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Abstract: A parallel direct-forcing fictitious domain method is applied in fully-resolved numerical simulations of particle-laden 
turbulent flows in a square duct. The effects of finite-size heavy particles on the mean secondary flow, the mean streamwise velocity, 
the root-mean-square velocity fluctuation, and the particle concentration distribution are investigated at the friction Reynolds number 
of 150, the particle volume fraction of 2.36%, the particle diameter of 0.1 duct width, and the Shields number ranging from 1.0 to 0.2. 
Our results show that the particle sedimentation breaks the up-down symmetry of the mean secondary vortices, and results in a 
stronger secondary-flow circulation which transports the fluids downward in the bulk center region and upward along the side walls 
at a low Shields number. This circulation has a significant impact on the distribution of the mean streamwise velocity, whose 
maximum value occurs in the lower half duct, unlike in the plane channel case. The flow resistance is increased and the turbulence 
intensity is reduced, as the Shields number is decreased. The particles accumulate preferentially at the face center of the bottom wall, 
due to the effect of the mean secondary flow. It is observed that the collision model has an important effect on the results, but does 
not change the results qualitatively. 
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Introduction  

The turbulent flow in a square duct is characteri- 
zed by the presence of mean cross-stream fluid mo- 
tions. This kind of secondary flows, induced by turbu- 
lence fluctuations, takes the form of eight symmetrical 
vortices, with two counter-rotating vortices in pairs in 
each quadrant of the duct (see Fig.2). The mean 
secondary flows transport the fluid momentum from 
the bulk region to the corner areas along each corner 
bisector, and then back to the bulk regions along the 
wall bisectors. The early experimental measurements 
of the turbulent flows in a square duct were focused 
on the Reynolds stresses as the source for the genera- 
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tion of mean secondary flows. Direct numerical simu- 
lations of the single-phase turbulent flow in a square 
duct were performed by Gavrilakis[1], Uhlmann et al.[2] 
and Pinelli et al.[3].  

There are limited studies of the particle-laden tur- 
bulent flows in a square duct in the literature. Winkler 
et al.[4] investigated the preferential concentration of 
particles in a fully developed turbulent square duct 
flow, and observed that particles tended to accumulate 
in regions of high strain-rate and low swirling strength. 
Sharma and Phares[5] reported that the mean secondary 
flow enhanced the lateral mixing for passive tracers 
and low-inertia particles, and higher inertia particles 
accumulated close to the wall. Winkler et al.[6], Yao 
and Fairweather[7] and Yao et al.[8] investigated the 
particle deposition in turbulent square duct flows. The 
results of Winkler et al.[6] show that the deposition 
occurs with greater probability near the center of the 
duct walls than at the corners. On the other hand, Yao 
and Fairweather[7] and Yao et al.[8] concluded that 
high-inertia particles tend to deposit close to the corne- 
rs of the duct floor, while low-inertia particles deposit 
near the floor center. Yao and Fairweather[9] investi- 
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gated the resuspension of inertial particles in a turbu- 
lent square duct flow and demonstrated the important 
role of the mean secondary flow in the resuspension 
process. 

In these studies of two-phase flows, the point- 
particle approximation was employed to deal with the 
particle motion, which is valid in principle only when 
the particle size is smaller than the Kolmogorov length 
scale and the particle volume fraction is low. In recent 
years, the interface-resolved direct numerical simula- 
tion methods were used to study the mechanisms of 
the interactions between the turbulence and the finite- 
size particles, to determine the interface between a 
particle and the fluid and all turbulent structures with 
the direct numerical simulation method. Such methods 
were applied to simulations of particle-laden wall- 
bounded turbulent flows such as the pipe flow[10] and 
the horizontal channel flows[11-15]. We investigated the 
effects of the finite-size neutrally buoyant particles on 
the turbulent flows in a square duct with the interface- 
resolved DNS method, and observed that the particle 
addition increased the intensity of the mean secondary 
flow. In the present paper, we report our results on the 
particle effects on the turbulent duct flow when the 
particle sedimentation effect is present. It is noted that 
in the previous studies based on the point-particle app- 
roximation, the modulation of the turbulent duct flow 
by the particles has not been made clear. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Geometrical model for the duct flow 
 
 
1. Numerical model 
 
1.1 Flow model 

A schematic diagram of the geometrical model 
for the duct flow is shown in Fig.1. The -x axis is 
aligned in the streamwise direction. The -z axis dire- 
ction is taken as the spanwise direction and -y axis 
direction as the transverse direction, as in the plane 
channel flow case. The corresponding velocity com- 
ponents in the ( , , )x y z  directions are = ( , , )u v wu , 
respectively. The no-slip velocity boundary condition 
is imposed at the duct walls and the periodic boundary 
condition is imposed in the streamwise direction. We 
denote the half width of the duct as H . In the present 

study, the computational domain is [0,16 ]H ×  
[ , ] [ , ]H H H H− × − . 

