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The current diffused-interface immersed boundary method (IBM) with a two-sided force distribution kernel
cannot be used to correctly calculate the velocity gradients within the diffused solid-fluid interfaces. This is
because the nonzero boundary force distributed to the fluid nodes modifies the momentum equation solved at
these locations from the Navier-Stokes equations (NSEs). In this paper, this problem is analytically identified in
simple plane channel flow. A single-sided force distribution kernel is used to restrict the boundary force in the
solid region and restore NSEs in the fluid region for correct velocity gradient computation. In order to improve
the no-slip boundary enforcement in IBM, an extremely simple force amplification technique is proposed.
This technique requires no additional computation cost and can significantly reduce the necessary iterations
to achieve accurate no-slip boundary enforcement. The single-sided kernel and the force amplification technique
are examined in both laminar and turbulent flows. Compared to the standard IBM, the proposed methods not
only produce correct velocity gradient results near a solid surface but also reduce numerical errors in the flow
velocity and hydrodynamic force and torque results.
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I. INTRODUCTION

The immersed boundary method (IBM) is a powerful
technique of treating boundary conditions on complex ge-
ometries in many applications of the modern computational
fluid dynamics (CFD) [1]. These boundary conditions can
be Dirichlet boundaries [2–4], Neumann boundaries [5], and
combined types such as the slip boundaries for inviscid com-
pressible flows [6,7]. The essential idea of IBM is to convert
the physical boundary conditions on a solid surface to the
Dirichlet constraints that should be enforced on the adjacent
Cartesian grid points so body-fit meshes are not necessary
for boundary treatment on the complex geometries. There
are mainly two categories of IBM, sometimes named the
sharp-interface (SI) IBM and the diffused-interface (DI) IBM.
SI-IBM often enforces certain constraints on a layer of grid
points inside the solid phase but close to the boundary, so
that locations on the solid surface satisfy the desired boundary
conditions. The biggest advantage of this category is that a
“sharp” representation of the interface is obtained and the
boundary treatment can be designed with a high accuracy
[5]. DI-IBM, however, diffuses the interface as a thin but
finite-thickness layer around the solid surface, which brings
it relative easiness to implement and a smoothing technique
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to suppress the numerical noise in simulations. Due to these
advantages, this category of IBM is more popular than SI-IBM
in applications involving a large amount of moving objects,
such as particle-laden flows [3,8–10].

DI-IBM has many advantages, such as easiness in track-
ing the fluid-solid interfaces, reasonable computational costs,
simplicity in implementation, and robustness in handling the
hydrodynamic interactions, but it also has some disadvan-
tages. One well-known disadvantage is its first-order accuracy
for flow velocity. This disadvantage comes from the use of δ

function, which is usually employed by DI-IBM to interpolate
velocity field from the Eulerian grid for fluid flow simulation
to the Lagrangian grid attached to the immersed objects, and
the boundary force the other way around [2,11]. It is worth
mentioning that there are also studies replacing δ functions
with moving-least-square (MLS) reconstructions for informa-
tion exchange between the Lagrangian and Eulerian grids and
claiming second-order accuracy [12–14]. These alternatives
are less seen in the applications of particle-laden flows, whose
potential in the field may worth a further exploration. In
practice, the first-order accuracy of DI-IBM does not seem
to affect the quality of the simulation results, as validated
in many flows, both laminar and turbulent [3,9,15–17]. An-
other disadvantage of DI-IBM is the lack of correctness in
computing the local velocity gradients inside the diffused
boundary [16–19]. This is because the nonzero boundary force
applied to the fluid nodes modifies the momentum equation
solved at these locations from the physical one, which is
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the Navier-Stokes equations (NSEs). Although this problem
remains local in a thin layer around the solid surface, it still
challenges the reliability of DI-IBM in certain applications.
For example, DI-IBM has been widely used to study the
flow modulation by finite-size solid particles in a variety of
turbulent flows [20–24], where the enhanced dissipation rate
of the turbulent kinetic energy around the particle surfaces
has been identified as one of the most important modulation
mechanisms [25]. The capability of correctly predicting the
velocity gradient near the particle surfaces plays a crucial
role to quantify turbulent modulation, especially the local
modulation in the vicinity of particle surfaces. A third disad-
vantage of DI-IBM is it often requires iterations of boundary
force to achieve an accurate no-slip boundary enforcement on
solid surfaces [9,10,26]. In numerical simulations, iterations
should be avoided or reduced whenever it is possible to save
computational costs.

In the past, the issue of incorrect velocity gradient com-
putation in DI-IBM has not been paid enough attention.
Only a few attempts were made to restore correct velocity
gradient results within the diffused layer of the solid boundary
[18,19,27]. These attempts proposed to first calculate the
velocity gradients at some ghost points in the fluid phase
that are outside the diffused layer but still close the solid
boundary, then use those results to approximate or extrapolate
the velocity gradient inside the diffused layer. As will be
analyzed in detail in Sec. II C 1, those attempts would only
work well in cases where the velocity gradient is a constant
or linearly distributed near solid boundaries. In more general
cases such as particle-laden flows, where the velocity gradient
and dissipation rate change dramatically near the particle
surfaces, those attempts could easily fail.

In this study, we propose to use a single-sided force
distribution kernel to replace the standard two-sided force
distribution kernel in DI-IBM to achieve correct velocity
gradient computation near solid surfaces. The essential idea is
to restrict the distribution of boundary force only to the solid
phase so the physical momentum equation is restored in the
whole fluid phase, including the regions attached to the solid
boundaries. Furthermore, in order to improve the accuracy
of no-slip boundary enforcement with DI-IBM, a simple
force amplification technique is introduced that introduces no
additional computational cost but can significantly reduce the
necessary number of boundary force iterations.

The remaining parts of the paper will be organized as
follows. In Sec. II we will first develop a mathematical
analysis using a simple plane channel flow to quantify the
level of inaccuracy of velocity gradient computation inside the
diffused layer of a solid boundary with the standard DI-IBM,
and show that the error can be rather significant. The failure
of those attempts made in the literature to solve this problem
will also be discussed in detail. With the understanding gained
from Sec. II and an analysis on the issue of inaccurate no-slip
boundary enforcement in DI-IBM, a single-sided force distri-
bution kernel to restore correct velocity gradient computation
and a force amplification technique to improve the accuracy of
no-slip boundary enforcement will be presented in Sec. III. In
Sec. IV those proposed methods will be validated in both lam-
inar and turbulent flows, and systematically compared against
DI-IBM with the two-sided force distribution kernel. Finally,

a conclusion and remarks of this study will be recapitulated in
Sec. V.

II. ISSUE OF INCORRECT VELOCITY GRADIENT
COMPUTATION WITHIN THE DIFFUSED LAYER AND

CURRENT SOLUTIONS

A. A standard DI-IBM with two-sided force distribution kernel

One of the most commonly used DI-IBM was refined by
Uhlmann [3]. The same as the other DI-IBM algorithms, it
requires two sets of grids, a fixed Eulerian grid on which
the NSEs are solved, and a Lagrangian grid attached to
every immersed solid body on which the no-slip boundary
is enforced. Regardless of the flow solver used, this standard
DI-IBM contains three key steps:

Step 1: the unforced preliminary velocity field on the
Eulerian grid is used to interpolate the flow velocities at the
Lagrangian grid via a regularized δ function

�U ( �XL ) =
∑
�xE

�u(�xE )δh(�xE − �XL )h3, (1)

where �U ( �XL ) and �u(�xE ) are the flow velocity at the Lagrangian
grid �XL and Eulerian grid �xE , respectively. By default, the
uppercase letters indicate the properties on the Lagrangian
grid points, and the lowercase letters indicate the properties
on the Eulerian grid points. h3 is the cell volume of an
Eulerian grid cell in three dimensions, h is the grid spacing.
δh is the regularized δ function that determines the weighting
factors in the interpolation and ensures the interpolation is
confined locally. One of the most commonly used regularized
δ functions was given by Peskin [2]

δh = 1

h3
φ
(x1

h

)
φ
(x2

h

)
φ
(x3

h

)
,

φ(r) =
⎧⎨
⎩

0, |r| � 2,
1
8

(
5 − 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 � |r| < 2,

1
8

(
3 − 2|r| +

√
1 + 4|r| − 4r2

)
, 0 � |r| < 1,

.

(2)

This regularized δ function conserves the zeroth- and first-
order moment of any continuous function during the interpo-
lation between the Lagrangian grid and the Eulerian grid.

