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Interface-resolved direct numerical simulations of the particle-laden turbulent flows in a square duct
are performed with a direct-forcing fictitious domain method. The effects of the finite-size particles on
the mean and root-mean-square (RMS) velocities are investigated at the friction Reynolds number of
150 (based on the friction velocity and half duct width) and the particle volume fractions ranging from
0.78% to 7.07%. Our results show that the mean secondary flow is enhanced and its circulation center
shifts closer to the center of the duct cross section when the particles are added. The reason for the
particle effect on the mean secondary flow is analyzed by examining the terms in the mean streamwise
vorticity equation. It is observed that the particles enhance the gradients of the secondary Reynolds
normal stress difference and shear stress in the near-wall region near the corners, which we think
is mainly responsible for the enhancement in the mean secondary flow. Under a prescribed driving
pressure gradient, the presence of particles attenuates the bulk velocity and the turbulent intensity.
All particle-induced effects are intensified with increasing particle volume fraction and decreasing
particle size, if other parameters are fixed. In addition, the particles accumulate preferentially in the
near-corner region. The effects of the type of the collision model (i.e., if friction and damping are
included or not) on the results are found significant, but not so significant to bring about qualitatively
different results. Published by AIP Publishing. https://doi.org/10.1063/1.5002663

I. INTRODUCTION

The turbulent flow in a square duct is characterized by
the presence of mean cross-stream fluid motions, classified
as the secondary flow of Prandtl’ second kind.1 This kind
of secondary flows, induced by turbulence fluctuations, takes
the form of eight symmetrical vortices, with two counter-
rotating vortices in pairs in each quadrant of the duct. The
mean secondary flows transport the fluid momentum from
the bulk region to the corner areas along each corner bisec-
tor and then back to the bulk regions along the wall bisec-
tors. The mean secondary flow in a square duct was first
recognized by Prandtl1 from the experiments of Nikuradse.2

Further experimental measurements of the turbulent flows
in a square duct were conducted by Brundrett and Baines,3

Gessner,4 and Melling and Whitelaw,5 with the focus on the
Reynolds stresses as the source for the generation of mean
secondary flows. Direct numerical simulations of the turbu-
lent flow in a square duct have been performed by Gavrilakis,6

Huser and Biringen,7 Uhlmann et al.,8 and Pinelli et al.9

Gavrilakis6 examined the statistics of the turbulence and the
budget for the mean streamwise vorticity and observed that
viscous effects were much greater than the mean convection.
Huser and Biringen7 demonstrated that the mean secondary
flow pattern and the anisotropic Reynolds stress distribution
could be explained by the preferred location of an ejection

a)Author to whom correspondence should be addressed: yuzhaosheng@
zju.edu.cn

structure near the corner and the interaction between bursts
from the two intersecting walls. Uhlmann et al.8 observed that
at marginal (low) Reynolds numbers, the short-time-averaged
velocity fields exhibited a four-vortex state characterized by
two pairs of counter-rotating vortices associated with a pair of
opposite walls, and long-time-averaged velocity fields exhib-
ited a common eight-vortex pattern. Pinelli et al.9 focused on
dynamical mechanisms for the behaviour of mean velocity
values when increasing the Reynolds number: the deforma-
tion of the mean streamwise velocity and the shape of mean
secondary flow, and argued that mean streamwise vorticity
strongly depended upon statistically preferred location of the
quasi-streamwise vortices associated with the pair of fast/slow
streaks closest to the corner.

There are limited studies on the particle-laden turbulent
flows in a square duct in the literature. Winkler et al.10 inves-
tigated the preferential concentration of particles in a fully
developed turbulent square duct flow and observed that par-
ticles tended to accumulate in regions of high strain-rate and
low swirling strength. Sharma and Phares11 reported that the
mean secondary flow enhanced the lateral mixing for passive
tracers and low-inertia particles, and higher inertia particles
accumulated close to the wall. Winkler et al.,12 Yao and
Fairweather,13 and Yao et al.14 investigated the particle depo-
sition in turbulent square duct flows. The results of Winkler
et al.12 showed that the deposition occurred with greater
probability near the center of the duct walls than at the cor-
ners, whereas Yao and Fairweather13 and Yao et al.14 con-
cluded that high-inertia particles tended to deposit close to the
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corners of the duct floor, while low-inertia particles deposited
near the floor center. Yao and Fairweather15 investigated the
resuspension of inertial particles in a turbulent square duct flow
and demonstrated the important role of the mean secondary
flow in the resuspension process.

For all studies on the two-phase flows above, the point-
particle approximation was employed to deal with the particle
motion, which is valid in principle only when the particle size
is smaller than the Kolmogorov length scale and the particle
volume fraction is low. In recent years, the interface-resolved
direct numerical simulation methods have been used to probe
the mechanisms in the interactions between the turbulence and
the finite-size particles, in which the interface between the
particles and fluids is resolved and all turbulent structures are
resolved with the direct numerical simulation method. Such
methods have been applied to the simulations of particle-laden
isotropic homogeneous flows (e.g., Ten Cate et al.,16 Lucci
et al.,17 Gao et al.,18 and Cisse et al.19), pipe flow,20 vertical
channel flows,21,22 and horizontal channel flows (e.g., Pan and
Banerjee,23 Shao et al.,24 Kidanemariam et al.,25 Do-Quang
et al.,26 Picano et al.,27 Wang et al.28), as well as the inter-
actions between the turbulence and a fixed particle (e.g.,
Bagchi and Balachandar,29 Burton and Eaton,30 Naso and
Prosperetti31). The aim of the present work is to investigate the
effects of the finite-size neutrally buoyant particles on the tur-
bulent flows in a square duct with the interface-resolved DNS
method, focusing on the mean and root-mean-square veloci-
ties and in particular the mean secondary flow. We note that
a companion paper on the effects of the heavy particles on
the turbulent duct flow has recently been published during the
revision of the present work.32

The paper is organized as follows. In Sec. II, we describe
our numerical model and method. The accuracy of our com-
putations is first validated for the case of single-phase flows in
Sec. III. In Sec. IV, our results on the mean secondary flow,
the mean streamwise velocity, the RMS velocities, and the
solid-phase statistics (mainly on the distribution of the par-
ticle concentration) are presented and discussed. Concluding
remarks are presented in Sec. V.