We take H  as the characteristic length and the 
friction velocity uτ  as the characteristic velocity in the 
non-dimensionalized scheme. The friction velocity is 
defined as = /w fu ττ ρ , with wτ  being the mean 

shear stress on all walls, and fρ  the fluid density. 

Thus, the Reynolds number is defined as = /Re u Hτ τ  
ν , with ν  being the fluid kinematic viscosity. The 
pressure gradient is kept constant in our simulations, 
as ( d / d ) = 2 /e

wp x Hτ− , and its dimensionless value 
normalized by 2 /f u Hτρ  is 2. 
 
1.2 Direct-forcing fictitious domain method 

A parallel direct-forcing fictitious domain method 
(DF/FD) is employed for the simulation of particle- 
laden turbulent duct flows. The fictitious domain (FD) 
method for the particulate flows was originally pro- 
posed by Glowinski et al.[16]. The key idea of this 
method is that the interior of the particles is filled with 
the fluids and the inner fictitious fluids are enforced to 
satisfy the rigid body motion constraint through a 
pseudo body force, introduced as a distributed 
Lagrange multiplier in the FD formulation[16]. In what 
follows, we describe the DF/FD method briefly, and 
the details can be found in Yu and Shao[17].  

For simplicity of description, we will consider 
only one spherical particle in the following exposition. 
The particle density, volume and moment of inertia, 
the translational velocity, the angular velocity and the 
position are denoted by sρ , pV , J , U , pω  and pX , 
respectively. Let ( )P t  represent the solid domain and 
Ω  the entire domain including the interior and the 
exterior of the solid body. By introducing the follo- 
wing scales for the non-dimensionalization: H  for 
length, uτ  for velocity, /H uτ  for time, 2

f uτρ  for the 

pressure, and 
2 /f u Hτρ  for the pseudo body force, the 

dimensionless FD formulation for the incompressible 
fluids and the spherical particles can be written as 
follows: 
 

2

+ = + 2 +p
t Reτ

∂ ∇
⋅∇ − ∇

∂
u uu u λ  in Ω          (1) 

 
= + ×su U ω r  in ( )P t                      (2) 

 
= 0∇ ⋅ u  in Ω                             (3) 

 
* d( 1) = d

dr p P
V Fr

t g
ρ

 
− − − 

 
∫

U g λ x              (4) 
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* d
( 1) = d

d
p

r P
J

t
ρ − − ×∫

ω
r λ x                  (5) 

 
In the above equations, u  represents the fluid 

velocity, p  the fluid pressure minus a constant pre- 
ssure gradient of 2, λ  the pseudo-body force defined 
in the solid domain ( )P t , r  the position vector with 
respect to the mass center of the particle, rρ  the par- 
ticle-fluid density ratio defined as = /r s fρ ρ ρ , Fr  

the Froude number defined here as 2= /Fr gH uτ , *
pV  

the dimensionless particle volume defined as * =pV  
3/pV H , and *J  the dimensionless moment of ine- 

rtia defined as * 5= / sJ J Hρ . 
A fractional-step time scheme is used to decouple 

the system (1)-(5) into the following two sub-pro- 
blems. 

Fluid sub-problem for ∗u  and p : 
 

* 2 *1 = + 2
2

n

p
t Reτ

− ∇
− −∇ −

∆
u u u  

 
2

11 1[3( ) ( ) ] + +
2 2

n n n

Reτ

− ∇
⋅∇ − ⋅∇

uu u u u λ    (6) 

 
* = 0∇ ⋅ u                                  (7) 

 
A finite-difference-based projection method on a 

homogeneous half-staggered grid is used for the solu- 
tion of the above fluid sub-problem. All spatial deriva- 
tives are discretized with the second-order central di- 
fference scheme. 

