
methods for evaluating hydrodynamic forces acting on solid particles.

4.1. Stress integration method

In SIM, the force and torque acting on the surface Ω of a solid particle is computed as

F =


Ω


−pI + µ


∇u + ∇uT 

· ndA, (34)

T =


Ω

r ×


−pI + µ

∇u + ∇uT 

· n

dA, (35)

where n is the unit normal pointing into the fluid region on the fluid–solid boundary, r is the position vector relative to the
particle center. Obviously SIM is based on the continuum hydrodynamics description. In LBM, the local pressure p can be
easily evaluated using the equation of states p = δρc2s . The viscous stress can be calculated mesoscopically as

τij = µ

∇u + ∇uT 

= −


1 −

1
2τ

 
α


fα − f (eq)

α


eαieαj. (36)

The integration must be performed on a set of points defined on the surface of the solid particle, where the distribution
functions must be obtained through extrapolation from fluid nodes outside of the solid particle. This extrapolation process
could be tedious and is not unique, making SIM computationally inefficient [22,46], particularly when many solid particles
are present in a fluid–solid system. For this reason, we shall not use this approach in this study.

4.2. Momentum exchange method

The momentum exchange method, on the other hand, is inherited from the kinetic theory, the description at the
microscopic level on which LBM is based. The fictitious fluid lattice particles act as molecules. To obtain the force acting on
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the solid surface one can sum upmomentum changes of fluid lattice particles with the fluid–solid boundary during bounce-
back. In early studies, this is expressed as the net loss of fluid momentum during the steaming substep, relative to the fixed
frame of reference, as

F =


all xf


αbl


f̃α(xf , t) + fᾱ(xf , t + δt)


eα. (37)

The torque can be evaluated as:

T =


all xf


αbl

(xw − Yc) ×


f̃α(xf , t) + fᾱ(xf , t + δt)


eα (38)

where Yc is the center position of the solid particle, xw is the boundary point where the boundary link intercepts with
the solid surface, the double summations are first over the boundary links αbl pointing from a given boundary node xf
into the solid surface, then over all the boundary nodes. We shall refer to Eq. (37) as the conventional MEM or CMEM.
CMEM is extremely easy to implement in LBM as all the information needed in the above equation is known as part of
the implementation of the no-penetration and no-slip condition. For the force evaluation on a curved boundary, CMEM is
thought to be superior to SIM for its simplicity and robustness [22]. However, CMEM as it is written, has a serious problem
with regard to local Galilean invariance.

4.3. Local Galilean invariance of MEM implementations

By local Galilean invariance, we mean that the force on any local area of the fluid–particle interface remains the same
if a constant velocity is added to the whole system. As pointed out previously [24,25], Eq. (37) is not Galilean invariant
locally. As an illustration, consider a fully relaxed system (i.e., no flow relative to the boundary) in a moving frame of
reference with a constant velocity along x direction. In this case, the distribution function at each node point is equal to
the equilibrium distribution. For the specific boundary arrangement shown in Fig. 12, the momentum exchange happened
at point xf according to Eq. (37) can be evaluated explicitly for a given boundary node xf , as

Fxf =


α=1,5,8

eα


f (eq)
α + f (eq)

ᾱ


=


α=1,5,8

wαeα


2δρ + ρ0

(eα · uw)2

c4s
− ρ0

u2
w

c2s


(39)

where the uw = uw x̂ is the velocity of the moving reference surface, x̂ and is the unit vector in the x direction. This implies
that the net hydrodynamic force acting on the local boundary depends on the value of uw , thus it is not locally Galilean
invariant. Under certain conditions, such as those with very low Mach number or those where a perfect symmetry exists
for both solid particle geometry and flow pattern, the integrated hydrodynamic force acting on the solid particle may still
appear to be Galilean invariant, because the unphysical error term is either negligible, or happens to cancel one another
on two opposite sides of a solid particle surface. However, for more general situations, especially when the local flow
field is nonuniform or turbulent, the above conditions are not met. A significant error may be present in the calculated
hydrodynamic force due to this violation of local Galilean invariance. The source of this problem is rather simple, namely,
the momentum exchange in Eq. (37) was based on the fixed reference frame, rather on the frame of reference moving with
the local boundary.

