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Abstract 

Direct numerical simulations of homogeneous isotropic turbulence are used to investigate the effects of turbulence on the 
transport of particles in gas flows or bubbles in liquid flows. The inertia associated with the bubbles or the particles leads 
to locally strong concentrations of these in regions of instantaneously strong vorticity for bubbles or strain-rate for particles. 
This alters the average settling rates and other processes. If the mass-loading of the dispersed phase is significant a random 
"turbulent" flow is generated by the particle settling. A simple demonstration of this is given, showing the statistically 
axisymmetric character of this flow and how it can modify an ambient turbulent flow. 

PACS: 47.55.K; 47.27.Q 
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1. Introduction 

Homogeneous turbulence is an important flow to consider in the development of  turbulence models. 
It provides a simple test for the representations o f  turbulence decay and production without the 
complications of  rigid wall boundaries or mean flow variations. Further homogeneous turbulence 
is characteristic of  the small-scale, dissipation range dynamics of  general high Reynolds number 
turbulent flows. This makes it especially valuable in the study of  dispersed two-phase flow where 
the interactions o f  the particle phase with small-scale turbulence are still not well understood. Direct 
numerical simulations have been used for some time to investigate the transport of  particles in 
homogeneous turbulence, one of  the earliest studies being by Riley and Patterson (1974). These 
have been followed by Squires and Eaton (1991a, b), Elghobashi and Truesdell (1992) and Wang 
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and Maxey (1993a) amongst others. Further work for small bubbles has been done by Wang and 
Maxey (1993b) and Maxey et al. (1994). 

As the mass loading of solid particles in a gas flow is increased, or the void fraction of bubbles 
in water, the turbulence may be modified due to the two-way coupling between the continuous and 
dispersed phase. Squires and Eaton (1990) and Elghobashi and Truesdell (1993) have investigated 
this process for homogeneous turbulence in gas-solid flows and found that as the mass loading is 
increased the turbulence decays more rapidly with an increase in the high-frequency content of  the 
energy spectrum, consistent with available experimental information (Gore and Crowe, 1991 ). Funda- 
mental information regarding bubbles in homogeneous turbulence comes at present from experiments 
such as those reported by Lance and Bataille (1991). 

In this short paper, we outline some of the issues involved in the particle transport problem 
(one-way coupling) and the turbulence modification at higher mass loadings (two-way coupling). 

2 .  P a r t i c l e  m o t i o n  

The equation of motion for a small spherical particle in a gas-solid flow may be approximated by 
a balance of particle inertia and weight against the quasisteady drag force exerted by the surrounding 
fluid. The velocity V(t) and the position Y(t)  of a particle are then given by 

dV 
= (u(r ' ,  t )  - v ( t )  + ( 1 )  

dt 

The particle response time ~p for a small particle of diameter d is 

rp = (Pp/Pa)(d2/18 v), (2) 

provided a Stokes drag law may be assumed. The terminal settling velocity in still fluid W is Zpg, 
where g is the acceleration due to gravity. The particle density pp is generally much greater than 
the density of  the gas or air Pa, typically by a factor of  103 or more. The kinematic viscosity of 
the air is v and the fluid velocity field is u(x,t) .  This approach is suitable for particles less than 
50/~m or so in diameter and is easily modified to include nonlinear drag forces for slightly larger 
particles. 

In a liquid or water flow containing small bubbles the influence of  added-mass must be included 
and possibly other forces such as lift forces or the effects of  history terms. Surfactants will quickly 
coat a small bubble and make it respond as a massless rigid spherical inclusion. A suitable equation 
for the motion of a small bubble is 

D u  _ g + 
0 = mF - ~  ~mF dt + 3zd (u( Y, t) - V), (3) 

which represents a balance of the forces due to the ambient flow stresses and buoyancy, added mass 
and viscous drag. The mass of  fluid displaced by a bubble is mF and Du/Dt is the local Lagrangian 
fluid acceleration. From (3) the working equation of  motion is 

_ 3 Du dV  _ (u(Y, t )  V(t) + W)/zB + Dt (4) 
dt 
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and zB is the bubble response time scale equal to d2/36v. In this context W is the terminal rise 
velocity, equal to -2zBg. 

