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a b s t r a c t

We conduct a detailed comparison of the lattice Boltzmann equation (LBE) and the pseudo-spectral (PS)
methods for direct numerical simulations (DNS) of the decaying homogeneous isotropic turbulence in a
three-dimensional periodic cube. We use a mesh size of N3 ¼ 1283 and the Taylor micro-scale Reynolds
number 24:35 6 Rek 6 72:37, and carry out all simulations to t � 30s0, where s0 is the turbulence turn-
over time. In the PS method, the second-order Adam–Bashforth scheme is used to numerically integrate
the nonlinear term while the viscous term is treated exactly. We compare the following quantities com-
puted by the LBE and PS methods: instantaneous velocity u and vorticity x fields, and statistical quanti-
ties such as, the total energy KðtÞ and the energy spectrum Eðk; tÞ, the dissipation rate eðtÞ, the root-mean-
squared (rms) pressure fluctuation dpðtÞ and the pressure spectrum Pðk; tÞ, and the skewness and flatness
of the velocity derivative. Our results show that the LBE method performs very well when compared to
the PS method in terms of accuracy and efficiency: the instantaneous flow fields, u and x, and all the sta-
tistical quantities — except the rms pressure fluctuation dpðtÞ and the pressure spectrum Pðk; tÞ — com-
puted from the LBE and PS methods agree well with each other, provided that the initial flow field is
adequately resolved by both methods. We note that dpðtÞ and Pðk; tÞ computed from the two methods
agree with each other in a period of time much shorter than that for other quantities, indicating that
the pressure field p computed by using the LBE method is less accurate than other quantities. The skew-
ness and flatness computed from the LBE method contain high-frequency oscillations due to acoustic
waves in the system, which are absent in PS methods. Our results indicate that the resolution require-
ment for the LBE method is dx=g0 6 1:0, approximately twice of the requirement for PS methods, where
dx and g0 are the grid spacing and the initial Kolmogorov length, respectively. Overall, the LBE method is
shown to be a reliable and accurate method for the DNS of decaying turbulence.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Homogeneous isotropic turbulence in three-dimensions (3D) is
a canonical case in turbulence theory (cf. [1,2] and references
therein). To date, pseudo-spectral (PS) methods [3,4] remain as
the most accurate numerical tool for direct numerical simulations
(DNS) of homogeneous isotropic turbulence (HIT) (e.g., [5–15]).
While PS methods are the preferred method for DNS of flows with
simple geometries, such as the channel flow with flat walls or tur-
bulence in a cube with periodic boundary conditions, PS methods
may be difficult to apply for flows with complex geometries of
engineering significance. Development of accurate and efficient
methods for DNS of turbulent flows is one of the most active areas
in computational fluid dynamics. In this work, we will use the lat-

tice Boltzmann method (e.g., [16–18]) for DNS of decaying homo-
geneous isotropic turbulence (DHIT) in three-dimensions (3D).

The purpose of the present work is to validate the lattice
Boltzmann method for DNS of decaying turbulence in three dimen-
sions. The focus of this work is on the accuracy and efficiency of the
interested numerical methodology, but not on the physics of tur-
bulence. The validation will be carried out by conducting a detailed
comparison of the lattice Boltzmann and the pseudo-spectral
methods in terms of accuracy and efficiency for decaying turbu-
lence in 3D. The lattice Boltzmann method has been applied for
DNS of homogeneous turbulence [19–29]. In particular, there has
been previous studies using the LBE method for DNS of decaying
turbulence [19–24]. However, the previous studies [19–24] offer
only qualitative comparisons for a very limited number of low-or-
der statistical quantities such as the total kinetic energy KðtÞ, the
dissipation rate eðtÞ, and the energy spectrum Eðk; tÞ in a relatively
short period of time. We note that there are some comparative
studies of finite-difference and spectral methods [30,31], which
are restricted low-order turbulence statistics.
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In this work we will compare in detail the lattice Boltzmann and
pseudo-spectral methods for decaying turbulence in 3D by com-
puting a number of low-order statistical quantities, in addition to
KðtÞ, eðtÞ, and Eðk; tÞ, such as the skewness and the flatness, and
the pressure spectrum Pðk; tÞ. In addition, we will compare the
instantaneous velocity and vorticity fields obtained by the two
methods. The simulations will be carried out for about 30s0, where
s0 is the turbulence turnover time. The direct comparison will al-
low us to investigate, first, the differences between the two meth-
ods and, second, the effects of the differences on the quantities
relevant to decaying turbulence.

The remainder of this paper is organized as follows. Section 2
succinctly describes the lattice Boltzmann and pseudo-spectral
methods. Section 3 gives a brief discussion of the decaying turbu-
lence, its initial conditions, and the quantities to be computed. Sec-
tion 4 presents our results as the following. Section 4.1 describes
the parameters and conditions used in our simulations. Section 4.2
compares the instantaneous velocity and vorticity fields obtained
by using the LBE and PS methods with a grid size N3 ¼ 1283 and
the Taylor micro-scale Reynolds number Rek � 24:35. Section 4.3
presents the statistical quantities computed by using the two
methods. Section 4.4 analyzes the acoustic waves in the LBE simu-
lations, which are absent in the PS simulations. Section 4.5 inves-
tigates the dependence of instantaneous flow fields and
statistical quantities on the viscosity m or the Reynolds number
Rek. Various results with 24:35 6 Rek 6 72:37 will be discussed.
Section 4.6 compares the computational efficiency of the two
methods. Finally, Section 5 summarizes our results and concludes
the paper.

2. Numerical methods

2.1. The lattice Boltzmann equation

We use the lattice Boltzmann equation with the multiple-
relaxation-time (MRT) collision model [32–36] and 19 discrete
velocities in three dimensions, i.e., the D3Q19 model [35]. The
MRT-LBE can be concisely written as the following:

fðxj þ cdt; tn þ dtÞ ¼ fðxj; tnÞ �M�1 � S � ½m�mðeqÞ�; ð1Þ

where the symbols in bold-font are Q-tuple vectors in RQ for a mod-
el with Q discrete velocities,

fðxj; tnÞ :¼ ðf0ðxj; tnÞ; f 1ðxj; tnÞ; . . . ; fbðxj; tnÞÞy;
fðxj þ cdt; tn þ dtÞ :¼ ðf0ðxj; tn þ dtÞ; f 1ðxj þ c1dt; tn þ dtÞ;

. . . ; fbðxj þ cbdt; tn þ dtÞÞy;
mðxj; tnÞ :¼ ðm0ðxj; tnÞ; m1ðxj; tnÞ; . . . ;mbðxj; tnÞÞy;
mðeqÞðxj; tnÞ :¼ ðmðeqÞ

0 ðxj; tnÞ; mðeqÞ
1 ðxj; tnÞ; . . . ;mðeqÞ

b ðxj; tnÞÞy;

y denotes transpose, fi is the discrete particle density distribution
function corresponding to the discrete velocity ci; i 2 f0; 1; . . . ; bg,
and mi is the ith moment. The Q � Q matrix M transforms f to m:

m ¼ M � f; f ¼ M�1 �m: ð2Þ

By construction the transform matrix M has the property
that M �My is diagonal, thus M�1 can be easily obtained
[33,35,36].

For the D3Q19 model [35], the 19 discrete velocities are

ci ¼
ð0; 0; 0Þ; i ¼ 0;
ð�1; 0; 0Þc; ð0; �1; 0Þc; ð0; 0; �1Þc; i ¼ 1—6;
ð�1; �1; 0Þc; ð�1; 0; �1Þc; ð0; �1; �1Þc; i ¼ 7—18;

8><
>:

ð3Þ

where c :¼ dx=dt. The corresponding 19 moments are

m :¼ ðdq; e; �; jx; qx; jy; qy; jz; qz;3pxx;3pxx; pww;pww;

pxy; pyz;pxz;mx;my;mzÞy ¼ ðm0;m1; . . . ; m18Þy; ð4Þ

where dq is the density fluctuation, the density

q :¼ q0 þ dq; q0 ¼ 1; ð5Þ

and q0 is the mean density. The effect due to round-off error can be
reduced by using dq instead of q in the LBE simulations [37]. The
equilibria of the moments are functions of the conserved quantities
in the system, i.e., the density fluctuation dq and the flow momen-
tum j ¼ ðjx; jy; jzÞ :¼ q0u [35]:

dq ¼
XQ�1

i¼0

fi; j :¼ q0u ¼
XQ�1

i¼0

fici; ð6Þ

where we have applied the approximation for incompressible flows,
i.e.,

j ¼ qu � q0u ¼ u: ð7Þ

That is, we assume that in theory jdqj � 1, therefore we can ne-
glect the coupling terms between dq and u. The equilibria of the
non-conserved moments in the D3Q19 model for athermal flows
are [35]:

eðeqÞ ¼ �11dqþ 19
q0

j � j; ð8aÞ

�ðeqÞ ¼ 3dq� 11
2q0

j � j; ð8bÞ

qðeqÞ
x ¼ �2

3
jx; qðeqÞ

y ¼ �2
3

jy; qðeqÞ
z ¼ �2

3
jz; ð8cÞ

pðeqÞ
xx ¼

1
3q0

2j2
x � j2

y þ j2
z

� �h i
; pðeqÞ

ww ¼
1
q0

j2
y � j2

z

h i
; ð8dÞ

pðeqÞ
xy ¼

1
q0

jxjy; pðeqÞ
yz ¼

1
q0

jyjz; pðeqÞ
xz ¼

1
q0

jxjz; ð8eÞ

pðeqÞ
xx ¼ �

1
2

pðeqÞ
xx ; pðeqÞ

ww ¼ �
1
2

pðeqÞ
ww ; ð8fÞ

mðeqÞ
x ¼ mðeqÞ

y ¼ mðeqÞ
z ¼ 0; ð8gÞ

where j � j :¼ j2
x þ j2

y þ j2
z ¼ u2

x þ u2
y þ u2

z . The significance of the mo-
ments has been discussed previously [33,35,36].