To address this problem, a simple-minded approach is to subtract the Galilean invariance error in the originalmomentum
exchange model on each boundary link [23,24].

Fα = Fα − Ferrα = Fα − wαeα


ρ0

(eα · uw)2

c4s
− ρ0

u2
w

c2s


(40)

where Fα and Fα are themomentumexchange after and before this specific Galilean invariance correction, Ferrα is the Galilean
invariance error obtained in Eq. (39). However, the linkwise correction has no physical basis, as the local Galilean invariance
is based on the summation over boundary links on a local solid surface. Therefore, this linkwise correction is a stronger
correction than what is necessary per local Galilean invariance of the hydrodynamic force.

The correct approach to restore local Galilean invariance is in fact rather straightforward andwas introduced in the recent
work by Wen et al. [25]. The similar idea was mentioned in the study of Krithivasan et al. [31]. In the kinetic theory, when
a population of molecules hits the wall, the momentum exchange between the population and the wall is a function of the
relative velocity so the net impulse is

Fdt = min(vin − uw) − mout(vout − uw) (41)

where min and mout are the mass of the population before and after the population hits the wall, respectively. vout and
vin indicate the velocity of the molecules after and before they collide with the wall. Obviously, the Galilean invariance
issue results from the fact that the mass is not necessary conserved, i.e. min and mout are not equal (here mainly due the
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Fig. 12. The link contact of a fluid lattice node with a solid wall.

interpolation schemes being used). In LBM, the mass does not conserved when a population hits a curved wall. Therefore,
by applying the same concept to MEM, we have

F =


all xf


αbl


f̃α


xf , t


(eα − uw) − fᾱ


xf , t + δt


(eᾱ − uw)


,

T =


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
αbl
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f̃α


xf , t


(eα − uw) − fᾱ


xf , t + δt


(eᾱ − uw)


.

(42)

For the spacial case shown in Fig. 12 with no relative fluid motion, it is easy to show that the net force calculated at xf is

Fxb =


α=1,5,8


f̃ (eq)
α (eα − uw) − f (eq)

ᾱ (eᾱ − uw)


=


α=1,5,8

2δρwαeα (43)

which is independent of uw and thus is locally Galilean invariant. Compared with the linkwise correction, this updated
Galilean-invariant momentum exchange method (GIMEM) is based on a solid physical ground. The Galilean invariance
error is eliminated on the level of node points (rather than on a single boundary link), which is fully consistent with the
hydrodynamics requirement.

For the spacial case shown in Fig. 12, we can compare the corrections to Eq. (37) in the linkwise correction method and
in the GIMEM. For links 1, 5, 8, the corrections in GIMEM are (−2ρ0u2

w/3, 0), (−ρ0u2
w/6, 0), and (−ρ0u2

w/6, 0), respectively.
But in the linkwise method, they are (−2ρ0u2

w/3, 0), (−ρ0u2
w/6, −ρ0u2

w/6), and (−ρ0u2
w/6, ρ0u2

w/6), respectively, where
the corrections in the y direction are unphysical. For a curved surface, when link 5 and link 8 are not paired, these
over-corrections could potentially lead to significant force fluctuations.

We shall now discuss an alternative approach suggested by Aidun et al. [13]. When a solid body is moving relative to
fixed fluid lattice nodes, it may cover some fluid nodes or uncover some solid nodes. Every time a fluid node is covered, the
momentum at this node will go into the solid body as a momentum increment. This momentum increment, is interpreted
as an impulse force given away by the fluid, which is added to the hydrodynamic force. On the other hand, when a solid
node is uncovered, the new fluid node is filled with fluid momentum, which represents an impulse force that needs to be
subtracted. Based on this interpretation, Aidun et al. [13] suggested to express the hydrodynamic force and torque as

F =


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+ fᾱ
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(44)

where


C ρ(xC )u(xC ) and


U ρ(xU)u(xU) are momenta at all covered and uncovered nodes, respectively, during a given
time step. In most cases, the momentum gain and loss resulting from the covered and uncovered nodes cannot cancel with
each other for two reasons. First, the pressure on the two sides of the solid body is usually unequal because of the relative
motion. For instance, when a particle is translating in a quiescent fluid, the pressure in front of the particle is larger than the
pressure behind the particle. Second, the total number of fluid nodes is not conserved because the covering and uncovering
do not necessarily happen at the same time. For an unsteady flow, the velocities at the covered and uncovered nodes are
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Fig. 13. Sketch to show a cylindrical particle settling freely in a vertical channel.

different. Hence, if the momenta at the covered and uncovered nodes are not considered, the cumulative error results from
the covering and uncovering may lead to quantitatively inaccurate or even qualitative incorrect answers.

