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Within the context of heavy particles suspended in a turbulent airflow, we study the
effects of gravity on acceleration statistics and radial relative velocity (RRV) of iner-
tial particles. The turbulent flow is simulated by direct numerical simulation (DNS)
on a 256’ grid and the dynamics of O(10°) inertial particles by the point-particle
approach. For particles/droplets with radius from 10 to 60 um, we found that the
gravity plays an important role in particle acceleration statistics: (a) a peak value of
particle acceleration variance appears in both the horizontal and vertical directions
at a particle Stokes number of about 1.2, at which the particle horizontal acceler-
ation clearly exceeds the fluid-element acceleration; (b) gravity constantly disrupts
quasi-equilibrium of a droplet’s response to local turbulent motion and amplifies
extreme acceleration events both in the vertical and horizontal directions and thus
effectively reduces the inertial filtering mechanism. By decomposing the RRV of
the particles into three parts: (1) differential sedimentation, (2) local flow shear,
and (3) particle differential acceleration, we evaluate and compare their separate
contributions. For monodisperse particles, we show that the presence of gravity does
not have a significant effect on the shear term. On the other hand, gravity suppresses
the probability distribution function (pdf) tails of the differential acceleration term
due to a lower particle-eddy interaction time in presence of gravity. For bidisperse
cases, we find that gravity can decrease the shear term slightly by dispersing particles
into vortices where fluid shear is relatively low. The differential acceleration term is
found to be positively correlated with the gravity term, and this correlation is stronger
when the difference in colliding particle radii becomes smaller. Finally, a theory
is developed to explain the effects of gravity and turbulence on the horizontal and
vertical acceleration variances of inertial particles at small Stokes numbers, showing
analytically that gravity affects particle acceleration variance both in horizontal and
vertical directions, resulting in an increase in particle acceleration variance in both
directions. Furthermore, the effect of gravity on the horizontal acceleration variance
is predicted to be stronger than that in the vertical direction, in agreement with our
DNS results. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4915121]
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. INTRODUCTION

Understanding the dynamics of inertial particles in a turbulent flow is of importance to a wide
range of applications in astrophysics (proto-planetary dust), environmental sciences (sediment trans-
port, sea spray, rain development), and industrial processes (spray nozzles, fluidized bed reactors).
Acceleration statistics of inertial particles in a turbulent flow is a natural extension to the Lagrangian
description of fluid elements, and it is relevant to the dynamics, transport, dispersion, and, collision of
dust particles and small droplets suspended in the atmosphere. In this paper, we systematically study
the effects of gravity on particle acceleration statistics and particle-particle radial relative velocity
(RRV).

Acceleration statistics of inertial particles have been studied in recent years to better understand
the nature of the forces acting on the particles and the effects of particle inertia and gravity on particle
dynamics. The topic has received increasing attention in the recent years due to the emergence of
experimental tools and methods to measure particle acceleration. Ayyalasomayajula et al.'! measured
acceleration of water droplets in a grid generated turbulence at Taylor microscale Reynolds number of
R), = 250. They showed that the acceleration probability distribution function (pdf) of inertial particles
has narrower tails than those of a tracer. Their measurements also indicate that particle acceleration
variance decreases with particle Stokes number (St). Volk et al.? performed laboratory experiments at
R;, = 850 and compared particle acceleration statistics with direct numerical simulation (DNS) results
at Ry = 185. They observed a qualitative agreement of the pdf shape and the acceleration autocorre-
lation function between laboratory experiments and DNS. The quantitative differences in their results
arise mainly due to the fact that their DNS consisted of point-particles at a much lower flow Reynolds
number (R), = 185) compared to their experiments where R; = 850.

Qureshi et al.? studied acceleration statistics of finite-size inertial particles and found that parti-
cle size and density variations only affect the acceleration variance leaving the acceleration pdf un-
changed. On the other hand, Calzavarini et al.* showed that point-particles with inertia and Stokes drag
do not fully capture the particle acceleration. They compared DNS and experimental data and showed
that Faxen corrections are needed to yield a more accurate acceleration statistics. For higher Reynolds
numbers, Volk et al.’ performed an experimental study of particle acceleration in Von-Karman turbu-
lence for large neutrally buoyant particles (2a/n > 1, where a and n are particle radius and Kol-
mogorov length scale, respectively). Being able to generate flows at R) = 590 and 1050, they found
that particle acceleration variance scales with (2a/n)~%/3. They also showed that the tails of particle
acceleration pdf narrow with increasing particle size. However, their acceleration measurements are
performed using only one spatial component of velocity and may not be representative of the parti-
cle acceleration vector in presence of gravity. Prakash et al.® carried out laboratory experiments to
study acceleration of bubbles, where the particle-to-fluid density ratio is nearly zero, in the size range
2a/n = 7-12. For the two Reynolds numbers R) = 145 and 230, they found that gravity increases the
acceleration variance and reduces the acceleration intermittency in the vertical direction. They were
able to cross validate their experiments with DNS when the Faxen corrections were included. This
implies that the finite-size effect and gravity are coupled together to alter the bubble acceleration.

On the numerical computation front, acceleration statistics of inertial particles have been
studied in the pioneering work of Bec et al.” using DNS of turbulence. They demonstrated two
important mechanisms governing the particle acceleration. First, they argued that the preferential
concentration of inertial particles in low-vorticity regions of the flow causes a biased sampling of
local fluid acceleration at small to moderate particle Stokes numbers. Second, they showed that at
larger St, particle response time (7),) acts as a low-pass filter inducing a filtering effect to particle
acceleration. They noted that these two effects take place simultaneously and both are related to the
particle inertia. In a more recent DNS study, Salazar and Collins® further demonstrated the biased
filtering effect which was previously introduced by Ayyalasomayajula et al.! Using conditional
statistics and pdf tools, Salazar and Collins® found that stronger acceleration events are filtered more
intensely by particle inertia than weaker accelerations. While different effects of particle inertia
(sampling and filtering) cannot be decoupled in experimental studies, the biased sampling effect and
the filtering effect can be artificially decoupled in numerical simulations by using altered equations
of motion for the particles, a technique originally introduced by Bec et al.”
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Furthermore, using a DNS of turbulent channel flow, Lavezzo et al.? studied the particle accel-
eration in near-wall region for a flow with shear Reynolds number R, = 300 and particles with
Stokes numbers St = 0.87,1.76, and 11.8. Consistent with the experiments of Gerashchenko et al.l0
Lavezzo et al.’ found that the particle rms acceleration in the stream-wise direction increases with
Stokes number in the near-wall regions. This behavior is in fact the opposite of the trend observed
for particles in isotropic turbulence. They also found that the presence of gravity significantly
increases the stream-wise particle rms acceleration in the near-wall regions. They argued that this
increase might be related to the strong coupling of gravity and shear in the near-wall region in
such a way that gravity pulls the particles to near-wall regions whereby decelerating them due to
higher fluid shear. They demonstrated that the effect of gravity on particle acceleration is the most
profound for the largest particles (St = 11.8).