The diagonal relaxation matrix S is positive and its diagonal ele-
ments are relaxation rates, which must satisfy the stability condi-
tion si > 1=2 for all non-conserved moments [33,35,36],

S ¼ diagð0; s1; s2;0; s4;0; s4;0; s4; s9; s10; s9; s10; s13; s13; s13; s16; s16; s16Þ
¼ diagð0; se; s�; 0; sq; 0; sq;0; sq; sm; sp; sm; sp; sm; sm; sm; sm; sm; smÞ:

ð9Þ

The speed of sound of the D3Q19 model is cs ¼ 1=
ffiffiffi
3
p� �

c and the
shear viscosity m and the bulk viscosity f are

m ¼ 1
3

1
sm
� 1

2

� �
cdx; ð10aÞ

f ¼ ð5� 9c3
s Þ

9
1
se
� 1

2

� �
cdx: ð10bÞ

With the equilibria of Eqs. (8g), if all of the relaxation rates,
fsiji ¼ 0; . . . ;18g, are set to be a single value 1=s, i.e., S ¼ s�1I,
where I is Q � Q identity matrix, then the model is equivalent to
the D3Q19 LBGK model of which the equilibria are the second-or-
der Taylor expansion of the Maxwellian distribution function in u.
Except sm, which is determined by the viscosity m, other relaxation
rates si may be determined by linear stability analysis [33,35,36].
The specific values of si used in our simulations will be given
explicitly in Section 4.1.
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The LBE algorithm consists of two steps: collision and advection.
For a given LBE model, the collision is the only step involving arith-
metic operations, and the number of arithmetic operations at each
grid node is fixed, while the advection moves data from one grid
node to another with no arithmetic operation. However, advection
does cost CPU time for passing data. Thus, the best way to implement
LBE code is to combine the collision and advection in one step so that
data passing time overlaps with the CPU time for floating point oper-
ations. In the present work, we still implement collision and advec-
tion into two do loops so that the code is easier to modularize and
maintain. Obviously, for a system of size N3, the overall computa-
tional cost of the LBE method is of OðN3Þ per time step.

2.2. The pseudo-spectral method

The pseudo-spectral (PS) method solves the incompressible Na-
vier–Stokes equations in a cubic domain of size L3 with periodic
boundary conditions:

@tuþ u � $u ¼ �$pþ mr2u; x 2 ½0; L�3; ð11aÞ
$ � u ¼ 0; ð11bÞ

where the velocity field uðx; tÞ is represented as a finite Fourier
series

uðx; tÞ ¼
X

k

~uðk; tÞeık�x; ð12Þ

where ı :¼
ffiffiffiffiffiffiffi
�1
p

. Usually, L ¼ 2p, the grid resolution N in each
dimension is an even number, and the grid spacing is dx ¼ 2p=N.
The wavenumber ki; i 2 fx; y; zg, in each dimension varies between
�N=2þ 1 and N=2 and the largest wavenumber is kN ¼ N=2. The
fast Fourier transform (FFT) is used to compute ~u. We use the open
source package FFTW 2.1.5 (cf. http://www.fftw.org) for FFT with
MPI (cf. http://www-unix.mcs.anl.gov/mpi and http://comput-
ing.llnl.gov/tutorials/mpi) in our simulations.

For pseudo-spectral methods, in order to reduce computational
cost, the nonlinear advection term u � $u term is evaluated in phys-
ical space as the following. Both the velocity ~u and the vorticity ~x

in Fourier space are transformed by the inverse FFT back to phys-
ical space to form the nonlinear term x� u, which is then trans-
formed back to wavenumber space k. The de-aliasing is
accomplished by nullifying ~uðk; tÞ for jkj > N=3 at each time step.

The incompressible Navier–Stokes equation can be re-written
in k space as the following:

@t ~uþ mk2 ~u ¼ �eT?; ð13Þ

where eT is the Fourier transform of x� u,

eT? :¼ eT � ðeT � k̂Þk̂;
and k̂ is the unit vector parallel to k. Eq. (13) can be further written
as

@tð~uemk2tÞ ¼ �eT?emk2t : ð14Þ

We will apply the second-order Adams–Bashforth scheme for
time integration of the above equation:

~uðt þ dtÞ ¼ ~uðtÞ � 1
2

dt 3eT?ðtÞ � eT?ðt � dtÞe�mk2dt
h i� �

e�mk2dt : ð15Þ

Eq. (13) circumvents the need to directly solve the Poisson equation
for the pressure p by noting the fact that

~p ¼ ı
eT k
k
� ~j; eT k :¼ k̂ � eT ; ð16Þ

where ~j is the Fourier transform of the kinetic energy u � u=2.
Therefore, the pressure p is obtained by computing the inverse Fou-
rier transform of ~p given by the above equation.

For homogeneous turbulence with a mesh of size N3, the com-
putational cost of the pseudo-spectral method is of the order
OðN3 ln NÞ per time step, while that of the LBE method is of
OðN3Þ. For homogeneous turbulence, pseudo-spectral methods
are the chosen method for their superiority in spatial accuracy.

3. Decaying homogeneous isotropic turbulence in a 3D cube

The decaying homogeneous isotropic turbulence (DHIT) in a
three-dimensional cube of the size L3 ¼ ð2pÞ3 with periodic bound-
ary conditions in all three directions is a canonical problem in tur-
bulence theory. It has been used as a standard test case to validate
numerical schemes for direct numerical simulations. In the DHIT,
an initial energy spectrum is given in Fourier space k. In the pres-
ent work, the following initial spectrum is used:

E0ðkÞ :¼ Eðk; t ¼ 0Þ ¼ Ak4e�0:14k2
; k 2 ½ka; kb�; ð17Þ

where the magnitude A and the range of the initial energy spectrum
½ka; kb� determine the initial total kinetic energy K0 in the simula-
tion. The divergence-free initial velocity field u0, i.e., $ � u0 ¼ 0, is
generated in Fourier space k according to Rogallo’s procedure [38]:

~u0ðkÞ¼
akk2þbk1k3

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

1þk2
2Þ

q
0
B@

1
CAk̂1þ

bk2k3�ak1k

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

1þk2
2Þ

q
0
B@

1
CAk̂2�

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

1þk2
2Þ

q
k

0
@

1
Ak̂3;

ð18Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0ðkÞ=4pk2

q
eıh1 cos /;b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0ðkÞ=4pk2

q
eıh2 sin /; h1; h2

and / are uniform random variables between 0 and 2p; ı :¼
ffiffiffiffiffiffiffi
�1
p

;
and k̂1, k̂2, and k̂3 are the unit vectors along three axis in k-space.
The turbulent fluctuating velocity field u has a zero mean, i.e.,
hui ¼ 0, and is characterized by its root-mean-squared (rms) value:

u0 :¼ 1ffiffiffi
3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu � ui

p
; ð19Þ

where h�i designates ensemble average, which can be carried out as
volume average in either physical space x or spectral space k.