II. NUMERICAL MODEL
A. Flow model

A schematic diagram of the geometrical model for the duct
flow studied is shown in Fig. 1. The x-axis is aligned with the
streamwise direction. For the neutrally buoyant case consid-
ered, the y-axis and z-axis are exchangeable. For convenience,
we refer to the z-axis-direction as the spanwise direction, as
for the plane channel flow case. The corresponding velocity
components in the (x, y, z) direction are u = (u, v, w), respec-
tively. The no-slip velocity boundary condition is imposed at
the duct walls and the periodic boundary condition is imposed
in the streamwise direction. We denote the half width of the
duct as H. In the present study, the computational domain is
[0, 16H] × [�H, H] × [�H, H].

We take H as the characteristic length and the friction
velocity uτ as the characteristic velocity to non-dimension-
alize physical quantities. The friction velocity is defined as
uτ =

√
τw/ρf , here τw being the mean shear stress of the

FIG. 1. Geometrical model for the duct flow.

suspension on the walls, and ρf is the fluid density. Thus,
the Reynolds number is defined by Reτ = uτH/ν, ν being
the fluid kinematic viscosity. The pressure gradient is kept
constant in our simulations, being (�dp/dx)e = 2τw/H, and its
dimensionless value normalized by ρf u2

τ/H is 2.

B. Direct-forcing fictitious domain method

A parallel direct-forcing fictitious domain method
(DF/FD) is employed for the simulation of particle-laden tur-
bulent duct flows.33 The fictitious domain (FD) method for the
particulate flows was originally proposed by Glowinski et al.34

The key idea of this method is that the interior of each particle
is filled with the fluid and the inner fictitious fluid is enforced
to satisfy the rigid body motion constraint through a pseudo
body force, which is introduced as a distributed Lagrange mul-
tiplier in the FD formulation.34 In the following, we describe
the DF/FD method briefly, and the reader is referred to the
work of Yu and Shao35 for further details.

For simplicity of description, we will consider only one
spherical particle in the following exposition. The particle
density, volume and moment of inertia, translational veloc-
ity, angular velocity, and position are denoted by ρs, Vp, J, U,
ωp, and Xp, respectively. Let P(t) represent the solid domain
and Ω represent the entire domain including the interior and
exterior of the solid body. By introducing the following scales
for the purpose of non-dimensionalization: H for the length,
uτ for the velocity, H/uτ for the time, ρf u2

τ for the pressure,
and ρ ρf u2

τ/H for the pseudo body force, the dimensionless
FD formulation for the incompressible fluids and the spherical
particles can be written as follows:

∂u
∂t

+ u · ∇u =
∇2u
Reτ
− ∇p + 2ex + λ in Ω, (1)

u = U + ωp × r in P(t), (2)

∇ · u = 0 in Ω, (3)

(ρr − 1)V ∗p (
d U
d t
− Fr

g
g

) = −
∫

P
λ d x, (4)

(ρr − 1)J∗
dωp

d t
= −

∫
P

r × λ d x. (5)
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In the above equations, u represents the fluid velocity, p
represents the local fluid pressure with the exclusion of the con-
stant pressure gradient of 2ex (ex being the unit vector pointing
to the streamwise direction), λ represents the pseudo-body
force that is non-zero only in the solid domain P(t), r repre-
sents the position vector with respect to the mass center of the
particle, ρr represents the particle-fluid density ratio defined
by ρr = ρs/ρf , Fr represents the Froude number defined here by
Fr = gH/u2

τ , V ∗p represents the dimensionless particle volume
define by V ∗p = Vp/H3, and J* represents the dimensionless
moment of inertia defined by J∗ = J/ρsH5.

A fractional-step time integration scheme is used to
decouple system (1)–(5) into the following two sub-problems.

Fluid sub-problem for u∗ and p,

u∗ −un

∆t
−

1
2
∇2u∗

Reτ
= −∇p + 2ex −

1
2

[
3(u · ∇u)n − (u · ∇u)n−1

]

+
1
2
∇2u
Reτ

+ λn, (6)

∇ · u∗ = 0. (7)

A finite-difference-based projection method on a homoge-
neous half-staggered grid is used for the solution of the above
fluid sub-problem. The grid is homogeneous in all three direc-
tions. For the half-staggered scheme, the pressure is defined
at the cell center and all velocity components are defined on
the grid nodes. All spatial derivatives are discretized with the
second-order central difference scheme.

Particle sub-problem for Un+1,ωn+1
p ,λn+1, and un+1,

ρrV ∗p
Un+1

∆t
=

(
ρr − 1

)
V ∗p

(
Un

∆t
− Fr

g
g

)
+
∫

P

(
u∗

∆t
− λn

)
d x,

(8)

ρr
J∗ωn+1

p

∆t
= (ρr − 1)

J∗ωn
p

∆t
+
∫

P
r ×

(
u∗

∆t
− λn

)
dx. (9)

Note that the above equations have been reformulated so
that all the right-hand side terms are known quantities and
consequently the particle velocities Un+1 andωn+1

p are obtained
without iteration. Then, λn+1 defined at the Lagrangian nodes
are determined from

λn+1 =
Un+1 + ωn+1

p × r − u∗

∆t
+ λn. (10)

Finally, the fluid velocities un+1 at the Eulerian nodes are
corrected from

un+1 = u∗ + ∆t
(
λn+1 − λn

)
. (11)

In the above manipulations, the tri-linear function is used to
transfer the fluid velocity from the Eulerian nodes to the
Lagrangian nodes, and the pseudo body force from the
Lagrangian nodes to the Eulerian nodes.

