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a b s t r a c t

In this paper, the mesoscopic representation of non-uniform forcing is investigated by
an inverse design approach, for several MRT (multiple-relaxation-time) lattice Boltzmann
models. First, the mesoscopic forcing representation of a standard LBM-MRT model on a
square lattice is re-visited. By the multiscale Chapman–Enskog expansion, we derive the
most general form of the representation by taking advantage of the MRT formulation. In
particular, we show that there are three free components in themesoscopic representation
of forcing. Second, by the same methodology, the forcing scheme of two new rectangular
MRT lattice Boltzmannmodels are derived based on the requirements of the Navier–Stokes
equations. These theoretical results are then validated by numerical simulations of a forced
Taylor–Green vortex flow, with several different forms of non-uniform forcing to alter the
kinetic-energy evolution of the system. The numerical results are in excellent agreement
with the corresponding time-dependent analytical solution of flow.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann equation (LBE) is a fully discrete form in both time and space of the kinetic Boltzmann equation
with a finite set of discrete molecular velocities [1,2]. Instead of solving the Navier–Stokes (N–S) equations involving
strong nonlinearity at the macroscopic level, the lattice Boltzmann method (LBM) solves the distribution functions that
represent the number density of molecules with certain discrete velocities. The distribution functions are updated, typically
explicitly, by a quasi-linear collision–propagation process [1–4]. The collision term is simplified by either the use of the
single-relaxation-time Bhatnagar–Gross–Krook (BGK) model [3] or the linearized multiple-relaxation-time (MRT) collision
model [4,5]. The only nonlinearity occurs in the evaluation of the equilibrium distribution that is used in the collision
operator, and this nonlinearity is fully local in the physical space. The macroscopic variables such as pressure, velocity
and velocity gradients are then computed as the moments of the distribution functions. Several features of the LBM are
highly valued: simplicity of algorithm and implementation, excellent capability of handling complex geometrics [6–8],
highly parallelizable since the collision process is completely local and the propagation only involves communication with
neighboring nodes [2,3]. With these advantages, the LBM has been developed rapidly in the last several decades and applied
extensively for fluid dynamics simulations in many different areas [9–13], particularly multiphase flows or flows with
complex boundary [6–8,14].
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As a mesoscopic method, the LBM has a greater design flexibility than its conventional Computational Fluid Dynamics
(CFD) counterparts, and such flexibility is yet to be fully explored. This flexibility originates partially from the fact that
the mesoscopic distribution functions contain more information than the few moments governed by the continuity and
the N–S equations. Taking advantage of such flexibility, for example, non-uniform forcing and non-standard lattice grids
can be incorporated within LBE. Many fluid dynamics problems could involve external forces that are non-uniform and
time-dependent, especially in turbulent flows or multiphase flows [6,7,14]. For instance, in the simulation of forced
homogeneous turbulence, the turbulent kinetic energy is added into the computational domain with non-uniform time-
dependent forcing [6,7]. In the simulation of turbulent flows with dispersed solid particles, the no-slip boundary condition
on the particle surface is sometimes converted to a virtual force that is local and non-uniform. Similar situations occur when
treating flowswith fluid–fluid interfaces. These forces are often formulated at the continuum level, and as such they need to
be converted into amesoscopic form.Whether this conversion is designed appropriately affects the accuracy and consistency
of the resulting hydrodynamics. For example, it has been shown that the mesoscopic forcing could affect velocity gradient
and strain-rate components calculated from the non-equilibrium moments [15].

It is well known that the N–S equations could be recovered from the lattice Boltzmann equation through several different
methods. The first is the Chapman–Enskog (C–E) expansion [1,2]. A multi-scale expansion of Knudsen number is applied
in the C–E expansion to derive the compressible Navier–Stokes equations. The second method is the asymptotic analysis
[16–18]. In this approach, the Hilbert expansion is used to derive the conserved hydrodynamic variables, and the
incompressibleN–S equations could be recovered. The thirdmethod is theMaxwell iteration [19], inwhich the time step δt is
used as the only expansion parameter and the Taylor expansion of distribution function is applied to derive the compressible
N–S equations. In this paper, we choose to design the mesoscopic forcing term by using the Chapman–Enskog expansion, in
order to explore the impact of the forcing on the hydrodynamic variables and resulting hydrodynamic equations.

Previously, the mesoscopic representation of a forcing term has been widely studied with the BGK collision operators
in [20–26]. Advantages and disadvantages of different forcing implementations based on the BGK model have also been
compared [26–28]. Through analytically examining the hydrodynamic equations derived from the lattice Boltzmannmethod
with the BGK collision model (LBGK) with different formulations of forcing terms, Guo et al. stated that implementations
proposed in [20–24] introduce an additional term 1

2δt∇ · F to the continuity equation affecting the accuracy of simulated
hydrodynamics, where δt is the time step size and∇ ·F is the spatial divergence of the macroscopic force field [26]. Because
of the discrete lattice effects, an inappropriate forcing implementationmay also contaminate themomentumequations [26].
Guo et al. [26] then derived a mesoscopic forcing, based on a rigorous Chapman–Enskog expansion, that is fully consistent
with the N–S equations and maintains the second-order accuracy of the LBM scheme. Guo’s forcing scheme has been
extended to LBM with the MRT collision operator [15,29]. A D3Q19 MRT LB model with nonuniform forcing was derived
by Premnath et al. [29]. Recently, Yong et al. [19] also derived a general representation of the mesoscopic forcing terms
of the D2Q9 MRT-LBM using the Maxwell iteration method. As will be shown in this paper, the full flexibility of forcing
implementation in theMRT LBMcould be developedbased on the C–E expansion and the idea of inverse design. Furthermore,
all the previous forcing schemes are based on standard lattice grids (square lattice in 2D, cubic lattice in 3D). Recently,
LB models using non-standard lattice grids have been successfully developed and validated [30–32], without a systematic
analysis of a forcing term. The main objective of this paper is to design the most general formulation of a non-uniform
mesoscopic forcing scheme for MRT LBM schemes, on both standard and non-standard lattice grids.

The rest of the paper is arranged as follows. In Section 2, the necessary background of standard MRT LBM will be
introduced. The inverse design analysis will be explained in detail by deriving the forcing scheme for the square lattice
model. In Section 3 and Appendix, the derivation is repeated for two new MRT LBM models [30,31], using non-standard
lattice grids. A modified Taylor–Green vortex flowwith non-uniform and time-dependent forcing is introduced in Section 4
to validate the new forcing formulations. Finally, conclusions will be provided in Section 5.

2. An inverse design analysis of MRT-LBM with forcing on a D2Q9 square lattice

In LBM, the domain is decomposed using lattice nodes. For a two dimensional problem, the standard LBM uses a square
lattice. In this section, we shall re-visit the forcing formulation of such standard MRT-LBM model for two purposes: first to
illustrate the inverse design approach; second to reveal the most general form of mesoscopic forcing implementation.

In LBM, a set of distribution functions fi are introduced and each evolves in time according to the following equation [4]

fi(x + eiδt , t + δt) − fi(x, t) = −M−1S

m(x, t) − m(eq)(x, t)


+ Φi, (1)

where the right hand side describes collision interactions and the left hand side provides the exact streaming of the
given lattice particle with velocity ei. For the standard D2Q9 lattice with advective scaling, the 9 particle velocities are:
e0 = (0, 0)c , e1 = (1, 0)c , e2 = (0, 1)c , e3 = (−1, 0)c , e4 = (0, −1)c , e5 = (1, 1)c , e6 = (−1, 1)c , e7 = (−1, −1)c , and
e8 = (1, −1)c , where c = δx/δt = 1 (m s−1) is the lattice velocity unit, δx (m) is the lattice spacing and δt (s) is the time
step size. In Eq. (1), the extra term Φi represents the mesoscopic forcing term, which is the main focus of this paper. The
components of Φi will be designed to reproduce a macroscopic forcing field F ≡ (Fx, Fy).