Effect of gravity on the collision of monodisperse droplets in homogeneous isotropic turbu-
lence is studied by Onishi et al.'' Through DNS with grid resolutions up to 96°, they showed that
gravity decreases the droplet-eddy interaction time leading to a weaker relative velocity between
the droplets. Based on DNS results, they formulated a model to estimate the impact of gravity on
the collision kernel of inertial particles. In a more recent DNS study, Park and Lee!? showed that
gravity can cause vertical-strip clustering for large particles (St > 1). They showed that this type of
preferential concentration exists provided there is a strong sedimentation through turbulence. Their
DNS data confirm that heavy particles settling under strong gravity are more exposed to regions
with converging fluid motion in the horizontal plane and thus are able to form clustered strips in the
vertical direction.

In many natural phenomena, the gravity plays a very important role and its effect on particle
acceleration must be understood. The effect of gravity has received attention only in recent exper-
imental studies (Ayyalasomayajula et al.,' Volk et al.,> Volk et al.,> and Prakash et al.®), and very
few numerical investigations (e.g., in Mazzitelli and Lohse'? for bubbles and fluid particles, Onishi
et al.' and Park and Lee'?) have taken it into account.

So far, most studies focus on the effect of turbulent Reynolds number and particle Stokes num-
ber on acceleration of inertial particles. Furthermore, previous studies concern only single-particle
acceleration statistics. Two-particle or differential acceleration statistics are important in formulat-
ing the radial relative velocity between two inertial particles,'* which have not yet been studied.
Recently, Grabowski and Wang'# showed that when the Stokes drag, particle inertia, and gravity
are considered together and the particle size is smaller than the flow Kolmogorov scale, the RRV
consists of three contributions: (1) differential sedimentation (w,), (2) local flow shear (wy), and
(3) particle differential acceleration (w,). Gravity undoubtedly affects the first as well as the third
contribution. Using scaling estimates, they argued that the net effect of turbulence on the RRV
of inertial droplets is mostly due to the local acceleration effect. In this paper, we follow their
decomposition to gain more insight into differential acceleration and consequently radial relative
velocity of inertial particles.

Il. THE NUMERICAL METHOD

We consider a dilute suspension (mass loading ~O(1073)) of non-deformable droplets in a
background turbulent air flow. The dilute droplet concentration allows a one-way coupling between
the dispersed phase and the air flow. Furthermore, in this study, we employ a point particle approach
under the assumption that the particle diameter is much smaller than the flow Kolmogorov scale.
The fluid velocity U(x,?) is obtained by a pseudo-spectral method in a periodic domain by solving
the Navier-Stokes equation:
ou P 1
— =Uxw-V|—+ U +vWU+£(x,1), (D)
ot p 2
for an incompressible fluid satisfying the continuity equation,

V- Ux,1) = 0. )
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Here, w = VX U is the vorticity, P is the pressure, p is fluid density, and v is fluid kinematic
viscosity (of air in our simulation). The domain is a cube of dimension of 2" in each direction
and is discretized uniformly using N* grid points, with periodic boundary conditions. Here, N is
the number of grid points in each direction and takes the values of 2", n being a positive integer.
The approach is therefore a DNS of turbulence. For each given time step, Eq. (1) is integrated in
the Fourier space to yield the time-dependent three-dimensional fluid velocity U(x,#). An inverse
Fourier transform yields the turbulent fluid velocities at the grid points in the physical space.

A stationary turbulence is maintained by the forcing term f(x,¢) which is nonzero only for a
few low-wavenumber modes (|k| < V8) in the Fourier space. We implemented two forcing methods
allowing us to study the sensitivity of results on the forcing method. The two forcing methods are as
follows.

1. Deterministic forcing of Sullivan et al.:'> In this type of forcing, flow could be initialized from
any random field of U(x,¢). For each of the first two wavenumber shells (k| = 1 and 2), the
Fourier coefficients of the modes within a shell are augmented by a constant factor at the end
of the time step so that a prescribed energy level for the shell is restored. The prescribed energy
levels are made consistent with the k=/3 spectrum.

2. Stochastic forcing of Eswaran and Pope:'® If this forcing is used, we develop the flow from rest.
The forcing term f(x,7) then applies force in the Fourier space to modes with low wavenum-
bers (Jk| < \/g). In this method, for each Fourier mode, 6 independent Uhlenbeck-Ornstein
processes are combined to specify the complex Fourier coefficient of the forcing term, as(x,?).

The details of the large-scale forcing may affect the simulated statistics of inertial particles for
two general reasons. First, the large-scale forcing could affect the small-scale structures through
triadic interactions (e.g., Yeung et al.'”). Second, finite inertia and sedimentation of heavy particles
imply that a heavy particle responds to a range of scales in the flow. Therefore, if the DNS flow
Reynolds number is limited (so the scales of simulated flow are limited), large-scale fluid velocity
and acceleration contributed by the forcing can affect the particle dynamics directly. Rosa et al.'®!”
showed that the quantitative collision statistics of particles with large response time could depend
on the details of a large-scale forcing scheme.

We first evolve the flow (without droplets) from ¢# =0 up to at least t = 187, (T, is the
large-eddy turnover time) to ensure that the flow is statistically stationary. This eliminates any effect
of initial flow condition on the statistics and dynamics of the resulting stationary homogeneous and
isotropic turbulence. Inertial particles are then introduced into the flow. The fluid velocity at the
location of the kth droplet of radius a*), denoted by U(Y*)(¢),), is interpolated from the grid using
the 6-point Lagrangian interpolation in each spatial direction, where Y*)(¢) is the location of the
droplet. The velocity of the kth droplet will be denoted by V*)(¢). Droplets are advanced by solving
their equation of motion

dVO() VOO - 0N,

+g 3)
(k)
dt I

dY®)(r)
——2 =VH), 4
" 0 )

akn? L . . .

where T,(,") = % is the Stokes inertial response time of the kth droplet and g is the gravita-

tional acceleration (|g| = 9.8 m/s?). p p is particle/droplet density and y is the fluid viscosity. In this
study, the particle diameter is smaller than the Kolmogorov length of the turbulence, and therefore
the finite-size effects are not important here.