C. Particle-particle and particle-wall collision model

The collision model is required to prevent the mutual pen-
etration of particles and the penetration of particles into walls.
Two soft-sphere collision models are adopted in the present
study, in order to examine the effects of the collision model

on the results. One is the following Artificial Repulsive Force
(referred to as ARF) collision model:

F = F0(1 − d/dc)n, (12)

where F, d, and n are the repulsive force, the gap distance, and
the unit normal vector between the particles i and j, respec-
tively. dc represents a cutoff distance and the repulsive force
is activated when d < dc. F0 is the magnitude of the force
at contact. We set dc = h (h being the fluid mesh size) and
F0 = 103. The motions of the particles due to the collision
force (12) and due to the hydrodynamic force (8) and (9) are
handled separately with a fractional step scheme. The time
step for the collision interactions is set to be one tenth of the
latter (i.e., ∆t/10) to circumvent the stiffness problem rising
from the explicit integration scheme with a large value of F0,
as suggested by Glowinski et al.34 The collision between a
particle and a wall is treated similarly as two particles with
the coefficient F0 in (12) doubled. This collision model was
used by Shao et al.24 to study particle-laden turbulent channel
flows.

The other collision model adopted is the Discrete Element
Model (referred to as DEM) developed originally for the simu-
lation of granular materials. The DEM collision model uses the
mechanical elements such as a spring and a dash-dot. Besides
the spring-like repulsive force, the viscous damping force in
the normal direction and the tangential (friction) force are also
considered. We adopt the model described by Crowe et al.,36

Fn = (−knδ
3/2
n − ηnG · n)n, (13)

Ft = −ktδt − ηtGct , (14)

where Fn, δn, kn, and ηn are the contact force on particle i,
overlap distance, spring coefficient, and damping coefficient
in the normal direction, respectively, and Ft , δt , kt , and ηt are
the corresponding parameters in the tangential direction. Here
n is the unit vector in the direction of the line from the center
of particle i to that of particle j, and G is the velocity vector
of particle i relative to particle j (G = Ui�Uj). Gct is the slip
velocity given by

Gct = G − (G · n)n + aiωpi × n + ajωpj × n, (15)

If the following relation is satisfied

|Ft | > f |Fn |, (16)

particle i slides and the tangential force is given by the
Coulomb-type friction law

Ft = −f |Fn |t, (17)

where f is the friction coefficient and t is the unit vector of Gct .
In this study, we set friction coefficient f = 0.3 for particles
interacting with other particles and f = 0.2 with the walls.

The stiffness kn of a sphere is expressed using the Hertzian
contact theory

kn =
4
3

(
1 − σ2

i

Ei
+

1 − σ2
j

Ej
)−1(

ai + aj

aiaj
)−1/2, (18)

where E and σ are Young’s modulus and the Poisson ratio,
respectively. The stiffness kt can be given using Mindlin’s
theory

kt = 8(
2 − σi

Gi
+

2 − σj

Gj
)−1(

ai + aj

aiaj
)−1/2δ1/2

n , (19)
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where G is the particle shear modulus, which is related to
Young’s modulus and the Poisson ratio, as follows:

G =
E

2(1 + σ)
. (20)

Damping coefficients are given by

ηn = 2
√

mpkn, ηt = 2
√

mpkt , (21)

where mp is the mass of particle. In our work, we set E = 3× 105

and σ = 0.33. The time step for the DEM collision model is
also set to be one tenth of that for the fluid fields (i.e.,∆t/10), as
in the ARF model. As pointed out by Crowe et al.,36 the elastic
modulus adopted in the DEM simulation is normally less than
the real value to avoid the excessively small time step, and the
results are not sensitive to the choice of the value, particularly
for the particle collision in fluids.

The ARF model can be taken as an extreme case of the
DEM model where the coefficients for the friction and damp-
ing forces are zero, and therefore the difference in the results
obtained by two types of collision model reflects the effects
of the collision model for the extreme case. It is beyond the
scope of the present study to examine in detail the effects of the
parameters in the collision model. Unless otherwise specified,
the results reported below are obtained with the ARF collision
model. We note that Kempe and Fröhlich37 proposed a sophis-
ticated collision model for the interface-resolved simulations
of particle-laden flows.

D. Parameter settings

The friction Reynolds number Reτ is 150, throughout this
study. Two particle sizes are considered: a/H = 0.05 and 0.1,
here a being the particle radius. The particle volume fractions
are φ = 0.78%, 2.36%, and 7.07%. The Froude number (Fr) is
zero since only the neutrally buoyant case is considered.

The grid number for our computations is 1024 × 128 ×
128, corresponding to the mesh size h = H/64. The time step is

0.0002 H/uτ . The flow statistics are obtained from averaging
the data in the real fluid domain outside the particle boundaries
over a period of typically 50 non-dimensional time units after
the statistically stationary state is reached.