Here the MRT collision model is assumed, with the relaxation process applied to the individual moments. The matrix M
transforms the distribution tomoments bym = Mf, with the inverse transform as f = M−1m, where f is a vector containing
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fi. The vector m contains 9 components derived from the density fluctuation, energy, energy square, momentum in the x
direction, energy flux in the x direction, momentum in the y direction, energy flux in the y direction, the normal stress, and
the shear stress, in this order, and is written as

m =
δρ, e, ε, jx, qx, jy, qy, pxx, pxy


, (2)

where the symbol |·⟩ is a Dirac notation which represents a column vector. Note that, for a nearly incompressible flow, the
density is written as ρ = ρ0 + δρ, where ρ0 is the average density (set to 1) and δρ is the local density fluctuation [2,33].
Based on the isothermal equation of state, the pressure is expressed as p = δρc2s where cs is the speed of sound. Additionally,
the equilibrium moments should have the following form,

m(eq)
=
ρ(eq), e(eq), ε(eq), j(eq)x , q(eq)

x , j(eq)y , q(eq)
y , p(eq)

xx , p(eq)
xy


. (3)

The equilibrium moments m(eq) must be properly designed to yield the correct hydrodynamic equations. The diagonal
relaxation matrix S specifies the relaxation parameters

S = diag(sρ, se, sε, sj, sq, sj, sq, sn, sc), (4)

where all non-trivial relaxation parameters should be in the range between 0 and 2. For the standard square lattice, the
transform matrixM is

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


, (5)

where the rows ofM are made to be orthogonal to one another by applying a Gram–Schmidt orthogonalization. The inverse
matrix M−1 is just the transpose ofM, with a proper normalization for each column ofM−1 [4].

The above provides the basic setup of the MRT LBM model on D2Q9 square lattice. The remaining task is to properly
formulate meq and 8 = {Φi} in terms of conserved moments and the macroscopic forcing F, such that the Navier–Stokes
equations with the forcing F are properly recovered. Since the Navier–Stokes equations are the moment equations of
the distribution function, the most intuitive way to design meq and 8 is to compare the moment equations from the
Chapman–Enskog expansion of the LBE to the Navier–Stokes equations.

The multiscale Chapman–Enskog expansion begins with the Taylor expansion of fi(x + eiδt , t + δt) in Eq. (1). After
multiplying the expanded equation byM/δt , we obtain

I∂t + Ĉα∇α


m +

δt

2


I∂t + Ĉα∇α

2
m = −

S
δt


m − m(eq)

+ 9, (6)

where I represents the identity matrix. 9 = M8/δt , ∂t is the time derivative, ∇α is the spatial derivatives, Ĉα =

Mdiag(eiα)M−1. Next, the following standard multiscale expansion is applied to ,∂t , ∇α and 9:

m = m(0)
+ ϵ m(1)

+ ϵ2m(2)
+ · · · , (7a)

∂t = ϵ ∂t1 + ϵ2∂t2, (7b)
∇α = ϵ ∇1α, (7c)

9 = ϵ 9(1), (7d)

where ϵ is a small parameter proportional to the Knudsen number. Substituting the multi-scale expansion into Eq. (6) and
rearranging the equation according to the order of ϵ, we obtain the following three equations

O(1) : m(0)
= m(eq), (8a)

O(ϵ) :


I∂t1 + Ĉα∂1α


m(0)

= −
S
δt

m(1)
+ 9(1), (8b)

O(ϵ2) : ∂t2m(0)
+


I∂t1 + Ĉα∂1α

 
I −

S
2


m(1)

+
δt

2
9(1)


= −

S
δt

m(2). (8c)

Each of the equations in Eqs. (8a)–(8c) represents a vector equation of 9 degrees of freedom. According to the ordering of
moments as indicated by the transformation matrix M, the 1st, 4th, and 6th of each equation correspond to the governing
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equation for mass, and x-momentum, and y-momentum, respectively, with Eq. (8b) relating to the Euler equations and
Eq. (8c) to the Navier–Stokes equations.

Since the mass is conserved and the forcing appears at the order ϵ, we have m(k)
1 = 0 for k ≥ 1, and m(k)

4,6 = 0 for k ≥ 2.
The first row of Eq. (8b) becomes

∂t1m
(0)
1 + ∂1xm

(0)
4 + ∂1ym

(0)
6 = Ψ

(1)
1 , (9)

which must match with the continuity equation at O(ϵ) given by

∂t1δρ + ∂1x(ρ0u) + ∂1y(ρ0v) = 0. (10)

This requires thatm(0)
1 = ρ(0)

= δρ,m(0)
4 = j(0)x = ρ0u,m

(0)
6 = j(0)y = ρ0v and Ψ

(1)
1 = 0. The 4th and 6th rows of Eq. (8b)

∂t1(ρ0u) + ∂1x


2
3
δρ +

1
6
e(0)

+
1
2
p(0)
xx


+ ∂1y


p(0)
xy


= −

sj
δt

j(1)x + Ψ
(1)
4 , (11a)

∂t1(ρ0v) + ∂1y


2
3
δρ +

1
6
e(0)

−
1
2
p(0)
xx


+ ∂1x


p(0)
xy


= −

sj
δt

j(1)y + Ψ
(1)
6 , (11b)

must correspond to the following Euler momentum equations

∂t1(ρ0u) + ∂1x

p + ρ0u2

+ ∂1y (ρ0uv) = F (1)
x , (12a)

∂t1(ρ0v) + ∂1y

p + ρ0v

2
+ ∂1x (ρ0uv) = F (1)

y . (12b)

Each equation in Eqs. (11) and (12) only contains one time derivative term, one x derivative term and one y derivative
term. Therefore, we can match Eq. (11a) with Eq. (12a), and match Eqs. (11b) and (12b) term by term. We then obtain
2
3δρ+

1
6 e

(0)
+

1
2p

(0)
xx = p+ρ0u2, 23δρ+

1
6 e

(0)
−

1
2p

(0)
xx = p+ρ0v

2 and p(0)
xy = ρ0uv, resulting in e(0)

= (6c2s −4)δρ+3ρ0(u2
+v2),

p(0)
xx = ρ0(u2

− v2), and p(0)
xy = ρ0uv. Therefore, 6 equilibrium moments have been determined by matching the Euler

equations.
Furthermore, matching the right hand sides of Eqs. (11) and (12), we obtain two constraints

−
sj
δt

j(1)x + Ψ
(1)
4 = F (1)

x , (13a)

−
sj
δt

j(1)y + Ψ
(1)
6 = F (1)

y . (13b)

From Eq. (8b), we have

m(1)
= δtS−1


9(1)

−


I∂t1 + Ĉα∂1α


m(0)


, (14)

which couples the non-equilibrium moment m(1) to the equilibrium moment m(0) and the mesoscopic forcing term. Note
that S is invertible only when all its diagonal elements are non-zero. Since the relaxation parameters of conservedmoments
have no impact on the collision term, any non-zero value could be used for the relaxation of conservedmoments. Therefore,
we could always make the relaxation matrix S to be invertible.