Particle sub-problem for +1nU , +1n
pω , +1nλ  and 

+1nu : 
 

+1 *
* *= ( 1) + d

n n
n

r p r p P
V V Fr

t t g t
ρ ρ

   
− − −   ∆ ∆ ∆   

∫
U U g u λ x  

(8) 
 

* +1 * *

= ( 1) + d
n n
p p n

r r P

J J
t t t

ρ ρ
 

− × − ∆ ∆ ∆ 
∫

ur λ x
ω ω

   (9) 

 
Note that the above equations are reformulated so 

that all the right-hand side terms are known quantities 
and consequently the particle velocities 1n+U  and 

1n
p

+ω  are obtained without iteration. Then, 1n+λ  defi- 
ned at the Lagrangian nodes are determined from 
 

+1 +1 *
+1 +

= +
n n

pn n

t
× −

∆

U ω r u
λ λ                (10) 

 
Finally, the fluid velocities +1nu  at the Eulerian 

nodes are corrected from 
 

+1 * +1= + ( )n n nt∆ −u u λ λ                     (11) 
 

In the above manipulations, the tri-linear function 
is used to transfer the fluid velocity from the Eulerian 
nodes to the Lagrangian nodes, and the pseudo body 
force from the Lagrangian nodes to the Eulerian nodes. 

We note that we have extended the fictitious 
domain method to simulate the fluid-structure intera- 
ctions[18,19]. 
 
1.3 Collision model 

The collision model is required to prevent the 
mutual penetration of particles and the penetration of 
particles into walls. Two soft-sphere collision models 
are adopted in the present study. One is the following 
artificial repulsive force collision model (referred to as 
ARF) 
 

0= 1
c

dF
d

 
− 

 
F n                          (12) 

 
where F , d  and n  are the repulsive force, the gap 
distance and the unit normal vector between the parti- 
cles i  and j , respectively. cd  represents a cut-off 
distance and the repulsive force is activated at cd d< . 

0F  is the magnitude of the force at contact. We set 
=cd h  (with h  being the fluid mesh size), and 0 =F  

310 . The motions of the particles due to the collision 
force (12) and due to the hydrodynamic force (9)-(10) 
are handled separately with a fractional step scheme. 
The time step for the collision model is set to be one 
tenth of the latter (i.e., / 10t∆ ) to circumvent the 
stiffness problem due to the explicit integration sche- 
me with a large value of 0F , as suggested by 
Glowinski et al.[16]. The collision between a particle 
and a wall is treated similarly as two particles with the 
coefficient 0F  in (12) doubled. This collision model 
was used by Shao et al.[11] for the simulations of par- 
ticle-laden turbulent channel flows. 

The other collision model adopted is the discrete 
element model (referred to as DEM) developed origi- 
nally for the simulation of granular materials. In the 
DEM collision model, the mechanical elements such 
as a spring and a dash-dot are employed. Besides the 
spring-like repulsive force, the viscous damping force 
in the normal direction and the tangential friction force 
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are also considered. We adopt the model described in 
Crowe et al.[20]: 
 

3/ 2= ( )n n n nk δ η− − ⋅F G n n                    (13) 
 

=t t t t ctk η− −F δ G                           (14) 
 
where nF , nδ , nk  and nη  are the contact force on 
particle i , the overlap distance, the spring coefficient 
and the damping coefficient in the normal direction, 
respectively, and tF , tδ , tk  and tη  are the corre- 
sponding parameters in the tangential direction. Here 
n  is the unit vector in the direction of the line from 
the center of particle i  to that of particle j , and G  
is the velocity vector of particle i  relative to particle 
j  ( = )i j−G U U . ctG  is the slip velocity given by 

 
= ( ) + +ct i pi j pja a− ⋅ × ×G G G n n ω n ω n        (15) 

 
If the following relation is satisfied 
 

t nf>F F                               (16) 
 
particle i  slides and the tangential force is given by 
the Coulomb-type friction law 
 

=t nf−F F t                              (17) 
 
where f  is the friction coefficient and t  is the unit 
vector of ctG . In this study, we set the friction coe- 
fficient = 0.3f  for particles interacting with other 
particles and = 0.2f  for particles interacting with the 
walls. 