III. VALIDATION

Due to lack of data on the duct flow laden with finite-size
particles, we compare our results for the single-phase case to
the previous direct numerical simulations of Gavrilakis6 and
Pinelli et al.9 to validate the accuracy of our computations.
Gavrilakis6 adopted a constant pressure gradient at Reτ = 150
and a larger streamwise domain of Lx = 20πH, while Pinelli
et al.9 kept the flow flux constant at Reb = UbH/ν = 2205,
corresponding to Reτ ≈ 150. Here Ub denotes the bulk velocity.
The mean streamwise and spanwise velocity profiles at z =�0.7
and the root-mean-square (RMS) values of the streamwise and
spanwise fluctuating velocities at z = �0.3 are presented in
Figs. 2 and 3, respectively. The velocities are normalized by
the bulk velocity Ub. A good agreement is found between our
results and the reference data. Our streamwise RMS velocity
is slightly larger than those of Gavrilakis6 and Pinelli et al.9

The reason is not clear. Our streamwise RMS velocity for
Lx = 8H was observed to be higher than that for Lx = 16H,
which indicates that the effect of the streamwise domain size
might be one reason for the discrepancy between our results
and those of Gavrilakis.6 This is also the reason why we chose
Lx = 16H for our simulations. Further increases in the stream-
wise domain size and the grid resolution are limited by our
use of the homogeneous mesh with the grid number of 2N

(N being an integer) in each direction and our computational
resource.

For the particle-laden case of a/H = 0.05, there are only
3.2 meshes per particle radius, and one may question whether
such mesh resolution is high enough to ensure acceptable
accuracy. It was demonstrated in our previous study24 that

FIG. 2. Mean velocity profiles at z = �0.7 for the single-
phase duct flow normalized by the bulk velocity at Reτ
= 150: (a) streamwise component and (b) spanwise com-
ponent. Present results (solid lines), Gavrilakis6 (◦) and
Pinelli et al.9 (�).
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FIG. 3. Profiles of the root-mean-square values of the
velocity fluctuations at z = �0.3 for the single-phase
duct flow normalized by the bulk velocity at Reτ = 150:
(a) streamwise component and (b) spanwise component.
Present results (solid lines), Gavrilakis6 (◦) and Pinelli
et al.9 (�).

the drag coefficient for a spherical particle settling in a wide
channel obtained using our FD method with h = a/3.2 was
reasonably accurate for the particle Reynolds number up to
50. For the present study, we do not have sufficient computer
resources to perform a mesh-convergence test. Nevertheless,
we conducted a mesh convergence test for a particle-laden tur-
bulent channel flow at Reτ = 180, φ = 0.84%, and ρr = 104.2
in our previous study33 and observed that the results obtained
with h = a/3.2 and h = a/6.4 are in good agreement with each
other. This mesh-convergence test may not necessarily guaran-
tee that the present results on the secondary flow for h = a/3.2
(i.e., a/H = 0.05) are accurate. However, our results for a/H
= 0.1 (with h = a/6.4) should be more reliable, and this is
the reason why we analyze the particle effect on the sec-
ondary flow primarily with data for a/H = 0.1. We will see
that the results for h = a/3.2 and h = a/6.4 are qualitatively
the same.

IV. RESULTS AND DISCUSSION

We will present and discuss our results on the mean sec-
ondary flow, the mean streamwise velocity, the RMS veloci-
ties, and the solid-phase statistics in Subsections IV A–IV D.

A. Mean secondary flow

Figures 4(a) and 4(b) show the velocity vectors of the
mean secondary flow for the single-phase case and the particle-
laden case at a/H = 0.1 and φ = 7.07% in a quadrant of the
domain, respectively. Note that all flow statistics are computed
with the data in the real fluid domain outside the particles. The
mean flow takes the form of a pair of counter-rotating vortices
in each quadrant, transporting the fluid momentum from the
bulk region to the corner along the corner bisector. By com-
paring Figs. 4(a) and 4(b), it is observed that the positions
of the vortex centers for the particle-laden case shift further
away from the walls nearby (i.e., closer to the cross-section

centerlines) in both the y and z directions, compared to the
single-phase case. To illustrate the effect of the particles on the
intensity of the mean secondary flow, we compute the mean
secondary-flow stream-function from the mean streamwise
vorticity ω̄x,

∇2ψ̄ = −ω̄x. (22)

The contours of the stream-functions ψ̄(y, z) for the particle-
free flow and the particle-laden flow at a/H = 0.05 and φ
= 7.07% are plotted in Figs. 4(c) and 4(d), respectively.
The maximum of the stream-function reflects the flow rate
(flux) in the circulation. Clearly the addition of the particles
enhances the mean secondary flow. Note that the increment
for all contours in comparison is the same, throughout this
paper.

The positions of the centers and the maxima of the stream-
functions of the mean secondary flows in the lower octant in
Fig. 4 for different particle sizes and volume fractions are plot-
ted in Figs. 5(a) and 5(b), respectively. The results indicate that
the circulation centers shift closer to the cross-section cen-
ter and the mean secondary flow is intensified, as the particle
volume fraction increases at the same particle size, or the par-
ticle radius decreases at the same volume fraction. The relative
change in the center position in the z-axis direction is generally
more significant than in the y-axis direction for the vortex in
the lower octant, presumably due to tighter constraint of the
symmetry from the corner bisector than the wall bisector (i.e.,
cross-section centerline).

To show the effects of the particle collision model, both
results obtained from the ARF and DEM models are plotted
in Fig. 5. The mean secondary flows with the DEM model are
generally weaker compared to those with the ARF model but
still stronger than that for the particle-free case.

We now attempt to explain why the particle addition
enhances the mean secondary flow. The governing equation
for the mean streamwise vorticity was used to analyze the
mechanism for the generation of the mean secondary flow in
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FIG. 4. Mean secondary velocity vectors for (a) particle-free flow, (b) particle-laden flow at a/H = 0.1 and φ = 7.07%, and contours of stream-functions ψ̄(y, z)
for (c) particle-free flow and (d) particle-laden flow at a/H = 0.05 and φ = 7.07%. Only a quadrant of the domain is shown. The increment for the stream-function
contours is 0.01.

