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• Dilute, dispersed two-phase flows arise in many contexts ranging from 
solid particles or droplets in gas flows to bubbles in liquids. Many of the 
flows of interest are turbulent, which presents a complex problem to 
analyze or to determine the dominant physical processes contributing to 
the observed phenomena. Advances in experimental techniques have made 
it possible to measure directly turbulent and particle velocity fluctuations in 
dilute systems. This has provided a counterpart to advances in computa- 
tional and analytical models and a basis on which to test these models. 
Three specific areas are considered: the fluctuating forces on an individual 
particle in an unsteady flow, the response of a solid particle to a turbulent 
air flow, and the corresponding response of a small bubble in turbulent 
liquid flows. Results from direct numerical simulations are presented for 
each of these, including the nonuniform distribution of particles generated 
by local instantaneous features of the flow. The issue of turbulence modu- 
lation at low to moderate void fractions is discussed. 
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I N T R O D U C T I O N  

The study of  two-phase flows has developed in many 
different directions due to the varied contexts in which 
they appear. The transport of solid particles or liquid 
droplets in a gas flow, for example, is studied by mechani- 
cal engineers for the combustion of  pulverized coal or fuel 
sprays, while atmospheric scientists are concerned with 
similar issues for rain formation in clouds or the persis- 
tence of volcanic ash in the atmosphere following an 
eruption. Solid particles in liquids arise in the transport of 
solids in slurries, in sedimentation in estuaries and rivers, 
and in chemical reactor processes. Bubbles in liquids are 
of concern for nuclear reactor safety, oil well measure- 
ments, hydroelectric power systems, cavitation, and under- 
water acoustics. Despite the variety of contexts, these 
systems share a number of  common aspects and may be 
classified accordingly. One such classification is whether 
the flows are dilute, dispersed two-phase flows with low- 
volume void fraction or whether the particles are more 
densely packed as in a fluidized bed. The focus of  this 
paper is on dilute systems, at low void fraction, in which 
the individual particles or bubbles are well separated. 

The development of theoretical models for adiabatic 
two-phase flow has been strongly influenced by the type of  
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experimental measurements that have been possible. In 
flows where the volume void fraction is large, around 10% 
or more, there are strong complex dynamical interactions 
between the phases. Optical techniques are limited to 
visual observations of  flow quality and classification into 
specific flow regimes. Measurements have focused on 
overall average quantities such as the mean pressure drop 
along the length of  a pipe or the mean void fraction. 
Conductivity sensors or impedance probes are used to 
measure void fractions, and wall-mounted pressure sen- 
sors to obtain pressure drops. For bubbly, gas-liquid flows 
in vertical or horizontal tubes, these observations form the 
basis for flow regime diagrams such as the Mandhane [1] 
diagram. These delineate the stability of, say, annular flow 
from dispersed bubble flow in terms of  the equivalent 
mean volume flow rate or superficial velocity of  each 
phase. Spedding and Spence [2] present a recent review of  
results in this area. A more fundamental description for 
these high void fraction, bubbly flows is the drift-flux 
model, which relates liquid flow rates and added-mass 
effects of  the bubbles. A good summary of this approach 
with some new results is given by Kowe et al. [3]. Experi- 
mental methods in general for two-phase flows, especially 
those suited to large void fraction, are surveyed by Snoek 
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[4]. However, it would appear that even with recent ad- 
vances in experimental methods, our understanding of 
gas-liquid flows under these conditions will remain lim- 
ited to determining bulk flow quantities for some time to 
come. 

At low void fractions in dispersed two-phase flow, other, 
more detailed measurements are possible and a wider 
range of experimental techniques can be applied. The 
ability to obtain measurements of turbulent velocity fluc- 
tuations in the fluid phase and velocities of the individual 
particles or bubbles has greatly increased understanding 
in this area and prompted more detailed theoretical analy- 
sis. The influence of small solid particles in a turbulent air 
flow has been studied by Tsuji et al. [5] using laser- 
Doppler velocimetry (LDV). First the air flow was seeded 
with small tracer smoke particles to give the flow velocity 
data; then larger polystyrene particles were introduced as 
the particle phase. Signal discrimination methods were 
applied to separate the velocity signals for the air flow and 
those for the particle phase. Typical density ratios of 
particles to air of 1000 : 1 mean that even at very low void 
fractions significant turbulence modification may occur. 
The low void fraction is essential to the feasibility of the 
LDA measurements and minimal interference with the 
optical beams. Similar LDA methods have been employed 
for gas-solid flows by Wells and Stock [6] and Longmire 
and Eaton [7] for measurements of particle dispersion in 
homogeneous turbulence and jet flows, respectively. 