We will compare instantaneous velocity field uðxj; tnÞ and vor-
ticity field xðxj; tnÞ obtained from the LBE and PS methods. The vor-
ticity fields xðxj; tnÞ in both methods will be computed in spectral
space k by the inverse FFT of ~x ¼ �ık� ~u. We compute the energy
spectrum Eðk; tÞ and the compensated spectrum WðkÞ of the veloc-
ity field uðx; tÞ,

Eðk; tÞ :¼ 1
2

~uðk; tÞ � ~uyðk; tÞ; ð20aÞ

WðkÞ :¼ eðkÞ�2=3k5=3EðkÞ; ð20bÞ

and other statistical quantities pertinent to DHIT:

KðtÞ :¼ 1
2
hu � ui ¼

Z
dkEðk; tÞ; ð21aÞ

XðtÞ :¼ hð$uÞ2i ¼
Z

dkk2Eðk; tÞ; ð21bÞ

eðtÞ :¼ 2mXðtÞ; g :¼
ffiffiffiffiffiffiffiffiffiffi
m3=e4

q
; ð21cÞ

Sui
ðtÞ ¼ hð@iuiÞ3i

hð@iuiÞ2i3=2 ; SuðtÞ ¼
1
3

X
i

Sui
; ð21dÞ

Fui
ðtÞ ¼ hð@iuiÞ4i

hð@iuiÞ2i2
; FuðtÞ ¼

1
3

X
i

Fui
; ð21eÞ

where KðtÞ;XðtÞ, and eðtÞ are the total kinetic energy, the enstrophy,
and the dissipation rate, respectively; g is the Kolmogorov length
scale; Sui

ðtÞ is the skewness computed from @iui; i 2 fx; y; zg, and
SuðtÞ is the skewness averaged over three directions; and Fui

ðtÞ is
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the flatness computed from ui and FuðtÞ is the flatness averaged over
three directions. We also compute the pressure spectrum PðkÞ,

hðdpÞ2i ¼
Z

dkPðkÞ; ð22Þ

where dp is the pressure fluctuation. For the DHIT, the Taylor micro-
scale Reynolds number Rek is used to characterize the flow:

Rek :¼ u0k
m
; k :¼

ffiffiffiffiffiffiffi
15
2X

r
u0; ð23Þ

where k is the transverse Taylor micro-scale length.
Because the LBE method is intrinsically a compressible flow sol-

ver, we monitor the rms velocity divergence

H0ðtÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð$ � uÞ2i

q
: ð24Þ

Note that for incompressible flows, $ � u ¼ 0, thus H0 ¼ 0 and
X ¼ hx � xi=2, where x :¼ $� u is the vorticity. We also monitor
the Mach number in the LBE simulations,

Ma ¼ u
cs
; cs ¼

ffiffiffiffiffiffi
RT
p

; ð25Þ

where RT ¼ 1
3 c2 and c :¼ dx=dt.

4. Results

4.1. Parameters and flow conditions

To compare two significantly different methods such as the LBE
and PS methods, we must first properly choose a number of param-
eters used in the simulation so that the comparison is meaningful.
First of all, the simulations carried out to compare the two methods
should have the same system size L3 ¼ ð2pÞ3 and the grid resolu-
tion N3, the initial Taylor micro-scale Reynolds number Rek, and
the dimensionless time step size dt0 normalized by the turbulence
turnover time s0 ¼ K0=e0. The grid spacing is dx ¼ 2p=N. In the LBE
method, all quantities are in the units of dx ¼ dt ¼ 2p=N. In the PS
method, dx ¼ 2p=N, the initial kinetic energy K0 is always set to 1,
therefore the initial rms velocity is u00 ¼

ffiffiffiffiffiffiffiffi
2=3

p
. With equal initial

Rek and the dimensionless time step size dt0, both the viscosity m
and the time step size dt in the PS calculations must be related
to their LBE counterpart as the following:

mPS ¼
mLBEffiffiffiffiffiffi

K0
p ; dtPS ¼

ffiffiffiffiffiffi
K0

p
dtLBE; ð26Þ

where K0 is the initial total kinetic energy in the LBE simulation
computed from Eq. (17) with given parameter values of A; ka and
kb. Table 1 summarizes the relationships between various quanti-
ties in the LBE and PS methods.

For the initial energy spectrum E0ðkÞ given by Eq. (17), we use
A ¼ 1:4293� 10�4; ka ¼ 3, and kb ¼ 8, thus the initial kinetic en-
ergy is K0 � 1:0130� 10�2, the rms velocity is u0 � 8:2181� 10�2,
and the initial enstrophy is X0 � 0:2077.

For the LBE method, we must ensure that the local Mach num-
ber Ma is small enough so that the LBE method is well within the
incompressible flow region. With the initial energy spectrum and

parameters given above, we can ensure that the maximum local
Mach number Mamax ¼ ku0kmax=cs 6 0:15 for the initial velocity
field u0, where cs ¼ 1=

ffiffiffi
3
p� �

c is the sound speed in the LBE model.
The viscosity used in the LBE simulations is m ¼ ð1=600Þcdx. With
the initial energy spectrum E0ðkÞ and the viscosity m given above,
the Taylor micro-scale Reynolds Rek � 24:35.

In the LBE simulations, we set the values of the relaxation rates
for all non-conserved moments, except the stresses, as si ¼ 1:8 –
sm. We have also tested other values of si – sm, and have found that,
within a certain range, they have little noticeable effect on the re-
sults of DHIT.

For homogeneous isotropic turbulence with a given Rek, the re-
quired resolution for DNS in 3D using spectral methods can be esti-
mated as (cf. [39,1]):

N P 0:4Re3=2
k : ð27Þ

The above formula can be re-written in terms of the Kolmogo-
rov length scale g normalized by the grid spacing dx [1]:

g
dx

P
1

2:1
� 0:476: ð28Þ

Since the lattice Boltzmann method is formally a second-order
method [40,41], the resolution requirement for the LBE method
would not be the same as the above criterion (28) for spectral
methods, which are exponentially accurate. Thus, for the LBE meth-
od we should consider a resolution criterion more stringent than
Eq. (28), such as

g
dx

P 1:0: ð29Þ

The above criterion is consistent with previous empirical obser-
vations (cf. [42,43]) and will be tested in our simulations.

4.2. Instantaneous velocity and vorticity fields

First, we will directly compare instantaneous flow fields ob-
tained with the LBE and PS methods with Rek � 24:35. The initial
velocity fields used in both the LBE and PS methods are identical
except an overall scaling factor, as discussed in the previous sec-
tion. That is, one single random velocity field is generated with
the energy spectrum of Eq. (17), then it is rescaled such that
u00 ¼

ffiffiffiffiffiffiffiffi
2=3

p
for the PS method, and Mamax 6 0:15 for the LBE meth-

od. For the PS method, the pressure p is obtained by solving the
Poisson equation in the spectral space. As for the LBE method, p
is obtained by using an iterative procedure which solves the
Poisson equation consistent with the LBE method [44]. Before we
compare the results obtained by the LBE and PS methods, we
should bear in mind that these two methods are different from
each other. Specifically, the PS method solves the incompressible
Navier–Stokes equation with an exponential accuracy in space for
all flow variables, while the LBE method is formally second-order
accurate in space for the velocity field u and only first-order accu-
rate for the pressure field p [40,41]. As for the accuracy in time, the
PS method is second-order, while formally the LBE method is only
first-order [41]. In some way the LBE method can be viewed as a
Navier–Stokes solver with artificial compressibility.

We first show the evolution of the magnitude of the velocity
field normalized by its initial rms value k�uk :¼ u=u00

		 		 on. The sys-
tem size is 1283 and the Taylor micro-scale Reynolds number is
Rek � 24:35 unless it is otherwise stated. We compare results from
three runs with an identical initial velocity field apart from an
overall constant factor: the LBE method, the PS method with the
dimensionless time step size dt0 equal to that of the LBE method
(labeled as PS1), and the PS method with the dimensionless time
step size equal to one third of that in the LBE method (labeled as
PS2). The dimensionless time step size, normalized by the

Table 1
Parameters used in the lattice Boltzmann (LBE) and pseudo-spectral (PS) methods. K0

and e0 are the initial total kinetic energy and dissipation rate in the LBE simulations,
respectively, computed from the initial spectrum E0ðkÞ given by Eq. (17) with
parameters A; ka, and kb.

Method K0 u00 m L dx dt dt0

LBE K0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K0=3

p m 2p 2p=N 2p=N 2pe0=K0N

PS 1
ffiffiffiffiffiffiffiffi
2=3

p
m=

ffiffiffiffiffiffi
K0
p

2p 2p=N 2p
ffiffiffiffiffiffi
K0
p

=N 2pe0=K0N

Y. Peng et al. / Computers & Fluids 39 (2010) 568–591 571



Author's personal copy

turbulence turnover time s0 ¼ K0=e0, is dt0 ¼ 4pmX0=NK0 �
2:892� 10�3. All runs stop at t0 � 30, when the total kinetic energy
K decays almost four orders of magnitude, and the rms velocity u0

decays almost two orders of magnitude.
The results for the evolution of k�uk on the xy plane z ¼ p are

shown in Fig. 1. We compare the results obtained by the three runs
in four instances: t0 � 4:048; 8:095; 16:189, and 29.949. Even at
the latest time t0 � 29:949, the velocity field �u obtained from the
LBE method is very similar to those obtained from the PS method
with an equal time step size dt0 or a smaller one (i.e., dt0=3): both
magnitudes and locations of vortices in the velocity fields obtained
by different methods are very close to each other.