The stiffness nk  of a sphere is expressed by using 
the Hertzian contact theory 
 

1 1/ 222 1 +14= +
3

j i ji
n

i j i j

r r
k

E E r r
σσ

− −
   −−
      
   

         (18) 

 
where E  and σ  are the Young’s modulus and the 
Poisson ratio, respectively. The stiffness tk  can be 
expressed by using the Mindlin’s theory 
 

1 1/ 2

1/ 22 +2= 8 + j i ji
t n

i j i j

r r
k

G G r r
σσ

δ
− −

   −−
      
   

      (19) 

 
where G  is the particle shear modulus, which is rela- 
ted to the Young’s modulus and the Poisson ratio, as 
follows 

=
2(1+ )

EG
σ

                             (20) 

 
The damping coefficients are given by 

 
= 2n p nm kη                              (21) 

 
= 2t p tm kη                              (22) 

 
where pm  is the mass of the particle. We set = 3E ×  

510  and = 0.33σ . As pointed out by Crowe et al.[20], 
the elastic modulus adopted in the DEM simulation is 
normally less than the real value to avoid the exce- 
ssively small time-step, and the results are not sensi- 
tive to the choice of the value, particularly for the 
particle collision in fluids. Unless otherwise specified, 
the results presented below are obtained with the DEM 
collision model. 
 
1.4 Parameter settings 

The friction Reynolds number Reτ  is 150, the 
particle volume fraction is = 2.36%φ , the particle- 
fluid density ratio is = 1.5rρ , and the particle radius 
a  normalized by H  is / = 0.1a H , throughout this 
study. Three different Shields numbers are considered: 

=θ 0.2, 0.5 and 1.0. The Shields number reflects the 
relative importance of the shear force and the buoyant 
force on a particle at the wall[21], and is defined as 
 

=
2( )

w

s f ga
τ

θ
ρ ρ−

                         (23) 

 
The value of the Froude number in Eq.(8) can be 

determined from the Shields number as 
 

1

1=
2 ( 1)r

Fr
gaHθ ρ −−

                     (24) 

 
The grid number in our computations is 1 024× 

128×128, corresponding to the mesh size = / 64h H . 
The time step is 0.0002 /H uτ . The flow statistics are 
obtained by averaging the data in the real fluid domain 
outside the particle boundaries over a period of typica- 
lly fifty non-dimensional time units after the statistica- 
lly stationary state is reached. 
 
1.5 Validation 

Due to lack of benchmark data for the duct flow 
laden with finite-size particles, we compare our results 
of the mean and rms velocities in the single-phase case 
with the previous direct numerical simulations of 
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Gavrilakis[1] and Pinelli et al.[3] to validate the accu- 
racy of our computations, and it is shown that our 
results are in good agreement with the previous resu- 
lts. 
 
 
2. Results and discussions 

We will present and discuss our results for the 
mean secondary flow, the mean streamwise velocity, 
the RMS velocities, and the distribution of the particle 
concentration in the following sub-sections. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 Mean secondary velocity vectors and  contours of the 

corresponding stream-functions ( , )y zy  for the single- 
phase turbulent duct flow. For the contours, the incre- 
ment is 0.01, and the dashed lines correspond to negative 
values and continuous lines to positive ones 

 
2.1 Mean secondary motion 

The velocity vectors and the stream-function of 
the mean secondary flow in the single-phase case are 
shown in Fig.2, in order to make a comparison with 
the particle-laden flows given below. The flow takes 
the form of a pair of counter-rotating vortices in each 
quadrant, transporting the fluid momentum from the 
bulk region to the corner along the corner bisector. The 
mean secondary stream-function is determined from 
the mean streamwise vorticity xω  by using the follo- 
wing equation 
 

2 = xy ω∇ −                               (25) 
 

The maximum of the stream-function reflects the 
flow rate in the circulation and thereby the intensity of 

the mean secondary flow. The magnitude of the mean 
secondary velocity is about one percent of that of the 
bulk velocity, and consequently an accurate computa- 
tion of the mean secondary flow is a challenging task. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Mean secondary velocity vectors for different Shields 

numbers ( = 1.0θ  and = 0.2θ ) and collision models 
( DEM and ARF) 

 
Figures 3 and 4 show the velocity vectors and the 

stream-function of the mean secondary flow for θ =
1.0 and 0.2, respectively. As mentioned earlier, the 
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Shields number represents the ratio of the shear force 
to the buoyant force on a particle. The particle settling 
effect is stronger at a lower Shields number, and at 