FIG. 5. (a) Positions of the centers and (b) maxima of the stream functions of the mean secondary flows. Point “A”: a/H = 0.05, φ = 0.78%; “B”: a/H = 0.05,
φ = 2.36%; “C”: a/H = 0.05, φ = 7.07%; “D”: a/H = 0.1, φ = 0.78%; “E”: a/H = 0.1, φ = 2.36%; “F”: a/H = 0.1, φ = 7.07%; “C′”: a/H = 0.05, φ = 7.07% (with
DEM); “E′”: a/H = 0.1, φ = 2.36% (with DEM); “F′”: a/H = 0.1, φ = 7.07% (with DEM).
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the single-phase case (e.g., Brundrett and Baines;3 Perkins38),
which has a simple form for a fully developed flow,(

v
∂ωx

∂y
+ w

∂ωx

∂z

)
Convection term

+

(
∂2

∂y∂z
(w′2 − v′2)

)
Normall stress term

+

(
(
∂2

∂y2
−
∂2

∂z2
)v′w′

)
Shear stress term

+

(
−

1
Reτ

(
∂2

∂y2
+
∂2

∂z2
)ωx

)
Viscous diffusion term

= 0. (23)

The terms in the first bracket on the left-hand side of (23) rep-
resent the convection of the mean vorticity by the secondary
flow itself. The last term represents the viscous diffusion of
the mean vorticity. The other two terms are related to the
Reynolds stresses arising from the Reynolds averaging of the
Navier-Stokes equation, generally described as the source of
vorticity.6 The first term is associated with the gradients in
the Reynolds cross-stream normal stress difference, and the
second term is associated with the Reynolds secondary shear
stress.

The flow statistics in Eq. (23) for the particle-laden case
in our simulations are calculated with the data in the real fluid
domain. The average values of the velocities and the Reynolds
stress shear are first calculated on the Eulerian grids (the data
on the Eulerian grids inside the particle boundaries are dis-
carded for averaging) and their derivatives are then computed
mainly with the central difference scheme. For each time level,
if all data for the calculation of the derivatives are defined on
the grids in the fluid domain and used for the averaging, then
Eq. (23) theoretically holds since the averaging and differential
manipulations can be commuted, as in the particle-free case.
However, for the particle-laden case, the data on the Eulerian
grids inside the particle boundaries are not used, thus Eq. (23)
does not hold exactly; there should exist a term caused by the
presence of the particles (we may refer to it as the direct effect
of the particles). It is challenging to accurately compute the
mean secondary flow [evidenced by the differences in three
DNS results in Fig. 2(b)] and particularly the second-order
derivatives of the Reynolds stresses, and the sum of four terms

calculated is not exactly zero due to the computational error
in the single-phase flow, as shown in Fig. 8(e). In Fig. 8(f),
the computed sum of four terms for the particle-laden flow
becomes larger, and it should contain both contributions from
the particle direct effect and the computational error.

The contours of the mean streamwise vorticity computed
from the mean secondary velocity field for the particle-free
flow and the particle-laden flow at a/H = 0.1 and φ = 7.07%
are plotted in Figs. 6(a) and 6(b), respectively. The results show
that the particles enhance the mean vorticity for most parts of
the domain, particularly near the corner and the centerlines
of the cross section. The enhancement in the mean vortic-
ity is consistent with the enhancement in the stream-function
observed earlier.

The spatial distributions of the last three terms in the mean
vorticity equation (23) in a quadrant of the cross section for
the particle-free flow and the particle-laden flow at a/H = 0.1
and φ = 7.07% are compared in Fig. 7. The distribution of the
convection term is not shown here, for convenience of the pre-
sentation of the figure, and considering that the magnitude of
this term is much smaller than those of the other three terms.
From Fig. 7, all three terms are generally enhanced by the
addition of the particles, particularly near the corner. Since
the terms involving the derivative of the Reynolds stresses are
the source of the mean streamwise vorticity, their enhance-
ments are responsible for the increase in the intensity of
the mean secondary flow laden with large particles. We will
discuss the effect of the particle direct effect later.

A more direct comparison of the terms involved in the
vorticity equation (23) for the particle-free and particle-laden
flows is made in Fig. 8, which shows the variations of the four
terms along a line parallel to the y-axis at z = �0.75 terminating
on the corner bisector. The particle-induced enhancements in
the magnitudes of all terms are apparent. The viscous diffusion
effect is much larger than the convection effect, as observed by
Gavrilakis.6 The vorticity diffusion serves as the balance term
for the source terms involving the Reynolds stresses, and its
pronounced negative values near the wall (around y < �0.94

FIG. 6. Contours of the mean streamwise vorticity in a quadrant for (a) particle-free case and (b) a/H = 0.1 and φ = 7.07%. The increment for the contours is 1.
Dashed lines correspond to negative values and solid lines to positive ones.
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FIG. 7. The distributions of the three important terms in the mean vorticity equation for the [(a), (c), and (e)] particle-free flow and [(b), (d), and (f)] particle-laden
flow at a/H = 0.1 and φ = 7.07%. Normal stress term: (a) and (b); shear stress term: (c) and (d); viscous diffusion term: (e) and (f). Dashed lines correspond to
negative values and solid lines to positive ones. The increment for all contours is 3.

for the particle-laden case and y < �0.91 for the particle-free
case) are mainly resulted from the considerable positive values
of the normal stress difference term, whereas the Reynolds
shear stress term contributes partly to the negative values of

the viscous diffusion term for �0.94 < y < �0.87 in the case
of particle-laden flow. Therefore, one may conclude that the
particles enhance the mean secondary flow mainly through
enhancing the gradients of the secondary Reynolds stresses
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FIG. 8. The variations of the four terms in the mean vorticity equation along a line parallel to the y-axis at z = �0.75 terminating on the corner bisector for the
particle-free and particle-laden cases. (a) convection term; (b) normal stress term; (c) shear stress term; (d) viscous diffusion term; (e) four terms and their sum
for the particle-free case; (f) four terms and their sum for the particle-laden case with ARF.