The agreement between the flow fields is further demonstrated
with the evolution of the vorticity field normalized by the initial
rms velocity k�xk :¼ xkL=u00

		 on a plane. The vorticity fields for both
LBE and PS simulations are computed in spectral space
k; ~x ¼ �ık� ~u, and then by using the inverse FFT to transfer ~x back
to physical space x. The results of k�xk are shown in Fig. 2. Clearly,
at t0 � 29:949, the difference between the LBE and PS vorticity
fields is visible in Fig. 2. While the basic features of the vorticity
fields obtained from the LBE and PS methods remain quite similar,
in terms of vortex shapes and locations, the LBE and PS results
clearly deviate from each other more and more as time evolves.

We also show the evolutions of velocity and vorticity magni-
tude iso-surfaces in three dimensions in Figs. 3 and 4, respectively.
We show the iso-surfaces of velocity and vorticity magnitudes in
three times: t0 ¼ 0:1348;0:2359, and 0.5730, corresponding to
the times before, about, and after the dissipation rate eðt0Þ attains
its maximum (cf. Fig. 7 in the next section). We note that the flow
features obtained by using the LBE and PS methods agree well with
each other, even in small scales of a few grid spacings. It should be
stressed that for a strongly nonlinear system, such as the Navier–
Stokes equation, a small difference in the initial conditions can
grow exponentially in time. Therefore, it is remarkable that the
flow fields computed from the LBE and PS methods should agree
with each other so well, as shown in Figs. 1–4. The differences be-
tween the flow fields obtained by the LBE and PS methods will be
further quantified in Section 4.5.

4.3. Statistical quantities

We now compare the statistical quantities of the decaying
homogeneous isotropic turbulence (DHIT) obtained by using the
LBE and PS methods. In Fig. 5 we first show the energy spectra
Eðk; t0Þ and the compensated spectra Wðk; t0Þ. The results obtained
with the LBE and PS methods with an equal time step size agree
very well with each other. In fact, they show no visible difference
in the spectra. If the compensated spectra is rescaled to Wðkg; t0Þ,
it can be shown that when kg > 2, i.e., in small scales, the compen-
sated spectra Wðkg; t0Þ collapse to a single curve which is time
independent, as expected [1].

To quantify the differences between the results obtained from
different methods, we compute the following difference between
the spectra Eðk; t0Þ:

DEðk; t0Þ ¼ kE1ðk; t0Þ � E2ðk; t0Þk; ð30Þ

where the subscripts ‘‘1” and ‘‘2” denote different methods. We
show the results of DEðk; t0Þ for the LBE vs. PS1 (left) and PS1 vs.
PS2 (right) in Fig. 6. Clearly DEðk; t0Þ for LBE vs. PS1 is very similar
to that for PS1 vs. PS2, as shown in Fig. 6. Also, the differences of
the spectra DEðk; t0Þ are very similar to the spectra Eðk; t0Þ
themselves.

We next show the results of the normalized total kinetic energy
Kðt0Þ=K0 and the normalized dissipation rate eðt0Þ=e0 with
Rek � 24:35 in Fig. 7. Although invisible in the figure, the LBE and
PS results do differ to each other. To quantify the differences in

Kðt0Þ and eðt0Þ obtained from two methods, we compute the relative
differences:

DKðtÞ ¼ K 0ðtÞ � K 0	ðtÞ
K 0	ðtÞ

; DeðtÞ ¼ e0ðtÞ � e0	ðtÞ
e0	ðtÞ

; ð31Þ

where K 0	ðtÞ and e0	ðtÞ are the reference solutions obtained by the PS
method with the time step size dt0 equal to that of the LBE method;
K 0ðtÞ :¼ KðtÞ=K0 and e0ðtÞ :¼ eðtÞ=e0 so that K 0ð0Þ ¼ 1 and e0ð0Þ ¼ 1,
and DKð0Þ ¼ 0 and Deð0Þ ¼ 0. The results of DKðt0Þ and Deðt0Þ for
both the LBE vs. PS methods (LBE vs. PS1) and the PS method with
two different time step sizes (PS2 vs. PS1) are shown in Fig. 8, along
with the normalized rms velocity divergence H0ðt0Þ=x0, where
x0 :¼ hx0 � x0i1=2 is the rms value of the initial vorticity field x0.
The relative differences DKðt0Þ and Deðt0Þ between the LBE and PS
methods (LBE vs. PS1) increase very rapidly in an initial period of
time t0 < 1:0, then they seem to slowly approach some asymptotic
states. The rapid initial growths observed in both DKðt0Þ and Deðt0Þ
for LBE vs. PS1 seem to be caused by the rapid increase of the veloc-
ity divergence in the LBE simulations. Although the initial velocity
field u0 is divergence free, H0 rapidly increases to a maximum value
in a very short period of time initially, then decays exponentially.
The relative differences DKðt0Þ and Deðt0Þ for the PS method with
two different time steps (PS1 vs. PS2) are about one to two orders
of magnitudes smaller than their counterparts for the LBE vs. PS
methods, and they exhibit some irregular oscillations of large mag-
nitudes, which could be due to the initial conditions.

It is known that after an initial time, the total kinetic energy and
the dissipation rate decay in time as

KðtÞ=K0 
 ½ðt � t0Þ=s0��n
; eðtÞ=e0 
 ½ðt � t0Þ=s0��ðnþ1Þ

; ð32Þ

where s0 :¼ K0=e0 is the turbulence turnover time and t0 is a refer-
ence time. Therefore, we can compute the decay exponent n from
KðtÞ=K0 and eðtÞ=e0:

nKðtiÞ ¼
ln KðtiÞ � ln Kðtiþ1Þ

lnðtiþ1 � t0Þ � lnðti � t0Þ
;

neðtiÞ þ 1 ¼ ln eðtiÞ � ln eðtiþ1Þ
lnðtiþ1 � t0Þ � lnðti � t0Þ

;

ð33Þ

where ti and tiþ1 are two different times. We assume t0 ¼ 0 in the
above formulas to calculate the decay index n. Both KðtÞ and eðtÞ
are given at every 40 time steps with dt0 :¼ 2p=Ns0. The expo-
nents of K=K0 and e=e0 are shown in the left of Fig. 9. The expo-
nents computed from the LBE data oscillate rapidly about the
values obtained from the PS data, which are smooth. After apply-
ing a three-point averaging several times, the high-frequency
oscillations disappear and the exponents computed from the
LBE data still oscillate, but with much smaller magnitudes and
in much lower frequencies. The smoothed exponents obtained
from LBE data agree with the PS exponents, except for the oscil-
lations. The slow oscillations are due to acoustic waves in the LBE
simulation, and the fast ones are the higher-order harmonics of
the acoustic wave. The detailed analysis of these oscillations is
deferred to Section 4.4.

The range of the decaying exponent nK of the kinetic energy
Kðt0Þ varies between 1.6 and 2.4, and monotonically increases after
t0 � 10:0, as shown in Fig. 9. This is consistent with theory [45].
There are two distinctive stages of decaying process in homoge-
neous isotropic turbulence: the first one is the relaxation to a state
of statistical equilibrium, and the second one is the final stage of
decay dominated by viscous effect. When the flow is in the relaxed
state, the decaying exponent nK is given by:

nK ¼
2ðnþ1Þ
ðnþ3Þ ; n < 4;

2ðnþ1þdÞ
ðnþ3Þ ; n P 4;

8<
: ð34Þ
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where both n and d are determined by the asymptotic properties of
the initial energy spectrum:

lim
k!0

Eðk; t ¼ 0Þ ¼ A0kn
; ð35aÞ

lim
t!1

A0 ¼ t�d: ð35bÞ

It is observed that the effect of d on nK is rather weak (ca. 2%)
[45]. In the final stage of decay,

Fig. 1. Evolution of velocity field with Rek � 24:35 and N3 ¼ 1283. Contours of kuk=u00 on the plane z ¼ p. Left column: LBE (thick red lines) vs. PS1 (thin dashed green lines)
with equal dt0; center column: LBE (thick red lines) vs. PS2 (thin dashed blue lines) with dt0LBE ¼ 3dt0PS; and right column: PS1 (thick green lines) vs. PS2 (thin dashed blue
lines). From top to bottom: t0 ¼ 4:048169;8:095571;16:18959, and 29.94941. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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nK ¼
1
2
ðnþ 1Þ: ð36Þ

We use n ¼ 4 here, as given by Eq. (17), thus
nK � 10=7 � 1:43 for the relaxed state and nK ¼ 5=2 ¼ 2:5 for
the final state. The results of nKðt0Þ in Fig. 9 show that flow does
go through a nonlinear relaxation and approaches to the final

state of decay, as nK becomes close to 2.5 from below. Given
the significant difference between the two methods, it is remark-
able that nKðt0Þ’s computed from both simulations agree so well
with each other.