Next, we proceed to the next order, O(ϵ2). First, we define A as

A =


I −

S
2


m(1)

+
δt

2
9(1), (15)

so that Eq. (8c) becomes

O(ϵ2) : ∂t2m(0)
+ (I∂t1 + Ĉα∂1α)A = −

S
δt

m(2). (16)

Sincem(1)
1 = m(2)

1 = Ψ
(1)
1 = 0, then A1 is also equal to zero. The first row of Eq. (16) reads

∂t2δρ + ∂1xA4 + ∂1yA6 = 0. (17)

This must match the continuity equation at O(ϵ2), namely, ∂t2δρ = 0. Therefore, we conclude that A4 = A6 = 0.
Therefore, the following two constraints are obtained

A4 =


1 −

sj
2


j(1)x +

δt

2
Ψ

(1)
4 = 0, (18a)

A6 =


1 −

sj
2


j(1)y +

δt

2
Ψ

(1)
6 = 0. (18b)

Combining Eqs. (13) and (18), we must require that j(1)x = −F (1)
x δt/2, j

(1)
y = −F (1)

y δt/2, Ψ
(1)
4 = (1 − 0.5sj)F

(1)
x , and

Ψ
(1)
6 = (1 − 0.5sj)F

(1)
y .
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The next step is to compare the 4th row and 6th row of Eq. (8c) with the Navier–Stokes equations on the order of O(ϵ2),
to identify additional constraints. Namely, the two equations

∂t2(ρ0u) + ∂1x


A2

6
+

A8

2


+ ∂1yA9 = 0, (19a)

∂t2(ρ0v) + ∂1y


A2

6
−

A8

2


+ ∂1xA9 = 0, (19b)

must match the following Navier–Stokes equations at O(ϵ2)

∂t2(ρ0u) − ∂1x

µV ∂1xu + ∂1yv


+ µ


∂1xu − ∂1yv


− µ∂1y


∂1yu + ∂1xv


= 0, (20a)

∂t2(ρ0v) − ∂1y

µV ∂1xu + ∂1yv


− µ


∂1xu − ∂1yv


− µ∂1x


∂1yu + ∂1xv


= 0, (20b)

where µ and µV are the dynamic shear and bulk viscosity, respectively. Comparing Eqs. (19) and (20) yields

A9 = −µ

∂1yu + ∂1xv


, (21a)

A2 + 3A8 = −6

µV ∂1xu + ∂1yv


+ µ


∂1xu − ∂1yv


, (21b)

A2 − 3A8 = −6

µV ∂1xu + ∂1yv


− µ


∂1xu − ∂1yv


. (21c)

Since A2, A8 and A9 are related to non-equilibrium moments e(1), p(1)
xx and p(1)

xy and forcing terms Ψ
(1)
2 , Ψ (1)

8 and Ψ
(1)
9 and

Eq. (14) states the non-equilibriummoments could be expressed in terms of the forcing term and equilibriummoments, we
can obtain three equations that relate e(1), p(1)

xx , and p(1)
xy to Ψ

(1)
2 , Ψ (1)

8 , and Ψ
(1)
9 and the viscosity. For example, Eqs. (15) and

(21a) together yield
1 −

sc
2


p(1)
xy +

δt

2
Ψ

(1)
9 = −µ


∂1yu + ∂1xv


. (22)

Substituting the expression for p(1)
xy from Eq. (14) and setting s′c ≡


1
sc

−
1
2


δt , we then obtain

s′c


Ψ

(1)
9

1 − 0.5sc
−

vF (1)

x + uF (1)
y


−

1
3


∂1x

2ρ0v + q(0)

y


+ ∂1y


2ρ0u + q(0)

x


= −µ


∂1yu + ∂1xv


. (23)

Recall that the forcing term is introduced to match with the effect of macroscopic force, without affecting other terms in
the Navier–Stokes equations. Therefore, in Eq. (23), all terms that are related to the forcing should cancel. This implies that
Ψ

(1)
9 = (1 − 0.5sc)(vF

(1)
x + uF (1)

y ). Thus, Eq. (23) becomes

s′c
3


∂1x(2ρ0v + q(0)

y ) + ∂1y(2ρ0u + q(0)
x )


= µ

∂1yu + ∂1xv


. (24)

Tomatch the formof

∂1yu + ∂1xv


on the right hand side of Eq. (24),wemust set q(0)

x = γ ρ0u and q(0)
y = γ ρ0v. Therefore,

the shear viscosity must be

µ = ρ0
s′c
3

(2 + γ ) =
2 + γ

3


1
sc

−
1
2


ρ0δt . (25)

In a lattice Boltzmann model with the standard lattice, γ is not an adjustable parameter, which we will confirm shortly.
However, in the rectangular lattice Boltzmann model, γ can be a free parameter [30,31].

Similarly, by combining the remaining two equations in Eq. (21) with Eqs. (14) and (15), we can determine Ψ
(1)
2 , Ψ (1)

8 ,
and an alternative expression for the shear viscosity and an expression for the bulk viscosity based on the requirements of
the Navier–Stokes equations. The results are

Ψ
(1)
2 = 6(1 − 0.5se)(uF (1)

x + vF (1)
y ), (26a)

Ψ
(1)
8 = 2(1 − 0.5sn)(uF (1)

x − vF (1)
y ), (26b)

µ =
1 − γ

6


1
sc

−
1
2


ρ0δt , (26c)

µV
=

(5 − 6c2s + γ )

6


1
se

−
1
2


ρ0δt . (26d)

Comparing Eqs. (25) and (26c), we must require γ = −1 in order for viscosity to be isotropic.
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Putting all the above results together for the forcing term, we have

9 = ϵ9(1)
=



0
6(1 − 0.5se)(uFx + vFy)

Ψ3
(1 − 0.5sj)Fx

Ψ5
(1 − 0.5sj)Fy

Ψ7
2(1 − 0.5sn)(uFx − vFy)
(1 − 0.5sc)(vFx + uFy)


. (27)

Several important conclusions can be made: (1) the components of the mesoscopic forcing term are related to the
macroscopic forcing Fx and Fy, macroscopic velocity and relaxation times—these forcing terms are added to Eq. (1) as 8 =

M−19 to realize the effect of macroscopic forcing at the mesoscopic level; (2) since all requirements at the hydrodynamic
level have been met, the three undecided forcing components Ψ3, Ψ5, and Ψ7 can be specified freely. These elements
are associated with energy squared and energy flux in the two spatial directions. The second conclusion regarding the
mesoscopic forcing is a reflection of the inherent flexibility in the MRT LBM. This flexibility could be used to potentially
improve the numerical stability. (3) The resulting forcing terms derived from the C–E expansion can be compared to Yong
et al.’s design [19], which is derived from theMaxwell iteration. The results of the twomethods are the same except in Yong
et al.’s design, the values of Ψ3, Ψ5, and Ψ7 are determined by the linear stability analysis [4,19].

The equilibrium moments and some important non-equilibrium moments of this model from the above inverse design
analysis can now be summarized here:

m(0)
= m(eq)

=



δρ

δρ

6c2s − 4


+ 3ρ0


u2

+ v2
αδρ + βρ0


u2

+ v2
ρ0u

−ρ0u
ρ0v

−ρ0v

ρ0

u2

− v2
ρ0uv


. (28)

ϵm(1)
4 = ϵj(1)x = −Fxδt/2, ϵm(1)

6 = ϵj(1)y = −Fyδt/2. (29)

The multiscale analysis shows that m(eq)
= m(0) and the equilibrium moments are not affected by the forcing. Note that

the third equilibrium moment ε(0) is not restricted in any way by hydrodynamic equations. Thus, two free parameters α
and β are introduced here to specify the general form of ε(0), as assumed in [4]. The above design of equilibrium moments
is also identical with the design based on the Maxwell iteration [19].