Step 2: Once the interpolation in Step 1 is done, i.e.,
the unforced velocity at the Lagrangian grid is determined,
a boundary force �F that forces the fluid velocity at the
Lagrangian grid to obey the no-slip condition is calculated as

�F ( �XL ) = �U d ( �XL ) − �U ( �XL )

δt
. (3)

Here �U d is the target velocity at the Lagrangian grid point that
satisfies the no-slip condition, δt is the time step size.

Step 3: At last, the boundary force at the Lagrangian grid
is interpolated back to the Eulerian grid

�f (�xE ) =
∑

�XL

�F ( �XL )δh(�xE − �XL )�VL, (4)
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FIG. 1. The physical plane channel flow (a) and its numerical realizations with different IBM algorithms: (b) standard IBM [3], (c) IBM
with Lagrangian grid retraction [9], (d) IBM with single-sided force distribution strategy.

�VL is the cell volume represented by each Lagrangian grid
point, which is usually chosen to be �VL ≈ h3 [3].

The above three key steps of this DI-IBM can be easily
incorporated with any flow solver of NSEs. The implementa-
tion of this algorithm may also vary. To make the discussion
general, our analysis below is not associated to any specific
flow solver and implementation strategy.

B. Analytic demonstration of the incorrect velocity gradient
computation in a plane channel flow

The essential reason that the above DI-IBM cannot cor-
rectly predict the velocity gradients within the diffused layer
of the solid boundary is that the physical momentum equa-
tion solved at the Eulerian grid has been modified locally
by the present of a nonzero boundary force. To illustrate,
let us consider a steady-state plane channel flow driven
by a constant body force [Fig. 1(a)], whose physical mo-
mentum equation is simplified from the incompressible N-S
equation as

μ
d2u

dy2
+ ρg = 0, for − H

2
� y � 0, (5)

where u is the flow velocity in the streamwise direction, y is
the spatial coordinate normal to the channel wall, μ is the fluid
dynamic viscosity, ρ is the fluid density, and g is the driving
force per unit fluid mass. The analytic solutions of velocity
gradient and velocity in this plane channel flow at the steady
state can be easily obtained as

du

dy
= −ρgy

μ
, u = − ρg

2μ

[
y2 −

(
H

2

)2]
,

for − H

2
� y � 0 (6)

On the other hand, the actual momentum equation solved
by the DI-IBM [Fig. 1(b)] is

μ
d2u1

dy2
+ ρg = 0, −H

2
+ δ � y � 0, (7a)

μ
d2u2

dy2
+ ρg − ρgH

4δ

[
1 + cos

π (y + H/2)

δ

]
= 0,

− H

2
� y � −H

2
+ δ, (7b)

where δ is the half span of the regularized δ function. Note that
in Eqs. (7) we use u1 and u2 to distinguish the velocity solved
by DI-IBM and its physical counterpart u. The last term in
Eq. (7b) is the boundary force distributed by a cosine shape
regularized δ function

φ(r) = 1

2δ

[
1 + cos

(πr

δ

)]
. (8)

We adopt this δ function mainly for mathematical simplic-
ity, which would not affect the general observation made
below.

Equations (7) can be also solved analytically. Assuming
y = 0 is still a symmetric plane, i.e., du1/dy = 0 at y = 0, the
no-slip condition is still satisfied at the channel wall, i.e., u2 =
0 at y = −H/2, and the velocity is continuously differentiable
everywhere in the fluid region, i.e., du1/dy = du2/dy and
u1 = u2 at y = −H/2 + δ, the solutions of velocity gradient
and velocity of the IBM are

du1

dy
= −ρgy

μ︸ ︷︷ ︸
exact

, (9a)
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du2

dy
= −ρgy

μ︸ ︷︷ ︸
exact

+ρgH

4μ

{
1

δ

(
y + H

2

)
− 1 + 1

π
sin

[
π

δ

(
y + H

2

)]}
︸ ︷︷ ︸

O(1)

, (9b)

u1 = − ρg

2μ

[
y2 −

(
H

2

)2
]

︸ ︷︷ ︸
exact

−ρgH2

2μ

(
1

4
− 1

π2

)
δ

H︸ ︷︷ ︸
O(δ/H )

, (10a)

u2 = − ρg

2μ

[
y2 −

(
H

2

)2
]

︸ ︷︷ ︸
exact

+ρgH2

8μ

((
y + H

2

)(
y + H

2
− 2δ

)
1

δH
+ 2δ

π2H

{
1 − cos

[
π

δ

(
y + H

2

)]})
︸ ︷︷ ︸

O(δ/H )

. (10b)

Within the diffused layer of the channel wall −H/2 � y �
−H/2 + δ, the full term inside { } of Eq. (9b) varies from −1
to 0, thus the error term of the velocity gradient computation
within the diffused layer is of O(1). At the wall location y =
−H/2, this relative error reaches its maximum∣∣∣∣∣

∣∣∣∣∣
du2
dy

∣∣
y=−H/2 − du

dy

∣∣
y=−H/2

du
dy

∣∣
y=−H/2

∣∣∣∣∣
∣∣∣∣∣ = 50%, (11)

which is significant.
Equations (10) indicate that DI-IBM also creates a relative

error in the velocity field. This error grows from zero and
finally reaches a constant outside the diffused layer. The
magnitude of the error is on the order of O(δ/H ). This also
confirms that DI-IBM is first-order accuracy only in terms of
flow velocity field, which is a well-known property of diffused
interface IBM [2].

C. A review of current solutions for the problem of velocity
gradient computation

The identified problem of incorrect velocity gradient com-
putation in DI-IBM has not been widely recognized by the
IBM community. In the literature, only a few attempts were
made to restore correct velocity gradient within the diffused
layer of solid boundaries. These attempts are reviewed in this
section.

1. Extrapolation approaches

To correctly compute the velocity gradient at X locating
on the solid surface, Williams et al. [18] proposed to first
compute velocity gradients at an alternative location in the
fluid phase X − dn, where n is the normal vector pointing into
the fluid phase and d is made large enough so the location is
just outside the diffused layer of the solid boundary; then use
the computed results at X − dn to approximate the velocity
gradients at X. This may be viewed as a first-order approxima-
tion with δ ∼ h. A similar “ghost cell method” was introduced
by Santarelli et al. [19], where the velocity gradients were
computed at two locations X − dn, and X − 2dn, both inside
the fluid phase, then linearly extrapolated to X on the solid
surface, as such yielding a second-order accuracy. In order to
ensure that the velocity gradients can be accurately computed
at X − dn, and X − 2dn, d needs to be large enough so

the Eulerian grid points within the diffused layer could be
excluded in the computation. Huang and Tian concluded that
d > 2h is typically required [27].

Unfortunately, the above attempts function well only in
a few specific flows, where the velocity gradient is either
constant or linearly distributed near a solid boundary, such
as plane Couette flow and plane channel flow. In more gen-
eral flows, such as particle-laden flows, where the veloc-
ity gradient changes dramatically near the solid boundary,
those attempts can easily fail. To illustrate this point, let
us consider one of the simplest particle-laden flow cases,
a fixed sphere confronting a uniform stream in the Stokes
limit, where the analytic solution of this flow is widely
known as

ur = V

(
1 − 3a

2r
+ a3

2r3

)
cos θ,

uθ = −V

(
1 − 3a

4r
+ a3

4r3

)
sin θ, uϕ = 0, (12)

where ur , uθ , and uϕ are the velocity components in the radial,
polar, and azimuthal directions in a spherical coordinate, re-
spectively. V is the velocity of the incoming uniform stream, θ
is the polar angle, r is the radial location, and r = a represents
the location of the particle surface.

With this analytic velocity field, the nonzero velocity gra-
dient components are

∂ur

∂r
= V

(
3a

2r2
− 3a3

2r4

)
cos θ,

1

r

∂ur

∂θ
= −V

(
1

r
− 3a

2r2
+ a3

2r4

)
sin θ,

∂uθ

∂r
= −V

(
3a

4r2
− 3a3

4r4

)
sin θ,

1

r

∂uθ

∂θ
= −V

(
1

r
− 3a

4r2
+ a3

4r4

)
cos θ. (13)
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TABLE I. Results of velocity gradients and dissipation rate on the surface of a fixed particle confronting a uniform flow in the Stokes limit
computed from the approach of Williams et al. and that of Santarelli et al.