However, Aidun’s correction happens in a discretized way, which could generate very large force fluctuations. The origin
of this drawback is that LBM is not based on volumetric formulation, but define the populations only at discretized node
points. To alleviate this, Chen et al. [26] uniformly distributes the momentum along the whole lattice link when accounting
for the effect of covering and uncovering. Every time step a portion of lattice link is covered, it is equivalent to a portion
of fluid originally sitting on part of the link is lost. On the other hand, when a portion of lattice link is uncovered, some
fluid momentum is added. The lost fluid mass associated with the partial covering of a link during one time step can be
approximated as −2wαρ0eα · uw/c2s . Therefore, Chen et al. [26] proposed to the following formulation

F =


all xf


α


f̃α


xf


+ fᾱ


xf , t + δt


eα − 2wαρ0

eα · uw

c2s
uw


(45)

which will be referred to as the modified MEM or MMEM. In addition to the benefit of having much smaller fluctuations,
when the particle velocity changes rapidly, this continuous correction could be more accurate than the impulse force
correction. The reason is that, in the continuous correction, the correction term is determined by the instantaneous boundary
velocity during a time interval instead of the velocity at the end of the time step implied by the discrete correction.

To bridge the gap between the two prospectives (i.e., the first based on the fixed frame of reference and the second based
on the frame of reference moving with uw), one can imagine the situation that the lattice grids move with the solid wall. In
that case, there is neither any node point being covered or uncovered, nor any error associatedwith local Galilean invariance
during the bounce-back momentum exchange, as the lattice node velocity is synchronized with the boundary velocity.
In other words, the demand of this covering/uncovering correction arises spontaneously when local Galilean invariance
becomes an issue.

One can also realize this connection by the apparent correction in GIMEM, Eq. (42), which is

Fcorα = −


f̃α


xf , t


− fᾱ


xf , t + δt


uw ≈ −


f̃ (eq)
α − f (eq)

ᾱ


uw = −2wαρ0

eα · uw

c2s
uw, (46)

which reduces to the expression in Eq. (45) for Chen et al.’s modified MEM. Our analysis indicates that the GIMEM in [25] is
equivalently to the modified MEM in [26] if the following is true

f̃α

xf , t


− fᾱ


xf , t + δt


≈ f̃ (eq)

α − f (eq)
ᾱ . (47)

This is essentially the assumption of the bounce-back of non-equilibrium distribution that is used in the implementation of
the on-slip boundary condition, namely, Eq. (12). Therefore, we expect that GIMEM and MMEM lead to very similar results,
even for the calculated force acting over a local area on the boundary. Still, we believe that GIMEM is the better formulation
due to its clear physical interpretation and its simplicity.

4.4. Results from numerical tests of benchmark problems

We now compare the different versions of MEM implementations by considering several benchmark problems. The first
problem is a cylinder settling freely in a vertical channel, as shown in Fig. 13. The channel length andwidth are L = 4 cm and
h = 0.4 cm, respectively. The diameter of the cylinder is D = 0.1 cm and its density is ρp = 1.03ρf . Initially, the cylinder
is placed at a = 0.324 cm away from the right wall so the particle will rotate due to the unbalanced torque. The results are
compared to those from the finite element method (FEM) in [48].
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a b

c d

Fig. 14. The results of time dependent cylindrical particle motion: (a) trajectories; (b) angular velocities; (c) vertical velocities; (d) horizontal velocities.