A key issue in calculating the transport of  particles or bubbles in a turbulent flow is to determine 
u(Y,t) ,  the local fluid velocity. It should be remembered that in deriving (1) and (4) that the 
particle is assumed to be small compared to the shortest length scale on which the ambient flow 
varies. The presence of the particle introduces an additional local disturbance flow whose effect is 
fully parameterized by the drag force, etc. (Maxey and Riley, 1983). The velocity u(Y, t )  is that of  
the ambient flow in the absence of the particle. 

3. One-way coupling 

To investigate the effect of  turbulence on instantaneous particle concentrations and mean statistics 
we have used (1) and (4) in conjunction with direct numerical simulations of homogeneous isotropic 
turbulence. The flow u(x,t)  is computed by a pseudo-spectral method assuming periodic boundary 
conditions and a Fourier series representation of  the form 

u(x, t) = ~ ~(k, t) exp(ik • x). (5) 
k 

The computational domain has side 2re and the wave number components ki are integers, - N / 2  < 
ki <~ N/2, on a grid of N 3 points. The flow is given by 

du 
1 2 - -  u × to - V ( p / p  + ~u ) + y ~ 2 u  AV h(x, t), (6) 

Ot 

v . u  = 0, ( 7 )  

where to, p denote the fluid vorticity and pressure. The term h(x, t) included in (6) is a random 
body forcing term, restricted to very low wave numbers, that provides an energy source to sustain 
the homogeneous turbulence. By this means stationary homogeneous turbulence can be maintained 
that will not significantly modify the higher wave number small-scale dynamics. Further details are 
given by Wang and Maxey (1993a). 

These simulations reveal several features. With a 963-grid, Re;, = 62 can be sustained. The turbu- 
lence dissipation range can be characterized by the Kolmogorov velocity and time scales 

V K = (EV) 1/4, 27 K ---~ (V//3) 1/2, 

where ~ is the rate of turbulent kinetic energy dissipation. The velocity gradients contributing to the 
dissipation dynamics are the most intense, and zK is the shortest time scale of the flow. For rp/'CK << 1 
the particles (or bubbles) respond fully to the turbulence fluctuations. An initial, statistically uniform 
distribution of particles will remain uniform and velocity moments such as the mean settling rate 
are unaltered. Note that there is no feedback mechanism of the particles on the flow nor are there 
interaction effects between the particles in this limit of  negligible mass loading or void fraction for 
one-way coupling. 

As Zp/ZK increases inertial effects or added-mass become significant. Even if uniformly distributed 
initially, particles and bubbles will tend to become concentrated locally. Solid particles will tend 
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Fig. 1. Ratio o f  bubble average ( m 2 ( y , t ) )  to Eulerian mean square value ~ as ZB/ZK varies, W = VK. 
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Fig. 2. Changes in mean bubble rise velocity, as ZB/ZK varies with W = VK held constant: (a)  (A  V1 }/VK = ((V1) -- W)/VK; 
(b)  (ul(Y,t))/VK. Axes chosen with g = ( - 9 ,  0, 0). 

to collect in regions of  high strain-rate and low vorticity while bubbles show the opposite trend. 
The concentration of  bubbles seems to be a somewhat stronger effect, and the average (92(Y, t)) 
measured at the bubble locations is easily 2 or 3 times the Eulerian mean square value oJ 2. This is 
illustrated by the results in Fig. 1 which shows values of  this ratio increasing from one as the time 
scale ratio for the bubbles "rB/ZK increases, the terminal rise speed is held constant with W equal 
to VK. This bias has an effect on the average rise velocity of  the bubbles (V) even if, as here, the 
Eulerian mean flow ti is zero. In fact, there is a net reduction in the average rise velocity as shown 
by the values of  (A V) = ((V) - W) shown in Fig. 2 for the same range of  bubble parameters. This 
reduction may be 40% or more. The ensemble average of  (4) indicates that the equilibrium value 
of  (A V) is governed by contributions from (u(Y,t)) and 3~B(Du/Dt). Results for the former are 
also given in Fig. 2 and this is the main factor at low values of  "CB/rK while the latter becomes 
increasingly significant at larger values. 
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Fig. 3. Changes in mean particle settling velocity (AV1)/VK = ((V1) -- W)/vK as rp/ZK varies with W = VK held constant. 
Axes chosen with g = (g, 0, 0). 