Flows containing small bubbles, even in dilute dispersed 
systems, present extra difficulties because the volume void 
fractions of interest are generally higher, typically a few 
percent. LDA techniques have been successfully employed 
by Theofanous and Sullivan [8] and Lance and Bataille [9] 
even in this context when special precautions were taken 
to minimize optical path interference. Successful measure- 
ments even at void fractions close to 7% have been 
reported [9]. Bonetto and Lahey [10], in recent work on air 
entrainment by plunging jets, have shown how LDA meth- 
ods can be employed to obtain instantaneous measure- 
ments not only of bubble velocities, but also of bubble size 
and volume void fraction. Particle image velocimetry (PIV) 
has proven to be a valuable technique also, and by track- 
ing the motion of both bubbles and tracer particles from 
photographic images it is possible to obtain simultaneous 
data on bubble velocity and local flow conditions [11]. Ran 
and Katz [12] have also proposed a technique whereby 
recorded images of changing sizes of microbubbles may be 
used to infer local variations in the fluid pressure field. 
The developments in experimental methods have moti- 
vated new developments in analysis and computation. 

An aim of this paper is to present some results on the 
computation of particle and bubble interactions with tur- 
bulence. Two approaches have developed in the analysis 
of dilute two-phase flows. One is the use of continuum, 
two-fluid models [13] whereby the fluid phase and the 
particle or bubble phase are considered separately. Con- 
tinuum equations for mass conservation and momentum 
are formulated for each phase, with an indicator function 
X(x, t) used to indicate where a point x in the flow lies 
instantaneously in the fluid phase ( X = 1) or in the parti- 
cle phase (X = 0). In any two-phase flow there is a ran- 
dom distribution of particles through either the initial 

distribution of the particles or random turbulent mixing or 
both. The mean volume void fraction at any point then 
corresponds to the ensemble mean value <(1 - X)). Con- 
tinuum models are based on such ensemble averages to 
give continuous field variables, and where such flows are 
turbulent they usually involve turbulence closure assump- 
tions. A key component of such models is the specification 
of the momentum transfer between the phases, which 
comes down to specifying correctly the fluctuating fluid 
force that acts on a particle and the corresponding reac- 
tion force of the particle on the fluid. Versions of these 
models have been used to study flow stability--by Saffman 
[14] for dusty gas flows in plane Poiseuille flow and by 
Yang et al. [15] for gas-solid wake flows. 

A second approach that has been developed is the 
direct numerical simulation of dilute particle-laden flows. 
Here the equations of fluid motion are specified and 
solved directly by numerical computation. A large, but 
finite, number of particles are included, and the trajectory 
of each particle is computed from its own equation of 
motion and a specification of the instantaneous fluid force 
acting on it determined from the local flow conditions. In 
very dilute systems there is no significant dynamical feed- 
back on the flow from the particles, and they respond 
passively to the flow. Simulations such as these avoid the 
issue of closure assumptions and provide results on parti- 
cle mixing in transitional [16, 17] or turbulent [18, 19] flow. 
Dynamical coupling can be represented by applying a 
body force to the fluid motion where the force is the 
cumulative effect of the reaction forces from the individ- 
ual particles. For example, Squires and Eaton [20] have 
pursued this approach in studying the degree of flow 
modification in homogeneous turbulence. A somewhat 
different but comparable approach has been developed by 
Sangani et al. [21] to investigate bubbly liquids subject to 
small-amplitude oscillations. 