0.2θ =  most particles settle down to the bottom wall, 
as shown in Fig.11. Due to the particle sedimentation, 
the original top-bottom symmetry of the secondary 
vortices is broken. From the bottom wall to the top 
wall, the first and the third vortices (i.e., the anti- 
clockwise rotating vortices with a positive stream-fun- 
ction value in the left half duct) are weakened, and the 
second and the fourth are enhanced by the particles, as 
seen in Figs.2, 3 and 4. The second and fourth vortices 
are connected to each other and appear to merge in the 
particle-laden cases, resulting in a stronger and larger 
circulation which transports the fluid downward in the 
center region and upward along the side walls. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Contours of the mean stream-functions ( , )y zy  for =θ  

1.0 and 0.2 with the DEM collision model. The incre- 
ment for the contours is 0.01 

 
The suppression of the first vortex in the vicinity 

of the bottom wall is expected to be primarily caused 
by the hindering effect of the sediments. In Fig.3, the 
mean secondary flows obtained from ARF and DEM 
collision models are also compared, in order to exa- 
mine the effects of the collision model. We see that 
the suppression of the first vortex is more significant 
for the DEM model, which is understandable due to 
the fact that the tangential friction between the parti- 
cles and the wall in the DEM model hinders the mo- 
tion of the particles. The effect of the collision model 
is important, but does not change the results qualita- 
tively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 Contours of the normal stress difference gradient term in 

the mean vorticity equation and the normal stress diffe- 

rence 2 2( )w v′ ′−  for the particle-free case and the par- 
ticle-laden case at 0.2θ = . The contour increment is 6 
for the normal stress difference gradients and 0.1 for the 
normal stress difference 

 
It seems that there exists a competition between 

the four vortices. The suppression of the first vortex is 
expected to be beneficial to the enhancement of the 
intensity of the second vortex. In addition, the particle 
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effect may directly enhance the second vortex. In our 
previous work, it was observed that the particle addi- 
tion increases the intensity of the mean secondary 
flow in the neutrally buoyant case and we explained 
this result by using the mean streamwise vorticity 
equation. This equation for the fully developed single- 
phase flow takes a simple form[1] as 
 

2
2 2

Normall stress termConvection term

+ + ( ) +x xv w w v
y z y z

ω ω ∂ ∂  ∂  ′ ′−  ∂ ∂ ∂ ∂  
 

 
2 2 2 2

2 2 2 2

Shear stress term Viscous diffusion term

1+ + = 0xv w
y z Re y zτ

ω
      ∂ ∂ ∂ ∂′ ′− −      ∂ ∂ ∂ ∂      

 

(26) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Contours of the mean streamwise velocity for the parti- 

cle-free case and the particle-laden case at = 0.2θ . The 
contour increment is 1 

 
The terms in the first bracket on the left-hand 

side of Eq.(26) represent the convection of the mean 
vorticity by the secondary flow itself. The last term 
represents the viscous diffusion of the mean vorticity. 
The other two terms are related to the Reynolds stre- 
sses due to the Reynolds averaging of the Navier- 
Stokes equation, generally described as the source of 
vorticity[1]. The first term is associated with the gra- 
dients in the Reynolds cross-stream normal stress 
difference, and the second term is associated with the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7 Mean streamwise velocity distributions along a line para- 

llel to the -y axis at 0z =  and 0.5z = − , respectively 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 The bulk velocities and mean turbulent kinetic energies 

as the function of Shields number 
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Fig.9 (Color online) Contours of the streamwise, transverse and spanwise rms velocity components for = 1.0θ  and = 0.2θ  
 

Reynolds secondary shear stress. The flow statistics in 
the particle-laden case in our simulations are defined 
in the real fluid domain, thus Eq.(26) should hold app- 
roximately true for the particle-laden flows at the rela- 
tively low particle volume fractions, as indeed eviden- 
ced in our previous simulations in the neutrally buo- 
yant case. It was demonstrated that the normal stress 
term is more important than the shear stress term for 
the generation of the mean secondary flow. Therefore, 
we here only plot the distribution of the normal stress 
difference 2 2( )w v′ ′−  and its gradients in both parti- 
cle-free and particle-laden cases for the comparison in 
Fig.5. In the particle-laden case at 0.2θ = , we are 
only concerned with the flow statistics for 0.8y H> − , 
since the region for 0.8y H< −  are mainly occupied 
by the particle sediments, in view of the fact that the 
particle diameter is 0.2H . The particle-induced 
enhancement of the gradients of the normal stress 
difference in the regions where the second and fourth 