For solid particles the bias mechanism leads to an increase in the mean settling velocity. This 
increase (A V), scaled by VK, is shown in Fig. 3 for particle response times ~p varying up to 
3.5 ZK- From (1) this increase is due solely to the net mean value of ( u ( Y , t ) )  which is greatest 
a r o u n d  ~p = q7 K. It is interesting to note that the small-scale turbulence governs this effect on par- 
ticles and bubbles, while the more usual questions of dispersion are dominated by the large-scale 
turbulence. 

4. Two-way coupling 

Ideally, in the study of coupled two-phase flow one would wish to resolve fully the disturbance 
flow generated by each particle or bubble together with the dynamics of  the larger-scale turbulent 
flow. This is rarely feasible as the particles are often small and below the resolution scale of 
the turbulent flow calculation. Instead, an approximate representation must be used for the local 
disturbance flow and a parameterized equation of motion used to calculate the particle motion. An 
important feature to reproduce is the cumulative effect of  the induced disturbance flows of the other 
particles on the motion of an individual particle. The simplest, approximate way to represent the 
feedback mechanism of the particle phase on a flow is to represent the particles by a set of  point 
forces acting on the flow, each force being the reaction force to the force of  the fluid on the 
particle. This is the assumption in almost all turbulence models and has been the approach of other 
studies (Squires and Eaton, 1990; Elghobashi and Truesdell, 1993) of  turbulent two-phase flow. 
It has also been applied extensively in the study of low Reynolds number suspension mechanics, 
see, for example, Koch (1993). The point-force model is suitable as a first approximation for small 
particles though it does not adequately take account of  the particle size. At this stage however, even 
the results of  point-force methods are still not well understood and it is important to develop these 
further. 
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The equations of fluid motion for the numerical simulation are now 

M 
DU __ l v p  + VV2U + Z F ( m ) A ( x  __ y(m)), ( 8 )  
Dt p m=J 

V ' u = 0 .  (9) 

A total of  M particles are included in the flow; pF (m) is the resultant force exerted by the mth particle 
on the fluid. The function A ( x -  Y), centered on a particle at Y(t), is the numerical representation of 
the point force coupling. Eqs. (8) and (9) are solved throughout the whole flow domain, including 
the volume nominally occupied by the particles; a pseudo-spectral method is again used. 

The first point to note is that it is not possible, nor desirable, to have an exact point-force coupling 
between the particle and fluid phases since the calculation must remain spectrally resolved. Instead, 
the force is distributed within a narrow envelope A ( x -  Y)  centered on the particle position, 

/4 (X)  = (27~0 "2 )-3/2 exp(-x2/2o "2 ). ( 1 0 )  

The envelope gives a local spatial average or filtering of  the feedback and this can be controlled 
explicitly by adjusting a relative to the grid spacing. This method has several advantages compared 
to simple interpolation over neighboring grid points, and may be used in several ways. If o- is 
chosen to be significantly larger than the particle diameter d the envelope A provides a local volume 
average appropriate for continuum two-fluid models and when summed over all the particles gives a 
continuously varying, local number density of  the particles. If o- is significantly smaller than d, the 
point force representation can be extended to include higher-order terms and so give a fully resolved 
simulation of the particles and their disturbance flow. This is demonstrated for low Reynolds number 
flows by the results of  Saffman (1973) and Patel (1996). 