In Fig. 14 we show the time evolution of particle trajectory, velocity and angular velocity, for different MEM
implementations. Aidun’s correction to the conventional MEM is also included here. As expected, without correction, the
conventional MEM does not yield an accurate result when compared to the FEM benchmark. When Aidun’s correction is
included, it gives generally accurate results but can lead to remarkable fluctuation in the angular velocity. One the other
hand, the results from two new momentum exchange models are essentially identical and are in excellent agreement with
the FEM benchmark.

The evolutions of hydrodynamic forces and torque are shown in Fig. 15. Now we observe that CMEM with Aidun’s
correction contains extremely large force fluctuations when compared to the other two recent formulations, GIMEM and
MMEM. The results from Aidun’s correction [13] have already been smoothened by taking the local-in-time average of 30
time steps, while the results from the other two implementations are not averaged at all. The high level of fluctuations
in Aidun’s correction is due to the discretized correction manner noted previously. Here the Aidun’s correction is not the
link-wise correction, but by Eq. (43). The reason for large fluctuation is because the correction happens in a discretized
manner. Therefore, even though using the CMEM with Aidun’s correction can yield the physically correct trajectory and
velocities, the two recently improved MEMs (GIMEM and MMEM) are highly recommended for their much better accuracy
in force evaluation and potentially better numerical stability (due to weaker force fluctuations).

Furthermore, we shall demonstrate that, using CMEM can sometimes lead to qualitatively incorrect results, as noted
already in [25]. Consider the Segré–Silberberg effect for a neutrally buoyant particle suspended in a pressure driven pipe
flow (as shown in Fig. 16). The radii of the pipe and the particle are R = 2.5 cm and r = 0.375 cm, respectively. The flow
Reynolds number defined as Re = 2UmR/µ is 100, where Um is the mean flow velocity and µ is the kinematic viscosity
that is set to 1 cm2/s. Initially, the particle is released at a/R = 0.21. The streamwise boundary condition in this case is
periodic. The trajectories of the particle are shown in Fig. 16 for different MEM implementations. We find that both GIMEM
and MMEM successfully reproduce the Segré–Silberberg effect while CMEM cannot. The horizontal straight line marks the
correct equilibrium position obtained by arbitrary Lagrangian–Eulerian (ALE) method [49].

Finally, GIMEM is applied and tested in a direct numerical simulation of a particle-laden turbulent channel flow [50]. The
channel flow has a resolution ofNx×Ny×Nz = 600×299×300, whereNx,Ny andNz are the grid points used in streamwise,
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Fig. 15. The results of time dependent hydrodynamic forces and torques acting on the particle: (a) vertical forces; (b) horizontal forces; (c) torques.

Fig. 16. A neutrally buoyant particle in an infinite long pressure driven pipe flow.

transverse and spanwise direction, respectively. The Reynolds number, defined by the friction velocity of wall bounded
turbulence is Reτ = 180. 270 neutrally buoyant spherical particles with diameters a = 30.0 are dispersed randomly in the
channel, with a total volume fraction of φp = 7.07%. The streamwise boundary condition is periodic. The non-slip boundary
condition on the particle surface is realized by the bounce back rules in Eqs. (15) and (17). The refilling scheme used in this
case is the velocity-constrained extrapolation scheme (see Section 5.1.4). The non-uniform shear distribution in a turbulent
channel flow could produce effects similar to the Segré–Silberberg effect, therefore, it is very important to have an accurate
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Fig. 17. The averaged particle volume fraction at a function of y+ in a particle-laden turbulent channel flow. y+
= 0 represents the channel wall, and

y+
= 180 is the center of the channel.

MEM. In Fig. 17, we show averaged particle volume fraction (APVF), defined as the number of node points that are covered
by the solid particles over the total number of grid points on a given two-dimensional plane parallel to the channel wall,
for different y+ locations. Results based on CMEM and GIMEM are compared in Fig. 17, showing a significant disagreement.
Using CMEM, the APVF increases monotonically away from the channel wall, indicating that there are more particles in the
center region. In contrast, when GIMEM is used, the APVF shows a local maximum near the wall that is also mentioned
in [51] and a more uniform overall distribution along the channel width, which has also been observed in [4]. Therefore, the
results based on CMEM are physically incorrect, while GIMEM produces sound results.