We compare the rms pressure fluctuation dp0 obtained by the
LBE and PS methods in Fig. 10(left). While the general feature of
the rms pressures obtained by the LBE and PS methods are similar,

Fig. 2. Evolution of the vorticity field with Rek � 24:35. Contours of kxkL=u00 on the plane z ¼ p. Similar to Fig. 1.
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their quantitative differences are considerable. First, the LBE result
is oscillatory because of the acoustic waves in the system, which
are absent in the PS simulations. And second, the LBE result decays
slightly faster than the PS one initially, which is not visible in the
figure. There are at least two obvious contributing factors respon-
sible for the differences between the LBE and PS pressure fluctua-
tion. First and foremost, the LBE method does not solve the Poisson
equation for the pressure p, which evolves as density fluctuations
through the equation of state. The initial pressure fields are not
identical in the LBE and PS methods, while the initial velocity fields
are identical apart from an overall scaling factor. Nevertheless, we
do find that the initial rms pressure fluctuations dp00 in both the LBE
and PS simulations are very close to each other; they differ by less
than 0.7%. Second, the LBE method has a non-zero bulk viscosity f
which is merely a numerical artifact. The bulk viscosity f in the LBE
method affects the attenuation of acoustic waves in the system and
directly contributes to the dissipation of the pressure fluctuations.
Because the LBE method does not solve the Poisson equation and
cannot enforce the divergence-free condition for the velocity field
as in the PS method, the divergence of the velocity is not zero in the
LBE simulations.

In Fig. 10(right) we show the pressure spectrum Pðk; t0Þ. For a
short period of time up to t0 � 1:0, the pressure spectrum Pðk; t0Þ
obtained by the LBE method agrees with that obtained by the PS
method quantitatively. However, as time goes, the LBE result devi-
ates more and more from the PS results for small k, that is, the LBE
method does not accurately capture large-scale pressure fluctua-
tions in simulations. It is interesting to note that the deteriorating
pressure field in the LBE simulation seems to have little effect on
the quality of the velocity and vorticity fields.

The skewness and flatness (or kurtosis) are the third-order and
fourth-order moments of $u, respectively, and the skewness is re-
lated to the fourth-order derivative of the velocity field. For a sec-
ond-order accurate method such as the LBE, computing higher-
order velocity-derivatives can be a challenging task. In Fig. 11,
we compare both the skewness and the flatness computed from
@xux; @yuy; @zuz and their averaged value in the LBE and PS simula-
tions. When t0 < 8:0, the LBE and PS results agree well with each
other, especially the averaged skewness Su and flatness Fu,
although the LBE results have high-frequency oscillations due to
the acoustic waves in the system. The magnitudes of the oscilla-
tions grow in time as the velocity field decays, because numerical
differentiation amplifies fluctuations; the higher the order of the
derivatives, the greater the amplification. When high-frequency
oscillations are filtered out by simple smoothing through averag-
ing, the LBE results indeed agree very well with the PS results, as
shown in the bottom row of Fig. 11. This indicates once again that
the LBE pressure fluctuations due to the ‘‘artificial” compressibility
do not adversely affect the averaged quantities in the simulation.

4.4. Acoustic oscillation in LBE results

One salient distinction between the LBE and PS methods is that
the former is (weakly) compressible while the latter is incompress-
ible. In the LBE method, density fluctuations are intrinsic. Also, the
speed of sound is very slow, cs ¼ 1=

ffiffiffi
3
p� �

c ðc :¼ dx=dtÞ. We will
show that intrinsic density fluctuations in the LBE method are
responsible for the oscillations observed in various statistical
quantities we show in the previous section.

Fig. 3. Evolution of velocity magnitude iso-surface kuk=u00 ¼ 2:0. Rek � 24:35 and N3 ¼ 1283. From left to right: t0 ¼ 0:1348; 0:2359, and 0.5730. LBE (top row) vs. PS
(bottom).
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Given the dimension of the cube is L ¼ 2p and the speed of
sound is cs ¼ 1=

ffiffiffi
3
p� �

c, the period of the acoustic wave normal-
ized by the turbulence turnover time s0 ¼ K0=e0 is
T 0 ¼ 2p

ffiffiffi
3
p

e0=K0, and the normalized basic acoustic frequency
is f 0 :¼ 1=T 0 ¼ K0=2p

ffiffiffi
3
p

e0. For the case of Rek � 24:35, the fun-
damental frequency of the sound wave should be about
f 0s � 1:3444.

To identify the sources of oscillations in various quantities ob-
tained by the LBE method, we carry out the following analysis.
First, an interested quantity is decomposed into a smooth slow-
varying component, which can be obtained by, e.g., local averaging,
and a fast-oscillating component with zero mean value over time.
Then the FFT is applied to compute the power spectrum of the fast-
oscillating component in the frequency domain f 0.

Fig. 5. The energy spectra Eðk; t0Þ (left) and the compensated spectra Wðk; t0Þ (right) with Rek � 24:35 and N3 ¼ 1283. The lines and symbols are the LBE and PS1 results,
respectively.

Fig. 4. Evolution of vorticity magnitude iso-surface kxkL=u00 ¼ 13:0. Rek � 24:35 and N3 ¼ 1283. From left to right: t0 ¼ 0:1348; 0:2359, and 0.5730. LBE (top row) vs. PS
(bottom).
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Fig. 6. The energy spectra difference DEðk; t0Þ with Rek � 24:35 and N3 ¼ 1283. Left: LBE vs. PS1, corresponding to the results in Fig. 5, and right: PS1 vs. PS2.

Fig. 7. Evolution of the normalized total kinetic energy Kðt0Þ=K0 and the normalized dissipation rate eðt0Þ=e0 (left) and the normalized Kolmogorov length gðt0Þ=dx (right) with
Rek � 24:35 and N3 ¼ 1283. The LBE vs. PS method with an equal dt0 .

Fig. 8. The evolution of the relative differences DKðt0Þ and Deðt0 Þ (left) and the normalized rms velocity divergence H0ðt0Þ=x0 (right) in the LBE simulation.
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We first show in Fig. 12 the power spectra of fluctuations of the
decay exponent n computed from the total energy Kðt0Þ and the
dissipation rate eðt0Þ by using the finite-difference formulas (33),
corresponding to Fig. 9(left). The first and second peaks of both
n̂Kðf 0Þ and n̂eðf 0Þ are f 0 � 1:3316 and 2.6632, respectively. The first
peak corresponds to the fundamental frequency f 0s of the acoustic
wave, and the second one to the second harmonic frequency 2f 0s .
The second harmonic is much more intense than the fundamental
one because both Kðt0Þ and eðt0Þ are related to u � u. The spectra in
Fig. 12 clearly show that the acoustic wave in the LBE simulation is
responsible for the oscillations in nK and ne of Fig. 9(left).

We next show in Fig. 13 the power spectra of oscillating compo-
nents of the rms pressure fluctuation dp0ðt0Þ and the rms velocity
divergence H0ðt0Þ. Both these spectra are very much similar to the
previous ones, for they are also related to u � u. It is interesting to
note that the strength of the fundamental frequency f 0s for the
rms pressure fluctuation dp0ðt0Þ is very weak.

Finally, we show in Fig. 14 the spectral analysis for the skewness
and flatness of the LBE simulations. The spectra of the skewness and
the flatness have more peaks than, for example, that of the rms pres-
sure. There are four most prominent peaks, labeled by A, B, C and D,
situated at f 0A � 1:360 � f 0s ; f 0B � 1:968; f 0C � 2:315 and f 0D � 2:750 �

2f 0s , respectively. Clearly, f 0A and f 0D correspond to the basic and second
harmonic frequencies of the acoustic wave in the system. However,
it is not so clear what the other peak frequencies correspond to. We
suspect that the frequency f 0B corresponds to the wave traveling
along the diagonals of a plane parallel to the faces of the cube, and
f 0C to the diagonals of the cube, because f 0B �

ffiffiffi
2
p

f 0s ¼ 2css0=
ffiffiffi
2
p

L and
f 0C �

ffiffiffi
3
p

f 0s ¼ 3css0=
ffiffiffi
3
p

L. In addition, f 0 � f 0B=2 � 0:984; f 0C=3 � 0:772
and 2f 0C=3 � 1:54 can be seen in the frequency spectrum of the skew-
ness, shown in Fig. 14 (left): the subharmonics f 0B=2 and f 0C=3 on the
left of peak A are labeled as a and b, respectively; peak d, between
peak A and peak B, is about f 0 � 2f 0C=3; and peak e, on the right of peak
D, is f 0 � 3f 0B=2.