[ a
V cos θ

∂ur
∂r ]

W
[ −a

V sin θ

1
r

∂ur
∂θ

]
W

[ −a
V sin θ

∂uθ

∂r ]
W

[ −a
V cos θ

1
r

∂ur
∂θ

]
W

[ 2a2

3νV 2 〈ε〉θ,ϕ]
W

a = 10h 0.3183 0.0328 0.1591 0.4331 (13.38%) 0.3001 (69.99%)
a = 20h 0.2151 0.0109 0.1076 0.4600 (8.00%) 0.4974 (50.26%)
a = 40h 0.1265 0.0032 0.0632 0.4778 (4.44%) 0.6875 (31.25%)
Theory 0 0 0 0.5000 1.0000

[ a
V cos θ

∂ur
∂r ]

S
[ −a

V sin θ

1
r

∂ur
∂θ

]
S

[ −a
V sin θ

∂uθ

∂r ]
S

[ −a
V cos θ

1
r

∂ur
∂θ

]
S

[ 2a2

3νV 2 〈ε〉θ,ϕ]
S

a = 10h 0.2618 −0.0135 0.1309 0.4694 (6.12%) 0.4388 (56.12%)
a = 20h 0.1119 −0.0109 0.0560 0.4870 (2.60%) 0.6946 (30.54%)
a = 40h 0.0379 −0.0046 0.0189 0.4956 (0.88%) 0.8776 (12.24%)
Theory 0 0 0 0.5000 1.0000

The dissipation rate of the kinetic energy averaged over θ and
ϕ directions also can be obtained:

〈ε〉θ,ϕ = 1

4πr2

∫ π

0
(2νsi jsi j )2πr2 sin θ dθ

= 3

2

νV 2

r2

(
3a2

2r2
− 3a4

r4
+ 5a6

2r6

)
. (14)

In Table I we show the results of velocity gradients and
averaged dissipation rate computed with the approach of
Williams et al. [18] (with a superscript W ) and that of
Santarelli et al. [19] (with a superscript S) at the particle
surface r = a with different grid resolutions a/h. Compared
with the analytic solutions, even with a high grid resolution
a = 40h, the computed dissipation rates still contain relative
errors over 10%. Further increasing the grid resolution should
result in more accurate results, but is barely affordable, es-
pecially for studies involving large amounts of particles. In
Table II we listed the grid resolutions adopted in some state-
of-the-art turbulent particle-laden flow studies conducted with
DI-IBM. The grid resolutions in those studies barely passed
a/h = 20. It should be emphasized that the relative errors
listed in Table I come from a simple case of a uniform
Stokes flow passing a sphere. In turbulent particle-laden flows
where not only the flows become more complex but also the
particle Reynolds numbers are usually higher, it is reasonable
to expect these approaches would perform even worse. Using
these approaches to calculate the local velocity gradients and

dissipation rate inside the diffused layers of a solid boundary
is thus unreliable.

2. Approaches of retracting the Lagrangian grid

Retracting the Lagrangian grid from the actual solid sur-
face to an alternative surface inside the solid domain is a
common strategy to compensate the boundary diffusion in
DI-IBM [9,32]. Its effects on improving the accuracy of fluid
velocity and hydrodynamic force and torque predictions have
been discussed thoroughly in literature, e.g., by Breugem
in particle-laden flows [9]. Unfortunately, this retraction ap-
proach still cannot fully solve the problem of the velocity
gradient computation inside the diffused layer. An analysis is
provided here.

For the plane channel flow case discussed in Sec. II B,
assuming the Lagrangian grid is retracted from the channel
wall location y = −H/2 to y = −H/2 − rd by a distance rd ,
as shown in Fig. 1(c), the momentum equation actually solved
by DI-IBM becomes

μ
d2u1

dy2
+ ρg = 0, −H

2
+ δ − rd � y � 0, (15a)

μ
d2u2

dy2
+ ρg − ρgH

4δ

[
1 + cos

π (y + H/2 + rd )

δ

]
= 0,

−H

2
� y � −H

2
+ δ − rd . (15b)

TABLE II. Grid resolutions in some recent particle-laden turbulent flow simulations with spherical particles using IBM. Abbreviations:
HIT (homogeneous isotropic turbulence), FV (finite-volume), LBM (lattice Boltzmann method).

Flow type Numerical method No. of particles a/h

Uhlmann [21] Vertical channel FV-IBM 512–4096 6.4
Lucci et al. [22] HIT FV-IBM 640–6400 4.0–8.5
Cisse et al. [28] HIT FV-IBM 1 8.3–32.8
Picano et al. [23] Horizontal channel FV-IBM 2500–10 000 8.0
Rubinstein et al. [29] Fluidized bed LBM-IBM �1600 4.0–9.0
Costa et al. [30] Horizontal channel FV-IBM 80 000–640 000 8.0
Ardekani et al. [31] Horizontal channel FV-IBM 5000 16.0
Eshghinejadfard et al. [24] Horizontal channel LBM-IBM 66–305 7.8–13
Brändle de Motta et al. [15] HIT FV-IBM 4450–35 602 6.0

053305-5



CHENG PENG AND LIAN-PING WANG PHYSICAL REVIEW E 101, 053305 (2020)

The velocity and velocity gradient are once again solved analytically as

u1 = − ρg

2μ

[
y2 −

(
H

2

)2
]

︸ ︷︷ ︸
exact

− ρgH

2μ

(
1

4
− 1

π2

)
δ︸ ︷︷ ︸

original error term

+ ρgH

2μ

(
rd + r2

d

H

)
︸ ︷︷ ︸

correction term

, (16a)

u2 = − ρg

2μ

[
y2 −

(
H

2

)2
]

︸ ︷︷ ︸
exact

+ρgH

2μ

(
rd + r2

d

H

)
+ ρgH

8μδ

{(
y + H

2
+ rd

)(
y + H

2
+ rd − 2δ

)

+2δ2

π2

[
1 − cos

π (y + H/2 + rd )

δ

]}
, (16b)

du1

dy
= −ρgy

μ︸ ︷︷ ︸
exact

, (17a)

du2

dy
= −ρgy

μ︸ ︷︷ ︸
exact

+ ρgH

4μδ

{(
y + H

2

)
+ (rd − δ) + δ

π
sin

[
π

δ

(
y + H

2
+ rd

)]}
︸ ︷︷ ︸

O(1)

. (17b)

Compared to the solutions of DI-IBM without retraction,
i.e., Eq. (10), a positive correction term [the third term on
the right-hand side of Eq. (16)] is generated by the retraction
that can compensate the original error term and result in more
accurate velocity field. The optimal retraction distance rd can
be determined by canceling the second and third terms in
Eq. (16), which gives

rd |optimal =
√

H2 + 4
(

1
4 − 1

π2

)
δH − H

2
≈

(
1

4
− 1

π2

)
δ.

(18)

Assuming δ = 2h, the optimal rd calculated from Eq. (18)
with H = 20h, H = 40, H = 80, and H = 160 are 0.2931h,
0.2952h, 0.2963h, and 0.2968h, respectively. The optimal
retraction distance is not sensitive to the grid resolution,
and it is roughly 0.3h. This retraction distance was also
recommended by Breugem because it always yielded the most
accurate fluid velocity and hydrodynamic interaction results
in a variety of tested flows [9]. Our analysis provides a
theoretical backing for the retraction distance recommended
by Breugem.

Unfortunately, the optimal retraction distance is not able
to fully restore the velocity gradient within the diffused
layer. According to Eq. (17b), assuming δ = 2h, the ve-
locity gradient at wall location y = −H/2 would still be
under predicted by 35.37% with the optimal retraction dis-
tance of rd = 0.3h. On the other hand, a retraction distance
rd = δ does fully restore correct velocity gradient compu-
tation in the whole diffused layer, but such a large re-
traction distance could ruin the accuracy of velocity field
and hydrodynamic interaction results. Due to such con-
flict, the retraction approach is not a good candidate to
solve the problem of velocity gradient computation in DI-
IBM.