Here we choose o- and d to be comparable in scale, localizing the particles of finite size and 
partially resolving the disturbance flow. If ~Qp denotes the volume of a particle then in this context 
an indicator function X can be defined for the particle phase 

M 
0 <<, Z(X,t)= Z(2pA(x-  g(m)) ~< 1. (11) 

m--1 

This is a smoothed version of the usual discontinuous indicator function that takes values of 0 or 
1 only (Ishii, 1975). A minimum ratio aid > 1.3 is required with the Gaussian envelope (10) to 
ensure that this indicator function is bounded between 0 and 1, on the assumption also that there is 
no direct overlap of  separate particles. Further the width of the envelope a should be 1.5 times the 
grid spacing or greater to ensure adequate numerical resolution. 

We now consider the equation of particle motion. To focus attention on the effect of  individual 
particles settling under gravity on the flow dynamics we neglect particle inertia and added-mass 
effects. This is appropriate if the turbulence is relatively weak and the time scales long. The particles 
then settle (or bubbles rise) at their terminal velocity with a quasisteady balance between fluid 
drag forces and forces due to gravity. The force exerted, pF ~m) by each particle is constant. The 
parameterized equations of particle motion, such as (1) or (4), with one-way coupling reduce to 

V(t) = u(Y,t)  + W, (12) 
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where u(Y, t) is the ambient flow excluding the local disturbance flow associated with the particle's 
presence in the flow. This Eq. (12) is equally appropriate at both small and finite particle Reynolds 
numbers provided the local flow conditions change relatively slowly. Further with particles of  small 
but finite size, a particle will move only in response to fluid motions on scales larger than its own 
size. Instead of  using the fluid velocity at a single point, such as the particle center, the local fluid 
velocity should be evaluated by again applying the spatial filter or local volume average as 

K(Y,t)  = f A(x - Y)u(x, t )d3x.  (13) 

The parameterized equation for particle motion with two-way coupling is instead 

V ( t ) = ~ ( Y , t ) +  W', (14) 

where W' is a modified terminal velocity. 
The interpretation of (14) requires some care. The fluid velocity ti calculated in (13) from the 

computed flow field of (8), (9) is, in fact, the sum of two contributions ti °) + ti ~2). The first, ti °) 
is the ambient fluid velocity of the turbulence and the flow induced by the other particles, while 
ti ~2) is the result of the self-induced disturbance flow and the force coupling centered on Y(t).  The 
magnitude of ti ~2) in fact scales with Flay, so it is sensitive to the choice of  the envelope width. In 
the absence of an ambient flow or other particles the particle should settle with velocity W, related 
to F and dependent on the particle Reynolds number Rep defined by Wd/v. The particle velocity as 
given by (14) is then 

V(t) = W = W' + ti {2). (15) 

The first thought may be to eliminate /~(2) as  being extraneous given that a parameterized equation 
of particle motion is being used, and not a full calculation of the flow around the particle or the 
fluid forces acting on its surface. However, if u(x, t )  were indeed the fully resolved flow due to a 
single particle moving with velocity V, then the required boundary condition on the normal velocity 
component would be V.n = u.n on the particle surface. This condition, together with the fact that 
flow is incompressible, implies that 

Y2p V = £ u(x, t) d3x, 
P 

(16) 

irrespective of whether the flow field defined "inside" the particle is a rigid body motion or some 
other motion. This can be demonstrated by considering the volume integral of  ~(xiuj)/Oxj. A compar- 
ison of  (10), (11 ), (13)-(16)  indicates that in a fully resolved calculation we would have W equal 
to ti ~2), and should then set W' to be zero. On the other hand, if /~(2) is eliminated, or negligibly 
small for instance as the result of assigning a large value to a, then W and W' should be set equal 
to each other. 