Particle acceleration is computed using the RHS of (3) and is averaged over different particles
and time. In Eq. (3), g is turned on/off to study the effect of gravitational acceleration. The gravi-
tational force (if present) is considered to be in the third (vertical) direction. For the current study,
we have used a highly scalable code based on 2D domain decomposition. Our parallel implemen-
tation is based on the Message Passing Interface (MPI), with the domain decomposition strategy
previously adopted for the efficient MPI implementation of Fast Fourier Transform (FFT) in the
pseudo-spectral simulation of fluid turbulence.’® We measured the wall clock time of the code under
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FIG. 1. Measured wall-clock time for two settings: (a) 5123, 45 ym-60 gm, 730 000 particles (LWC ~2.2 g/m?), (b) 10243,
20 um-30 pm, 16500000 particles (LWC ~ 1.0 g/m?). Measurements are performed on Stampede at Texas Advanced
Computing Center (TACC).

different simulation conditions. In Figure 1, we show the measured wall-clock times for different
number of processors and for two grid resolutions. The data points for the number of processors
cover 3 decades. A line of slope —1 is plotted to serve as reference for ideal scalability. The execu-
tion time scales with the number of processors almost linearly before the scalability saturates due
to excessive communication latency. More details of this scalable implementation could be found in
Ayala et al.*' and Torres et al.”

lll. RESULTS

We report DNS results obtained using a 256> resolution for 6 particle radii at 10,20,30,40, 50,
and 60 um (St = 0.06,0.25,0.57,1.01,1.59, and 2.28, respectively) in the context of cloud phys-
ics. At this resolution, we achieved R; = 143 for the deterministic forcing and R, = 119 for the
stochastic forcing. The data have been gathered and post-processed from 2000 snapshots of O(10°)
particles over a time period of ~48T7,. The magnitude of the forcing ensures that the mean dissi-
pation rate of kinetic energy is held at € = 400 cm?/s>. The details of flow properties are tabulated
in Table I. It should be noted that while the flow statistics under the two forcing schemes differ
significantly in DNS units due to different DNS settings, they are comparable when converted
into physical units using the above physical dissipation rate and the air viscosity. In this study,
a,/1gl ~ 0.14 and therefore the average fluid acceleration is about one order of magnitude smaller
than the gravitational acceleration.

In our simulations, the ratio of integral length scale Ly to the domain size (27 in DNS units) is
0.23 and 0.15 for deterministic and stochastic forcing, respectively. Physically, as a minimum, the
two-point correlations of the solution are required to decay nearly to zero within half the domain to
ensure proper statistical representation of the large scales.”® Past experience has indicated that if this
ratio is less than 0.3 (e.g., Eswaran and Pope!'®), the statistics of fluid turbulence does not depend on
the imposed periodicity. In our simulations, this condition is satisfied.

A. Particle acceleration statistics

In Figure 2 the pdf of acceleration is plotted for non-sedimenting particles (i.e., set g to zero in
Eq. (3)) and compared with the previously published data of Bec et al.” who used a deterministic
forcing to drive the turbulent flow. Two particle Stokes numbers St = 1.01 and 2.3 are considered.
The results are in reasonable agreement and show that the pdf values for the larger Stokes number
are smaller in the tail due to the inertial filtering and biased sampling effects.® The flow Reynolds
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TABLE I. Flow parameters in both DNS and physical units. From top to
bottom are: viscosity v, energy dissipation rate €, time step size §¢, rms
velocity u’, eddy turn-over time T, Kolmogorov velocity vy, Kolmogorov
timescale 7, Kolmogorov length scale r7, fluid acceleration at Kolmogorov
scale ay, integral length scale Ly, Taylor scale Reynolds number R;, and
the spatial resolution parameter k;;; g x17-

Deterministic Stochastic

DNS Physical units DNS Physical units

0.002 0.17 cm?/s 0.0375 0.17 cm?/s
€ 0.2134 400 cm?/s? 3563.4 400 cm?/s>
St 0.001 0.000212 s 0.000041 0.000259 s
u’ 0.8729 17.5cm/s 18.79 15.83 cm/s
T. 3.614 0.768 s 0.0952 0.601 s
78 0.143 2.87 cm/s 3.405 2.87 cm/s
Tr 0.096 94 0.0206 s 0.00326 0.0206 s
7 0.0139 0.0592 cm 0.0111 0.0592 cm
ay 1.475 139.32 cm/s? 1044.47 139.32 cm/s?
Ly 1.4328 6.1022 cm 0.9603 5.1216 cm
R, 143 143 119 119
kmax?] 1.67 .. 1.39

number R was 185 in Bec et al.,” higher than R; = 143 in our simulations which explains why the
tails in Bec et al.” are slightly more extended.

The pdfs of particle acceleration are shown in Figure 3 comparing the results from the two
forcing schemes in our simulations. A close-up is plotted in Figure 3(b) for more detailed compar-
ison. The figures show that the two forcing schemes yield approximately the same pdf for the
normalized acceleration, although we observe some differences in the rms values of acceleration (to
be discussed next).

To validate further, we compare in Figure 4(a) the results of normalized rms acceleration
against those of Bec et al.” and Salazar and Collins® for non-sedimenting particles. A deterministic
forcing scheme was used in both Bec et al.” and Salazar and Collins.® Acceleration values are

100 ; L L L l L L L l L L L l L L L l L L L l L L L ;

10" = o Bec(2006),5t=23 F

] « Bec(2006), St=1.01 |

107 = D, St=2.28 L

] D, St=1.01 g

3| D, St=0.06 F

S 107 3 E

5 : ;

=2 1 r

10* E -

10-5 E E

10° 5 3
107

a/a,,

FIG. 2. The pdfs of normalized particle acceleration are compared against the results of Bec ef al.” Legend: D denotes the
deterministic forcing.
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FIG. 3. The pdfs of normalized particle acceleration obtained using two different forcing methods. (b) is a zoom-in of (a).
Legend: D denotes the deterministic forcing; S is for the stochastic forcing.

normalized by fluid element acceleration, expressed as a,ag, where a,, = (€°/v)!/* represents the
level of the small scale fluid acceleration and ay = 2.5R§3'25 + 0.0SRS'” is an empirical fitting corre-
lation taken from Hill** to account for the finite Ry differences in the data sets. The rms acceleration
from our study collapses almost identically on the published data. We confirm that there is a sharp
initial decrease in particle rms acceleration with increasing St when St < 1. The rate of decrease is
smaller for larger particle Stokes numbers. Alternative empirical correlations are available for ag at
low flow Reynolds number, for instance, in Sawford et al. 25 These alternative correlations, however,
were found to yield almost the same plots in Figure 4(a).