(including both normal stress difference and shear stress) near
the wall in the duct corner region. In addition, Fig. 8 shows
that all terms in Eq. (23) for the DEM collision model are
slightly smaller than those for the ARF model, consistent with
the earlier observation in Fig. 5 that the mean secondary flow
with the DEM model is weaker.

All four terms in Eq. (23) and their sum for the particle-
free and particle-laden cases are plotted in Figs. 8(e) and
8(f), respectively. We have discussed earlier about the reasons
why the sums are not zero for both cases, and as mentioned
earlier, the computed sum for the particle-laden flow con-
tains both contributions from the particle direct effect and the
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computational error. The direct effect of the particles can also
be the source of the mean secondary flow but since the com-
puted sum is much smaller than the Reynolds stress terms
(Fig. 8), we believe that the particle-induced enhancement in
the gradients of the Reynolds stresses is responsible for the
increase in the intensity of the mean secondary flow laden
with large particles.

B. Mean streamwise velocity

The distributions of the mean streamwise velocity along
the centerline at z = 0 for all cases are shown in Fig. 9(a).
The velocities are reduced by the particle addition, and there
is more reduction as the particle volume fraction increases at
the same particle size or the particle size decreases at the same
volume fraction. The bulk velocities calculated from the aver-
aging the streamwise velocities over the whole cross section
are presented in Fig. 9(b). We observe that the bulk veloci-
ties also decrease with increasing particle volume fraction or
decreasing particle size. Since the mean pressure gradient is
fixed, the reduction in the bulk velocity implies the enhance-
ment in the flow drag. For the square duct flow, the friction
factor can be defined as f = 8u2

τ/U
2
b .39 The drag-enhancement

by the finite-size particles was previously observed by Shao
et al.24 and Picano et al.27 in the simulations of the plane tur-
bulent channel flows. The more significant effect of smaller
particles at the same volume fraction indicates that the effect
caused by the particle number difference is more significant
than the direct effect by the particle size.24 For the case of a/H
= 0.05 and φ = 7.07%, the bulk velocity is 12.65 for the DEM
collision model and is 12.70 for the ARF model. The relative
difference is around 0.4%, which may indicate that the contri-
bution of the friction force exerted on the walls by the particles
to the total drag (or wall shear force) is not important for the
neutrally buoyant particles at the particle volume fraction up
to 7.07%. For the ARF model, there is no direct friction force
between the wall and the particles, but the particles slipping
on the wall can increase the wall shear force by increasing the
fluid shear rate at the wall (or in the gap between the particles
and the wall). Nevertheless, for the case of heavy particles,
the relative difference between the bulk velocities from two

collision models can reach a few percent when most particles
settle down to the bottom wall.32

C. RMS velocity

In this sub-section, we are concerned with the effects of
the particles on the root-mean-square (RMS) values of the
velocity fluctuations. The spatial distributions (contours) of
the streamwise and spanwise RMS velocity components in
the cross section are shown in Fig. 10. Both streamwise and
spanwise RMS velocities first increase and then decrease as
the distance away from the wall increases along the centerline
in each direction, as in the plane channel flow. In the near-
wall region, the RMS velocities decrease as the position shifts
from the centerline toward the sidewall along a line parallel to
the wall nearby, indicating that the constraint of the sidewalls
attenuates the turbulence. Thus, the corner region has relatively
low turbulent intensities. The spanwise RMS velocity compo-
nent w+

rms near the sidewall (z = ±1) actually represents the
wall-normal component and is obviously seen to be smaller
than the local wall-tangential component, i.e., w+

rms near the
lower or upper wall (y = ±1). The wall-normal RMS velocity
in the near-wall region does not change much along the wall-
tangential direction, unlike the streamwise and wall-tangential
components.

Comparison between Figs. 10(a) and 10(b) shows that
the streamwise RMS velocity is attenuated by the particles in
most parts of the domain, except the regions close to the duct
center and corners. By contrast, the spanwise RMS velocity
w+

rms is enhanced in the near-wall region, particularly in the
near-corner region, as shown in Figs. 10(c) and 10(d). The
increase in w+

rms at z = �0.75 is more pronounced than that at
y = �0.75 in the near-wall region, which means that (w2

rms −

v2
rms) at z = �0.75 is enhanced by the particles, considering the

symmetry that vrms(y, z) = wrms(z, y) for the neutrally buoy-
ant case. We have observed earlier that the particles enhance
the gradients of the normal stress difference near the cor-
ner, and we now show that this increase in the gradients of
the normal stress difference is resulted from more increase
in the wall-tangential component than the wall-normal
component.

FIG. 9. (a) Mean streamwise velocity distribution along a line parallel to the y-axis: z = 0 and (b) the bulk velocity as a function of the particle volume fraction:
Point “A”: a/H = 0.05, φ = 0.78%; “B”: a/H = 0.05, φ = 2.36%; “C”: a/H = 0.05, φ = 7.07%; “D”: a/H = 0.1, φ = 0.78%; “E”: a/H = 0.1, φ = 2.36%; “F”: a/H =
0.1, φ = 7.07%.
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FIG. 10. The distributions of the root-mean-square values of the [(a) and (b)] streamwise and [(c) and (d)] spanwise velocity fluctuation components for
[(a) and (c)] particle-free flow and [(b) and (d)] particle-laden flow at a/H = 0.05 and φ = 7.07%.