The relative value of W', or of ti ~2), to W is thus actually an indicator of the degree to which the 
disturbance flow of an individual particle has been resolved by the simulation method. In the present 
example where inertia of the particle is negligible and F is constant these issues are simplified. A 
constant value can be assigned to W' and the value of ti ~z) does not vary significantly in any one 
experiment. 
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We illustrate these methods with results for particles settling in a homogeneous suspension and then 
when the particles are embedded in an ambient turbulent flow. The particles are initially distributed 
at random in a periodic domain with box side, 2re and (8), (9) and (14) solved for the motion of  
the fluid and the particles. The particles are identical; the force pF on each particle due to gravity 
is specified by the nondimensional force Reynolds number Rev, defined as F/v 2, and Rev = 141. 
A total of  10240 individual particles are introduced and a grid of 128 x 128x 128 points is used 
to compute the flow. The force Reynolds number ReF is somewhat unconventional but may easily 
be related to Rep for rigid spherical particles in quasisteady motion. In the limit of  zero Reynolds 
number Rev =37rRep while for ReF = 141 the value of Rep is approximately 8.4. The effective particle 
diameter d and volume (2p are then set by Rep and the value of  W used in the simulations. Larger 
values of W correspond to smaller, denser particles and hence a stronger influence of the spatial 
filtering in truncating the high wave number, small scale features of the disturbance flow. 

First, we consider the homogeneous suspension of uniformly distributed particles. This flow is 
generated entirely by the random viscous disturbance flows of the particles. In Table 1 basic statistics 
of the flow are given with column I referring to the suspension. The average mean flow ~, integrated 
over the flow domain, is zero throughout the simulation. A mean pressure gradient balances the net 
weight/buoyancy of the particle phase. The vertical mean square fluid velocity fluctuations u~ are 
much larger than those in the horizontal and corresponding to this the vorticity fluctuations in 
the horizontal are much greater. An individual particle force induces a strong, local axisymmetric 
vorticity distribution. For low Reynolds numbers conditions this is very similar to that of  a Stokes 
flow or Oseen flow, and is similar to at higher Reynolds number flows for the region outside of the 
particles. The magnitudes though differ quantitatively due to the spatial filtering of the envelope. As 
all particles are subject to the same vertical force the effect is cumulative giving an axisymmetric 
random flow. The particle-mean fluid velocity (~71) is due primarily to the self-induced disturbance 

! 

flow. For these simultions a fixed value of  W 1 or (V1 - ~71) is specified, this is 16.0 as may be seen 
from Table 1. At this chosen mean settling velocity the particle radius is approximately equal to 
0.05 or so, and the volume fraction is about 2%, though in this set of  data no fluid-phase conditional 
averages are given. No inertial response time rp or zB is used, and this can be set arbitrarily depending 
on the density ratio for the particle to the fluid. Just as a comparison with the data in the table a 
bubble of radius 0.05 in this simulation would have a response time on the order of 0.001 or less. 

The particle velocity fluctuations reflect those of the flow, being lower due to the spatial filtering 
(13). The viscous dissipation rate e may be compared with the net rate of working on the fluid by 
the particle phase u.f, where 

M 

f (x ,  t) = ~ FA(x - Y ( m ) ( t ) ) .  

m=l 

(17) 

The two are balanced within the limits of statistical error and the slow temporal variation of the 
flow. In the suspension, the flow is driven by the settling of the particles. The mean pressure gradient 
does no work overall but cancels f ( k  = O, t). Integrated over the whole volume, 

(u.f)(2rc) 3 = MF. (a). (18) 

Spectra for this flow show the contributions from different length scales. Energy spectra E(k) for 
the flow and F(k) for the particle force f are given in Fig. 4, as functions of ]k I. The function E(k) 
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Table 1 
Flow averages from two-phase flow simulations in computational (unscaled) units 

151 

I II Ill 
Suspension Forced turbulence Decaying turbulence 

m 

ul 2 78 386 132 

(u 2 + u~)/2 2.9 328 105 

~2 49 6335 2270 

(~o~ + ~o~)/2 2159 7673 3529 
e 1040 5162 2221 
u.h - -  4121 - -  

u . f  1154 881 974 
Re;, 6.9 38 19.2 
qx 0.06 0.04 0.05 
ZK 0.015 0.0068 0.01 
vx 4.0 5.9 4.8 

(V~) 19.50 18.67 18.95 
(V~ 2) 65 357 111 

((V22) + (V32))/2 2.5 306 97 
(~1) 3.50 2.67 2.95 

(~5~) 22 3373 1223 
(052 + ~5~)/2 1131 4735 2141 

Flow averages, denoted by overbar, are from the whole domain including the volume occupied 
by the particle phase; while particle averages, denoted by ( ) ,  are averaged over all particles in 
the domain. Effective Taylor microseale Reynolds number Re~ is calculated as (])1/2u~/(ev)l/2, 
v = 0.238; u.h is mean rate of working per unit mass by the random forcing h(x,t), see (6); 
u . f  is mean rate of working per unit mass by the particle force coupling f ( x ,  t), see (8), (17). 