According to the multi-scale expansion in Eq. (7a), m4 ≈ m(0)
4 + ϵ m(1)

4 = ρ0u − Fxδt/2. Therefore, the computation of
hydrodynamic variable is affected by the forcing, i.e., ρ0u = m4 + Fxδt/2. The same applies to the velocity in the y direction.
Namely,

u = (m4 + Fxδt/2) /ρ0 =


i

fieix + Fxδt/2


ρ0, (30a)

v =

m6 + Fyδt/2


/ρ0 =


i

fieiy + Fyδt/2


ρ0. (30b)

Our derivation shows that m(1)
1 = m(2)

1 = Ψ
(1)
1 = 0, then the presence of forcing will not affect the local density fluctu-

ation and thus the calculation of pressure will not be affected. The pressure in this model is computed as

p = δρc2s =


i

fic2s . (31)

Finally, the shear viscosity and bulk viscosity of this model are determined to be

µ =
ρ0δt

3


1
sc

−
1
2


, (32a)

µV
=

(2 − 3c2s )ρ0δt

3


1
se

−
1
2


. (32b)

The speed of the sound cs remains an adjustable parameter, which shows better flexibility of the MRT collision model
when compared to the standard BGK model as, for the latter, cs has to be fixed to 1/

√
3.
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As proved in [15,30,31], the expression of normal stress and shear stress should be modified if external macroscopic
forces are introduced. In this paper, the expression of normal stress and shear stress of the square lattice model could be
derived from Eq. (21):

τxx = −τyy = −
1
2


1 −

sn
2


ϵm(1)

8 +
δt

2
Ψ8


, (33a)

τxy = −


1 −

sc
2


ϵm(1)

9 −
δt

2
Ψ9, (33b)

where ϵm(1)
8 and ϵm(1)

9 are calculated according to ϵm(1)
= −m(0)

= Mf − m(0) and m(0) comes from Eq. (28). Ψ8 and Ψ9
should be calculated based on Eq. (27). Thus, the effect of forcing is included when calculating normal stress, shear stress
(or strain tensor and velocity gradients).

In summary, for this D2Q9 square lattice model, the mesoscopic forcing scheme, equilibrium moments, and other
information including the expression of viscosity, normal and shear stress, etc. have been designed based on an inverse
design analysis. The result provides the most general formulation of the mesoscopic forcing. Specifically, we conclude that
three components of the mesoscopic forcing can be left as free parameters as they have no bearing on the Navier–Stokes
equations. In addition, the resultingmesoscopic forcing is the same as those in Yong et al.’s model [19] based on theMaxwell
iteration [4,19]. In the next section, wewill apply the inverse design analysis to recently developed newmodels using a non-
standard lattice grid.

3. Inverse design of MRT-LBM with forcing on rectangular lattice grids

The analysis in the previous section illustrates that, in principle, the mesoscopic forcing term can be designed for any
LBM model using the Chapman–Enskog analysis and the requirements of hydrodynamic equations. In this section, we will
use the same inverse analysis to design the forcing scheme of one recently developed MRT-LBM models for non-standard,
rectangular lattice.

Non-standard lattice models are desired because the computational efficiency could be greatly improved by using these
models for non-isotropic flows. For example, when simulating turbulent flows in a long channel or a long pipe, the flow
properties in the streamwise direction vary more gradually than those in the wall normal direction. Non-standard lattice
based on a rectangular or cuboid grid is then more appropriate.

In this paper, we consider two rectangular MRT LB models with a rectangular lattice. The forcing scheme based on Zong
et al.’s model [30], namely, the θ model, will be derived in this section. The forcing scheme based on Peng et al.’s model [31],
namely, the extended equilibrium model, is presented in the Appendix.

Previously, two rectangular models have already been developed by Bouzidi et al. [34] and Zhou [35], respectively.
However, Zong et al. [30] and Peng et al. [31] showed that the viscosity in these two models is anisotropic, namely, the
effective viscosity in one spatial direction is different from the other direction, resulting from the use of anisotropic lattice
grid. In a two dimensional rectangular model, there could be three shear viscosities ν, νx, νy and two bulk viscosities νV

x , νV
y

associatedwith transport of different stress components in different spatial directions, derivable from the Chapman–Enskog
expansion. In order to achieve the full isotropy, three additional constraintsmust be imposed in order to satisfy the following
three relations

ν = νx = νy, (34a)

νV
x = νV

y . (34b)

In Bouzidi et al.’s model, only two constraints (a relation between sn and sc , and a second relation between se and sc)
are available, which are not sufficient. In the θ model [30], a new degree of freedom θ is introduced to re-arrange the two
moments (i.e., the energy and normal-stress) in the transformed phase space. Consequently, a third constraint on the θ
variable was imposed to fully restore the isotropy condition.

An alternative solution is suggested by Peng et al. [31], who included stress components into equilibrium moments
of energy, normal, and shear stress in order to restore the isotropy. In total there are 5 new parameters, i.e., two in the
equilibrium energy moment, two in equilibrium normal-stress moment, and one in equilibrium shear-stress moment,
leading to 5 additional degrees of freedom. Three of them are used to satisfy the three relations in Eq. (34), while the
remaining two act to adjust the shear and bulk viscosities independent of the relevant relaxation parameters.

For a D2Q9 MRT LB model on a rectangular lattice, the distribution is still governed by Eq. (1). 8 on the right hand side
is the mesoscopic forcing term which is used to represent the effect of the macroscopic forcing at the mesoscopic level. The
transformation from f to m = Mf is formally the same, and the relaxation matrix remains a diagonal matrix. Therefore, by
applying the Chapman–Enskog expansion to Eq. (1), the expanded equations should be in the same form as Eq. (8).

However, the transform matrix is different from the one for the square lattice because different discrete velocities are
applied in different directions according to e0 = (0, 0)c , e1 = (1, 0)c , e2 = (0, a)c , e3 = (−1, 0)c , e4 = (0, −a)c ,
e5 = (1, a)c , e6 = (−1, a)c , e7 = (−1, −a)c , and e8 = (1, −a)c , where a = dy/dx is the lattice aspect ratio, dx and dy are
lattice spacing in the x- and y-direction, respectively. c = dx/δt = 1 (m s−1) is the lattice velocity unit and δt (s) is the time
step size. Thus in Eq. (8), Ĉα = Mdiag(eiα)M−1 in the rectangular model is different from the one in the square model.
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Specifically, in Zong et al.’s model, an additional parameter θ is introduced to couple the energy moment and normal
stress moment [30], introduced initially by Bouzidi et al. [34], denoted as eB and pBxx, respectively. Namely, these two
moments are modified as

e = eB + θpBxx, (35a)

pxx = pBxx − θeB. (35b)

Therefore, the parameter θ could be viewed as a coupling coefficient used to re-arrange the two-dimensional moment
sub-space. The above transformation amounts to a rotation in the two-dimensional moment sub-space, namely, θ ∼ tanφ,
where φ is the rotation angle. This transform preserves the orthogonality property of all moments. Therefore, the moment
transformation matrix in Zong et al.’s model becomes [30]:

M =



1 1 1 1 1 1 1 1 1
−2R1 R2 R3 R2 R3 R1 R1 R1 R1

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 a 0 −a a a −a −a
0 0 −2a 0 2a a a −a −a

−2R4 R5 R6 R5 R6 R4 R4 R4 R4
0 0 0 0 0 a −a a −a


, (36)

where R1 = (a2 + 1) + θ(a2 − 1), R2 = (1 − 2a2) + θ(a2 + 2), R3 = (a2 − 2) − θ(1 + 2a2), R4 = (a2 − 1) − θ(a2 + 1),
R5 = (a2 + 2) − θ(1 − 2a2), and R6 = −(2a2 + 1) − θ(a2 − 2).

By applying the same inverse design analysis, the following forcing scheme can be derived:

9 =



0

6 (1 − 0.5se)


a2θ + 1

uFx +


1 −

θ

a2


vFy


Ψ3

1 − 0.5sj

Fx

Ψ5
1 − 0.5sj


Fy

Ψ7

6(1 − 0.5sn)


a2 − θ

uFx −


θ +

1
a2


vFy


(1 − 0.5sc)


vFx + uFy




. (37)

The above mesoscopic forcing formulation is formally similar to the forcing scheme for a square lattice model derived
in Section 2, Eq. (27). A few differences are noted here. First, the coefficient in the front of Ψ8 is 6 in the rectangular model
and it is 2 in the square model. This is because the normal stress moment pxx in the rectangular model is multiplied by a
factor 3 during the Gram–Schmidt orthogonalization to simplify the calculation and the transformation matrix. Second, in
the rectangular model, only Ψ2 and Ψ8 are affected by the additional parameter θ . This is also reasonable because θ is a
coupling coefficient between the second moment and the eighth moment in the standard model. It is noted that Eq. (37)
reduces to Eq. (27), when a → 1 and θ → 0.