In the following sections we present some computa- 
tional results for a number of topics that we have studied 
recently. These include the forces acting on small particles 
in unsteady flow, the turbulent mixing of solid particles in 
gas flows, and the distribution of small microbubbles in 
liquid flows.. These are a personal selection from a wide 
range of possible topics in two-phase flow. We conclude 
with some comments on turbulence modulation and out- 
standing experimental issues. 

FORCES ON A PARTICLE 

As we noted above, an essential step in formulating two- 
phase continuum models or the direct numerical simula- 
tion of particle trajectories in a turbulent flow is to specify 
correctly the fluid forces acting on a particle. These forces 
will depend on the velocity of the particle and the local 
flow conditions. A spherical particle is the simplest to 
consider and is a good representation for small liquid 
droplets in air or microbubbles in water where surface 
tension is sufficient to maintain the spherical shape, typi- 
cally for diameters less than 1 mm. If the particle is 
smaller than the scale on which the ambient flow varies, 
the Kolmogorov scale in turbulent flow, and the Reynolds 
number for the motion relative to the surrounding fluid is 
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small, then these forces can be found from the theory of 
unsteady Stokes flow. The resulting equation of particle 
motion is given by Maxey and Riley [22] as 

dV Du  
mp--~-  = ( m p  - m F ) g  + m F dt 

1 d a z V2H] 
-~mF- ~ [V - u(Y(t), t) - ~-~ (1) 

- 6~ra/xH(t) - 67ra2/x 

,.t dH 
X)0  --~T ['r/'/~(t -- 7")] -1/2 d'/'. 

See also Gatignol [23] and Maxey [24]. In this equation m e 
denotes the mass of the spherical particle, which has 
radius a, and m F denotes the equivalent mass of the 
displaced fluid. The acceleration due to gravity is g, the 
dynamic and kinematic fluid viscosities are /x and v, 
respectively. The position of the sphere center is Y and 
moves at velocity V through an ambient flow u(x, t). The 
quantity H(t) is determined by the relative motion, 

H(t )  = V(t) - u(Y(t),  t) - l a 2 v 2 n ,  (2) 

where the Laplacian is evaluated at x = Y(t). The form of 
the integral requires H(0) = 0 as an initial condition. 

The first term on the right in Eq. (1) represents the 
weight of the particle and possible buoyancy forces, while 
the second is the fluid force from the undisturbed flow, 
without the particle present, that would act on the equiva- 
lent fluid mass. The third term is due to added-mass 
effects, with the usual coefficient of 1/2, and is modified 
to take account of spatial variations in the flow. The last 
two terms are the steady Stokes drag force and the Basset 
history term, again modified to account for possible veloc- 
ity gradients in the flow. This history term is the result of 
the finite time scale for vorticity to diffuse from the 
sphere as it accelerates. These estimates assume that the 
Reynolds numbers 

and 

Re = 2 a W / v  (3) 

Ret3 = 2a2/3 /v  (4) 

are both small, where W is a scale for the slip velocity 
u - V and /3 is a scale for the fluid velocity gradient Vu. 
Equation (1) provides a good estimate for solid spheres, 
for liquid droplets due to the usually large ratio of the 
liquid- to gas-phases viscosities, and for small bubbles due 
to the effect of surfactants. Unless special precautions are 
taken, surfactants present in water will quickly coat the 
surface of a microbubble and "freeze" the surface, giving 
an effectively rigid particle response [25]. A microbubble 
100 /xm in diameter in water will typically rise at a 
terminal speed of 1 /2  c m / s  in still fluid [26]. 

As particle size increases, the Reynolds numbers in- 
crease and other factors must be considered. One of these 
is the form of the added-mass effect. In deriving Eq. (1), 
the time derivative following a particle is used for the 

added mass. A more accurate form [27] is 

1 ou) 
2 m F dt Dt  ' (5) 

at least when the ambient flow u is inviscid. At low 
Reynolds numbers form (5) and that used in Eq. (1) are 
not formally distinguishable. Direct numerical simulations 
by Rivero et al. [28] support this modified form for finite 
Reynolds numbers. Another feature is the generation of 
lift forces due to particle rotation [29] or shear velocity 
gradients [30]; these forces are not found under Stokes 
flow conditions. Improved estimates have been made by 
McLaughlin [311 for the lift force in a shear flow at low 
but finite Reynolds numbers for rigid particles, and some 
numerical results have been given by Dandy and Dwyer 
[32]. 