Figure 4(a) also shows that our stochastic forcing yields a slightly higher rms acceleration than
the results from our deterministic forcing. The smaller size of the flow vortical structures under
the stochastic forcing could contribute to this difference. The results together show that the details
of the large-scale forcing could slightly affect the magnitude of the rms acceleration, but it is not
significant when compared to the change due to the effect of St.

Now, we focus on the effect of gravity on particle acceleration statistics. In Figure 4(b), the
normalized a,,; is plotted in presence of gravity for the same particle size range. There are several
important observations. First, in contrast to the zero-gravity results, the rms acceleration initially
increases with the particle size, especially in the horizontal direction. A peak value is reached at
about St = 1.2. This can be explained qualitatively in terms of the preferential sweeping mechanism
as identified in Wang and Maxey.® Due to the preferential sweeping, an inertial particle, when ap-
proaching a vortical structure, accelerates to the down flow side of the vortical structure, enhancing
the acceleration changes in the horizontal direction (see Figure 5).

An important observation is that there is a clear difference in the rms acceleration values be-
tween the vertical and horizontal directions. While gravity enhances the rms acceleration in both
directions, the effect is stronger in the direction perpendicular to the gravity. When St — 0, one
would expect that the normalized rms acceleration approaches one, but our results for the smallest
St (St = 0.06) are still significantly less than one. There could be several reasons here: first, the
empirical scaling of ao (Hill**) may not be accurate due to data fitting error, and second, the numer-
ical results are subject to a significant statistical error when St is small (as in this case, a very small
time step is needed and the computation becomes prohibitively expensive).

The experimental measurement of Volk et al.” for St = 0.58 at R;, = 850 has a large uncertainty
but falls consistently within our DNS data points. Further, accurate experimental data are required
to precisely match the DNS data. Also, another data point of Volk et al.” for St = 1.03 at R, = 180
from their DNS is in agreement with our results within the standard deviations. We could not verify
whether the acceleration results of Volk ez al.” are averaged in all three dimensions or in one specific
direction (vertical/horizontal).
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points are from Volk et al.? for one experimental measurement (St =0.58 at R; = 850), and one DNS data point (St =1.03 at
R; =180).

In both horizontal and vertical directions, the stochastic forcing yields slightly larger values
of rms acceleration (by up to 4.7%), for the similar reasons discussed above for non-sedimenting
particles.

Now, we consider more results with the flow forced by the deterministic forcing only (with
R;. = 143 thereafter). For the rest of the paper, we limit the discussions to the use of deterministic
forcing because (1) we found that there is no qualitative difference between the results from the two
forcing schemes, (2) the effects of forcing for collision statistics have already been systematically
discussed in our recent paper,'® which showed that even the quantitative difference is small for small
particles (say, less than 30 um), and (3) the focus of the paper is on the comparison of results with
gravity and results without gravity, and we do not want other topics to distract this focus. For two
particle sizes (a = 50 and 60 pum or St = 1.59 and 2.28), the vertical and horizontal acceleration pdf
are plotted in Figures 6 and 7, respectively. Two different levels of gravity are considered (g and
2g), along with the nonsedimenting case. The pdf is symmetric for the horizontal acceleration and
as such only the pdf of positive horizontal acceleration is shown (Figure 7).
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FIG. 5. Schematic of a sedimenting particle acceleration due to interaction with an eddy. Red arrows show the acceleration
(a) in the vertical plane, (b) in the horizontal plane.

We observe that increasing the magnitude of gravitational acceleration broadens the tails of the
particle acceleration pdf. This can be understood by the fact that increasing |g| will push the particles
through intense fluid acceleration regions (vortex cores) which particles could avoid in absence of
gravity. Since the turbulence is homogeneous and isotropic, the shorter particle-eddy interaction time
leads to a narrower acceleration tails both in vertical and horizontal directions, as expected. A similar
trend is observed for smaller Stokes numbers of St = 0.57 and 1.01. However, obtaining reliable pdf
curves for smaller St become more difficult due to decreasing samples (implying smaller separation
distances). The flatness (kurtosis) values of particle rms acceleration is provided in Table II.

To compare with experimental data, the particle acceleration is plotted in Figure 8, along with the
results of Ayyalasomayajula et al.' and Volk et al.> We chose St = 0.15 and 0.58, respectively, from
their experimental results because these Stokes numbers were the closest to our parameter setup. The
turbulence parameters are completely different for these results. For example, the Reynolds numbers
and dissipation rates of R, = 850 and € = 25 m?/s? in Volk et al.? and R;, = 250 and € = 960 cm?/s>
in Ayyalasomayajula et al.' are much larger than those of our DNS (R;, = 143 and € = 400 cm?/s>).
Therefore, the flow regimes are not similar and, with the available data to date, a rigorous comparison
with experimental results is not feasible.
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FIG. 6. (a) PDF of the vertical acceleration for 3 different values of gravitational acceleration. (b) the same data as (a)
normalized by fluid acceleration at Kolmogorov scale.
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acceleration at Kolmogorov scale.

B. Radial relative velocity for monodisperse particle pairs

Next, we focus on the effect of particle acceleration on the radial relative velocity of nearly collid-
ing particles. Over the past decades, different models have been introduced to compute the average
RRV of particles in turbulence (e.g., Saffman and Turner,?’” Abrahamson,28 Wang et al.,” Dodin and
Elperin,*® Zaichik et al.,>' and Ayala et al.*?), each of which makes a number of assumptions restrict-
ing their use to a limited parameter space (e.g., small particle inertia and no gravity). To provide a
more complete understanding of how turbulence, particle inertia, and gravity contribute to the net
radial relative velocity between two particles, following Grabowski and Wang,'* we present an alter-
native analysis. Based on the particle equation of motion (Eq. (3)), the radial relative velocity can be
decomposed into three parts: gravitational term (w,), shear term (wj), and differential acceleration
term (w,). Considering the Stokes drag, inertia and gravity, and assuming a small separation distance
(r = |r| < 1), we take the dot product of the Eq. (3), written for V(") and V®, with r/|r| yielding

w, = [VO@) - V()] - = wg+wy+ ®)
r
where
Wy = [TI(,I) - TI(,Z)] |g|cos (a),
l"il’j
Ws = —8ij,
s j dvV) dav () ©
w. = O _ @
“ r| P dt P4t

TABLE II. Flatness of particle rms acceleration for the data on Figures 6

and 7.