1 1 is defined by summing contributions [fii(k, t)] 2 within spherical shells of  radii from k -  ~ to k + 5, 
so that overall 

- Jo °° 
u 2 = E ( k )  dk .  

The other spectra are defined in a corresponding manner. The forcing contributes at intermediate 
wave numbers, with the spatial filtering of  the envelope limiting the influence at high wave numbers. 
More revealing are the spectra of the energy dissipation D(k), equal here to vkZE(k), and the spectra 
G(k) of the force-fluid coupling u.f .  These are shown in Fig. 5. This shows the close balance of 
dissipation and particle forcing at high wave numbers. The nonlinear energy transfer spectrum T(k) 
has the usual features of removing energy from low wave numbers and supplying energy at high 
wave numbers, but its overall effect is small. At any instant the spectral energy budget for the 
turbulent kinetic energy is 

Ot (½E(k)) = T(k) - D(k) + G(k). (19) 
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Fig. 4. Energy spectrum function E(k) and particle-force spectrum F(k) for the homogeneous suspension against wave 
number k = I~1, - - o - - ,  E(k); - - - ,  F(k) x 10 -3. 
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Fig. 5. Energy dissipation spectrum D(k), spectrum function G(k) for the energy input from particle force coupling, 
and nonlinear energy transfer function T(k) for the homogeneous suspension: ( a ) - - ,  D(k); . . . .  , G(k); 
(b) A, T(k). 

Column II of Table 1 gives data for forced homogeneous turbulence some time after the particles 
have been introduced. In the absence of  the particles the turbulence is isotropic. The influence of  the 
particle phase is clear in raising relatively the level of u~ and the horizontal vorticity components. 
The energy spectra E(k) shown in Fig. 6, shows a much greater low wave number content in 
the energy while the forcing spectrum F(k) is quite similar to that of the suspension. The energy 
dissipation e is primarily balanced by the input of the random forcing u.h with the particle forcing 
adding about 20% of  the dissipation. The dissipation spectra D(k), Fig. 7, reflects the strong influence 
of nonlinear energy transfer T(k), especially at low wave numbers. A more detailed comparison, 
Fig. 8, shows the more noticeable but still smaller effect of G(k) at higher wave numbers. 

At this point the random forcing of the turbulence was removed and the turbulence allowed to 
decay. The effective Reynolds number Re;~ drops by 50% in the time interval and data in column III 



350 

300 

500 

400 

. 250 
C, 

× 200 

k 

Fig. 6. Energy spectrum E(k) and panicle-force spectrum F(k) ~r ~rced homogeneous ~ rbu l ence ; - -o - - ,  E ( k ) ; ~ ,  
F(k) × 10 -2. 

~" 300 

200' 

10 20 30 40 50 60 
a k 

M.R. Maxey et al. / Fluid Dynamics Research 20 (1997) 143-156 153 

100 

500~ 

0 

-5OO 

-1000 

-1500 

an~Annnn 
a n e ' ~ a a * ~ a a a a a a a a a z ~ a ~ n m ~ a ~ a a ~ z ~ a a ~ a A a  

-2000 

o . . . .  l b  . . . .  2b . . . .  ab . . . .  4b . . . .  5b . . . . .  6 ' o -  
k 

Fig. 7. Energy dissipation spectrum D(k), spectrum function G(k) for energy input from particle force coupling, and non- 
linear energy transfer function T(k) for forced homogeneous turbulence: (a) - - ,  D(k); - - , G(k); (b) A, T(k). 