A more direct comparison of the RMS velocity com-
ponents between the particle-free and particle-laden cases is
presented in Fig. 11, which shows the RMS velocity profiles
at z = 0 and z = �0.5 for the particle-free case and particle-
laden cases with a/H = 0.1. The results support the above
findings from Fig. 10. For example, the pronounced attenua-
tion in the streamwise RMS velocity peak and enhancement
in the cross-stream components near the wall at z = �0.5
can be observed in Fig. 11. Qualitatively same results were
found by Shao et al.24 in the plane channel flow, who
attributed the reason for the attenuation in the streamwise
RMS velocity peak to the weakening of the large-scale vor-
tices caused by the particle-induced viscous dissipation and
the disturbance (or competition) from the particle-induced
vortices, and the reason for the enhancement in the cross-
stream RMS velocities in the near-wall region to the effects of
the particle-induced vortices. These explanations also apply
to the duct flow studied here. The particle-induced vortices
in the near-wall region are expected to cause the enhance-
ment in the gradients of the secondary Reynolds stresses
observed earlier. The vortex structures identified as the iso-
surfaces of the imaginary part of the complex eigenvalue of the

velocity gradient tensor (i.e., the λci criterion proposed by
Zhou et al.40) for the single-phase flow and the particle-laden
flow at φ = 7.07% are compared in Fig. 12. The weakening
of the large-scale vortices and the particle-induced smaller-
scale vortices near the wall in the particle-laden flows can be
observed. Similar weakening of large-scale vortex structures
was observed in the channel particle-laden flows by Dritselis
and Vlachos.41

The mean turbulent kinetic energies (TKEs) of the entire
flow for all cases with the ARF model are plotted in Fig. 13.
The TKE decrease with increasing particle volume fraction
and decreasing particle size, if other parameters are fixed.
This behavior of the TKE is same as that of the bulk veloc-
ity in Fig. 9(b) or opposite to that of the flow drag. The
reduction in the TKE means the suppression of the turbu-
lence (e.g., Reynolds shear stress), and thus corresponds to
the drag-reduction for the single-phase turbulence, whereas
for the particle-laden turbulence studied, it corresponds to the
drag-enhancement, indicating that the drag-enhancement in
the particle-laden flow is caused by the particle-fluid inter-
phase drag force or the particle stress. Results of point-particle
direct numerical simulations of downward gas–solid flows
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FIG. 11. The profiles of the root-mean-square of the [(a) and (b)] streamwise, [(c) and (d)] transverse, and [(e) and (f)] spanwise velocity fluctuations along a
line parallel to the y-axis at [(a), (c), and (e)] z = 0 and [(b), (d), and (f)] z = �0.5 for the particle-free and particle-laden turbulent duct flows.

in pipe and channel flows showed that non-uniformity of
the mean drag loading could account for a large part of the
turbulence attenuation.42,43 It would be an interesting sub-
ject of future study to examine the possible effect of non-
uniformity of mean drag on the turbulence attenuation in duct
flows.

D. Solid-phase statistics

The solid-phase statistic that we are mainly concerned
with in the present study is the spatial distribution of the par-
ticle concentration in the cross section. Its value at (yj, zk) is

approximated as the probability of this cross-stream position
covered by the particles,

ξ(yj, zk) =

∑
xi ,t

is(xi, yj, zk , t)

N(yj, zk)
, (24)

where is(xi, yj, zk , t) equals 1 if the grid (xi, yj, zk) is found
to be located in the particle domain and zero otherwise, and
N(yj, zk) is the total check number of the grid (yj, zk) for
different xi and t.

Figure 14 shows that the particles accumulate in the cor-
ner region. For the wall-bounded turbulent flows, a rise in the
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FIG. 12. Vortex structures for (a) particle-free case; (b) a/H = 0.1, φ = 7.07% (with DEM); (c) a/H = 0.05, φ = 7.07% (with DEM). The particles are shown
only in the half duct for the clarity of the vortex structures.

FIG. 13. Turbulent kinetic energy as a function of the particle volume frac-
tion. Point “A”: a/H = 0.05, φ = 0.78%; “B”: a/H = 0.05, φ = 2.36%;
“C”: a/H = 0.05, φ = 7.07%; “D”: a/H = 0.1, φ = 0.78%; “E”: a/H = 0.1,
φ = 2.36%; “F”: a/H = 0.1, φ = 7.07%.

particle volume fraction near the wall was commonly observed
(e.g., Reeks,44 Young and Leeming,45 and Uhlmann21). The
main mechanism for this particle preferential accumulation
was recognized as turbophoresis, an average migration of par-
ticles in the direction opposite to gradients in the turbulence
intensity (specifically the wall-normal RMS velocity). For an
individual particle, this means that it is less probable to receive