Figure 6 Figure 7
St Nog g 2g Nog g 2g
1.59 5.34 4.11 3.56 5.34 4.01 3.59
2.28 4.92 3.58 3.23 4.92 3.55 3.25
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FIG. 8. PDF of the horizontal acceleration for sedimenting particles from DNS (at R; =143 and e=400 cm?/s%) in
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(at R; =850 and € =25 m?/s%).

represent contributions from gravity, fluid shear, and particle differential acceleration, respectively
(see Figure 9 for an illustration). Here, s;; is the fluid strain rate and « is the angle between the
relative velocity and the separation vector of the two particles. We proceed to study the properties
and relative magnitude of each of the three mechanisms in the particle RRV which is the main focus
for the remainder of this section.

In Figure 10, we plot the pdf of the normalized shear term wy 11 for monodisperse particles
(hence, denoted ws 1; where subscript 11 refers to monodisperse cases) of St =0.57,1.01 and
St = 2.28 in both sedimenting and non-sedimenting settings. The separation |r| is set to 2a, the geo-
metric collision radius. Note that the gravity term w, is zero for monodisperse particles, although
through coupling, gravity could still affect the other two terms. The close overlap of the curves
for two Stokes numbers and two different levels of gravity shows that the shape of the proba-
bility distribution is not much affected by the gravity. Our simulations for other Stokes numbers
(St = 0.06, 0.25, and 1.59 not plotted in Figure 10) further confirm that the effect of St on the
pdf of the normalized wy ;) is negligible for the aforementioned range of St. In the following plots,
o is the rms value of the plotted parameter. We note that the distribution of wj j; is negatively
skewed indicating a bias of the relative motion of particle pairs at |r| = 2a toward a larger negative
relative velocity. Table III summarizes the skewness of wy,;; for the data on Figure 10. The skewed

FIG. 9. From left to right w,, ws, and w, represent contributions to relative velocity from gravity, fluid shear, and particle
differential acceleration, respectively.
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(b) the same data as (a) normalized by Kolmogorov velocity.

distribution of radial relative velocity at contact was first observed in Wang et al.>* who also showed
that the skewness is strongest when St ~ 1. We believe that this is caused by a biased sampling
of inertial-particle pairs at |r| = 2a. For non-sedimenting particles, a detailed investigation of the
relative velocity was provided by Salazar and Collins.** Using relative velocity structure functions,
they numerically studied the particle relative velocity statistics. In absence of gravity, they found
that filtering is the dominant mechanism for pair relative velocity statistics at all S7.

In Figure 11, we show the pdf of the relative motion due to the differential acceleration w, 1)
for monodisperse particles (namely, particle pairs of identical size). For the monodisperse case, w,
reduces to

W de(l)(t) ) dvj@(z)

Wa,11 = =T
@ L dt dt

)

The term in the square bracket is exactly the differential acceleration vector which after projection
over separation vector yields the contribution of the relative acceleration to w,. Only pairs with a
separation distance close to the geometric collision radius (2a — 6 < |r| < 2a + §) are considered
with 6 = 0.02a.

The results in Figure 11(a) show that w, 1; has a considerably broader tail than wy ;; both in
presence and in absence of gravity (i.e., compare panels of Figure 11 with those of Figure 10). Our
results on Figure 11(b) along with Figure 10(b) show that the presence of gravity suppresses the
tails of both pdf(w,, ;) and pdf(ws,;;) leading to a less intermittent behavior of w, 1, and wy ;. This
is in agreement with the shorter residence time of a particle in a vortex when a particle moves in
the presence of gravity. As a result, both particles in the pair experience weaker interactions with
vortices yielding a less intermittent dynamics. Gravity has a considerable effect on narrowing the
tails of pdf(w, ;1) while the pdf(wy ;) is less affected. This finding is consistent with the results

TABLE III. Skewness (S) of wy, 11 and flatness (F') of w11 for the data
on Figures 10 and 11, respectively.

S: Figure 10 F: Figure 11
St Nog g Nog g
0.57 -0.11 -0.29 442.5 449.3
1.01 -0.26 -0.32 224.4 390.0

2.28 -0.44 -0.49 44.7 299.1
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plotted parameter. (b) the same data as (a) normalized by Kolmogorov velocity.

of Gustavsson et al.®> where they found that gravity suppresses the tails of relative velocity above

a certain critical Stokes number (St* ~ 0.4). However, their results are obtained using a random
two-dimensional flow field which may not realistically reproduce the dynamics of a three dimen-
sional turbulence. We note that this wide tail of w, ;; could lead, in some extreme cases, to a
significant contribution of differential acceleration in widening the pdf tails of the radial relative
velocity. We should emphasize that unlike ws ;1, pdf of wg 11 is essentially symmetric. For the
curves on Figure 11, the flatness (kurtosis) of w,,1; is provided in Table III.

In Figure 12, the ratio of (|w,|)/{Jw,|) is plotted for monodisperse particles at |r| = 2a. For
both sedimenting and non-sedimenting pairs, the fluid shear is a dominant mechanism in radial
relative velocity of small particles (a < 30 um), while the differential acceleration becomes increas-
ingly dominant for large particles (a > 30 um). We observe that for large sedimenting particles,
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FIG. 12. The ratio (|ws|)/{|wa|) for monodisperse cases as a function of particle radius, showing that the shear term is
dominant for small particles, while the differential acceleration term becomes dominant for large particles.
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FIG. 13. (a) PDF of wy, 1> (bidisperse, ar = 60 um and St; = 2.28). (b) the same data as (a) normalized by Kolmogorov
velocity.

(Jws|}/{Jwa|) approaches a plateau where wg and w, could both make substantial contributions to
the radial relative velocity. For small particles, the ratio is essentially the same (with a maximum of
29% difference for 10 um droplets) regardless of the presence of gravity. This may be interpreted
as the negligible effect of gravity in terms of the following dimensionless parameter dictating the
combined effect of sedimentation and particle inertia:

3,2

1&:%:&-502 (8)
which represents the particle inertial response time to the residence time of a particle in an eddy
(see Davila and Hunt*® who first introduced this parameter). Interestingly, this parameter does not
depend on the flow dissipation rate and is about one when the droplet radius is about 20 um.?? This
implies that the gravity does not affect the relative acceleration of smaller monodisperse droplets
due to turbulence. Only for larger droplets, the caustic effect appears which is consistent with the
pdf curves shown in Figure 11.