Other issues include the appropriate form of the drag 
force on a sphere at finite Reynolds numbers in unsteady 
flows and whether or not the added-mass coefficient re- 
mains 1/2. As part of a continuing study into these issues, 
Chang [33] conducted a series of direct numerical simula- 
tions for unsteady flow past a fixed rigid sphere. The 
ambient flow is unidirectional, 

u(x, t) = U(t)~, (6) 
where ~ is a fixed unit vector. The resulting flow is 
axisymmetric, with ~ as the symmetry axis. The equations 
for viscous, incompressible flow are solved by a spectral 
method based on a Fourier representation in the polar 
angle 0 and a Chebyshev polynomial expansion in the 
radial coordinate r. A vorticity-stream function formula- 
tion was used to ensure that incompressible flow condi- 
tions were satisfied and to avoid the need for pressure 
boundary conditions. The numerical procedures are sum- 
marized in [34]. From the simulation data, flow structure 
and forces on the sphere can be investigated. 

We first present results for an oscillatory flow U(t )  = 
-U0sin(o- t )  obtained for a nondimensional frequency 
S t = t r a / U  o of 0.625 and a peak Reynolds number Re = 
2 a U o / v  of 16.73. These values correspond to an experi- 
ment done by Odar [35] for which data are available. 
Figure 1 shows a time sequence of the streamlines in the 
flow as it proceeds from peak freestream flow at a phase 
angle ~rt = 7r/2 to flow reversal at ~ t  = 7r. A clear 
feature is the flow separation that occurs on the decelerat- 
ing phase with a detached eddy at flow reversal, while a 
new layer of vorticity forms at the surface. Under steady 
conditions, flow separation does not arise until Re exceeds 
20 and even then results in a much smaller separation 
bubble. Figure 2 shows a corresponding variation in the 
computed drag force, with a comparison with Odar's ex- 
periments and the Basset estimate for unsteady Stokes 
flow, Eq. (1). The experimental data have some irregulari- 
ties close to flow reversal due to the experimental setup. 
Generally the correspondence is good. Odar and Hamil- 
ton [36], among others, have proposed modifications to 
Eq. (1) for finite Reynolds numbers and locally uniform 
flow. These are based on introducing empirical coeffi- 
cients for the added-mass and history terms that depend 
on an acceleration parameter but not the Reynolds num- 
ber, while the Stokes drag is replaced by the nonlinear 
drag that would act under steady flow conditions at the 
same instantaneous value of the Reynolds number. This 
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Figure 1. Sequence of streamline patterns (from top) at ~ t 
= 7r/2, 3~r/4, ¢r for oscillatory flow, Re = 16.73 and S t = 
0.625. Sphere, a = 1, shown. 

estimate is shown too. It is clear that in this instance there 
is little to choose between them. 

Other  results were obtained for a flow that decelerated 
at a constant rate. The value of Re was initially 10 and 
decreased linearly to a value of  5 over a nondimensional 
time interval At Uo/a = 1 / 2  as the free-stream velocity 
dropped from U 0 to (1 /2 )U 0. The initial flow was fully 
developed steady flow. The advantage of  this flow change, 
as reported by Rivero et al. [28], is that it is possible to 
clearly identify the added-mass contribution. Figure 3 
shows the instantaneous forces on the sphere due to the 
pressure distribution Cp and the viscous shear stress C~. 
Both are scaled by pTra2Uo 2, where p is the fluid density, 
and the value C D is the resultant force (Cp + CF). Imme- 
diately after the deceleration is applied or removed there 
is a jump in the pressure force (YR. The magnitude of the 
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Figure 2. Resultant drag force C O during oscillation cycle 
( ) simulation; (--0 Basset; (---) Odar. 

jump is exactly matched to that for an added-mass coef- 
ficient of 1/2.  Somewhat surprisingly, the force C~ due to 
viscous shear stresses reverses even though the flow is still 
in forward motion. A plot of  the vorticity in the flow, Fig. 
4, at the time when C F = 0 shows clearly that separation 
has occurred. Near the surface of the sphere the local flow 
is reversed over a substantial portion of  the surface, 
leading to the net negative value of  C F. 