of Table 1 give the overall statistics at this stage. The time interval between datasets II and III 
is 2.0 T¢, where T~ is the estimated large-eddy turnover time scale u~/3e for II. The axisymmetric 
structure of  the turbulence is much more apparent as the forcing from the particle phase has a more 
significant effect. The dissipation rate ~ is over twice u . f  and the turbulence continues to decay. The 
energy spectrum E(k), Fig. 9, is reduced at low wave numbers by the decay process, while F(k) 
which reflects the spatial distribution of  the particles is essentially the same as shown previously. 
The particle forcing G(k), Fig. 10, now makes a more significant contribution to the balance of  
energy dissipation and the effect of  nonlinear energy transfer T(k) at low wave numbers is much 
weaker. A comparison at higher wave numbers, Fig. 11, shows the comparable strengths of  T(k) 
and G(k) and in this range as k increases, D(k) is approximately balanced by T(k)+ G(k). As the 
turbulence continues to decay it will revert back to the suspension mode I. 
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5. Conclusions 

The two-phase flow simulations illustrate the results that particle-force coupled models give, and 
the degree to which they represent the flow dynamics. The local disturbance flow of  each particle 
generated by the forcing is a strong source of small-scale vorticity that may or may not interact with 
any ambient turbulent flow. The suspension flow (I) is a random viscous flow that shows a weak 
nonlinear inertial transfer of  energy from low to high wave numbers. The effective value of Re~ is 
low and the flow is at most weakly turbulent. This is an example of the pseudo-turbulence referred 
by Lance and Bataille (1991), though significantly weaker in this case for these small particles. 
When coupled with an ambient turbulent flow (II) or decaying turbulence (III) the overall effect 
is to give an axisymmetric rather than isotropic turbulence structure. The influence of the particle 
phase is more noticeable in the vorticity levels than in the kinetic energy of the flow. In all three 
examples the particle distribution appears to remain uniform and the values of F(k)  and G(k) are 
quite similar at intermediate and higher wave numbers between the three flows. This suggests that 
the direct interaction between the turbulence and vorticity generated by the particle phase is limited. 
A nonuniform particle distribution, as would develop from the influence of particle inertia or added- 
mass, would produce variations over a larger length scale, or at lower wave numbers, and have a 
more direct impact on the turbulence kinetic energy. 

A second feature to note is that the energy supplied to the flow by the settling particles is given 
by (18) and is determined by F .  (ti). On the other hand, the rate of  working by gravity on the 
particles is F.  (V). For a single-particle settling in still fluid, (V) = W and the rate of working by 
gravity is F .W. This is completely balanced by the viscous dissipation of the local disturbance flow 
which generates an equal opposing drag force - F  on the particle. For a fully parameterized, two- 
fluid continuum model the total viscous dissipation is then the sum of the calculated flow dissipation 
and the dissipation of  the unresolved, parameterized disturbance flows associated with the fluid drag 
forces. The latter is F - W  for each particle. The fact that F.  (~) is nonzero is an indicator that the 
low wave numbers content of  these disturbance flows is being represented by the simulations, albeit 
approximately, and that F .  (li) compared to F.  (V) is a measure of this. In fact, other simulations 
where I(V - ti) l is smaller show relatively stronger vorticity and momentum coupling, even where 
F is unchanged. 

Finally, we point out that while the term "particle" has been used in the discussion, the two- 
phase flow simulations are equally applicable to solid particles in liquids or small, spherical bubbles. 
Indeed, the main application of the approach described here will be to small particles or bubbles in 
liquids whose sizes are comparable to the Kolmogorov scales of the turbulence or the computational 
grid spacing. These may be up to 0.5 or 1 mm in scale for example. Appreciable modification of 
turbulence requires a moderate to large number of finite-sized particles, giving a void fraction of 
1% or so, in this context. For gas-solid flows laden with a large number of very small particles 
the use of a continuous number density for the particle concentration is appropriate. Other forms 
of the spatial filter or force envelope (10) may be used too. The Gaussian envelope does have the 
advantage of being nonnegative both as an envelope in physical space and as a spectral filter. The 
specification of the envelope is an essential part of  the simulation process. These and other issues 
raised here will be discussed further in future papers. 
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