III. A FORCE-AMPLIFIED, SINGLE-SIDED DI-IBM FOR
CORRECT VELOCITY GRADIENT COMPUTATION AND

ACCURATE NO-SLIP BOUNDARY ENFORCEMENT

A. A singled-sided force distribution kernel

In this section, we introduce a simple solution to the issue
of incorrect velocity gradient computation within the diffused
layer of solid boundaries. Following the analysis in Sec. II,
it should be quite clear that the nonzero boundary force at
the Eulerian grid points in the fluid phase is the origin of
the incorrect velocity gradient computation inside the diffused
layer. Therefore, if the boundary force is restricted only to the
solid phase, a correct velocity gradient should be restored for
the whole fluid region of interest. With this understanding,
we propose to use a single-sided force distribution kernel to
replace the two-sided kernel of the standard DI-IBM when
distributing the boundary force from the Lagrangian grid to
Eulerian grid. In the third step of DI-IBM, Eq. (4) is modified
as

�f (�xE ∈ solid) =
∑
�XL

�F ( �XL )δh(�xE − �XL )�VL

W ( �XL )
, (19)

where W ( �XL ) is the weighting factor calculated in terms of
each individual Lagrangian grid point �XL as

W ( �XL ) =
∑

�xE ∈solid

δh(�xE − �XL )h3. (20)

Obviously, this weighting factor is divided to ensure the inte-
gral boundary forces applied to the Eulerian and Lagrangian
grids is conserved, i.e.,∑

�XL

�F ( �XL ) =
∑
�xE

�f (�xE ). (21)

It should be noted that the same single-sided boundary
force distribution kernel was introduced by Ji et al. [33] for the
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purpose of reducing the boundary diffusion. Compared to the
regular two-sided force distribution kernel, the single-sided
kernel was reported to result in more accurate drag and lift
coefficients and local velocity fields near the solid boundaries
in cases of a uniform flow passing a fixed cylinder or ellipse.
However, no effort was made by Ji et al. to investigate how this
kernel could be used to restore correct velocity gradient close
to the boundary. In addition, due to its one-sided boundary
force implementation, the single-sided kernel does not con-
serves torque during the interpolation of boundary force from
the Lagrangian grid to the Eulerian grid. How this lack of
torque conservation affects its actual performances was also
not investigated by Ji et al., as their validation tests involved
no particle rotations [33]. These aspects will be covered by
the present study. Furthermore, Ji et al. also reported that the
single-sided kernel required a large number of iterations to
enforce accurate no-slip conditions on the solid surface [33].
We would further refine the IBM algorithm by introducing a
simple force amplification technique to improve the no-slip
boundary enforcement. This aspect will be discussed shortly
in Sec. III B.

The differences between the single-sided force distribution
kernel and the approaches of retracting the Lagrangian grid re-
viewed in Sec. II C 2 should be also emphasized. The essential
idea of the single-sided kernel is to restore the physical mo-
mentum equations of the flow by removing the boundary force
from the whole fluid region. On the other hand, retracting the
Lagrangian grid is to offset the enlarged effective radius of
the solid object due to boundary diffusion. In terms of the
implementation, the single-sided kernel reduces the thickness
of the diffused layer by a half, i.e., from 2δ to δ, as shown
in Fig. 1(d). On the contrary, retracting the Lagrangian grid
only shifts the location of the diffused layer by a distance rd .
The thickness of the diffused layer is unchanged, as shown in
Fig. 1(c). Finally, as being analyzed in Sec. II C 2 and will be
confirmed by numerical simulations in Sec. IV, retracting the
Lagrangian grid is generally incapable of restoring the correct
velocity gradient near the solid boundaries. The single-sided
kernel, on the other hand, ensures correct velocity computa-
tion in all circumstances.

B. A simple force amplification technique for accurate no-slip
boundary enforcement

It is well-known that a single execution of the DI-IBM
kernel, i.e., Eq. (1) to Eq. (4) cannot enforce accurate no-
slip condition at the Lagrangian grid [9,10,26]. One method
to address this issue is to execute the DI-IBM kernel and
updating the velocity field on the Eulerian grid multiple times
while pausing the flow solver until the interpolated velocity at
the Lagrangian grid converges to its targeted value with suf-
ficiently small deviations [9,10,26]. In numerical simulations,
any type of iteration would require additional computational
costs and should be avoided if possible. In this section,
an extremely simple force amplification technique is intro-
duced that could significantly improve the accuracy of no-slip
boundary enforcement with a negligible computational cost.

Before bringing up this technique, let us first understand
where the error of no-slip boundary enforcement comes from
and why the iterative-direct forcing could eventually eliminate

x1

x2

X
1F

2F

1u

2u

FIG. 2. An ideal alignment of Lagrangian and Eulerian grid
points around a solid boundary.

this error. To help demonstration, let us consider an ideal
boundary configuration in one dimension shown in Fig. 2 that
consists of only one Lagrangian grid point and two Eulerian
grid points, one on each side of the Lagrangian grid. For this
ideal configuration, h = �VL = 1, the three key steps in the
DI-IBM reduce to

�U ( �X ) = φ1�u(�x1) + φ2�u(�x2), (22a)

�F ( �X ) = �U d ( �X ) − �U ( �X )

δt
, (22b)

�f (�x1) = φ1 �F ( �X ), �f (�x2) = φ2 �F ( �X ). (22c)

With the boundary force �f (�x1) and �f (�x2), the velocity at the
Eulerian grid will be updated as

�̃u(�x1) = �u(�x1) + �f (�x1)δt, �̃u(�x2) = �u(�x2) + �f (�x2)δt, (23)

where the notations �̃u(�x1) and �̃u(�x2) are used to indicate the
velocity field after the boundary forcing. When this updated
velocity field is interpolated back to the Lagrangian grid point,
the updated velocity at the Lagrangian grid becomes

�̃U ( �X ) = �U ( �X ) + (
φ2

1 + φ2
2

)
[ �U d ( �X ) − �U ( �X )]. (24)

Obviously, unless (φ2
1 + φ2

2 ) = 1, the precise no-slip condi-
tion would not be satisfied at the Lagrangian point. How-
ever, as the weighting factors generated from regularized δ

functions satisfy φ1 + φ2 = 1, with 0 � φ1 � 1, 0 � φ2 � 1,
(φ2

1 + φ2
2 ) = 1 can be barely fulfilled. With multidirect forc-

ing, Eq. (24) can be generalized to arbitrary two consecutive
iterations as

�̃U (n+1)( �X ) = (
φ2

1 + φ2
2

) �U d ( �X ) + (
1 − φ2

1 − φ2
2

) �̃U (n)( �X ),
(25)

which recursively results in

�̃U (n+1)( �X ) =
[(

φ2
1 + φ2

2

) n∑
m=0

(
1 − φ2

1 − φ2
2

)m

]
�U d ( �X )

+ (
1 − φ2

1 − φ2
2

)(n+1) �U ( �X ). (26)

Since (φ2
1 + φ2

2 ) ∈ (0, 1], when n → ∞, the coefficient of the
second term in Eq. (26) vanishes and the coefficient of the first
term converges to 1. Precise no-slip boundary enforcement
is then achieved. In fact, the multidirect forcing essentially
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generates a boundary forces series, whose summation results
in precise no-slip condition when the number of iterations
goes to infinity.

With the above understanding, the technique to avoid iter-
ation of the boundary force emerges. If the boundary force
is amplified by a factor α = 1/(φ2

1 + φ2
2 ) in Eq. (22b), the

updated velocity interpolated back to the Lagrangian grid
would satisfy the no-slip condition precisely. It should be
kept in mind that the above analysis is based on an ideal
configuration with only one Lagrangian grid point and two
Eulerian grid points. In practice, each Lagrangian grid point
will interact with multiple Eulerian grid points and each
Eulerian grid point will also interact with multiple Lagrangian
grid points, amplifying the boundary force by a factor no
longer completely eliminates the error of no-slip boundary
enforcement. However, as will be shown shortly, this force
amplification technique would actually work quite well in
simulations. It typically achieves an accuracy of no-slip
boundary enforcement that previously needs 8 to 10 iterations
to realize. This is probably because the regularized δ functions
restrict the interpolations to happen only locally among only
a few Lagrangian and Eulerian grid points, which is not far
from the ideal scenario discussed above.

For standard DI-IBM with the two-sided force distribution
kernel, the amplification coefficient αT should be defined in
terms of individual Lagrangian grid point �XL as

αT ( �XL ) = 1∑
�xE

[δh(�xE − �XL )]2
. (27)

For many commonly used regularized δ functions, this ampli-
fication coefficient αT is actually constant that needs no addi-
tional computation. For the three-point δ function introduced
by Roma [34], αT = 2. For Peskin’s four-point δ function
[Eq. (2)] and the four-point cosine δ function, αT = 8/3.

For the single-sided kernel, the force amplification coeffi-
cient αS should be calculated,

αS ( �XL ) = 1∑
�xE ∈solid[δh(�xE − �XL )]

, (28)

in order to accommodate the single-sided nature of the bound-
ary force distribution. Note that this force amplification coef-
ficient in Eq. (28) is essentially the weighting factor W ( �XL )
that has already been computed in Eq. (30). As a result, the
force-amplification technique requires no additional compu-
tation cost for both the standard DI-IBM with two-sided force
distribution kernel and the single-sided kernel.