C. Radial relative velocity for bidisperse particle pairs

In this section, we consider the radial relative motion between two particles of different radii a;
and a,. Again, we are interested in the radial relative velocity when the two particles are separated
by the geometric contact distance (R = a; + a).

Figure 13 shows the pdf of the normalized shear contribution for bidisperse combinations
(hence, denoted w;, 12 where subscript 12 refers to bidisperse cases) for a; = 30, 40, 50 um (or
St = 0.57,1.01,1.59) with a, fixed at 60 um (St, = 2.28). The results of sedimenting particles
are compared to those of non-sedimenting particles. Similar to the monodisperse case, the gravity
has a negligible effect on the shape of the pdf(w;). Furthermore, the distribution of w; is negatively
skewed, similar to the monodisperse case. On the other hand, the gravity significantly affects the
pdf(w,) for bidisperse particles (Figure 14). The pdf(w,,12) approaches the Gaussian distribution
and the intermittent tails have been significantly reduced in comparison with the mono-disperse
results in Figure 11. In general, the pdfs for bidisperse particles have much narrow tails than those
of monodisperse particles (e.g., compare Figure 14 with Figure 11). This implies that the accel-
eration term is less intermittent as the two particles in the pair become more dissimilar in size.
This observation is consistent with the loss of correlation of concentration fluctuations” and rapid
decrease of radial relative velocity for bidisperse particles (Ayala et al.>> and Wang et al.’®) when
compared to monodisperse particles.
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FIG. 14. (a) Pdf of w,, 12 (bidisperse, a; =60 um and St; =2.28, a; =30, 40, and 50 um). (b) the same data as (a)
normalized by Kolmogorov velocity.

For bidisperse pairs, Figure 13 shows that there is a negligible effect of gravity on wy 12. Also
the distribution of wy 15 is negatively skewed indicating the bias of the colliding particles toward
negative relative velocities. This behavior is similar to that of the monodisperse cases and due to
the presence of particles in drifting regions of the fluid. The skewness values of wy 15 is provided
in Table IV. On the other hand, the effect of gravity on w, 1> of bidisperse collisions (as plotted in
Figure 14) is significant. For the curves on Figure 14, the flatness (kurtosis) of w,, 12 is provided in
Table I'V.

In Figure 15, we plot the ratio of the shear contribution (w,) to that of the gravity term (w,).
In the context of cloud and rain droplets, the shear term appears to be negligible when compared to
the gravity term, with the ratio being less than <2%. In the same plot, we show the estimation of
Grabowski and Wang'* for (Jw,|)/ (lw,). We observe that their estimation of

<|ws|> ~ \/E 1
(lwgly — 222.2g(a; — a2) cos(a)

€))

predicts a valuable upper bound for the relative value of (|w,|)/{|w,|). Average value of cos(a) =
0.5 is used to plot Eq. (9) in Figure 15.

In Figure 16, the ratio of the differential acceleration term (w,) to the gravity term (w,) is
plotted. The differential acceleration term appears to be of the same order of magnitude, but smaller
than the gravity term. The ratio is between 30% and 60%. Therefore, when gravity and differential
acceleration are combined together, the actual enhancement factor relative to the gravity term is
then expected to be V0.32 + 12 = 1.04 to V0.62 + 12 = 1.17, if the correlation between the gravity
term and the acceleration term is neglected. Namely, turbulent acceleration can increase the radial
relative velocity by 4%—17%, consistent with the results in previous studies Wang et al.,*® Franklin

TABLE IV. Skewness (S) of wg 12 and flatness (F') of w12 for the data
on Figures 13 and 14, respectively.

S: Figure 13 F: Figure 14
St Nog g Nog g
0.57 —-0.65 -0.53 7.49 3.79
1.01 —-0.61 -0.52 9.87 4.24
1.59 -0.62 -0.52 15.11 6.36
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et al.,** and Ayala et al.>? Grabowski and Wang'# suggested a scaling analysis for this ratio,
(lwal) ~ [11+7Ry €73 (10)
(lwgl) ~ Y 205 + Ry, gv"-%cos(a)’

to estimate the relative importance of the particle differential acceleration. Using an average value
of cos(a) = 0.5, Figure 16 shows that this estimate is reasonable.
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current study, estimate: estimation of Grabowski and Wang.'*
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To obtain a quantitative understanding of the effect of gravity on wy, we compare the values of
wy, with and without gravity, in Figure 17. We notice a small decrease (<2%) in ws when the gravity
is present. Therefore, the magnitude of the shear term is almost independent of the gravity.

A similar plot is shown in Figure 18 for the differential acceleration term (|w,|). In contrast
to the shear term, the gravity enhances the acceleration term by roughly a factor of 2, but this
enhancement is reduced when the particle sizes become similar. For sedimenting particles, the
relative acceleration vector of the two particles is biased towards the vertical direction. For similar
size particles, this relative acceleration is small because the response of two particles to local fluid
flow becomes similar in magnitude and direction. Therefore, following Eq. (7), the terms inside
the bracket (i.e., the relative acceleration) becomes smaller for similar size particles leading to
smaller (|w,|),. However, for non-sedimenting particles, the fluid turbulence is the only accelerating
mechanism causing a relative acceleration in all three directions (even for particles similar in size).
Hence, the decrease in (|wg|), is larger than that of (Jwq|),,, leading to a decrease in the ratio of
(lwal)g /{lwal)noe When the particle sizes become similar.