These results illustrate that even at modest Reynolds 
numbers the flow structure around a sphere can be quite 
varied, and it will be a while yet before we can say for 
certain what the appropriate extension of Eq. (1) should 
be for higher Reynolds numbers. For several applications 
Eq. (1) may be quite adequate in practice even though not 
justified in theory. The issue of lift forces needs to be 
addressed further. 

SOLIDS IN GAS FLOWS 

A solid spherical particle (or droplet) in a gas flow has a 
much larger density so that terms in m F in Eq. (1) may be 
neglected. Further the history term will generally be small, 
except for possible initial transients to the motion, if the 
particle size is small enough. For example, if T O is a time 
scale for the particle acceleration in response to changes 
in the flow conditions, then one would require a/(/.,'/'o ) 1 / 2  

e4 
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I 

CO 
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I I I 
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Figure 3. Forces on sphere in decelerating flow. (-.-) Cp; (---) 
C F ;  ( ) C 0 .  
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to be small. In a turbulent flow the shortest t ime scale on 
which the flow changes is rK, the Kolmogorov time scale, 

~K = (U/E)  1/2, (7) 

being the rate of kinetic energy dissipation per unit 
mass in the flow. Thus if r 0 = z K, the condition is equiva- 
lent to the particle size being small compared  to the 
Kolmorgorov length scale ~/, where 

3 . 1 / 4  
n = ( v  /~) . ( 8 )  

The Kolmogorov velocity scale v~ is equal to "o/'r K and is 
representative of  velocity fluctuations in the small-scale 
dissipation range of the turbulence. The dominant  factors 
governing particle motion are particle inertia, viscous drag 
forces, and the particle weight. Within the Stokes range, 
Re < 1, the motion of a single isolated particle can be 
determined from 

dV u ( Y ,  t )  - V ( t )  + W (~) 
= , ( 9 )  

dt rp 

where W ~) is the Stokes velocity, the terminal fall speed 
in still fluid, 

W (~) = m e g / 6 7 r a  ~ ,  (10) 

and ~'e is the inertial response time of the particle, 

Tp = m p / 6 ~ r a t t .  (11) 

Even for very small solid particles ~'e can be significant in 
a gas flow. 

The usual focus of  attention in the study of dilute 
gas-sol id flows has been the turbulent dispersion of the 
particles [6, 16-19]. Theoretical  estimates for the effects 
of  varying ~-p on the long-term dispersion have been given 
by Reeks [37] among others. The effect of  particle settling, 
W (~), gives rise to the crossing-trajectories effect [38], 
which reduces particle dispersion compared  to that of  
Lagrangian fluid elements, as has been demonstra ted  by 
the experiments of  Wells and Stock [6]. Dispersion is 
governed by the large eddies in a turbulent flow. The 
effects of  varying W (~) or ~'e are classified by scaling these 
with the rms velocity fluctuation u '  or the large-eddy 
turnover time T e = L / u ' ,  where L is the integral length 
scale, as in the numerical simulations of  Squires and 
Eaton [18]. A similar viewpoint is taken by Gore  and 

Crowe [39, 40] for flows where the mass loading is suffi- 
cient to cause modification of the turbulence. 

Recent  studies by Wang and Maxey [41] have demon- 
strated that par t ic le- turbulence interactions can be sig- 
nificant for much smaller particles, when rely" K = O(1). 
Direct numerical simulations of  homogeneous,  isotropic 
turbulence were performed using spectral Fourier repre- 
sentations for the flow and periodic boundary conditions. 
A forcing scheme applied to the low-wavenumber Fourier 
modes  ensured that a statistically stationary turbulent flow 
could be maintained. Simulations were per formed at 
Reynolds numbers  Re A, based on u '  and the Taylor mi- 
croscale A, ranging from 31 on a 483 grid to 62 on a 963 
grid. The motion of each particle was computed by solving 
Eq. (9) at each time step. 