To definitively identify the source of oscillations in the LBE sim-
ulations, we perform the following test. Besides the accuracy, the
greatest distinction between the LBE and PS methods is treatment
of pressure p. The PS method solves the Poisson equation for the
pressure p in k-space, while the LBE method relates the pressure
p to the density q through the equation of state p ¼ c2

s q, thus den-
sity fluctuations are essential in LBE simulations. To mitigate the
effect of density fluctuations, we alter the LBE algorithm as follows.
Instead of the simple advection–collision algorithm, we apply an
iterative algorithm [44] to consistently solve the Poisson equation

Fig. 9. Decaying exponents nK and ne computed from Kðt0Þ=K0 and eðt0Þ=e0, respectively, corresponding to Fig. 7. Left: the results computed from Eq. (33) and right: the LBE
results smoothed by local averaging.

Fig. 10. The rms pressure fluctuation dp0ðt0Þ=dp00 (left) and the pressure spectra Pðk; t0Þ (right), LBE vs. PS1.
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Fig. 11. The skewness (left) and the flatness (right) with Rek � 24:35 and N3 ¼ 1283. The LBE (thin lines) vs. PS1 (thick patterned lines). In the bottom row, the LBE data (thin
line with symbols) have been smoothed.

Fig. 12. The power spectra of the fluctuations in the decay exponent nðt0Þ computed from the total energy Kðt0Þ (left) and the dissipation rate eðt0Þ (right) of the LBE simulation,
corresponding to the data in Fig. 9 (left). Rek � 24:35 and N3 ¼ 1283.
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after each collision step. That is, after each advection–collision
step, the local velocity field uðxj; tiÞ is kept unchanged while the
collision step is repeated for, say, 20 times, to obtain the density
qðxj; tiÞ. Then the advection–collision is repeated again. The result
for the skewness Suðt0Þ obtained in this test is shown in Fig. 15. In
Fig. 15, we show the skewness Suðt0Þ obtained by the PS and LBE
method, corresponding to the data shown in Fig. 11(left), and by
the advection–collision-iteration scheme. Clearly, the oscillations
in Suðt0Þ have been completely eliminated by the advection–colli-
sion-iteration scheme. This conclusively proves that density fluctu-
ations are the source of the oscillations in the statistical quantities
obtained by using the LBE method. While the advection–collision-
iteration scheme can eliminate the acoustic oscillations, the
scheme is inaccurate and unstable, as indicated in Fig. 15: after
t0 � 3:3, the simulation diverges.

While the advection–collision-iteration scheme is useful to
identify the source of oscillations in the LBE simulations, it cannot
be used to reduce the oscillation because it is neither accurate nor
stable, as shown by the results of Fig. 15. Given the compressible
nature of the LBE method, our options to reduce the acoustic effect

in LBE simulations are rather limited. We do not want to use a
smaller Mach number because that effectively reduces the CFL
number and hence the efficiency. Since the equilibria are related
to the second-order Taylor expansion of the Maxwellian in u
[16,17], we can consider using a higher-order expansion in u for
the equilibria. We test the equilibria including the terms of Oðu3Þ,
and results are shown in Fig. 16. In Fig. 16 we compare the skew-
ness Suðt0Þ and the flatness Fuðt0Þ computed from the LBE scheme
with the second-order and third-order equilibria. Clearly, the
third-order equilibria reduce the magnitude of oscillations in both
Su and Fu only very little.

4.5. Effects due to the viscosity or the Reynolds number

To investigate the effect of the viscosity m or the Reynolds num-
ber on the results obtained from the LBE and PS methods, we con-
duct simulations with different values of the viscosity m, and fixed
mesh size N3 ¼ 1283 and the initial energy spectrum E0ðkÞ, result-
ing in different Taylor micro-scale Reynolds numbers. The values of

Fig. 13. The power spectra of the rms pressure fluctuation cdp0 ðf 0Þ (left) and the rms velocity divergence cH0 ðf 0 Þ (right), corresponding to Fig. 10 (left) and Fig. 8, respectively.
Rek � 24:35 and N3 ¼ 1283.

Fig. 14. The power spectra of the oscillating components of the skewness (left) and the flatness (right), corresponding to the data of Fig. 11 left and right, respectively.
Rek � 24:35 and N3 ¼ 1283.
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Rek; m and the normalized initial Kolmogorov length scale g0=dx
used in the simulations are given in Table 2.

It is important to note that with the initial spectrum given by
Eq. (17), the required resolution in the simulation is explicitly
specified by kb. However, as the flow evolves, all the modes in k
space are filled immediately. The dissipation rate eðtÞ will reach a
maximum before it decays monotonically. The Kolmogorov scale
gðtÞ will attain a minimum when eðtÞ reaches its maximum. The
minimum of gðtÞ is not too far from its initial value g0. For this rea-
son g0 is given in Table 2 as a reference value.

We first investigate the Reynolds-number dependence of the
difference between instantaneous flow fields obtained from the
LBE and PS methods by comparing the flow fields with the Rey-
nolds numbers Rek � 40:67 at t0 � 4:0400 and Rek � 72:37 at
t0 � 4:0869. The results are shown in Figs. 17 and 18 for
Rek � 40:67 and 72.37, respectively. For the case of Rek � 40:67
shown in Fig. 17, the LBE flow fields are clearly different from
the PS ones, although strong correlations can still be observed,
while the PS results obtained with different time step sizes still
agree with each other rather well. As for the case of Rek � 72:37
shown in Fig. 18, the LBE flow fields have very little resemblance

to the PS ones. However, the flow fields obtained by the PS method
with different time step sizes still exhibit a much better resem-
blance to each other than the fields obtained by two different
methods. Clearly, the differences between the flow fields obtained
with different methods or with different time step sizes increase as
the Reynolds number Rek increases.

To quantify the difference between the flow fields obtained by
using different methods, we compute the L2-norm of the difference
between two flow fields:

kd�vk :¼ k�v1 � �v2k; ð37Þ

where �v :¼ v=u00;v is either the velocity or vorticity field, u00 is the
initial rms velocity, and �v1 and �v2 are flow fields obtained by meth-
ods ‘‘1” and ‘‘2”, respectively. We compute the flow field differences
with the five Reynolds numbers given in Table 2. Again, we compare
the results obtained by the LBE method and the PS method with two
different time step sizes, and the results for kd�uðt0Þk and kd�xðt0Þk are
shown in Fig. 19.

The following observations of the flow field differences can be
made. First, for the velocity difference kd�uðt0Þk, after a short initial
period of time, they all appear to grow linearly in time. The slope of
kd�uðt0Þk, i.e., dkd�uk=dt0, clearly depends on the Reynolds number
Rek; the slope increases as Rek increases. It should be noted that
with the resolution N3 and time step size dt0 fixed, the velocity dif-
ference kd�uðt0Þk appears to saturate, as indicated in the case of LBE
vs. PS method with an equal time step size dt0 (labeled as PS1 in the
figure), shown in the first figure in left column of Fig. 19. The re-
sults of kd�uðt0Þk for Rek � 65:07 and 72.37 almost overlap with
each other. However, when the results with the time step size of
dt0 are compared with the results with PS method with the time
step size of dt0=3 (labeled as PS2 in the figure), the velocity differ-
ences kd�uðt0Þk are in fact distinguishable for both cases of
Rek � 65:07 and 72.37. We note that the maximum Reynolds num-
ber estimated by Eq. (27) is about Rek max 
 47:8, thus both
Rek � 65:07 and 72.37 exceed this maximum value of Rek allowed
by the given resolution of N3 ¼ 1283. In other words, when the

Fig. 15. The oscillations due to the acoustics in the LBE simulation. The skewness
Suðt0Þ computed by using the LBE (thin line), PS (thick line) and the LBE with
advection–collision-iteration scheme (line with symbols).

Fig. 16. The effect of the equilibria on the skewness Suðt0 Þ (left) and the flatness Fuðt0Þ. The results with the second-order equilibria (thick blue lines) vs. that with the third-
order equilibria (thin red lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
The viscosity m, the initial Taylor micro-scale Reynolds number Rek , and the initial
Kolmogorov length scale g0 in the simulations.

m 1/600 1/1000 3/4000 1/1600 1/1800

Rek 24.35 40.67 54.23 65.07 72.37
g0=dx 1.036 0.802 0.695 0.634 0.598
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Fig. 17. Instantaneous velocity kuk=u00 (top) and vorticity kxkL=u00 (bottom) fields with Rek � 40:67 at t0 � 4:05. Contours on the plane z ¼ p. From left to right: LBE (thick red
lines) vs. PS1 (thin dashed green lines), LBE (thick red lines) vs. PS2 (thin dashed blue lines), and PS1 (thick green lines) vs. PS2 (thin dashed blue lines). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Instantaneous velocity kuk=u00 (top) and vorticity kxkL=u00 (bottom) fields with Rek � 72:37 at t0 � 4:05. Contours on the xy plane z ¼ p. From left to right: LBE (thick
red lines) vs. PS1 (thin dashed green lines), LBE (thick red lines) vs. PS2 (thin dashed blue lines), and PS1 (thick green lines) vs. PS2 (thin dashed blue lines). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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initial flow field is under-resolved, the velocity difference kd�uðt0Þk
does not depend on the Reynolds number as strongly as when
the flow is well resolved.