Finally, to study the extent of coupling between the gravity term and the differential accelera-
tion term, the cross correlation coefficient pg, of w, and w, defined as

oo = ((wg = (wg)) (wa = (Wa))) (11

((wg = (WD (e = (wa))*)

is shown in Figure 19 for bidisperse particles (for monodisperse cases, w, = 0). A finite positive
correlation coefficient of up to ~0.14 is observed between w, and w,. Furthermore, the coupling
becomes increasingly stronger when the difference in particle sizes becomes smaller. The gravity
likely reduces the particle-eddy interaction time, thus constantly interrupting the quasi-equilibrium
between the inertial particle and the fluid turbulence. Consequently, the gravity led to larger
particle accelerations in both horizontal and vertical directions compared to the no-gravity case,
e.g., comparing Figures 4(b) and 4(a). This is the major reason for large relative acceleration
observed in Figure 18. For bidisperse pairs, the positive correlation coeflicient shown in Figure 19
implies that, when the pair is oriented vertically due to gravity, the differential acceleration is also
larger. The latter could be another reason to expect a large differential acceleration when compared
to the no-gravity case.
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IV. ASYMPTOTIC ANALYSIS OF EFFECT OF GRAVITY ON PARTICLE ACCELERATION

VARIANCE

In Figure 4(b), the normalized a,,,s; is shown in the presence of gravity. The results in this
figure can be explained using the theory presented in the following. We develop two analytical
approaches to the problem, each of which may be used for different cases of gravity and droplet
inertia. Note that in the following derivations, d/dt is the total derivative in particle reference frame
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FIG. 19. The correlation coefficient between the gravity term and the differential acceleration term. a = 60 um.
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and is deﬁned as d - =5 F V -V, while D/Dt is the total derivative in fluid reference frame and is
defined as 5, U V

A. The first approach: Gravity without inertia

We shall first develop an approximate expression of particle acceleration under the limit of
St — 0 and finite Sv, where Sv is the terminal velocity of the particle normalized by Kolmogorov
velocity. In the context of cloud droplets, we can show that St ~ €°-3 and Sv ~ 1/€%2. Therefore,
the limiting case corresponds to St — O (or alternatively, a very large gravitational acceleration).
Under this limit, the droplet inertia can be neglected but the sedimentation must be retained. Let the
terminal velocity be denoted by W = (0,0,—w) with the gravity pointing in the negative x3 direc-
tion. In this limit, the particle velocity can be written in an exact form as a superposition of local
fluid velocity and terminal velocity (if we assume the particle has reached its terminal velocity),
V = U + W. By taking the d/dt derlvatlve the particle acceleration is fl‘t’ = ‘Z,Itj = % +V-VUand
substituting V = U + W leads to 5> d T = ( o5 TU- VU) + W - VU. Substituting the definition of fluid
acceleration DU/ Dt yields

dvV DU
dt Dt
U = (uy,up,u3) and V = (vy,0p,03) are denoted as the instantaneous fluid and particle velocities,

respectively, both measured at particle center. Now, substituting W = (0,0,—w), we handle the
horizontal and vertical components of (12) separately.

+(W-V)U. (12)

- doy o Duy o, 9m ing 41 = Duy _
1. The horizontal component becomes —* ~ 7 —w axz.Denotmg 7 = api1and 5+ = ayy, the

average particle acceleration variance in the horizontal direction is
ou ou
20\ 2 2 ! 1
(ay) ~ (az) +w <(8x3) > 2w<af16x3> 13)
Assuming a homogeneous isotropic turbulence and reducing the 2nd term yields
2e€ ou
2N o (a2 22 ) _ om
(apl) ~ (afl) +w (151/) 2w<aflax3>. (14)

Retaining the O(w?) term on the RHS (since Sv >> 1), the particle acceleration in horizontal
direction reduces to

2e
(ap])~(af])+w (15 ) (15)
2. The vertical component becomes %2 ~ 24 — wg—zg. Denoting 43 = a,; and 23 = a3, the

average particle acceleration variance in the vertical direction is obtained as

0 0
i)

which by using the homogeneous isotropic turbulence assumption to reduce the 2nd term
yields

€ ou
(a23) ~ (a?s) + w? (E) - 2w<af3a—x*:>. a7

Now, retaining the O(w?) term on the RHS (since Sv >> 1), the particle acceleration in the
vertical direction reduces to

(ahs) ~ (azs) +w’ (Fev) . (18)
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B. The first approach: Inertial particles without gravity

The small-St asymptotic limit without gravity was first introduced in Maxey,*' which was later
widely used in many publications. According to DNS data, this asymptotic limit typically holds true
for St < 0.05 (Chun et al.*?) or St < 0.1 (Ferry et al.**) depending on the type of statistics that is be-
ing examined. We start from the equation of motion for a small rigid particle considering the Stokes
drag, namely, ‘fi—‘t’ = —%. Therefore, the particle velocity is V = U — Tp%. Now, approximating

dV/dt with DU/ Dt, to the order 7,, we will have V ~ U — Tpg—[tj. Taking the % derivative to obtain
particle acceleration yields

which is equal to
%z%ljJr(V—U)-VU—TP%(%ItJ) (20)
leading to
%z%_TP%'VU_TI’% (%[t]) (21)
Now, approximating the d/dt derivative in the last term with D/Dt to the order 7, yields
Day
apzaf—‘rp(af-VU+E). (22)
Since there is no gravity and the acceleration is considered spatially isotropic, we take one compo-
nent of the acceleration as a,1 = af) — 7, (af -Vuy + DDL{I) and compute the acceleration variance

accordingly,

2
R Ry R GD

Daf1
- 27p<aflaf . Vu1> - 2Tp<af17>
Day
+T,,2<af V=2 1>. 23)

Using the proper scales of the flow to estimate the terms on the RHS and introducing the b;
coeflicients, we have

N2 2 ’ ’
2\ .2 2 U T u Tp 2 U
<ap1> =~ (af1>{l + blTp (x) + sz—lz + b3TPI + b47'_k + bij "y }, 24)

which after assuming a homogeneous isotropic turbulence, we obtain an asymptotic form as

(ar,) ~ <a}1>{1 — 18t — czsﬂ}. (25)

C. The first approach: Combining gravity and particle inertia

Finally, if we assume a small particle (St << 1), the total effects of gravity and inertia on the
difference between particle and fluid acceleration variance (i.e., (aii) - (a;i)) may be superposed to
yield

<a,2n'> = (a}i){l - 1St — czStZ} + A,-w2 (%) s (26)
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FIG. 20. Theoretical prediction for particle rms acceleration in comparison with DNS. Legend: D denotes the deterministic
forcing; S is for the stochastic forcing.

where A; = 1 for gravity direction, otherwise A; = 2. This expression may be further simplified by
assuming (a}i) ~ c3(vr/T%)> which leads to

(a2, A
(a‘; s ~ 1 -8t —eSP + C31—5’sz. (27)

From this analysis, it is clear that gravity correlates with particle acceleration variance both in
the horizontal and the vertical directions. This results in an increase in particle acceleration variance
in both directions. Furthermore, the effect of gravity on the horizontal acceleration variance is
approximately twice stronger than that in the gravity direction. Back to Figure 4(b), this explains the
reason why rms values of acceleration are larger in horizontal direction.