It should be noted that there is also an alternative way that
can directly obtain boundary forces that fulfill no-slip condi-
tion on the Lagrangian grid by solving matrix systems gener-
ated from the back-and-forth interpolation processes between
the Lagrangian and Eulerian grids [35]. While it is accurate,
the implementation of this method could be cumbersome as
it requires the computation of multiple inverse matrices [35].
Simplified versions of this method based on approximately
solving the matrix and vector systems [36,37] were very
recently proposed, which no longer precisely enforces the
no-slip boundary condition on the Lagrangian grid, but being
much easier to implement. Nevertheless, those simplified
versions still require extra computational costs to formulate

matrices and vectors systems based on the specific alignment
between the Lagrangian and Eulerian grids. In this regard,
our force amplification technique that does not introduce any
additional computations is still much simpler.

C. A force-amplified, single-sided DI-IBM algorithm

Combining the single-sided force distribution kernel and
the force amplification technique, we propose a new DI-IBM
that not only restores correct velocity gradient computation in
the vicinity of a solid boundary but also improves the accuracy
of no-slip boundary enforcement. This DI-IBM also contains
three key steps.

Step 1: Interpolate the unforced velocity at the Lagrangian
grid point �XL from neighboring Eulerian grid points �xE fol-
lowing precisely the standard DI-IBM:

�U ( �XL ) =
∑
�xE

�u(�xE )δh(�xE − �XL )h3. (29)

In addition, sum up the total weight contributed by the Eule-
rian grid points locating in the solid phase in the interpolation,
use this total weight as the force amplification coefficient i.e.,

W ( �XL ) =
∑

�xE ∈solid

δh(�xE − �XL )h3, αS ( �XL ) = W ( �XL ). (30)

Step 2: Calculate the boundary force at the Lagrangian
grid, the force is amplified by dividing the force amplification
coefficient. This is the essential difference between the present
IBM algorithm and the algorithm of Ji et al. in Ref. [33]:

�F ( �XL ) = 1

αS ( �XL )

�U d ( �XL ) − �U ( �XL )

δt
. (31)

Step 3: Distribute the boundary force calculated in Step 2
back to only the neighboring Eulerian grid points in the solid
phase:

�f (�xE ∈ solid) =
∑
�XL

�F ( �XL )δh(�xE − �XL )�VL

W ( �XL )
. (32)

IV. NUMERICAL VALIDATIONS

In this section, the proposed DI-IBM will be examined in
four purposely selected flows, including three laminar flows,
a plane channel flow that provides numerical support for the
analysis presented in Sec. II, a Taylor-Couette flow that is
purely torque driven to assess the impact of lacking the torque
conservation in the single-sided force distribution kernel, the
sedimentation of a cylinder in quiescent fluid to benchmark
the performance of the proposed DI-IBM for tracking particle
motion, and one turbulent flow, a decaying homogeneous
isotropic turbulent flow laden with a few thousand of resolved
particles to examine the accuracy and numerical stability for
high Reynolds number flows.

A. A steady-state plane channel flow

The first case tested is the steady-state plane channel flow
discussed in Sec. II. The flow solver used here is the lattice
Boltzmann method (LBM) on a D2Q9 lattice grid with a
single relaxation time [38]. The no-slip condition on the two

053305-8



FORCE-AMPLIFIED, SINGLE-SIDED DIFFUSED-INTERFACE … PHYSICAL REVIEW E 101, 053305 (2020)

FIG. 3. Comparisons of L2 errors of no-slip boundary enforce-
ment on plane channel walls with and without the force amplification
technique.

channel walls are handled by DF-IBM. For demonstration
purposes, we set the flow Reynolds number Re = Huc/ν =
100, where H = 80h is the channel width, uc = 0.05 is the
steady-state flow velocity at the centerline of the channel, and
ν is the kinematic viscosity. The simulation was conducted
in a computational domain of nx × ny = 4 × 89. In the wall-
normal direction (y), the fifth and 85th grid points are the first
and last grid points in the fluid region, which are located on
each channel wall. Other grid points are in the solid region.
The driving force ρg is only applied to the grid points located
in the fluid region. The four-point cosine-shaped δ function,
i.e., Eq. (8) with δ = 2, is used for interpolations between
the Eulerian and Lagrangian grids to be consistent with the
analysis in Sec. II.

To begin, let us validate the force amplification technique
introduced in Sec. III B for more accurate no-slip boundary
enforcement. The L2 errors of the no-slip condition, defined

as

εL2 =
√∑

�XL

[ �U ( �XL ) − �U d ( �XL )]2

/√∑
�XL

[ �U d ( �XL )]2, (33)

as functions of the iteration times are presented in Fig. 3 for
both the standard DI-IBM with two-sided force distribution
kernel and the proposed DI-IBM with single-sided kernel,
with and without applying the force amplification. We would
like to emphasize that here and after, Niteration means the num-
ber of iterations for the boundary force of DI-IBM to enforce
the no-slip condition, which should be distinguished from
the possible iteration in flow solvers. For both kernels, when
the boundary force is amplified by the proper coefficient, the
L2 errors directly converge to the machine round-off error
without the need of iteration. On the contrary, without the
force amplification, the L2 errors of no-slip condition gradu-
ally reduce as the number of iterations increases. Compared
to the standard two-sided force distribution kernel, the L2
error of the single-sided kernel has a slower convergence
rate. This is because when the boundary force is applied
single-sidedly, only the fluid velocity in the solid region is
being updated during the iteration. It should be noted that
the force amplification technique works extremely well in this
plane channel flow case because the simple geometry and
the periodicity in the streamwise direction together create an
ideal alignment between the Lagrangian and Eulerian grids.
In general cases with curved geometries (will be seen in other
cases), the force amplification technique can still result in
more accurate no-slip boundary enforcement, but the error
wound not vanish.

The profiles of the velocity and velocity gradient obtained
with different DI-IBM algorithms are shown in Figs. 4 and
5, respectively. Here we compared the results from four DI-
IBMs, the standard DI-IBM, the proposed DI-IBM, and two
DI-IBMs with nonzero retraction distances rd = 0.3h and
rd = 2h. The first retraction distance is the optimal retraction
distance that should result in accurate velocity field, while
the second retraction distance is expected to fully restore the

FIG. 4. Profiles of velocity in a steady-state plane channel flow.
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FIG. 5. Profiles of velocity gradient in a steady-state plane channel flow.

correct velocity gradient results. The velocity gradient results
du/dy in all cases are computed as

du

dy
(x) = 4u(x + h) − 3u(x) − u(x + 2h)

2h
(34)

near the channel wall and

du

dy
(x) = u(x + h) − u(x − h)

2h
(35)

away from the channel wall, in order to avoid involving the
grid points inside the solid phase.

As shown in Fig. 4, a visible relative error about 2.5%
is observed in the velocity profile of the standard DF-IBM.
This error, as analyzed in Sec. II B, is caused by the nonzero
boundary force inside the fluid region and being a constant
outside the diffused layer. However, the magnitude of this
relative error is larger than the corresponding error predicted
by Eq. (10), which is about 1.5%. The deviation is probably
because the analysis in Sec. II B is based on a continuous
boundary force distribution, while in the actual simulations,
the boundary force is only distributed on a few Eulerian grid
points. With the retraction distance rd = 0.3h, the numerical
error in the velocity result does decrease to 1.1%, but it is not
fully eliminated following the prediction, probably due to the
same reason that the boundary force is distributed discretely
in the simulation. These two DF-IBMs both lead to significant
errors (48.6% for the standard DF-IBM and 34.8% with rd =
0.3h) in the velocity gradient computation near the channel
wall, but the results matches perfectly with the theory outside
the diffused layer, as shown in Fig. 5. With a large retraction
distance rd = 2h, correct velocity gradient computation can
be fully restored, but the numerical error in the velocity result
becomes significant. Therefore, employing a large retraction
distance should still be avoided. Finally, with the single-sided
force distribution kernel, not only correct velocity gradient
computation is achieved in the whole fluid region, but also
the numerical error in the velocity result is further reduced
to 0.3%. This simple test provides solid evidence that there
is an essential difference between the proposed DI-IBM and

the approach of retracting the Lagrangian grid from the solid
surface. The former can ensure accurate velocity and velocity
gradient computation at the same time, which is not achieved
by the latter.

B. A steady-state Taylor-Couette flow

The second validation case is a steady-state two-
dimensional Taylor-Couette flow. This case is chosen because
(1) it has curved solid boundaries and (2) it is a pure torque
driven rotational flow that can be used to assess the impact of
losing torque conservation when interpolating the boundary
force from Lagrangian to Eulerian grid. As sketched in Fig. 6,
this flow is bounded and driven by two rotating concentric
cylinders with radii R1 and R2 and angular velocity 1 and

R1

R2

1
2

FIG. 6. Sketch of circular Taylor-Couette flow. The red frame
indicates the edge of the computational domain. The two blue circles
are the physical boundaries, which confine the fluid region in white
color. The gray region is the virtual fluid region, which is physically
irrelevant to the problem, but also filled with fluid with IBM.
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FIG. 7. Comparisons of L2 errors of no-slip boundary enforcement on (a) inner cylinder and (b) outer cylinder with and without the force
amplification technique.