The evolution of the vorticity difference kd�xðt0Þk behaves dras-
tically different from the velocity difference kd�uðt0Þk. The vorticity

difference kd�xðt0Þk for different methods and different time step
sizes dt0 increases rapidly in an initial period of time, up to
t0 � 2:0, and then reaches a saturated final value depending on
the Reynolds number Rek, as shown in the right column of
Fig. 19. Clearly, the saturated value of kd�xðt0Þk increases as the Rey-

Fig. 19. Evolution of kd�uðt0Þk (left) and kd�xðt0Þk (right). From top to bottom: LBE vs. PS1, LBE vs. PS2, and PS1 vs. PS2.
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nolds number Rek increases, provided that the grid resolution N is
sufficiently large to resolve the flow. However, when the flow is se-
verely under-resolved, as in the cases of Rek � 65:07 and 72.37, the
saturated value of kd�xðt0Þk weakly depends on Rek. It is interesting
to note that there is no obvious and qualitative difference in either
kd�uðt0Þk or kd�xðt0Þk due to different methods or the same method
with different time step sizes, the differences are only quantitative.

To further quantify the difference between the flow fields ob-
tained by using difference methods, we compute the Reynolds-
number dependence of the slope dkd�uðt0Þk=dt0 for the velocity dif-
ference kd�uðt0Þk. The values of dkd�uðt0Þk=dt0 are computed by using
the least-square linear fit with the data of t0 P 16:0 in Fig. 19. The
results of dkd�uðt0Þk=dt0 as a function of the grid Reynolds number
Re	k :¼ Rek=N are shown in Fig. 20. Several interesting observations
can be made of Fig. 20. First, it appears that the growth rate
dkd�uðt0Þk=dt0, regardless of methods and time step size dt0, has an
approximately linear dependence on the Reynolds number Rek

when the flow is properly resolved by the both methods. In partic-
ular, the growth rates of kd�uðt0Þk for the LBE vs. PS method with an
equal time step size dt0 (PS1) and the LBE vs. PS method with a
smaller (dt0=3) time step size (PS2), corresponding to top and mid-
dle plot in Fig. 19, respectively, are almost identical when
Re	k :¼ Rek=N < Rek max=N � 0:3655, where the Rek max � 46:784 is
estimated by using Eq. (27), thus Rek max=N � 0:3655. This suggests
that when the flow is properly resolved by both methods, the dif-
ference in spatial accuracy decides the Reynolds-number depen-
dence of the growth rate of the velocity difference dkd�uðt0Þk=dt0,
while the time step size dt has little effect, although the velocity
difference itself kd�uðt0Þk is affected by both the spatial accuracy
and the time step size dt0. The growth rates obtained by using
the PS method with different time step sizes show a Reynolds-
number dependence similar to that of LBE vs. PS method, i.e., it
exhibits a similar linear dependence, as shown in Fig. 20. Again,
the global difference of flow fields computed from different meth-
ods is quantitative, rather than qualitative.

We will next show the effect of the Reynolds number Rek on
the statistical quantities. In Fig. 21 we first show the dependence
of KðtÞ, eðtÞ, and gðtÞ on the Reynolds number Rek. For the case of
Rek � 40:67, the results of the LBE and PS methods agree with
each other. They show very little differences in the figures. How-
ever, for the case of Rek � 72:37, the differences between the LBE
and PS results are visible in the figures. The LBE and PS results
agree only up to about t0 � 10, and both the energy KðtÞ and
the dissipation rate eðtÞ decay slower than the corresponding PS
results after t0 > 10. We also show the relative differences DKðt0Þ
and Deðt0Þ in Fig. 21 for the LBE vs. PS method (LBE vs. PS1) and
the PS method with two different time steps (PS2 vs. PS1). We ob-
serve that both DKðt0Þ and Deðt0Þ increase as Rek increases, while
the gaps between DKðt0Þ and Deðt0Þ for both LBE vs. PS1 and PS2
vs. PS1 decrease.

Fig. 22 shows the energy spectra Eðk; t0Þ and the compensated
spectra Wðk; t0Þ for Rek � 40:67 and 72.37. For the case of
Rek � 40:67, both Eðk; t0Þ and Wðk; t0Þ computed from the two
methods agree well with each other. As for the case of
Rek � 72:37, some discrepancies in high wave-numbers and at late
times are visible. It should be noted that, compared to the case of
Rek � 24:35 shown in Fig. 5, both Eðk; t0Þ and Wðk; t0Þ with
Rek � 72:37 are rather flat at large k initially, a clear indication that
the viscous sub-range is lacking as a consequence of insufficient
resolution. Nevertheless, the spectra obtained by the two methods
still maintain good agreement with each other.

Fig. 23 shows the rms pressure fluctuation dp0ðt0Þ=dp00 and the
pressure spectrum Pðk; t0Þ for Rek � 40:67 and 72.37. The rms pres-
sure fluctuations dp0ðt0Þ=dp00 computed from the LBE method with
Rek � 40:67 and 72.37 start to deviate from the PS results at
t0 � 1:0 and 0.4, respectively. Except for a very short initial period

of time, the LBE pressure spectra Pðk; t0Þ differ from the PS pressure
spectra significantly, especially at low wave-numbers.

Finally, we show in Figs. 24 and 25 the skewness and flatness,
respectively, at Rek � 40:67 and 72.37. At Rek � 40:67, both the
skewness and flatness computed with the LBE method agree with
their PS counterparts only in a short initial period of time t0 < 2:0,
while the results of both the skewness and flatness computed from
the PS method with different time step sizes (PS1 and PS2) agree
very well with each other in the entire period of time of the simu-
lation. As the Reynolds number increases to Rek � 72:37, the initial
period of time in which the LBE results of the skewness and the
flatness agree with the PS results is shorten to t0 < 0:5. The same
is also true for the results obtained by using the PS method with
different time step sizes. Nevertheless, the LBE results still agree
with the PS results qualitatively.

Based on the observations made above, we can conclude that
the flow fields computed with the LBE method agree well with
those computed with the PS method when the initial flow field is
properly resolved by both methods. Furthermore, the difference
between the flow fields computed with the LBE and PS methods
is qualitatively similar to that between the flow fields computed
with the PS method with different time step sizes. Clearly, as the
viscosity decreases and the Reynolds number increases with a
fixed grid resolution N3, the flow may not be adequately resolved.
The effect due to inadequate resolution is more severe in the
instantaneous flow fields than in the statistical quantities. In fact,
except the rms pressure and the pressure spectrum, all other sta-
tistical quantities computed by using the LBE method are accept-
able even when the flow is under-resolved.

4.6. Computational efficiency

Finally, we compare the computational efficiency of the LBE and
PS methods. For efficiency test we use a fixed mesh size N3 ¼ 1283

and 1000 time steps. The CPUs are the Intel Xeon 5160 ‘‘Wood-
crest” chips (4 cores) running at 3.0 GHz with 4MB shared level 2
cache per dual core. With both collision and advection combined
in one step, the D3Q19 LBE model is about 2.58 times faster than
the PS method when four CPUs are used. From Fig. 26, we can
see that the PS method scales very well up to 32 CPUs with a fixed
system size N3 ¼ 1283, while the LBE method does not. The reason
is the following. As a second-order method, the LBE requires much

Fig. 20. The Reynolds-number dependence of the growth rate for the velocity
difference in time, dkduk=dt0 , with different methods and time step sizes. We use
the grid Reynolds number Re	k :¼ Rek=N for this figure.
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less computation than the PS method. As the number of CPUs in-
creases while the system size N3 maintains fixed, CPUs are increas-
ingly under fed thus the data communication latency becomes a
dominant factor accordingly. As for the memory use, the PS meth-

od requires 13 arrays of the size N3, while the D3Q19 LBE model
requires 19 arrays.

It should be pointed out that the initialization process in the LBE
simulations is rather time consuming. In the present work, the

Fig. 21. Evolution of the normalized total kinetic energy Kðt0Þ=K0 and the normalized dissipation rate eðt0Þ=e0 (top), the normalized Kolmogorov length gðt0Þ=dx (center), and
the relative differences DKðt0Þ and Deðt0Þ (bottom), with N3 ¼ 1283;Rek � 40:67 (left) and 72.37 (right).
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initialization takes almost as long as the simulation time, i.e., about
30s0, where s0 is the turbulence turnover time, to satisfy the fol-
lowing criterion:

max
xj

kdqðxj; tn þ 1Þ � dqðxj; tnÞk 6 10�8:

To significantly shorten the time required to obtain accurate
initial conditions in LBE simulations, either multigrid [46–48] or
some implicit time integration [49] techniques must be used.