D. The second approach: Gravity and inertia together

This is an alternative and a more consistent approach. If gravity and inertia are considered
simultaneously, we use the asymptotic expression of Balachandar and Eaton,**

dV DU DU au

°r L = 4 _—, 28
a  Dr P Y 0x3 (28)
which leads to the following expression for particle acceleration:
Dafi 614,' al/l]' DI/[]' 014,' Dlzli 2
iR A — Tp——— — W — - — ] — — | + O(1)). 29
Api 24T T, w6X3 P (w dxy Dt ]ox; " YD (@) 29
Now, the horizontal component of the acceleration variance becomes
RO 2 2
2 2 w A w
~ (a2 )31 =281+ 2V2eSt— — 2+ ——| = 4, 30
<Cl,71> <af1>{ c o 15974, 15a(2)(vk) } (30)
and the vertical component of the acceleration variance is
R)> dass 0 1 g
2 2 w ) f30U3 w
~ 1 =28t +2cSt————+2 — )+ —1 7. 31
(@) <af3>{ ¢ v 1597q ¥ <MJ 0x; (9X3> ISaS(vk) } D
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Considering the dominance of gravity in this study (i.e., Sv >> 1), the last term of (31) is of order
w? and is retained. However, among the two terms of O(w) (the third and the fourth term), we retain
the third term because it carries the ¢ coefficient allowing us to fit this theory to DNS data to the
extent possible. Therefore, the cross correlation term in (31) can safely be neglected. Consequently,
for any positive ¢, the RHS of (30) will be larger than the RHS of (31) thus yielding a higher rms
acceleration for particles in the horizontal direction. Further, (30) and (31) imply that when the
gravitational settling dominates (large Sv), the particle acceleration variance might exceed that of
a fluid element. To compare with our DNS results, in Figure 20, we have plotted the normalized
ayms using equations (30) and (31). Our results show that the parameter ¢ should approximately be
in the range of 0.03 — 0.1 to qualitatively match the DNS results. (In this figure, we use ¢ = 0.04.)
The exact matching between the DNS results and the theory is not achieved mainly because the
theory is accurate only for small St while the DNS results are obtained for droplets with finite Sz.
This discrepancy between the theory and DNS data at smallest St number could be due to numerical
integration errors and the neglect of cross correlation terms in the theory.

V. SUMMARY AND CONCLUSIONS

We have studied the effects of gravity on inertial particle acceleration and its effect on the
contribution of differential acceleration to the radial relative velocity of inertial particles in a homo-
geneous isotropic turbulence. A newly developed massively parallel MPI code was employed to
simulate the flow and dynamics of the droplets at flow Reynolds numbers up to R; = 143, using a
256° grid resolution with O(10°) droplets. For validation purposes, we reproduced the acceleration
statistics of Bec et al.” and Salazar and Collins® using both stochastic and deterministic forcing
schemes for non-sedimenting particles (i.e., with the gravitational acceleration set to zero).

We have shown that the gravity plays an important role in particle acceleration statistics.
Specifically, we found that

1. A peak value of particle acceleration variance appears in both the horizontal and the vertical
directions at about St ~ 1.2, at which both the particle horizontal and vertical accelerations
clearly exceed the fluid-element acceleration. We note that as shown in Figure 5, the grav-
ity pushes the particles to pass through turbulent eddy cores as such constantly interrupting
quasi-equilibrium of a droplet’s response to local turbulent motion. In other words, with gravity
droplets would be less likely to reach quasi-equilibrium with the local turbulent motion, thus
enhancing the droplet acceleration variance.

2. At the same time, we found that gravity amplifies extreme acceleration events both in the
vertical and horizontal directions via the same mechanism, and thus effectively reduces the
inertial filtering mechanism.

We developed a theory to explain the effects of gravity and turbulence on the horizontal and
vertical acceleration variance of inertial particles. For a small particle (St << 1), the total effects
of gravity and inertia on particle acceleration variance in the horizontal and vertical directions are
approximated by (30) and (31). The particle rms acceleration in the horizontal direction is found
to be higher than that in the vertical direction. We discussed that when the gravitational settling
dominates (large Sv) the particle acceleration variance could even exceed that of a fluid element.
We found that the fitting parameter ¢ is in the range of 0.03 — 0.1 and demonstrated that using
¢ = 0.04, the theory qualitatively agrees with our DNS results for small droplet Stokes numbers in
the sense that both yield a larger horizontal particle acceleration variance when compared to the
vertical particle acceleration variance.

By decomposing the radial relative velocity of particles into three parts: the gravitational term
(wg), the shear term (wy), and the differential acceleration term (w,), we were able to study the
effects of gravity on each of the three terms when the particles are at contact. For monodisperse
particles, our results show that the presence of gravity does not have a significant effect on the shear
term wy. On the other hand, gravity suppresses the tails of pdf(w,). This could result from the lower
particle-eddy interaction time in presence of gravity. Our results show that the pdf(w,) is negatively
skewed while the pdf(w,) remains sufficiently symmetric.
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For bidisperse particles, we found that gravity can decrease the average |w,| by pushing the
particles into vortices where the local fluid shear is smaller. This decrease, however, is negligible
(~2%). Therefore |ws| could be considered unaffected by gravity. We found that for bidisperse
particles, the pdf (w,) is asymmetric while pdf(w,) is symmetric.

We also found that the differential acceleration term is positively correlated with the gravity
term, and this correlation is stronger when the difference in particle radii becomes smaller. We
demonstrated that the pdf tails of w, is wider than the pdf tails of w;, implying that the intermittent
behavior of fluid acceleration is transferred to particle radial relative velocity mainly through the
differential acceleration mechanism.

We emphasize that the focus of this paper is on particle acceleration and relative velocity for
monodisperse particles, which we believe have not been discussed systematically in the literature.
We set forward the preliminary discussions on the RRV for bidisperse distributions in Sec. III C.
A more complete discussion of RRV for bidisperse and polydisperse distributions is the subject of
future publications. Since particles are assumed to be non-interacting point particles, in principle,
the statistics of a polydisperse size distribution can be evaluated by summing over groups of mono-
disperse and bidisperse particle pairs. A full discussion of the pdf of various contributions to the
relative velocity, for different St and Sv as well as separation distances larger than the geometric
collision radius, could be a topic for future research. We believe that this study not only extends
the knowledge on acceleration statistics of sedimenting inertial particles but it also provides in-
sights to better parameterize the radial relative velocity of inertial particles in turbulence. Additional
simulations and analysis are needed to fully understand the effects of R), flow dissipation rate, and
particle-particle hydrodynamic interactions on the radial relative velocity.
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