vortices are located can be observed in Fig.5(b), as 
compared to Fig.5(a). The enhancement is most pro- 
nounced near the side wall at = 0.6 - 0.8y . We then 
compare the normal stress difference in the particle- 
free and particle-laden cases in Figs.5(c) and 5(d), 
respectively. The enhancement of the normal stress 
difference near the side wall at = 0.6 - 0.8y  by the 
particle effect is clear, which explains the enhancement 
of its gradients. 
 

2.2 Mean streamwise velocity 
We now discuss our results of the mean velocity. 

The contours of the mean streamwise velocity in the 
particle-free case and the particle-laden case at =θ  
0.2 are compared in Fig.6. Although the intensity of 
the mean secondary flow is smaller by two orders of 
magnitude than that of the main-stream velocity (i.e., 
the bulk velocity), it does significantly affect the dis- 
tribution of the mean streamwise velocity. In the neu- 
trally buoyant case, the mean secondary flow tran- 
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Fig.10 The distributions of the streamwise, transverse and spanwise rms velocity components along a line parallel to the -z axis at 

= 0.6y − , and a line parallel to -y axis at = 0.5z −  
 
sports the high-speed fluids from the bulk region to 
the corner region, and the low-speed fluids from the 
wall region to the bulk region along the center-line, 
resulting in the distortion of the contours of the stream- 
wise mean velocity in Fig.6(a), namely, with rela- 
tively higher streamwise mean velocity along the dia- 
gonal line than along the centerline of the cross sec- 
tion at the same -y position (say 0.7y = ). In the 
particle-laden case at 0.2θ = , the enhanced secon- 
dary circulation due to the second and fourth vortices 
discussed earlier makes the distribution of the stream- 
wise mean velocity more inhomogeneous along the 
spanwise direction in the upper half duct, and the 
significant attenuation of the bottom vortex pair makes 
the distribution of the mean streamwise velocity more 

homogeneous spanwisely in the lower half duct. In 
addition, it is interesting to note that the maximum 
streamwise mean velocity occurs in the lower half duct 
as a result of the mean secondary flow effect (i.e., the 
mean secondary flow transports the fluids downwards 
in the center region), in contrast to the observation in 
the plane channel flow where there is no mean secon- 
dary flow and the maximum mean velocity occurs in 
the upper half channel[11]. 

The profiles of the streamwise mean velocity at 
= 0z  and = 0.5z −  for different Shields numbers are 

shown in Fig.7, which is a complement to Fig.6 and 
directly shows that the maximum streamwise mean 
velocity occurs in the lower half duct due to the parti- 
cle settling effect. In addition, Fig.7 indicates that the 
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flow rate (or the bulk velocity) is decreased with the 
decrease of the Shields number, which means that the 
flow resistance is enhanced as the particle settling 
effect increases, in view of the fact that the pressure 
gradient is fixed and the lower flow rate corresponds 
to the higher flow resistance. Figure 8 shows the bulk 
velocity as a function of the Shields number for two 
collision models, and the results again indicate that the 
effect of the collision model is significant (the relative 
difference in the bulk velocity at = 0.2θ  is around 
4%), but does not change the results qualitatively. The 
higher flow resistance for the DEM collision model 
can be explained by the fact that the friction between 
the particles and the wall is considered for the DEM 
model. 
 