5. Discussion and conclusions

In this work we carry out a detailed comparison of the lattice
Boltzmann and the pseudo-spectral methods for direct numerical
simulations of decaying turbulence in three dimensions. We com-
pare instantaneous flow fields and low-order statistical quantities
computed by using these two methods. The computed instanta-
neous flow fields are the velocity field uðx; tÞ and the vorticity field
xðx; tÞ. It is interesting to note that, while there have been numer-
ous studies comparing turbulence statistics obtained by using fi-
nite-difference and spectral methods, to the best of knowledge,
no detailed comparison of instantaneous flow fields has been
made. Our results show that, with the Reynolds number Rek fixed,
the L2-normed difference kduk :¼ kuLBE � uPSk between the LBE and

PS velocity fields appear to grow linearly in time. Furthermore, the
growth rate dkduk=dt seems to depend linearly on Rek in a certain
range Rek depending on the methods which are compared. As the
Reynolds number Rek increases beyond certain point, the growth
rate dkduk=dt will saturate eventually. The same is also observed
for the velocity difference between the velocity fields obtained
by the PS method with different time step sizes. As for the vorticity
field xðx; tÞ, the L2-normed difference kdxk :¼ kxLBE � xPSk be-
tween the LBE and PS vorticity fields exhibits a behavior entirely
different from that of the velocity difference kduk. The vorticity dif-
ference kdxk grows very rapidly in an initial period of time t0 < 2:0,
then increases gradually to a plateau in a later time. It is interesting
to note that the same phenomenon is also observed in the vorticity
difference between the vorticity fields obtained by the PS method
with different time step sizes.

For the low-order statistical quantities, our results show that
the energy spectrum Eðk; tÞ, the total kinetic energy KðtÞ, and the
dissipation rate eðtÞ obtained by the two methods agree very
well up to t0 � 30 when the initial velocity field is well resolved
by both methods, i.e., dx=g0 6 1:0. This resolution criterion is
consistent with previous empirical observations (cf. [42,43]).
For the case of initial Rek ¼ 24:35, the relative differences in both
KðtÞ and eðtÞ computed by the LBE and PS methods are no more
than 5% when t0 � 30, after both KðtÞ and eðtÞ decay almost four

Fig. 22. The energy spectra Eðk; tÞ (left) and the compensated spectra Wðk; t0Þ (right) with N3 ¼ 1283;Rek � 40:67 (top) and 72.37 (bottom). The LBE (thin lines with symbols)
vs. PS1 (thick patterned lines).
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orders of magnitude. This is not surprising, because the flow
fields are well captured in the LBE calculation in this case. How-
ever, when the initial flow is under-resolved in the LBE simula-
tions, such as in the case of initial Rek � 72:37 and g0=dx �
0:598;KðtÞ and eðtÞ computed from the two methods show visi-
ble discrepancies after t0 > 10, and the relative differences in KðtÞ
and eðtÞ computed by the LBE and PS methods increase to about
40% when t0 > 20. However, even in the case of Rek ¼ 72:37,
both KðtÞ and eðtÞ computed from the two methods agree well
when t0 � 10. In general, the relative differences DKðtÞ and
DeðtÞ for the LBE vs. PS method are greater than their counter-
parts for the PS method with different dt0. However, the differ-
ences between DKðtÞ and DeðtÞ for the LBE vs. PS method, and
their counterparts for the PS method with different dt0, decrease
as the Reynolds number Rek increases.

The greatest difference between statistical quantities computed
by using the LBE and PS methods is the pressure spectrum Pðk; t0Þ,
due to significantly different treatments of the pressure field pðx; tÞ
in these two methods. It can be shown that the spatial accuracy of
the pressure field p solved by the LBE method is formally first-or-
der. As shown in the present work, even when the flow is well re-
solved initially by both methods, i.e., dx=g0 6 1:0, the rms pressure
fluctuations obtained by the LBE and PS methods agree with each
other very well only for a relatively short period of time t0 < 2:0.

Consequently the pressure spectra Pðk; t0Þ computed by using the
two methods also agree with each other in the same short period
of time. Increasing the grid Reynolds number Rek=N would de-
crease this initial period of time within which the pressures com-
puted by using the two methods agree with each other. Beyond
this initial period of time, the quality of the LBE pressure field dete-
riorates and is dominated by density fluctuations of very high fre-
quencies and short wavelengths, comparable to that of the time
step size dt and the grid spacing dx, respectively. In spite of the
deterioration of the pressure field, both velocity and vorticity fields
are well captured in the LBE simulations.

For the skewness and flatness of the velocity derivative, the ef-
fect due to acoustic waves intrinsic to the LBE method is conspicu-
ous: the pressure fluctuations induce high-frequency oscillations in
the skewness and the flatness computed by using the LBE method,
which are absent in the PS results. Nevertheless, when the high-fre-
quency oscillations are filtered out, the LBE results agree well with
the PS results up to t � 30s0 when the initial flow field is well re-
solved by both methods, as in the case of Rek � 24:35.

Based on our results, we can conclude that, overall, the lattice
Boltzmann method performs very well when compared with the
pseudo-spectral method for DNS of decaying turbulence when
the flow is properly resolved. Specifically, the LBE simulations
can reliably produce accurate results for instantaneous velocity

Fig. 23. The rms pressure fluctuation dp0ðt0Þ=dp00 (left) and the pressure spectra Pðk; t0Þ (right), with Re � 40:67 (top) and 70.37 (bottom). LBE vs. PS1.
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and vorticity fields and low-order statistical quantities including
the total energy KðtÞ, the dissipation rate eðtÞ, the energy spectrum
Eðk; tÞ, the skewness and the flatness for an extended period of
time, provided that the initial flow field is well resolved with the
criterion that dx=g0 6 1:0, which is about twice of the resolution

requirement for spectral methods. This is consistent with the
observation made in a previous study comparing finite-difference
and spectral methods [42,43,31]. Consequently the LBE method de-
mands a computational effort about 16 times greater than that of
the pseudo-spectral method (a factor of two from each spatial

Fig. 24. The skewness with Rek � 40:67 (left) 72.37 (right). N3 ¼ 1283. LBE vs. PS1 (top), smoothed LBE vs. PS1 (center), and PS2 vs. PS1 (bottom).
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dimension and another one from time stepping, to maintain the
same CFL number in both systems). However, this is expected be-
cause the LBE method is only a second-order scheme. The pressure
field obtained by using the LBE method is much less satisfactory.
The rms pressure dp0ðtÞ and the pressure spectrum Pðk; tÞ obtained

by using the LBE method are accurate in a time interval much
shorter than that for the velocity field and other statistical quanti-
ties. This is somewhat expected because the LBE method does not
solve the Poisson equation for the pressure, and this is true of all
low-order schemes which do not solve the Poisson equation

Fig. 25. The flatness with Rek � 40:67 (left) 72.37 (right). N3 ¼ 1283. LBE vs. PS1 (top), smoothed LBE vs. PS1 (center), and PS2 vs. PS1 (bottom).
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accurately. To improve the accuracy of the LBE method for the
pressure field, one must, in some way, consider solving the Poisson
equation effectively and efficiently while preserving other key fea-
tures of the LBE method, including its conservativeness, isotropy,
and low numerical dissipation in small scales [33,36]. This will
be a subject of our future research.

Finally, we would like to comment on the significance of this
work. In a larger sense, our work attempts to address the following
question: what should we understand by ‘‘direct numerical simula-
tions” for turbulence? For many, DNS may simply mean a numerical
method without explicit turbulence modeling. However, it is more
appropriate to restrict the term ‘‘DNS” to schemes which demonstra-
bly resolve everything up to the smallest dynamically relevant scale.
In this sense, spectral-type methods are the best methods to perform
‘‘DNS”, and we have shown in this work that, although the LBE meth-
od is inferior to pseudo-spectral methods in terms of accuracy, it can
nevertheless be used as an adequate ‘‘DNS” tool. We believe that the
success of the LBE method as a DNS tool can be specifically attributed
to the following features of the LBE. First, the LBE method has rela-
tively low numerical dissipations even at the scales of grid spacing
[33,36], which is difficult to achieve for low-order schemes. Second,
the LBE method is isotropic, that is, its accuracy does not depend on
the angle with respect to mesh lines [33,36]. The isotropy ensures
the conservation of angular momentum (or vorticity) numerically.
And third, the LBE method has relatively small numerical dispersive
effects [33], which are certainly less than what is observed in con-
ventional CFD methods of second-order accuracy [50,51]. These in-
sights can serve as guidelines to construct accurate numerical
schemes for DNS of turbulence.
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