2, respectively. This flow also has analytic solution

uθ = 1

r

1 − 2

R−2
1 − R−2

2

+ 2R2
2 − 1R2

1

R2
2 − R2

1

r, ur = 0. (36)

For demonstration purposes, in the numerical test, we set
the outer cylinder static and the inner cylinder rotating. The
Reynolds number of the flow Re = (R2 − R1)1R1/ν is set to
15, with R1 = 50h, R2 = 100h, and 1R1 = 0.05. The flow is
again solved by LBM on a D2Q9 lattice grid. The size of the
computational domain is nx × ny = 211 × 211 with the cen-
ters of two cylinders located at (xc, yc) = (105.5h, 105.5h).
The no-slip boundary treatment on the two cylinder surfaces
is handled with tested IBM algorithms. From now on, the
four-point δ function by Peskin [2], i.e., Eq. (2), will be
used to execute the interpolations in all DI-IBMs. For this
specific flow, the treatment on the edges of the computation
domain (the red square in Fig. 6) could also significantly affect
the accuracy of the results [16]. In the numerical tests, the
stress-free condition, i.e., ∂ut/∂n = 0, un = 0, where ut and
un = 0 are the tangential and normal velocity component and
n is the normal direction on each edge, is applied to the edges
of the computational domain.

We again begin by examining the force amplification tech-
nique for enforcing the no-slip boundary condition. The L2
error of the no-slip boundary enforcement on the inner and
outer cylinders with and without applying the force amplifica-
tion technique are shown in Fig. 7, for both the two-sided and
single-sided force distribution kernels. A few observations can
be made from Fig. 7. First, for general curved boundaries, the
force amplification no longer immediately achieves precise
no-slip condition. This is because the force amplification coef-
ficients were obtained from an ideal case, which do not fit per-
fectly for general cases. Second, the standard DI-IBM kernel
provides smaller errors compared to the single-sided kernel.
This is also understandable because with the single-sided
kernel, only the velocity field on the solid side of the boundary
is updated, which affects the convergence of the error. A same

observation was also made by Ji et al. [33]. Third, for both
kernels, applying the force amplification technique could still
significantly reduce the necessity for boundary force itera-
tions to achieve an accurate no-slip boundary enforcement.
This technique functions particularly well with the standard
DI-IBM kernel. Without any iteration, an L2 error of no-
slip boundary enforcement has been achieved that previously
would require eight steps of iterations. For the single-sided
force distribution kernel, even with the force amplification
technique, a few iteration steps are still necessary in order
to enforce a sufficiently accurate no-slip boundary. Based on
the results in Fig. 7, when the force amplification technique
is used, we recommend zero iteration and three iterations
for the standard DI-IBM kernel and the single-sided kernel,
respectively, to balance the computation cost and the accuracy
of no-slip boundary enforcement.

Next, the profiles of velocity uθ and velocity gradient
duθ /dr with different DF-IBM algorithms are compared with
the analytic solutions in Figs. 8 and 9, respectively. The
compared IBM algorithms are the same four algorithms as
in the plane channel flow case. For each algorithm, the force
amplification technique is applied and the boundary force is
iterated three times in order to achieve more accurate no-slip
condition on the two cylinders. Although such iteration does
not significantly improve the no-slip boundary enforcement
when the two-sided force distribution kernel is adopted, the
same amount of iterations are kept in all cases just to reduce
discrepancies among different cases.

As shown in Fig. 8, the standard DF-IBM again results in
certain visible error in the velocity profile, which can be elim-
inated when a proper retraction distance rd = 0.3h of the La-
grangian grid is applied. The retraction of the Lagrangian grid
also leads to more accurate velocity gradient computation in
the region away from the cylinder surfaces, as shown in Fig. 9,
but significant errors in velocity gradient computation near
the cylinder surfaces still remain. On the contrary, the single-
sided force distribution kernel not only improves the accuracy
of velocity field, but also restores correct velocity gradient
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FIG. 8. Comparison of velocity profiles with different DI-IBM
algorithms in a steady-state Taylor-Couette flow.

computation in the whole fluid domain. We emphasize that
an upwind scheme like finite difference approximation, i.e.,
Eq. (34) should be used, in order to avoid the contamination
from the solid region in the computation of velocity gradient
in all cases. Finally, with a large retraction distance rd =
2h, both the velocity and velocity gradient results contain
significant errors through the whole fluid domain. This is
consistent with the observations reported in the literature,
e.g., Ref. [9]. From now on, the inaccurate results associated
with a large retraction distance will no longer be included
in our discussions. It should also be quite clear at this point
that retracting the Lagrangian grid is not capable of restoring
the correct velocity gradient results in the vicinity of a solid
surface.

As mentioned in Sec. III A, the single-sided strategy of
distributing the boundary force no longer conserves torque
during the interpolation of boundary force from Lagrangian to

FIG. 9. Comparison of velocity gradient profiles with different
DI-IBM algorithms in a steady-state Taylor-Couette flow.

FIG. 10. The relative error of hydrodynamic torque on the inner
and outer cylinders computed with different DI-IBM algorithms.

Eulerian grid. This issue and its potential impact on the sim-
ulation results need a further investigation, especially when
the rotational motion is playing an important role. For this
pure torque-driven Taylor-Couette flow, the relative errors of
the hydrodynamic torque on the inner and outer cylinder, i.e.,
(Tn − Tt )/Tt , where Tn and Tt are the numerical and theoretic
torque, respectively, are computed and compared in Fig. 10 for
different Reynolds numbers. All those hydrodynamic torque
results are computed based on the Lagrangian grid and with a
grid resolution of R1 = 50. As shown in Fig. 10, all three ex-
amined IBM algorithms overpredict the hydrodynamic torque
by 1% to 5%. The errors of hydrodynamic torque on the
outer cylinder are always larger than their counterparts on
the inner cylinder, as the former is more influenced by the
boundary treatment on the edges of the computation domain.
DI-IBM with a retraction distance of 0.3h always gives the
most accurate hydrodynamic torque predictions, followed by
the proposed DI-IBM with single-sided force distribution ker-
nel, then the standard DI-IBM. Indeed the proposed DI-IBM
with single-sided force distribution kernel does not conserve
torque nor it is the optimal method lead to the most accurate
hydrodynamic torque results, it still offers slightly improved
hydrodynamic torques compared to the standard DI-IBM.

At last, at Re = 15, we vary the grid resolutions to simulate
the same flow and measure the the orders of accuracy of veloc-
ity, velocity gradient, and hydrodynamic torque computations
with different IBM algorithms. The errors of the torque are
simply measured as |(Tn − Tt )/Tt |, where Tn and Tt are the
numerical and theoretical torque, respectively. Here we show
only the torque on the inner cylinder because the outer cylin-
der is very close to the edge of the computational domain (see
Fig. 6), which make its torque significantly affected by the
boundary treatment on the edge of the computational domain,
rather than the boundary treatment on the physical boundary
itself [16]. The errors of velocity and velocity gradient are
evaluated over the whole fluid domain as

ε =
√∑

(x,y)[qn(x, y) − qt (x, y)]2√∑
(x,y)[qt (x, y)]2

, (37)
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FIG. 11. Orders of accuracy for velocity, velocity gradient, and hydrodynamic torque computation with different DI-IBM algorithms. The
solid black line in the left plot shows the reference of the slope −1.0. The top and bottom black solid lines in the right plot are reference lines
for the slope −0.55 and −1.0, respectively.

where qn and qt should be replaced with the numerical and
theoretical values of the velocity and the velocity gradient. As
compared in Fig. 11, compared to the results of the standard
IBM, both retracting the Lagrangian grid by a distance of 0.3h
and the single-sided force distribution kernel could reduce the
magnitudes of numerical errors in the fluid velocity field and
hydrodynamic torque computations. The retracting approach
gives the smallest numerical errors in the hydrodynamic
torque computations, while the single-sided kernel leads to
the most accurate fluid field among three tested DI-IBMs.
On the other hand, the orders of accuracy of the results are
not improved. The fluid velocity and hydrodynamic torque
still have a first-order accuracy, and the velocity gradient
computation has an accuracy about 0.55 order. The orders of
accuracy in the diffused-interface based IBM are constrained
by the use of regularized δ function [2,16]. Since the three
IBM algorithms still rely on the same regularized δ functions
to interpolate the velocity and force back and forth between
the Lagrangian and Eulerian grids, the orders of accuracy are
not improved.