Similar to the case of square lattice, there are three free forcing terms in the rectangular model: Ψ3, Ψ5 and Ψ7. Their
values have no impact on the Navier–Stokes equations so they can be chosen arbitrarily as long as the model is numerically
stable.

The equilibrium moments of the rectangular model have been determined to take the form, using the density splitting
ρ = ρ0 + δρ as in Section 2,

m(0)
= m(eq)

=



δρ

2

3c2s − r1


δρ + 3ρ0


u2

+ v2
+ θ


3r3c2s − 2r2


δρ + 3ρ0


a2u2

−
v2

a2


αδρ + βρ0(u2

+ v2)
ρ0u

γ − 2r2
a2

ρ0u
ρ0v

γ ρ0v
3r3c2s − 2r2


δρ + 3ρ0


a2u2

−
v2

a2


− θ


2

3c2s − r1)δρ + 3ρ0(u2

+ v2
ρ0uv


, (38)



H. Min et al. / Computers and Mathematics with Applications 78 (2019) 1095–1114 1103

where r1 = a2+1, r2 = a2−1, r3 =
a4−1
a2

and r4 =
a4+1
a2

. As indicated in Section 2, γ is the coefficient of equilibriummoment

q(eq,0)
y and it has the same definition as what is defined in Section 2 for the square lattice model. In the square lattice model,

γ has to be −1, as indicated by Eqs. (25) and (26c). However, γ is a free parameter here and it could be used to improve the
numerical stability of the model. The above equilibriummoments are identical to the design in Zong et al. [30], who derived
their model without considering the forcing term. Therefore, this is a further confirmation that the equilibrium moments
are not affected by the forcing. However, the form of non-equilibrium moments must be modified due to the presence of
forcing. As shown in Section 2 and in [15,30,31], the expressions of normal stress and shear stress must also be modified.
For example, the stress components should now be computed as

τxx = −τyy = −


d1 − a2d2

 
(1 − 0.5se) ϵm(1)

2 + 0.5δtΨ2


+

a2d1 + d2

 
(1 − 0.5sn) ϵm(1)

8 + 0.5δtΨ8


6d3d4

, (39a)

τxy = − (1 − 0.5sc) ϵm(1)
9 − 0.5δtΨ9, (39b)

where d1 = a2θ + 1, d2 = a2 − θ, d3 = a4 + 1, d4 = θ2
+ 1. ϵm(1)

2 , ϵm(1)
8 , and ϵm(1)

9 are calculated according to
ϵm(1)

= −m(0)
= Mf − m(0) and m(0) is provided by Eq. (38). Ψ2, Ψ8 and Ψ9 should be calculated based on Eq. (37).

Thus, the effect of forcing enters the computation of the normal stress and shear stress (or strain-rate components). For
the rectangular lattice, the relations given by Eqs. (30) and (31) can still be used to compute the macroscopic velocity and
pressure from the moments.

4. Numerical validations

The inverse design ensures that the three derived forcing schemes (one for the square lattice, two for the rectangular
lattice) are consistent with the Navier–Stokes equations. In this section, they will be validated against analytical solutions
of an altered 2D forced Taylor–Green vortex flow, under a non-uniform forcing.

4.1. The forced 2D Taylor–Green vortex

In order to validate the forcing schemes, a 2D forced Taylor–Green vortex flow is designed. Namely, an external non-
uniform body force is applied to drive the two-dimensional Taylor–Green vortex flow, to either cause a more rapid decay or
even growth of flow velocitymagnitude. The external body force is both non-uniform and time-dependent, yet an analytical
solution can be obtained for the flow. Therefore, this specially designed flow provides a very rigorous test of the mesoscopic
forcing formulation.

In the standard Taylor–Green vortex flow, no external force is applied so the flow decays monotonically in time. The
physical domain of this problem is: (x, y) ∈ (0 : Lx, 0 : Ly) with periodic boundary conditions applied in each direction. We
set Lx = Ly = L. The velocity and pressure of the flow can be expressed analytically by

u (x, y, t) = −U0 cos

2πx
L


sin

2πy
L


e−

8π2νt
L2 , (40a)

v (x, y, t) = U0 sin

2πx
L


cos


2πy
L


e−

8π2νt
L2 , (40b)

p (x, y, t) = −
1
2
ρ0U2

0 cos

2π
L

(x − y)

cos


2π
L

(x + y)

e−

16π2νt
L2 + P0, (40c)

whereU0 is a characteristic velocity of the Taylor–Green flow, P0 is a background pressurewhich could be chosen arbitrarily,
ν is the kinematic viscosity, and t is the time. This flow is divergence-free and satisfies the two-dimensional incompressible
Navier–Stokes equations

∂u
∂t

+ u · ∇u = −
∇p
ρ

+ ν∇
2u + F, (41)

with F = (0, 0).
In absence of external forcing, a careful examination of the analytical solution Eq. (40) indicates that the advection term

is in fact completely balanced by the pressure gradient term, and the time derivative term is identical to the viscous term.
A non-zero external force F added to the N–S equations will alter the time evolution of velocity and pressure. However,
assuming the same spatial dependence of the velocity field and F, the balance between advection and pressure gradient
terms can be still maintained. The N–S equations can be then partitioned into two parts, as

∂u
∂t

= ν∇
2u + F, with u · ∇u = −

∇p
ρ

. (42)
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Table 1
Physical parameters used for the forced Taylor–Green vortex flow.

Cases Model a L nx × ny U0 P0 ν Re0

1 Square 1 200 200 × 200 0.05 0 0.1 100
2 Zong et al. 0.8 200 200 × 250 0.05 0 0.1 100
3 Zong et al. 0.4 200 200 × 500 0.025 0 0.05 100
4 Peng et al. 0.8 200 200 × 250 0.1 0 0.2 100
5 Peng et al. 0.5 200 200 × 400 0.05 0 0.1 100

Table 2
Input parameters in the MRT-LBM schemes used for the forced Taylor–Green
vortex flow. Note that the case numbers correspond to those in Table 1.

Cases γ c2s se sn se

1 −1 0.3333 1.200 1.250 1.250
2 −1.15 0.3333 1.888 1.067 1.172
3 −1.75 0.09 1.681 0.570 0.909
4 −1 0.3333 1.786 0.684 0.909
5 −1.5 0.16 1.748 0.531 0.909

By setting F =
8π2ν
L2

(1 − Q )u, the new analytical solution of the flow evolution is

u (x, y, t) = −U0 cos

2πx
L


sin

2πy
L


e−

8π2νt
L2

Q
, (43a)

v (x, y, t) = U0 sin

2πx
L


cos


2πy
L


e−

8π2νt
L2

Q
, (43b)

p (x, y, t) = −
1
2
ρ0U2

0 cos

2π
L

(x − y)

cos


2π
L

(x + y)

e−

16π2νt
L2

Q
+ P0, (43c)

τxx (x, y, t) = −τyy (x, y, t) =
4πρ0U0ν

L
sin

2πx
L


sin

2πy
L


e−

8π2νt
L2

Q
, (43d)

where τxx is the theoretical normal stress component of the flow. The shear stress remains identically zero at all times. Note
that the stress evolution and profiles are rarely examined in other studies, but they are very important in identifying any
defect in anMRT-LBMmodel, as demonstrated in [30,31]. It follows that the flow evolution can bemanipulated by choosing
different Q values:

1. When Q = 1, there is no external force applied so the standard analytical solution Eq. (40) is recovered.
2. When Q = 0.5, the exponential decay rate is half of the original decay rate because the external body force injects the

kinetic energy into the flow.
3. When Q = 0, the decay rate is zero so all hydrodynamic variables become independent of time. In this case, the forcing

term and the viscous dissipation term are balanced.
4. When Q = −0.5, the magnitudes of velocity and pressure actually growwith time, as more kinetic energy is added than

the dissipation by the viscous term.