2.3 rms velocities 

We have discussed the role of the Reynolds nor- 
mal stress difference in the generation of the mean 
secondary flow. The Reynolds normal stress com- 
ponent is actually the rms velocity. Now we inspect 
the effects of the particles on the rms velocity com- 
ponents. Figure 9 shows the contours of three rms 
velocity components for =θ 1.0 and 0.2, respectively, 
with an overview of the rms velocity distribution. As 
the Shields number is decreased from 1.0 to 0.2, the 
streamwise rms velocity becomes smaller in most re- 
gions, whereas the transverse and spanwise rms velo- 
cities are, roughly speaking, enhanced in the lower 
half duct and weakened in the upper half duct. Figure 
10 shows the distribution of the rms velocity com- 
ponents along a line parallel to the -z axis at = 0.6y − , 
and a line parallel to -y axis at = 0.5z − , which fur- 
ther supports the above observation. One reason for 
the overall decrease of the streamwise rms velocity at 
a lower Shields number is that the bulk velocity 
decreases with the decrease of the Shields number. 
The further decrease of the streamwise mean velocity 
near the top wall (see Fig.7(a)) due to the effect of the 
mean secondary flow is responsible for the pronoun- 
ced attenuation of the streamwise rms velocity near 
the top wall, and the effect of the particle sediments 
results in the attenuation of the streamwise rms velo- 
city near the bottom wall (from the comparison be- 
tween Figs.9(a) and 9(b)). The particle-induced vorti- 
ces (or vortex shedding) give rise to the enhancement 
of the transverse and spanwise rms velocity com- 
ponents near the wall. Along the line of = 0.6y − , the 
particle-induced enhancement of the wall-tangential 
rms velocity rms( )v  is larger than that in the wall-nor- 
mal rms velocity rms( )w  in the near-wall region, 
which explains the enhancement of the magnitude of 
the normal stress difference 2 2( )w v′ ′− , observed 
earlier. 

Shao et al.[11] investigated numerically the effects 

of the settling particles on the turbulent channel flow 
at a constant flow rate, and observed that the particle 
sediments increased significantly the rms velocities in 
the bulk region due to the vortex-shedding from the 
particles. In contrast, the present simulations show that 
the turbulence intensity is reduced when the particle 
settling effect is increased, as shown in Fig.8(b). The 
primary reason for the discrepancy may be that in the 
present study the pressure gradient is fixed and the 
flow rate decreases with the decrease of the Shields 
number, whereas the flow rate is fixed in Shao et al.[11]. 
 
2.4 Particle distribution 

It is shown that in the neutrally buoyant case the 
particle concentration is higher in the near-corner 
region. The distributions of the particle concentration 
(or the local volume fraction) for =θ 1.0 and 0.2 are 
shown in Fig.11. One can see that the particle con- 
centration is higher at the face center of the bottom 
wall, which is clearly caused by the mean secondary 
flow. For = 0.2θ , most particles settle down to the 
bottom wall and form one layer of particle sediments, 
and the particle can be trapped in the corner for a long 
time once it is bumped there due to the interaction 
with other particles, resulting in a high particle con- 
centration there. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11 (Color online) The spatial concentration distributions of 

the particles in the cross section for = 1.0θ  and =θ  
0.2 

 
 
3. Conclusions 

The particle-laden turbulent flows in a square 
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duct are numerically simulated with a parallel direct- 
forcing fictitious domain method. The effects of finite- 
size heavy particles on the mean secondary flow, the 
mean streamwise velocity, the root-mean-square of the 
velocity fluctuation, and the particle concentration dis- 
tribution are investigated at the friction Reynolds 
number of 150, the particle volume fraction of 2.36%, 
the particle diameter of 0.1 duct width, and the Shields 
number ranging from 1.0 to 0.2. From our results, the 
following conclusions can be drawn: 

(1) The particle sedimentation breaks the up- 
down symmetry of the mean secondary vortices, and 
results in a stronger circulation which transports the 
fluids downward in the bulk center region and upward 
along side walls at a low Shields number. This circula- 
tion has a significant impact on the distribution of the 
mean streamwise velocity, whose maximum value 
occurs in the lower half duct, unlike the plane channel 
case. 

(2) The flow resistance is increased and the tur- 
bulence intensity is reduced, as the Shields number is 
decreased. 

(3) As the Shields number is decreased, the 
streamwise rms velocity becomes smaller in most re- 
gions, whereas the transverse and spanwise rms velo- 
cities are, roughly speaking, enhanced in the lower 
half duct and weakened in the upper half duct. Along 
the line of = 0.6y − , the particle-induced enhancement 
of the wall-tangential rms velocity rms( )v  is larger 
than that in the wall-normal rms velocity rms( )w  in the 
near-wall region, resulting in the enhancement of the 
magnitude of the normal stress difference term there, 
which might be one reason for the enhancement of the 
second mean secondary vortex from the bottom wall. 

(4) The particles accumulate preferentially at the 
face center of the bottom wall, due to the effect of the 
mean secondary flow. 

(5) The collision model has an important quanti- 
tative effect on the results, but does not change the 
results qualitatively. 
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