When ~-p is much shorter than r K, the particle responds 
to all frequencies in the turbulent flow and moves at every 
instant at a velocity 

V(t)  = u(YCt), t)  + W <s), (12) 

so that the right-hand side of  Eq. (9) is zero. Results for 
the mean particle settling velocity in homogeneous  turbu- 
lence, with zero mean flow, are exactly the same as in still 
fluid [42]. However,  as ~'p becomes larger, inertial effects 
come into play, at least for the fine-scale dissipation range 
turbulence characterized by Kolmogorov scales. This is 
illustrated by Fig. 5, which shows the change in mean 
particle settling velocity as "re/7 r is varied. The greatest 
change occurs when z e / r r  = O(1). Unlike dispersion, the 
settling rate is more  strongly influenced by interactions 
with small-scale turbulence. 

For small particles where the particle inertia has only a 
weak effect, Eq. (12) may be used as a first estimate of  the 
particle velocity V(t) and substituted back into Eq. (9) to 
obtain a first approximation for inertial effects. This yields 
[42] 

w+,  ), V ( t )  = u C Y ( t ) ,  t )  + W <s) - ~'e + [u + • V u  

(13) 

with all quantities evaluated at x = Y(t). This defines a 
"particle flow field" that is determined solely by the 
instantaneous particle position, and this flow field is com- 
pressible, 

V • V = -~-pV • (u • Vu). (14) 

Further simplification of Eq. (13) reveals that particles will 
be "compressed"  or biased toward regions of  instanta- 
neously high strain rate or low vorticity or both. This bias 
mechanism was shown [42] to be the cause of the change 

~5- 

cS- 

d,+ i ;.~ ~ ~5 ~ 15 
(s) Figure 5. Increase in mean settling rate ((V) - W ), scaled 

by v r against ratio ze /7  K for W ~s) = v K. (©) Re~ = 31; (O) 
Res = 62. Error bars indicated. 
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in mean settling rate. It has been observed in numerical 
simulations of turbulence for nonsettling particles [18] and 
settling particles [41]. As an illustration, Fig. 6 shows the 
particle distribution in a planar section from a turbulent 
flow computation at a single instant. The corresponding 
vorticity distribution is also shown. Figure 7 shows more 
specifically the local particle number density, conditionally 
sampled and averaged in turn on the value of the vorticity 
magnitude 11 and the magnitude of the rate of strain S. 
Instantaneously, 2 u S  2 is the viscous dissipation rate at a 
point in the turbulence. The correlation of particle con- 
centration with rate of  strain is clearly visible. 

It would appear that significant particle-turbulence in- 
teractions may occur even when ~'e ~ ~'K and yet r e << T e .  

Small eddies within the dissipation range contribute most 
to the vorticity and rate of  strain distributions, so the bias 
mechanism will be most obvious at these scales. When ~-p 
substantially exceeds ~'/~, the particles are less sensitive to 
the small-eddy motions, and local accumulations in a 
turbulent flow will be controlled more by the vorticity in 
the large eddies. Experiments so far have not confirmed 
these effects. The increase in settling velocities would be 
relevant to, say, small droplets of  20-50 tzm diameter in 
air, but nonlinear drag effects will limit this increase if 
Re > 1. The accumulation effect should be measurable in 
either context. 
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Figure 7. Conditionally averaged particle concentration 
against vorticity 12 and rate of strain S, scaled by rms values. 
(O) S; (O) 12. T p / I "  r = 1, W (~) = VK, Re, = 31. 

M I C R O B U B B L E S  IN W A T E R  

As noted earlier, microbubbles less than 1 mm in diame- 
ter respond as rigid spherical particles, at least as an 
initial approximation. For Re < 1, Eq. (1) may be used to 
determine the motion of an individual microbubble in a 
turbulent flow at low void fraction. The bubble has essen- 
tially no mass, m e = 0, and the inertial response is strongly 

F i g u r e  6. Relative particle concentration (left) and vorticity 
magnitude l~ (right) in a vertical section of the flow, Re x = 31. 