5. Refilling

We shall now consider the refilling implementation for new fluid nodes as a solid particle moves relative to the fixed lat-
tice grid. Early studies for suspension flow simulation [12] assumed that fluid nodes occupied even the region inside a solid
particle. The fluid–solid interface is treated as amoving shell. The same bounce-back scheme is used for two sides of the shell
to guarantee the no-slip boundary condition. The hydrodynamic force acting on the particle is affected by the momentum
exchanges on both sides. This approach avoids the refilling problem as the distribution functions are defined on all lattice
nodes at all times. In this approach, an implicit assumption is that the distribution functions from inside the solid particle
can be used for the flow outside the solid particle. This, however, has no rigorous physical basis. Although the velocity is con-
tinuous across the solid boundary when both the flow inside and flow outside the solid particle are considered, there could
be jumps in pressure and shear stresses. Therefore, this approach is not valid and usually result in numerical inaccuracy.

The more accepted approach is to exclude the lattice nodes inside the solid surfaces [13]. In this approach, only the
outside fluid contributes to the hydrodynamic force, which is more physically meaningful than the shell model. However,
the refilling problem has to be addressed carefully [13,27,29]. For complex flows involving many moving solid boundaries,
the method to refill the distribution functions at the new fluid nodes may significantly affect the accuracy and stability.

5.1. Refilling schemes

There have not been too many proposals to address the refilling problem. We review below three implementations
[28,27,29] from the literature and an improved implementation we developed recently. Those schemes are selected due
to their simplicity and similarity. The schemes requires more complicated evaluation of the stress tensor are therefore not
considered here.

5.1.1. Averaged extrapolation refilling
The extrapolation scheme was originally proposed as a boundary condition in [43], and later used in the refilling process

[28]. As shown in Fig. 18, for a newly uncovered node xnew, there could bemultiple extrapolation directions (i = 1, 2, 3, 5, 6)
that point into the fluid. In each extrapolation direction α, a linear extrapolation is applied to all directions to obtain the
distribution functions at xnew

fα,i(xnew, t + δt) = 2fα (xnew + eiδt, t + δt) − fα (xnew + 2eiδt, t + δt) . (48)
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Fig. 18. The lattice structure of new fluid node near the solid boundary.

Then, we construct the missing populations by taking the average over these extrapolation directions

fα(xnew, t + δt) =
1
N


i=1,2,3,5,6

fα,i(xnew, t + δt) (49)

where N is the total number of possible extrapolation directions.

5.1.2. Normal extrapolation refilling
Different from the averaged extrapolation refilling scheme, where the unknown distribution functions are contributed

by information from every possible extrapolation direction, in this scheme, only the direction that maximizes the quantity
n⃗ · ec is used for the extrapolation, where n⃗ is the outer unit normal of local solid surface from where the new fluid point
was uncovered (as in Fig. 18). After determining the direction ec , all unknown distribution functions at the new fluid node
are obtained by a quadratic extrapolation.

fα(xnew, t + δt) = 3fα(xnew + ecδt, t + δt) − 3fα(xnew + 2ecδt, t + δt) + fα(xnew + 3ecδt, t + δt). (50)
Compared with the averaged extrapolation, this scheme may be more tedious when dealing with solid surfaces with
irregular shape due to the need of finding the surface normal and ec .

5.1.3. Equilibrium plus non-equilibrium refilling
This scheme partitions the unknown distribution functions at the new fluid node into two parts, the equilibrium part and

non-equilibrium part. The equilibrium part is computed in terms of the local wall velocity uw and a fluid density which is
usually taken as the averaged density δρ of available neighboring fluid nodes. The non-equilibrium part is defined by simply
copying the non-equilibrium part from the neighboring fluid node along the extrapolation direction ec (same as defined in
Section 5.1.2). Namely,

fα(xnew, t + δt) = f (eq)
α


uw, δρ


+ f (neq)

α (xnew + ecδt, t + δt) . (51)
Note that in this scheme, populations in all directions at the new fluid node are re-computed as above, instead of only the
unknown populations in the averaged extrapolation refilling and the normal extrapolation refilling.