Therefore, the parameter Q sets decaying or growth rate of this forced Taylor–Green vortex flow.

4.2. Parameter settings

Before we present the simulation results, the parameter settings of the three models, i.e., the standard MRT model on
square lattice and twoMRTmodels on rectangular lattice, should be introduced. According to our analysis in Sections 2 and
3, the common key input parameters in all three models are: the aspect ratio a, the speed of sound cs, the coefficient in
the equilibrium energy flux γ , shear viscosity ν, and the relaxation matrix S as given by Eq. (4). The physical parameters
in the forced Taylor–Green vortex flow should also be defined: the characteristic velocity U0, the background pressure P0,
the domain size L, the initial Reynolds number Re0, and the decay rate parameter Q . These input parameters are listed in
Tables 1 and 2. Note that Cases 2 and 3 use Zong et al.’s LBMMRT scheme [30] while Cases 4 and 5 are based on Peng et al.’s
LBM MRT scheme [31].

As presented in the tables, two different aspect ratios are tested for each rectangular model, and a total of 5 cases are
considered. For each case, 3 different values of Q are tested. For all cases, the initial flow Reynolds number Re0 is set to 100,
the background pressure P0 is zero, and the domain size is 200 lattice grids in the x direction. Since the initial Reynolds
number and the domain size are constant, the shear viscosity and the characteristic velocity U0 are linearly related. Once U0
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is specified, ν is also determined. The average density ρ0 is set to 1 so the value of kinematic viscosity ν is identical to that of
the dynamic viscosity µ. Thus in the square model (case 1), the relaxation time sc can be determined according to Eq. (26).
In square latticemodel, we usually pre-define the relaxation time se instead of bulk viscosity. Therefore, in case 1, we choose
se = 1.2 and the bulk viscosity is then calculated inversely through Eq. (26). In Cases 2 and 3 (based on Zong et al.’s model),
sc can still be calculated by Eq. (32). The values of se and sn are then decided by sc because these two relaxation times are
used to restore the isotropy of viscosity in Zong et al.’s model, and thus they must be related to sc (i.e., Eqs. (49a,b) in [30]).
In Cases 4 and 5 based on Peng et al.’s model [31], although the two relaxation times, se and sn, can be chosen arbitrarily
between 0 and 2 in principle due to the sufficient degrees of freedom introduced in this model, for fair comparisons, here
we still applied the same relations as in Zong et al.’s model to specify sn and se in terms of sc and other parameters. In other
words, for the validation here, we do not utilize all the freedom in Peng et al.’s model. Other relaxation times listed in Eq.
(4) are not directly relevant to the hydrodynamic equations, we set them to 1.2 for simplicity. Alternatively, their values
could be optimized based on a linear stability analysis [34]. In-depth discussions on how to choose γ and c2s are provided in
[30,31], so they are not repeated here.

The initial equilibrium and non-equilibrium moments may be calculated from the analytical solution of hydrodynamics
(velocity, pressure, velocity gradient), based on the Chapman–Enskog analysis. Then, the initial distribution functions are
determined by summing the equilibrium and non-equilibriummoments. Finally, it has been shown in Sections 2 and 3 that
in each model there are 3 undecided mesoscopic forcing terms. They are simply set to zero in this study.

4.3. Results

The simulation results are now presented. First, the time evolutions of velocity, pressure, and normal stress at a given
point are displayed for all three models, along with their theoretical solutions. In Case 1, the location (x/L, y/L) = (0.1225,
0.2475) is chosen as all hydrodynamic variables at this point are non-trivial. In Case 3, the location (x/L, y/L) = (0.1225,
0.248) is chosen and in Case 5, (x/L, y/L) = (0.1225, 0.24875) is chosen. The physical position of these points in different
models are close to each other. However, due to the variation of lattice size, it is not possible to make the physical position
in different models identical in the y direction unless numerical interpolation is used.

The simulation results of Case 1 are shown in Fig. 1. Each sub-plot has 6 lines with 3 different colors. Solid lines are
simulation results and dash lines are theoretical results. Different colors represent different Q values. All results are in
excellent agreement with the analytical solutions calculated from Eqs. (43). When Q = 0.5, the velocity, pressure and
normal stress are decaying exponentially with half of the exponential decay rate of the original Taylor–Green vortex. When
Q = 0, the energy that is injected into the flow is the same as the dissipation so the velocity, pressure and stress are always a
constant.When Q = −0.5, the energy supplied is larger than the viscous dissipation so themagnitudes of all hydrodynamic
variables grow exponentially.

In Fig. 2, the left column displays the results for Case 3 at (x/L, y/L) = (0.1225, 0.248). The right column of Fig. 2
shows the results for Case 5 at (x/L, y/L) = (0.1225, 0.24875). All results are in excellent agreement with the theoretical
results. Figs. 1 and 2 also demonstrate how the Q value affect the flow evolution and this is captured precisely by the forcing
formulation.

Next, we shall compare profiles of hydrodynamic variables on a vertical line at x/L = 0.125, at tU0/L = 1. This line passes
through the point where the time evolutions were shown above.

Fig. 3 shows the profiles for velocity, pressure and normal stress for Case 1. Again, each sub-plot has 6 different lines.
Three dash lines are results with different decay parameters Q (and thus forcing magnitudes). Three solid lines show the
corresponding theoretical results calculated from Eqs. (43). Different colors correspond to different forcing magnitudes
or decay rates of the flow. Large positive Q value results in faster decay of flow energy. Therefore, the magnitude of any
hydrodynamic quantity is smaller for larger Q , which is exactly the case as shown in Fig. 3. In all cases, the numerical results
are identical to the theoretical solution. The results confirm themore general design of themesoscopic forcing for the square
lattice.

The forcing formulations for Zong et al.’s [30] and Peng et al.’s [31]models on a rectangular lattice are validated by results
of velocity, pressure, and stress profiles in Fig. 4. The left column of Fig. 4 displays results of Case 3 at x/L = 0.125. The right
column of Fig. 4 shows results of Case 5. All results are at tU0/L = 1, and three different Q values are tested for each case. By
comparing Fig. 4 with Fig. 3, we confirm that the hydrodynamic results from all three different models are identical. Unlike
the results of one-point time evolutions, the physical position of the vertical lines can be made identical for the three MRT
LBMmodels as the lattice has the identical spacing in the x direction.

Therefore, we could directly compare the results of all 5 cases shown in Tables 1 and 2, which is done in Fig. 5, for both
velocity components, pressure, and the normal stress on the vertical line at x/L = 0.125. For this plot, Q is set to 0.5. The
theoretical solutions are also presented as black lines. There are two groups of data in Fig. 5(c) and (d), one for tU0/L = 5/16,
the other for tU0/L = 7/8. Clearly, all results from different models are identical and all of them are consistent with the
corresponding theoretical results.

It has been proved that the lattice Boltzmann method has a second-order accuracy in space [20,31,30]. The order of
accuracy of three models and their forcing schemes in this paper are also checked by using the 2D forced Taylor–Green
vortex. For all three models (one square model and two rectangular models) tested, some key parameters are listed in
Table 3:
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Fig. 1. The time evolutions of hydrodynamic variables at (x/L, y/L) = (0.1225, 0.2475). Results come from case 1 in Tables 1 and 2, and the theoretical
solutions given by Eq. (43). (a) Velocity in the x direction: u; (b) Pressure: p; (c) Normal stress: τxx . All quantities are normalized as indicated. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Physical parameters used to check the order of accuracy.