= 0 white; 12 > 2, black; 12 scaled by rms value. 

influenced by added-mass effects. The smallest bubbles 
will respond fully to the turbulence at all time scales, and 
the velocity of a bubble V(t) will be given as in Eq. (12), 
where now W (s) is the bubble rise velocity in still fluid. As 
bubble size increases to the point that an inertial response 
is significant, the particle Reynolds number Re also in- 
creases to O(1). The details of  the fluid forces become 
more critical for Re > 1, and more careful consideration 
of how Eq. (1) extends to flows for which Re > 1 is 
needed, including the way in which lift forces may be a 
factor [27]. A useful approximate equation of motion that 
includes the essential features is 

Du 1 [d_~ Du] 
0 = - - m E g  + m F D t  2 m F  D t  (15) 

- 6~-a/x[V - u(Y(t) ,  t)],  

which uses Eq. (5). This can be rewritten in terms of the 
bubble response time z n and terminal rise velocity Q, 

-c B = m F / 1 2 z r a t x  , (16) 

Q = - - m r g / 6 z r a l . e  , (17) 

dV D u  V(t)  - u(Y(t),  t) - Q 
- 3 -  ( 1 8 )  

d t  D t  "r B 

Numerical simulations of  microbubble motion, based on 
Eq. (18), in a turbulent flow were performed recently [43] 
in a manner similar to that for gas-solid flows described 
previously. A stationary isotropic homogeneous turbulent 
flow was maintained by forcing the large-scale motion 
while allowing the small-scale dissipation scales to evolve 
naturally. Again a strong interaction was found with the 
small-scale turbulence when r B ~ r/~, with locally very 
strong concentrations of the microbubbles. This time, 
though, the accumulations were correlated with regions of 



strong vorticity or low strain rate. Figure 8 shows results 
for Re x = 31. 

This change in the bias may be understood by an 
approximation similar to Eqs. (12) and (13) but based now 
on Eq. (18) for small values of 7 B. The "bubble flow field" 
is compressible, and 

V • V = 2¢BV " ( u "  Vu), (19) 

which is the opposite of Eq. (14). Thus bubbles accumu- 
late in regions of stronger vorticity and would naturally 
spiral in toward a vortex core whereas a Lagrangian fluid 
element would follow a closed circular streamline in a 
steady flow. What is surprising is the degree to which 
bubble accumulation occurs in a turbulent flow that is 
changing rapidly at small scales. The turbulence also 
reduces the mean bubble rise velocity even in the absence 
of a mean flow. Typically, for Q = v r a net reduction of 
25-50% in the mean rise velocity occurs as ~'B/~'K varies 
between 0 and 2. 

TURBULENCE MODULATION 

The results in the previous sections have been based on 
the motion of individual particles in isolation from each 
other. No dynamical coupling of the particle phase back 
on the turbulent flow has been included. Nevertheless the 
general patterns of particle or bubble accumulation in 
response to instantaneous flow conditions will persist in a 
fully coupled system, though these may be limited by the 
feedback of the particle dynamics on the flow. 

There is not space in this short paper to discuss the 
present state of knowledge of turbulence modulation in 
dilute two-phase flow, nor it is our goal. Guidelines have 
been established by Gore and Crowe [39, 40] as to how 
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turbulence levels may be affected by the presence of small 
particles. Experiments by Tsuji et al. [5] for solid particles 
in air flows and by Lance and BataiUe [9] for bubbles in 
water both indicate that at low mass loading the particle 
phase enhances the overall dissipation of the flow, in 
general agreement with the simulation results of Squires 
and Eaton [20]. Viscous dissipation in the particle wakes, 
associated with the viscous drag force on the particles, is 
the most significant factor for small particles. Even "one- 
way coupled" simulations can be used to provide initial 
estimates of this and its spatial distribution [44, 45]. The 
local accumulation of particles can lead, for example, to 
quite strong local dissipation. Data on bubble or particle 
velocities obtained from experiments may be analyzed in 
the same way [46] to evaluate directly the local dissipation 
and the quantities used in turbulence models of two-phase 
f low.  