5.1.4. Velocity-constrained normal extrapolation refilling
This scheme begins with an observation that the distribution functions in the normal extrapolation refilling schememay

not precisely satisfy the Dirichlet boundary condition at the new fluid node (which is very close to the solid surface). In
addition, in MRT LBM, we can take the advantage that the velocity can be constrained to the wall velocity without changing
other macroscopic properties (such as pressure and stress components). The procedure of this refilling scheme is as follows.
First, complete the normal extrapolation refilling to obtain temporary distribution functions for the missing distributions.
Then, compute all moments at the new fluid node by multiplying the transfer matrixM as

m(xnew, t + δt) = Mf̂(xnew, t + δt) (52)

where f̂ indicates the temporary distribution function after the unconstrained normal extrapolation. Next, enforce the no-
slip boundary condition by constraining the momentum moments.

jx = ρ0uw, jy = ρ0vw, jz = ρ0ww. (53)
Under the nearly incompressible formulation, this is equivalent to constrain the velocity to the local solid surface velocity.
Finally, transfer the momentsm∗ after the above modification back to the distribution functions as

f(xnew, t + δt) = M−1m∗(xnew, t + δt) (54)
wherem∗ means themoment vector after the velocity is constrained. In this procedure, except the velocity, no othermacro-
scopic quantities are changed. We find that this constraint can significantly reduce the fluctuations in the hydrodynamic
forces when compared to the unconstrained normal extrapolation.
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Fig. 19. The Poiseuille flow with a constant system velocity vs added in the normal direction.

a b

Fig. 20. The time evolution of the shear stress on the top and bottom walls, the results are obtained with the equilibrium plus non-equilibrium refilling
scheme: (a) full view, (b) zoom-in view.

5.2. The effects of the refilling scheme on the hydrodynamic force

Refilling the information at the new fluid nodes plays an important role in a successful LBM simulation. Even though
all refilling schemes have already been shown to produce physically correct results, they could also contribute to strong
fluctuations in the resulting hydrodynamic force [27]. In addition, other factors, such as the change of distance between
boundary nodes and the moving boundary (as discussed in Section 3), as well as the fluctuations in the number of lattice
nodes covered by a solid particle, can affect those fluctuations. It is not clear how much of the total force fluctuation is
directly caused by the refilling process.

Before comparing different refilling schemes, we shall isolate the effect of the refilling process from other sources. For
this purpose, we consider a steady-state Poiseuille channel flow with a constant normal velocity being added to the whole
system (shown in Fig. 19). In this case, both top and bottom walls move at a same speed, the number of fluid nodes remain
unchanged. Refilling is only needed for the top wall. Therefore, by examining the difference between the shear stress acting
on the top and bottom wall (if there are different), the only source of this difference is the refilling process associated with
the top wall. Therefore, the contribution of refilling to the force fluctuation is isolated in this simple benchmark case.

In Fig. 20 we show the shear stresses on both the top and bottom wall. In this test, the channel width is 60 lattice units.
The x-component velocity at the centerline position is set to Ux = 0.1c and Uy = 0.005c , where c is the lattice velocity unit
δx/δt . The Reynolds number of the flow is Re = UxH/ν = 180. In this case we apply the interpolated bounce back scheme
in Eqs. (14) and (16) to the two moving walls. The stress on the wall are extrapolated from the stress tensor at the first
three fluid nodes from each wall. For demonstration purpose, only the results from the equilibrium plus non-equilibrium
refilling are shown. It is clear that the long spikes in the result of stress on the top wall is related to the refilling process
(by the times they occur, which match with the crossing times of the top wall and a layer of new fluid nodes). These long
spikes are due to the inaccurate construction of unknown populations at the new fluid nodes near the top wall. They may
have a strong effect on the accuracy and stability of the LBM simulation. The maximum deviations of shear stress from its
theoretical value, defined as max(|τ−τtheo|)

|τtheo|
is 0.94% on the bottom wall but 3.2% on the top wall.