C. Sedimentation of a cylindrical particle
in quiescent fluid

We now move to the validation cases with freely moving
curved boundaries. The third validation case is the sedimen-
tation of asymmetrically placed cylindrical particle in an
infinite long channel filled with quiescent fluid, as depicted
in Fig. 12. For test purposes, we set D = 0.1 cm, L = 4 cm,
H = 0.4 cm, a = 0.324 cm, ν = 0.01 cm2/s, ρ f = 1 g/cm3,
g = 980 cm2/s2, and the density ratio ρp/ρ f = 1.03. This is
to match the arbitrary Lagrangian Eulerian (ALE) simulation
performed by Hu et al. [39], whose results will be used as
benchmark results for our simulations. Under this setting,
the terminal particle Reynolds number is Rep = uT D

ν
= 8.441,

where uT is the terminal settling velocity of the particle.
Due to its initial asymmetric location, the particle would
experience both transverse immigration and rotational motion
during its sedimentation. In this case, we mainly examine how
the proposed single-sided force distribution strategy would

FIG. 12. Sketch of a cylindrical particle settling under gravity in
a vertical channel.
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FIG. 13. The L2 errors of no-slip enforcement with and without the force amplification technique: (a) t = 0.370 s, (b) t = 2.963 s.

perform compared to those DI-IBMs based on two-sided force
distribution. The flow is solved by LBM with a D2Q9 lattice
grid in a nx × ny = 1200 × 120 domain. For demonstration
purpose, the grid resolution of all simulations is set to D =
30h. When the particle to fluid density ratio is close to unity
(in this case ρp/ρ f = 1.03), the inertia of fluid inside the
particle have to be computed explicitly to avoid numerical
instability [10,40]. Unless otherwise specified, the scheme
proposed by Kempe et al. [10] is employed to compute the
inertia of fluid inside the particle.

First, the L2 errors of no-slip boundary enforcement on the
particle surface with and without the force amplification tech-
nique are shown for the standard DI-IBM and the proposed
DI-IBM with single-sided force distribution in Fig. 13. Due
to the unsteadiness of the particle motion, we calculate these
L2 errors at two specific time frames, one at the early stage,
t = 0.370 s, and the other one at the later stage, t = 2.963 s.
At both time frames, we confirm the force amplification
technique significantly reduces the necessary iteration steps
to achieve the same accuracy of no-slip enforcement. The
information extracted from Fig. 13 further strengthens the
observations made in Sec. IV B for the Taylor-Couette flow,
which are not repeated.

The results of particle motion, i.e., particle trajectory,
particle angular velocity, particle velocity in both directions
are presented in Fig. 14. In all these simulations, the force
amplification technique has been used with three iterations.
As shown in Fig. 14, compared to the standard DF-IBM, both
retracting the Lagrangian grid by a distance of rd = 0.3h and
the single-sided force distribution strategy lead to results of
particle motion that match better with the benchmark results
from the ALE simulation. Particularly, the results of the
particle angular velocity have also been improved with the
single-sided force distribution strategy. This again validates
that, although the local torque is not conserved by the single-
sided kernel during the interpolation of boundary force, its

global impact on the simulation results of particle velocity and
trajectory is negligible.

However, there is one trade-off in using the single-sided
force distribution strategy for flows involving freely moving
solid objects. When a numerical method that solves the N-S
equations on a structured Eulerian grid is used to resolve
the interactions between a solid object and its surrounding
fluid, the strengths of the interactions would have a slight
dependence on the specific alignment between the fixed Eu-
lerian mesh lines and the solid object. This slight dependence
is known as the “grid-locking” effect [9]. When the solid
object moves continuously with respect to the mesh lines, the
results of instantaneous force and torque on this solid object
contain high-frequency fluctuations. The use of regularized
δ functions to spread the boundary force into a finite-width
band in DF-IBM serves as a smoothing technique for these
high-frequency fluctuations [3,9]. Since the single-sided force
distribution kernel reduces the width of forced band by a
half, the grid-locking effect becomes more significant, and
more severe force fluctuations would be observed. In Fig. 15
the instantaneous drag and lift forces acting on the settling
particle with different DI-IBMs are compared. The single-
sided force distribution kernel does result in more severe force
fluctuations compared to its two-sided counterparts.

When the motion of the particle reaches a steady state, the
force fluctuations become periodic with a period h/u, as the
repeated alignment will restore once the particle moves over
exactly one grid space. This is confirmed by the zoom-in plots
in Fig. 15. At the steady state, the particle velocity in the
vertical direction is about u = 0.84 cm/s, and h = 1/300 cm,
therefore the period of the force fluctuations is about 0.004s,
being consistent with the observation in Fig. 15. It is worth
mentioning that while being undesired, these high-frequency
fluctuations in the instantaneous force will be automatically
smoothed out and do not affect the results of particle velocity
and trajectory.
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FIG. 14. Comparisons of the motion of a settling particle in a vertical channel: (a) particle trajectory, (b) particle angular velocity,
(c) particle velocity in vertical direction, (d) particle velocity in horizontal direction.

To illustrate this point, let us assume the high-frequency
force fluctuation can be expressed as a single sine function

f ′(τ ) = α sin(2πωτ )F, (38)

where F is the characteristic force, α and ω are the amplifica-
tion and frequency of the force fluctuation. By definition, this
force fluctuation results in a velocity difference between two
arbitrary time frames t1 and t2 as

�u = 1

Mp

∫ t2

t1

α sin(2πωτ )Fdτ � αF

Mpπω
, (39)

where Mp is the mass of the particle. Since the force fluctu-
ation is caused by the grid locking, the period of the force
fluctuations is h/u. We can therefore replace ω in Eq. (39) by
u/h and have

�u

u
� αFh

Mpπu2
. (40)

We can further use F = 1
2Cdρ f u2A, where Cd is the drag

coefficient, A is the reference area of the particle, to replace

the characteristic force in Eq. (40). The magnitude of the
velocity fluctuation will then becomes

�u

u
� α

(
1
2Cdρ f u2A

)
h

Mpπu2
= 2Cd

π2

h

D

ρ f

ρp
α. (41)

Evaluating this magnitude with the parameters in the simu-
lation, i.e., D = 30h, Cd ≈ 2, π2 ≈ 10, ρ f /ρp ≈ 1, we have

�u

u
� 0.0133α. (42)

Even with a significant force fluctuation as large as α = 50%,
the resulting velocity fluctuation is less than 1%, which is
hardly visible in the plots. Without introducing any additional
smoothing techniques, the results of the particle velocity,
angular velocity, and particle trajectory shown in Fig. 14 are
already sufficiently smooth.

We also noted that the magnitude of force fluctuation is
strongly affected by how accurate the inertia of the fluid
inside the particle is computed. This computation is need since
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FIG. 15. Results of instantaneous hydrodynamic force in (a) the vertical direction and (b) the horizontal direction with different DI-IBM
algorithms.

the kinematic equations of particle motion with DI-IBM are
written as [3,9]

Mp
d�v
dt

≈ −
∑

�XL

�F ( �XL )�Vm+ρ f
d

dt

∫
Vp

�u dV + (ρp − ρ f )Vp�g,

(43a)

Ip
d �ω
dt

≈ −
∑

�XL

�rL × �F ( �XL )�Vm + ρ f
d

dt

∫
Vp

(�r × �u) dV,

(43b)

where Vp, Mp, and Ip are the volume, mass, and moment
of inertia of the particle, respectively. �rL = �XL − �Xc is the
position vector of Lagrangian grid point �XL relative to the
particle centroid �Xc. The second term on the right-hand side
of each equation in Eqs. (43) is the momentum and angular
momentum change contributed by the inertia of the virtual
fluid inside the particle, which is nonzero when the particle
moves. There are different ways in the literature to measure
the magnitude of those terms. For example, Kempe et al. [10]
explicitly computed the two integrals in Eqs. (43) as∫

Vp

�u dV =
nx∑
1

ny∑
1

nz∑
1

�ui, j,kh3αi, j,k,

∫
Vp

�r × �u dV =
nx∑
1

ny∑
1

nz∑
1

�ri, j,k × �ui, j,kh3αi, j,k,

(44)

where the volume fraction αi, j,k of grid cell (i, j, k) in the solid
region is computed as

αi, j,k =
∑8

l=1 −φlH (−φl )∑8
l=1 ‖φl‖

, (45)

where the sum is over all eight corners of the grid cell, φl is a
signed distance function, H is the Heaviside function.