OUTSTANDING ISSUES 

Much remains to be answered about the mechanics of 
turbulence modulation, but advances in experimental 
methods are making it feasible to investigate details of the 
turbulence structure. There are, however, several immedi- 
ate issues that could be answered by well-designed experi- 
ments. In our discussion of the settling of heavy particles 
in turbulent air flow a significant increase in mean settling 
velocity was found when Tp and r r were comparable. This 
is a fairly robust observation from the numerical simula- 
tions, though the effect may be reduced for particle 
Reynolds numbers significantly larger than 1 due to the 
influence of the nonlinear drag. However, this increase in 
settling velocity has not been verified to date by experi- 
ments for homogeneous turbulence. In application to high 
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Figure 8. Same as Fig. 7 but for microbubble 
concentration, z B = rK, and Q = v r .  



424 M . R .  Maxey et al. 

Reynolds number  turbulent  flows, it is the small-scale, 
locally isotropic turbulence that  will most  significantly 
affect the mean settling velocity of  small particles, while 
the large-scale structures in the flow will influence the 
dispersion most. The former can be character ized by the 
local value of  the dissipation rate e. Experiments  by 
Lazaro and Lasheras  [47, 48] have measured particle 
dispersion in free shear layers, for example,  where there is 
a strong interaction with the large-scale structures. Dis- 
persion of  heavy particles in homogeneous  turbulence has 
been studied by Wells and Stock [6]. In the lat ter  an 
electrostat ic potent ia l  was appl ied to del iberately increase 
the terminal  fall velocity of  each particle,  but the issue of 
the turbulence affecting mean settling rates was not  re- 
solved. 

An  impor tant  practical  issue in experiments  is that the 
particles are not truly monodisperse  but have a distribu- 
tion of  sizes. Thus it is not  possible to decide indepen-  
dently whether  or  not a higher settling velocity is due to a 
larger particle size. What  is required are s imultaneous 
data  on the part icle vertical velocity and particle size 
within an observation region. 

For  small bubbles in turbulence,  again there is no 
exper imental  verification of the reduction in mean rise 
velocity by the interact ion with small-scale, locally homo- 
geneous turbulence.  This reduction should be larger than 
the corresponding increase for particles. Results  from 
either exper iment  would be welcome and would assist in 
the development  of  reliable predictive models  for particle 
and bubble transport .  
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NOMENCLATURE 

a particle radius, 
C D fluid force on sphere,  scaled by ~rpa2U~, 

C F viscous shear  force on sphere,  scaled by ~rpaZU 2, 

Ce pressure force on sphere,  scaled by 1rpa2Uo 2, 

unit vector, dimensionless 
g constant  of  gravitational acceleration,  c m / s  2 

L integral length scale of  turbulence,  
m F mass of fluid displaced by particle,  
mp mass of particle, 

Q terminal  rise velocity of  bubble,  Eq. (17), 
r radial  coordinate,  

Re particle Reynolds number,  Eq. (3), dimensionless 
Re~ part icle Reynolds number,  Eq. (4), dimensionless 

S magni tude of rate of strain 
S t frequency ( =  c r a / U o )  , dimensionless 

t t ime 
T E eddy turnover time scale, L / u ' ,  

u fluid velocity, 
U free-s t ream velocity, Eq. (6), 

u '  rms turbulent  velocity fluctuation 
U 0 scale for f ree-s t ream velocity U(t )  

vr  Kolmogorov velocity scale ( =  TI/~-K), 

V particle velocity, c m / s  
W scale for slip velocity u - V, c m / s  

W (s) Stokes terminal  fall velocity, Eq. (10), c m / s  
x posit ion vector, cm 
Y particle position, cm 

Greek Symbols 
fl scale for fluid velocity gradient,  s 

At t ime interval for flow acceleration, s 
• rate of dissipation turbulent  kinetic energy per  unit 

mass, cm2/ s  3 

r/ Kolmogorov length scale, Eq. (8), cm 
0 angle coordinate,  deg 

/z dynamic viscosity of  fluid, g m / ( c m ,  s) 
z, kinematic viscosity of  fluid, cm2/s  
p fluid density, g m / c m  3 
~r oscillation frequency, s-1 

z 0 time scale of particle acceleration, s 
r B bubble response time, Eq. (16), s 
~'K Kolmogorov time space, Eq. (7), s 
ze particle response time, Eq. (11), s 
£~ magni tude of fluid vorticity, s -  
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