In more complex cases, such as a particle-laden turbulent flow, the simulation could be more sensitive to the selection
of refilling schemes. In Fig. 21 we present visualizations of pressure field on a 2D slice from a particle-laden turbulent
channel flow simulation with two different refilling schemes at 1600 time steps after the exactly same initial conditions
(with the same physical setting as what used in Fig. 17). Comparing the two pressure visualizations, differences between
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Fig. 21. Visualizations of the pressure fields on a 2D slice from a particle-laden turbulent channel flow direct numerical simulation with different refilling
schemes. The results are obtained at 1600 time steps after the exactly same initial condition. (a) The velocity constrained normal extrapolation scheme,
(b) the normal extrapolation scheme.

Table 3
The level of normalized force fluctuations for the case of vertically moving Poiseuille flow.

Refilling schemes τ̄ σ1 σ2

Average 1.0028 5.0024 × 10−2 6.3648×10−3

Eq + Neq 1.0020 3.9135 × 10−2 2.6546×10−3

Normal 0.9999 1.3083 × 10−2 1.5516×10−3

Constrained 1.0005 1.0077 × 10−2 1.3666×10−3

particle positions are clearly observed, indicating a greater impact of the refilling scheme on the particle dynamics. Also,
in Fig. 21(b) the noises are much more severe than in Fig. 21(a). These noises can lead to numerical instability. In fact, the
simulation with the normal extrapolation scheme diverged after another 200 time steps from the snapshot in Fig. 21, while
the simulation with the velocity constrained normal extrapolation scheme is always stable. This comparison implies that
the velocity-constrained refilling scheme enhances numerical stability.

5.3. Comparison results from benchmark cases

To compare the performance of different refilling schemes, two benchmark cases are considered.

5.3.1. Vertically moving Poiseuille flow
The first case is the horizontal Poiseuille flowwith a vertical system velocity introduced in Fig. 19. The Galilean invariance

states that constant system velocity vs does not affect the streamwise velocity profile and the stress profile. The results of
shear stress on the top wall using different refilling schemes are shown in Fig. 22. The boundary interpolation and stress
calculation follow the same schemes as the case in Fig. 20. Even though every scheme yield the correct mean value to a good
approximation, they have quite different magnitudes in the force fluctuations. In general, the stress results with velocity-
constrained normal extrapolation has the smallest fluctuationmagnitude (Table 3)with only 20%–77%maximum fluctuation
and 21%–88% overall fluctuation of those counterparts from other schemes. Here, the τ̄ , σ1 and σ2 are defined as the mean
values of the stress, the maximum variance of stress (τmax − τmin) and the r.m.s stress when the flow reaches steady state,
all results are normalized by the theoretical stress.
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ba

Fig. 22. The shear stress on the top wall as a function of time, with different refilling schemes. (a) Full view; (b): zoom-in view.

Table 4
The level of fluctuations in the calculated Fx and Fy normalized by (ρp − ρf )Apgx , for
the elliptic particle setting freely in a 2D vertical channel.

Bounce back schemes σx σy

Average 9.2138 × 10−3 8.6088×10−3

Eq + Neq 4.8648 × 10−3 5.3872×10−3

Normal 5.6871 × 10−3 5.9911×10−3

Constrained 4.2861 × 10−3 4.9108×10−3

5.3.2. Elliptic particle settling freely in a vertical channel
Next, different refilling schemes are tested in the case of elliptic particle settling freely in vertical channel (same as

in Section 3.2.3). The resulting particle trajectories and rotation angles are compared in Fig. 23. Even though all results
generally fit well with the corresponding FEM results, a slight deviation is observed near the turning points in the trajectory
with the averaged extrapolation refilling, leading to inaccurate trajectory later on. When examining the force evaluations in
Fig. 24, we observe the greatest fluctuation from the averaged extrapolation scheme, which explains the slightly inaccurate
trajectory in Fig. 23. Again, the constrained normal extrapolation yields the smallest fluctuation level among all the schemes
as shown in Table 4. The improvement is from 12% to 200% over other schemes. The fluctuation magnitudes (normalized by
(ρp − ρf )Apgx) are quantified using the same method as in Section 3 for the same case. It should be noted that although
in those simple cases the improvement in the force evaluation does not bring significant improvement in the overall
performance, as we show in Fig. 21, in the more complex cases, the selection of a proper refilling scheme could be essential
for an accurate and numerically stable simulation.