Alternatively, Feng and Michaelides [40] approximated the
inertia of the fluid inside the particle as

ρ f
d

dt

∫
Vp

�u dV = ρ f Vp
�vn − �vn−1

δt
,

ρ f
d

dt

∫
Vp

(�r × �u) dV = Ip
ρ f

ρp

�ωn − �ωn−1

δt
, (46)

where �vn and �vn−1, �ωn and �ωn−1, are particle translational and
angular velocities at the current and last time steps, respec-
tively. This approximation circumvents the explicit computa-
tion these terms but can still maintain numerical stability when
the particle to fluid density ratio is close to unity.

The above two methods were found to result in similar
levels of grid-locking effects with DF-IBM with two-sided
force distributions in our previous study [16]. However, when
the single-sided force distribution strategy is used, the method
of Kempe et al. [10] suppresses the grid-locking effects
much better compared to the alternative method by Feng and
Michaelides [40]. In Fig. 16 we compare the instantaneous
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FIG. 16. Results of instantaneous hydrodynamic force in (a) the vertical direction and (b) the horizontal direction with different ways of
computing the inertia of virtual fluid inside the settling particle.

drag and lift forces resulting from these two methods with the
single-sided force distribution strategy. The explicit method of
Kempe et al. gives much smaller force fluctuations. Since the
boundary force is only applied to grid points on one side of the
solid boundary, the flow inside the particle is more strongly
perturbed. Under this condition, an explicit computation of the
inertia of the flow inside the particle should be more accurate,
which helps to suppress the grid-locking effects.

D. A particle-laden decaying homogeneous isotropic turbulence

While we have demonstrated in the last validation test
that the more severe force fluctuations generated by the
single-sided force distribution do not decrease the accuracy
of particle motion, when the flow Reynolds number increases,
such high-frequency fluctuations may not be fully dissipated
and it might trigger some numerical instabilities in the sim-
ulation. To explore the potential of the single-sided kernel in
high Reynolds number flow simulations, we directly examine
the kernel in a more complicated decaying homogeneous
isotropic turbulent flow laden with a few thousand of resolved
spherical particles.

The properties of the carrier flow can be found in Table 1
of Ref. [15]. For the properties of the dispersed particle phase,
we follow the parameter settings of “case 512” in Table 2 of
Ref. [15], and these parameters are no longer repeated here.
The particle Reynolds number Rep = u0

r.m.s.D/ν, where u0
r.m.s.

is the initial r.m.s. velocity of the background turbulence, D
is the particle diameter, is 94.3. The simulation is conducted
with two different grid resolutions, 5123 and 10243. The
flow solver is LBM based on a D3Q19 lattice grid [41], and
the no-slip boundaries on particle surfaces are treated with
DI-IBMs. Here we compared only two DI-IBM algorithms
to save computational resources, the standard DI-IBM with
two-sided force distribution, and the proposed DI-IBM with
single-sided force distribution. In each simulation, the force-
amplification technique has been applied with two iterations.
Other information on the implementation details of the sim-

ulations has been reported in our recent publication [17] and
thus is not repeated here for conciseness.

Rather than contrasting specific flow fields, it is more
meaningful to examine the flow and particle statistics in
turbulent particle-laden flows. In this validation case, we focus
on comparing the flow and particle statistics result from DF-
IBMs with the benchmark results obtained from the identical
LBM code, but using the interpolated bounce-back (IBB)
schemes [42–44] for no-slip boundary condition treatment on
particle surfaces. IBB schemes are kinetic no-slip boundary
treatments in LBM that can ensure second-order accuracy
in fluid flow simulations. In our previous study [16,17], it
has been systematically demonstrated that results from IBB
schemes are generally more accurate than those from DF-
IBMs, which justifies their use as benchmark results. Simply
served for validation purposes, the physical interpretations of
the simulation results will not be detailed, we focus only on
contrasting the numerical performances.

The time-dependent turbulent kinetic energy (TKE) and
dissipation rate are shown in Fig. 17. While results of TKE
from different simulations match each other well, the dissipa-
tion rates with the standard DI-IBM have been underestimated
by 5% at the 5123 resolution, and 2%–3% at the 10243

resolution, compared to the IBB benchmark result, especially
at the early time t/T 0

e � 1. The dissipation rate in a turbulent
flow is usually defined as ε = 2ν〈s′

i j s
′
i j〉, where s′

i j is the strain
rate of the turbulent velocity fluctuation, 〈· · · 〉 represents
statistical averaging. A high level of errors in the dissipation
rate indicates inaccurate computation of the velocity gradient.
Considering that the total volume of the diffused layers in
the fluid phase is only up to VDI = 4πNp[(r + 2h)3 − r3]/3,
which equals about 4.2% and 1.8% of the total volume of
the fluid phase with 5123 and 10243 grid resolutions, these
deviations are actually not negligible.

It is worth emphasizing that the results of TKE and
dissipation rate shown in Fig. 17 are computed in a way
that velocities in the regions occupied by particles are
masked with velocity fields generated from particle rigid-body
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FIG. 17. Decaying TKE (a) and dissipation rate (b) in a particle-laden decaying homogeneous isotropic turbulence.

rotation. This masking eliminates the contribution of the
virtual flows in particles to the TKE and dissipation rate
results. For the proposed DI-IBM with single-sided force
distribution kernel, the virtual flows in particles are more
intensively perturbed since the boundary force is distributed
single-sidedly. The masking turns out to be a necessity for
the proposed DI-IBM, otherwise the virtual flow in the solid
phase would contaminate the accuracy of the dissipation rate
computation.

Next, the conditionally averaged TKE and dissipation rate
as functions of the distance from the particle surface are
shown in Fig. 18. The results obtained from the proposed DI-
IBM with single-sided force distribution kernel always match
better with the benchmark results compared to these from the
standard DI-IBM. The most obvious improvement brought by
the single-sided kernel is the correct calculation of dissipation
rate close to the particle surface. The standard DI-IBM with

two-sided force distribution yields a decreased dissipation rate
towards the particle surface, which is physically unlikely to
happen. On the contrary, the proposed DI-IBM successfully
captures the monotonically increasing dissipation rate towards
the particle surface. This further confirms that the proposed
single-sided kernel is able to restore correct velocity gradient
computation in the vicinity of solid boundaries. This property
has not been achieved by other DI-IBM algorithms.

Finally, we show the statistics of decaying particle kinetic
energy in Fig. 19. Similar to what we have observed before, al-
though the single-sided force distribution strategy could cause
more severe fluctuations in the instantaneous hydrodynamic
force and torque of individual particles, the statistical average
of particle kinetic energy is not affected. The result of particle
kinetic energy with the proposed DI-IBM match better with
the IBB results than its counterpart with ths standard DI-
IBM. The successful application of the proposed DI-IBM in

FIG. 18. Conditionally averaged TKE (a) and dissipation rate (b) as functions of distance from the particle surface.
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FIG. 19. Decaying particle kinetic energy.

a turbulent particle-laden flow also proves that the proposed
DI-IBM still possesses sufficient numerical stability for high
Reynolds number flows.

V. CONCLUSION AND REMARKS

In this paper, we analytically demonstrated that the stan-
dard DI-IBM with two-sided force distribution kernel could
not ensure correct velocity gradient computation within the
diffused layers of solid boundaries. A few attempts in the
literature to address this issue were also shown to be ineffec-
tive, at least for particle-laden flow applications. To solve the
problem, a single-sided force distribution kernel is proposed,
where the boundary force is applied only to the Eulerian grid
points locating within the solid region. In order to improve
the accuracy of no-slip boundary enforcement in DF-IBM,
an extremely simple force amplification technique was also

introduced, which can significantly reduces the number of
required iterations for a given accuracy of no-slip boundary
enforcement. This proposed force-amplified, single-sided DI-
IBM was then validated in a series of laminar and turbulent
flows.

Compared to standard DI-IBM, the proposed DI-IBM not
only restores the correct velocity gradient in the vicinity of
solid boundaries, but also improves the accuracy of other sim-
ulation results, such as the fluid velocity and hydrodynamic
force and torque. The potential issues brought by the proposed
DI-IBM, such as the lack of local torque conservation during
the interpolation of boundary force from the Lagrangian to
Eulerian grid, and the more severe fluctuation in the results
of instantaneous hydrodynamic force and torque on a moving
solid object, have also been carefully assessed. We did not
find any evidence that those issues would damage the overall
accuracy of the simulation results, thus the use of the proposed
DI-IBM in practice should not be affected.

Finally, while the flow solver used in this study is the lattice
Boltzmann method, the above conclusions should also hold
for other flow solvers. We encourage readers familiar with
other flow solvers to test the single-sided force distribution
kernel and the force amplification technique.
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