Cases Model a P0 ν Re0 γ c2s se sn se

1 Square 1 0 0.1 10 −1 0.3333 1.200 1.250 1.250
2 Zong et al. 0.4 0 0.1 10 −1.75 0.09 1.681 0.570 0.909
3 Peng et al. 0.5 0 0.1 10 −1.5 0.16 1.748 0.531 0.909

In order to measure the order of accuracy, the L1 and L2 errors are calculated as

ϵL1 (t) =


x,y

|qn (x, y, t) − qt (x, y, t)|
x,y

|qt (x, y, t)|
, (44a)

ϵL2 (t) =


x,y

|qn (x, y, t) − qt (x, y, t)|2
x,y

|qt (x, y, t)|2
, (44b)

where qn(x, y, t) and qt(x, y, t) represent the numerical value and corresponding theoretical value of a quantity at location
(x, y) and time t . We verified the order of accuracy for velocity u, and the normal stress τxx. Results are shown in Tables 4–6.



H. Min et al. / Computers and Mathematics with Applications 78 (2019) 1095–1114 1107

Fig. 2. The time evolutions of hydrodynamic variables at (x/L, y/L) = (0.1225, 0.248). Results come from case 3 in Tables 1 and 2, and the theoretical
solutions given by Eq. (43). (a) Velocity in the x direction: u; (c) Pressure: p; (e) Normal stress component: τxx . The corresponding results for Case 5 are
shown in (b), (d), and (f), at (x/L, y/L) = (0.1225, 0.24875). All quantities are normalized as indicated.

For eachmodel, the L1 and L2 error norms for velocity and normal stress at different grid resolutions are calculated according
to Eq. (44). The order of accuracy could be estimated based on either L1 or L2 error norm. Assume the error norm calculated
from one given resolution is ϵ0(t), as we increase the resolution by a factor ofm in each direction, the new error norm should
be smaller and is denoted by ϵm(t). Then the order of accuracy n is estimated as

n(t) = logm


ϵ0(t)
ϵm(t)


. (45)
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Fig. 3. Profiles of hydrodynamic variables on a vertical line: x/L = 0.125 at time tU0/L = 1.0. Results come from case 1 in Tables 1 and 2, and the
theoretical solutions given by Eq. (43). (a) Velocity in the x direction: u; (b) Pressure: p; (c) Normal stress component: τxx . All quantities are normalized as
indicated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
The order of accuracy for the D2Q9 square-lattice model and the corresponding forcing scheme. Results are calculated at tU0/nx = 0.5. The velocity u and
normal stress τxx are examined.

nx × ny u (L1) Order u (L2) Order τxx (L1) Order τxx (L2) Order

25 × 25 1.517E−2 (–) 1.517E−2 (–) 4.912E−3 (–) 4.894E−3 (–)
50 × 50 3.797E−3 1.998 3.797E−3 1.998 1.221E−3 2.008 1.224E−3 1.999
100 × 100 9.499E−4 1.999 9.501E−4 1.999 3.063E−4 1.995 3.064E−4 1.998
200 × 200 2.375E−4 2.000 2.376E−4 2.000 7.661E−5 1.999 7.662E−5 2.000
Averaged 1.999 1.999 2.001 1.999

The results compiled in Tables 4–6 show that the accuracy of velocity and normal stress of all three models and their
corresponding forcing schemes are indeed of the second-order.

In summary, all models are perfectly consistent and their results are in excellent agreement with theoretical solutions.
The forcing applied is non-uniformand time-dependent, representing themost general scenario. Allmodels and their forcing
formulation retain a second-order accuracy for the velocity and the normal stress.

5. Summary and conclusions

In this paper, themesoscopic forcing formulation has been investigated, in its most general form, using an inverse design
approach based on the multiscale Chapman–Enskog analysis. The inverse design ensures full consistency of an MRT LBM
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Fig. 4. Profiles of hydrodynamic variables on a vertical line: x/L = 0.125 at time tU0/L = 1.0. Results come from case 3 in Tables 1 and 2, and the
theoretical solutions given by Eq. (43). (a) Velocity in the x direction: u; (c) Pressure: p; (e) Normal stress component: τxx . The corresponding results of case
5 in Tables 1 and 2 are shown in (b), (d), and (f). All quantities are normalized as indicated.

model with the macroscopic Navier–Stokes equations and macroscopic forcing, and, at the same time, provides the most
design flexibility of the mesoscopic forcing.
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Table 5
The order of accuracy of Zong et al.’s rectangular-lattice model and the corresponding forcing scheme. Results are calculated at tU0/nx = 0.5. The velocity
u and normal stress τxx are examined.

nx × ny u (L1) Order u (L2) Order τxx (L1) Order τxx (L2) Order

20 × 50 4.941E−2 (–) 4.940E−2 (–) 5.701E−2 (–) 5.646E−2 (–)
40 × 100 1.220E−2 2.018 1.220E−2 2.018 1.416E−2 2.009 1.401E−2 2.011
80 × 200 3.316E−3 1.897 3.315E−3 1.880 3.523E−3 2.007 3.484E−3 2.008
160 × 400 8.256E−4 2.006 8.252E−4 2.006 8.802E−4 2.001 8.704E−4 2.001
Averaged 1.968 1.968 2.006 2.006

Table 6
The order of accuracy of Peng et al.’s rectangular-lattice model [31] and the corresponding forcing scheme. Results are calculated at tU0/nx = 0.5. The
velocity u and normal stress τxx are examined.

nx × ny u (L1) Order u (L2) Order τxx (L1) Order τxx (L2) Order

25 × 50 2.760E−2 (–) 2.759E−2 (–) 2.846E−2 (–) 2.795E−2 (–)
50 × 100 6.465E−3 2.094 6.464E−3 2.094 7.045E−3 2.014 6.947E−2 2.008
100 × 200 1.411E−3 2.196 1.411E−3 2.196 1.784E−3 1.981 1.758E−3 1.982
200 × 400 3.132E−4 2.172 3.131E−4 2.172 4.513E−4 1.983 4.448E−4 1.983
Averaged 2.154 2.154 1.993 1.991

Fig. 5. Comparison of profiles on a vertical line at x/L = 0.125. Results of all cases from Tables 1 and 2 and the theoretical results given by Eq. (43) are
compared here. (a) Velocity in the x direction: u; (b) Velocity in the y direction: v; (c) Pressure p at two different times: t1U0/L = 5/16 and t2U0/L = 7/8;
(d) τxx at two different times: t1U0/L = 5/16 and t2U0/L = 7/8. All quantities are normalized as indicated.
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We first re-visited the standard D2Q9 MRT model on the square lattice, to demonstrate how the inverse design is
conducted. Six elements of the 9-component mesoscopic forcing term can be determined uniquely by the consistency
requirements with the hydrodynamic equations. The additional benefit is then to find out that three elements in the
9-component mesoscopic forcing term are irrelevant to the Navier–Stokes equations, can thus can be chosen for better
numerical stability, an topic that can be studied in the future. In our simulations here, we simply set them to zero. For the
square latticemodel, we did compare our results withΨ

(1)
3 = Ψ

(1)
5 = Ψ

(1)
7 = 0, to numerical results based on Guo et al. [26]

forcing formulation. We find that the results are identical and this comparison is not included here.
The same inverse design analysis was carried out to the two new MRT LBM models on a rectangular grid, recently

developed by Zong et al. [30, Section 3] and Peng et al. [31, Appendix] with the considerations of external forcing. The
final results of the forcing formulation are similar to the design for the square lattice, namely, three elements of the forcing
term in each case are still free parameters.

To validate these models and the forcing formulation, we designed a 2D forced Taylor–Green vortex flow with a non-
uniform and time-dependent macroscopic forcing. Both decaying and augmenting flow fields can be obtained by tuning
the value of a parameter Q in the forcing term. All three models were tested with three different Q values. For the two
rectangular lattice models, two grid aspect ratios were used. Both the time evolution at a given point and vertical profiles
at a given time are used to validate the numerical results. In all cases, the simulations results are in excellent agreement
with the analytical solutions. We stress that we also considered pressure and normal stress in the comparison (the shear
stress is zero in the forced Taylor–Green vortex flow). The inverse design can be applied to D3Q19 MRT LBM model on a
non-standard (i.e., a cuboid) grid, which is reported in a separate paper [32].