6. Summary and outlook

In this paper, three important implementation issues, namely, fluid–solid boundary treatments, hydrodynamic force
evaluation on a solid particle, and the refilling problem, are reviewed and studied systematically, when the MRT LBM ap-
proach is used to simulate fluid-moving particle system. Theworkwasmotivated by our target problem of simulating turbu-
lent flow laden with many moving solid particles. The question is whether LBM can provide a reliable and robust approach
for this complex problem with flow around individual particles fully resolved (i.e., the particle-resolved direct numerical
simulation). Specifically, whether the trajectory of a solid particle in a turbulent flow and hydrodynamic force acting on the
particle can be accurately simulated.

We provide our own interpretations and a critical review of different implementations. To compare different implemen-
tation methods systematically, we develop a series of benchmark cases by isolating a given issue under consideration and
keeping the identical implementations for the remaining two issues. We have demonstrated that some of the issues are
inter-related. Our systematic approach allows us to reach a set of conclusions that would help optimize the implementation
details of MRT LBM when applied to high-Reynolds number particle-laden flow systems.

First, for implementing the solid boundary condition at the fluid-moving solid interface, all tested interpolated bounce-
back schemes can maintain the second order accuracy. However, different bounce back schemes exhibit different levels of
errors and force fluctuations on amoving particle.We conclude that quadratic (or higher order) interpolations are in general
better in the linear interpolation schemes, in that they yield more accurate results with weaker unphysical fluctuations. The
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Fig. 23. Trajectories (a) and rotation angles (b) of the elliptic particle sedimentation problem obtained with different refilling schemes.
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Fig. 24. Time dependent forces acting on an elliptic particle settling in a vertical channel with different filling schemes: (a) Fx , full view; (b) Fx , zoom-in
view; (c) Fy , full view; (d) Fy , zoom-in view.

unphysical force fluctuations are an inherent characteristic of all numerical methods for moving solid particles using a fixed
grid. They can affect numerical stability when complex flows at high Reynolds numbers are considered.

Second,wemade an effort to contrast differentMEMschemes and identify themost accurate (MEM) schemes for comput-
ing force and torque acting on a moving particle. Due to its simplicity and direct connection to the kinetic theory, MEM has
been widely used to evaluate the hydrodynamic force at the fluid–solid surface in LBM. However, the related issue of local



C. Peng et al. / Computers and Mathematics with Applications 72 (2016) 349–374 373

Galilean variance has only very recently been successfully addressed [26,25]. As in these recent studies, we have demon-
strated that a scheme with rigorous local Galilean variance can yield more accurate results of hydrodynamic force. We have
shown both theoretically and numerically that the Galilean invariant MEM ofWen et al. [25] and themodifiedMEM of Chen
et al. [26] are essentially identical, although they address the issue of local Galilean invariance from two different perspec-
tives. We also pointed out that over-corrections made in the literature [23,24] may lead to large force fluctuations, and this
should be avoided. Schemes that fail to satisfy the local Galilean invariance can even lead to qualitatively incorrect results.

Finally, the refilling process has a particular significance in the LBM simulationwithmoving solid boundaries. If the infor-
mation at new fluid nodes is not properly constructed, it can strongly affect the accuracy of force evaluation or even ruin the
whole simulation by introducing numerical instability. We compared several different refilling schemes. Although the av-
eraged extrapolation scheme provides reasonable results of particle trajectory and velocity, the high-level time-dependent
force fluctuations clearly imply that it is not a good approach for moving particle simulations. A new velocity-constrained
normal extrapolation refilling provides the best performance in terms of both accuracy andnumerical stability. This velocity-
constrained refilling takes advantage of the flexibility offered by MRT.

Wewish to stress that the interpolated bounce-back and GIMEM are both consistent with the lattice Boltzmann scheme.
It does not require any local regularization or smoothing as in the typical immersed boundary method [52,53]. In this
sense, the overall optimized implementation of MRT LBM implied by this work provides a better representation of the
local profiles near a moving solid surface [9]. We also wish to point out that while this study focuses on the mesoscopic
lattice Boltzmann approach, some of the discussions related to moving fluid–solid interfaces are relevant to conventional
CFD using the Navier–Stokes equations.
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