We also confirm that, in all cases, the LBM models with the proposed formulation of mesoscopic forcing, retain the
second-order accuracy in space and time.

With the general non-uniform and time-dependent forcing, one could then treat a variety of flows with external or
internal forces. The inverse design analysis we introduced in this paper is straightforward and general. The inverse design
process is capable of revealing all inherent links between the Navier–Stokes equations and the lattice Boltzmann equations.
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Appendix

In this section, the forcing scheme based on Peng et al.’s [31] rectangular-lattice model will be provided. Peng et al.’s
model uses the identical transformation matrixM from Bouzidi et al. [34], given as

M =



1 1 1 1 1 1 1 1 1
−2r1 r5 r6 r5 r6 r1 r1 r1 r1

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 a 0 −a a a −a −a
0 0 −2a 0 2a a a −a −a

−2r2 r7 r8 r7 r8 r2 r2 r2 r2
0 0 0 0 0 1 −1 1 −1


, (46)

where r1 = a2 + 1, r2 = a2 − 1, r5 = 1 − 2a2, r6 = a2 − 2, r7 = a2 + 2, and r8 = −2a2 − 1 for simplicity. The key
to fulfill the isotropy condition is to introduce new degrees of freedom by extending the equilibrium moments. In order to
satisfy three equalities as shown in Eq. (34), at least three degrees of freedom must be constrained. Peng et al. introduced
5 new degrees of freedom into the extended equilibrium moments, namely, the equilibrium moments are extended to
take the form m(eq)

= m(eq,0)
+ ϵm(eq,1), where ϵm(eq,1) includes higher-order stress components. By performing the

Chapman–Enskog expansion similar to those presented in Sections 2 and 3, it is straightforward to design the elements

http://www.csrc.ac.cn
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ofm(eq,0) and ϵm(eq,1). The final formulation is

m(eq)
= m(eq,0)

+ ϵm(eq,1)
=



δρ

δρ

6c2s − 2r1


+ 3ρ0


u2

+ v2
αδρ + βρ0


u2

+ v2
ρ0u

(γ − 2r2)
a2

ρ0u
ρ0v
γ ρ0v

δρ

3r3c2s − 2r2


+ 3ρ0


a2u2

−
v2

a2


ρ0uv


+ ρ0



0
x1∂xu + x2∂yv

0
0
0
0
0

x3∂xu + x4∂yv
x5

∂xv + ∂yu




, (47)

where a = dy/dx is the lattice aspect ratio, r3 =
a4−1
a2

, and r4 =
a4+1
a2

. It is noted that the leading-order term m(eq,0) (the
first part on the right hand side of Eq. (47)) is identical to Eq. (38) with θ = 0, and the additional part ϵm(eq,1) contains 5
parameters, x1 to x5. cs is the speed of sound in LBMunit. γ is the coefficient of equilibriummoment q(eq,0)

y and it has the same
definition as what is defined in Section 2 for the square lattice model, and in Section 3 for Zong’s model. In the square lattice
model, γ has to be−1, as indicated by Eqs. (25) and (26c). However, γ is a free parameter in both rectangular latticemodels.
The additional part of equilibriummoments ϵm(eq,1) are functions of normal velocity gradients, shear velocity gradients and
a few coefficients: xi, (i = 1, 2, . . . , 5). These coefficients are determined as

x1 = s∗e

5 − 6c2s + γ


− 6νV , (48a)

x2 = s∗e

2 − 6c2s + γ + 3a2


− 6νV , (48b)

x3 = s∗n


3a2 −

γ + 2
a2

− 3r3c2s


− 3r3νV

− 3r4ν, (48c)

x4 = s∗n

a2 (γ + 2) − 3 − 3r3c2s


− 3r3νV

+ 3r4ν, (48d)

x5 = s∗c
γ + 2

3
− ν, (48e)

where s∗e = δt(2 − se)/(2se), s∗n = δt(2 − sn)/(2sn), and s∗c = δt(2 − sc)/(2sc). Other parameters are defined in Sections 2
and 3.

According to the lattice Boltzmann equation, Eq. (1), the equilibrium moments should be calculated in the collision step
so we must calculate the additional part ϵm(eq,1) every time step. The coefficients in m(eq,1) (x1 to x5) are constant so they
only need to be calculated once. However, the normal velocity gradients and the strain rate should be updated every time
step according to the formulae derived in [31]:

∂xu =
c4seϵm

(1)
2 − c2snϵm

(1)
8

(c1c4 − c2c3) ρ0δt
, (49a)

∂yv =
c3seϵm

(1)
2 − c1snϵm

(1)
8

(c2c3 − c1c4) ρ0δt
, (49b)

sij =
1
2


∂xv + ∂yu


=

scϵm
(1)
9

2ρ0δtc5
, (49c)

where ϵm(1)
i = mi − m(0)

i = m − m(0,eq)
i , and

c1 =


sex1
δt

− 5 + 6c2s − γ


, (50a)

c2 =


sex2
δt

− 3a2 − γ + 6c2s − 2


, (50b)

c3 =


snx3
δt

− 3a2 +
(γ + 2)

a2
+ 3r3c2s


, (50c)

c4 =


snx4
δt

−
(γ + 4) a2

a
+ 3r3c2s + 3


, (50d)

c5 =


scx5
δt

−
(γ + 2)

3


. (50e)
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The expression of bulk and shear viscosity in this model could be derived from Eqs. (48a) and (48e), respectively,

νV
=

1
6


s∗e

5 − 6c2s + γ


− x1


, (51a)

ν = s∗c
γ + 2

3
− x5. (51b)

Thus, it is clear that x1 and x5 could be used to adjust bulk and shear viscosity, respectively. In this manner, the relaxation
times se and sc are no longer constrained by the value of viscosity. This feature could provides extra flexibility that can be
used to adjust fluid viscosity [36], treat non-Newtonian fluid flows [37], or to improve numerical stability. In this paper, we
simply set x1 and x5 to zero. On the other hand, x2, x3, x4 are used to restore the isotropy property of viscosity, namely, they
are implemented to achieve the relationships indicated by Eq. (34).

Finally, the mesoscopic forcing scheme derived by the inverse design for this model is

9 =



0
6 (1 − 0.5se)


uFx + vFy


Ψ3

1 − 0.5sj

Fx

Ψ5
1 − 0.5sj


Fy

Ψ7

6(1 − 0.5sn)

a2uFx − vFy/a2


(1 − 0.5sc)


vFx + uFy




. (52)

Once again, three (Ψ3, Ψ5, Ψ7) of the 9 components are unspecified or free, meaning that their values do not affect the
hydrodynamic equations. Eq. (52) is simply the special form of Eq. (37) with θ = 0. In summary, all results derive from Peng
et al.’s rectangular-lattice model [31] are similar and theoretically consistent with the results from the other two models
discussed in Sections 2 and 3.

Again, the expressions of normal stress and shear stress should incorporate the effect of forcing and they are modified as

τxx = −τyy =


a4 − 1

 
(1 − 0.5se) ϵm(1)

2 + 0.5δtΨ2


− 2a2


(1 − 0.5sn) ϵm(1)

8 + 0.5δtΨ8


6

a4 + 1

 , (53a)

τxy = − (1 − 0.5sc) ϵm(1)
9 − 0.5δtΨ9, (53b)

where ϵm(1)
2 , ϵm(1)

8 and ϵm(1)
9 are calculated according to ϵm(1)

= −m(0)
= Mf − m(0), and m(0)

= m(eq,0) is provided by
Eq. (47). Ψ2, Ψ8 and Ψ9 should be calculated based on Eq. (52). Thus, the effect of forcing is included when calculating the
normal stress and shear stress (or strain-rate components). Once again, Eq. (53) is simply the special form of Eq. (39) with
θ = 0.
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