the necessary momentum driving it from a region of low
turbulence intensity toward a high intensity region than vice
versa.21 Such turbophoresis effect takes place only for the par-
ticles with the density larger than that of the carrier fluid. If
one considers particles lighter than the fluid, or bubbles, the
effect will be the opposite: particles or bubbles will migrate
from regions of low turbulence intensity to the regions of high
turbulence intensity, as pointed out by an anonymous referee
of the present paper. Therefore, for the present case of neu-
trally buoyant particles, the turbophoresis effect cannot be
used to explain the preferential concentration of the particles
in the corner region. Then, the mean secondary flow is the
most probable reason for this preferential concentration of the
particles, which drives the particles toward the corner region
and away from the wall at the wall bisector in a statistical
sense. In the case of φ = 2.36%, the particle concentrations at
the regions close to the corner and the wall center are lower
than the average concentration [Fig. 14(a)], and the reason
may be related to the fact that these two positions are the
stagnation points of the mean secondary flow [Fig. 4(a)] and
the mean secondary flow does not drive the particles toward
the stagnation point. By contrast, for φ = 7.07%, the particle
concentration at the corner is considerably high, and our expla-
nation is that the particle interactions (such as collision) at a
relatively high particle volume can increase significantly the
probability of the particles entering this corner region and the
particles could be trapped there for a relatively long time once
entering.
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FIG. 14. The spatial distributions of the local particle volume fraction in the cross section: (a) a/H = 0.05, φ = 2.36%, with ARF; (b) a/H = 0.05, φ = 7.07%,
with ARF; (c) a/H = 0.05, φ = 2.36%, with DEM; (d) a/H = 0.05, φ = 7.07%, with DEM.

There is a gap of low particle concentrations separating
the region of high particle concentrations in each direction for
φ = 7.07%, as shown in Fig. 14. This phenomenon was
previously observed in the planar channel flow (Uhlmann,21

Picano,26 and Wang et al.27); Uhlmann21 conjectured that it
was still the result of the turbophoresis effect, whereas Wang
et al.27 argued that it was caused by the lift force. Because this
gap is located around one particle diameter away from the wall,
the reason might be related to the blocking (volume-excluding)
effect of the particles nearly touching the wall, which play a
role as a wall, causing a region of low particle volume frac-
tions observed. The observation that this gap of low particle
concentrations is much more pronounced for φ = 7.07% than
for φ = 2.36% in Fig. 14 may indicate that the particle interac-
tion plays an important role in its formation. To show a more
direct evidence for this conjecture, the spatial distribution of
the average collision force on the particles in the y-direction
for a/H = 0.05 and φ = 7.07% with the ARF collision model
is plotted in Fig. 15(c). The force is assumed to be located at
the particle center. In Fig. 15(c), there are three force bands,
extended in the z-direction. The forces in the upper band are
positive (i.e., pointing upwards) and most pronounced. Since
the upper band is located at around y =�0.85, namely 3 particle
radii away from the bottom wall, it is reasonable to attribute
this force band to the collision of the particles in this band with

those particles nearly touching the bottom wall. The most con-
spicuous collision force patch in this band near the corner at
z = �0.9 ∼ 085 is expected to be mainly caused by the collision
of the particles there with the particles trapped in the corner
at φ = 7.07%. The other two thinner bands below the main
band in Fig. 15(c) are clearly sourced from the collision forces
on the particles nearly touching the bottom wall. These forces
are weaker because they are net forces and the collision forces
on these particles from the wall and the upper particles coun-
teract with each other in the statistical sense (the two forces
may act on the particles at the same time or at the different
times). The probable reason for the positive forces in the low-
est band and the negative forces in the middle band is that the
repulsive collision forces from the wall prevail when the par-
ticles are closer to the wall and the collision forces from the
upper particles prevail when the particles move farther away
the wall.

Figure 15 also shows the y-component of the average
hydrodynamic force on the particles with the ARF collision
model and the collision and hydrodynamic forces with the
DEM collision model. One can observe that the distribution of
the average hydrodynamic force is closely correlated to that
of the collision force, indicating that the hydrodynamic force
in the near-wall region is significantly affected (or mainly
caused) by the particle collision which gives rise to the rapid
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FIG. 15. The spatial distributions of the average [(a) and (b)] hydrodynamic force and [(c) and (d)] collision force on the particles in the y-direction at
a/H = 0.05 and φ = 7.07% with ARF for (a) and (c) and DEM for (b) and (d).

change in the particle velocity (and the slip velocity). For the
DEM model, there also exists a primary band similar to that for
the ARF model. There are differences in the other minor force
bands for two collision models, which could be explained by
the differences in two collision models such as the viscous
damping force in the DEM model which is repulsive in the
approaching process and attractive in the separation process.
How the collision model and parameters affect the particle
motion and distributions is a subject of future study. In the
present study, we mainly attempt to show that the collision
model has important quantitative effects on the results but does
not modify the results qualitatively.

The profiles of the solid-phase streamwise mean veloci-
ties at z = 0 and �0.5 and the distributions of the solid-phase
streamwise and spanwise RMS velocity components for a/H
= 0.05 and φ = 7.07% are plotted in Figs. 16 and 17, respec-
tively. In the bulk region, the solid-phase streamwise mean
velocity is roughly the same as the fluid-phase mean velocity,
in the region very close to the wall, the solid-phase veloc-
ity is considerably larger than the fluid-phase velocity, and in
the region of y ≈ �0.9 (around one particle diameter away
from the wall), the solid-phase velocity is smaller than the
fluid-phase velocity. These observations are in qualitatively
agreement with the previous interphase-resolved DNS results

FIG. 16. The profiles of the solid-phase streamwise mean velocities at z = 0
and �0.5 for a/H = 0.05 and φ = 7.07%.

on the turbulent channel flows.27,28 The comparison between
Figs. 10 and 17 shows that the particle RMS velocities are
smaller than the fluid counterparts, which is also consistent
with the results on the turbulent channel flow laden with the
neutrally buoyant particles.27
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FIG. 17. The distributions of the root-mean-square values of the solid-phase (a) streamwise and (b) spanwise velocity fluctuation components for a/H = 0.05
and φ = 7.07%.

V. CONCLUSIONS

We have performed the interface-resolved direct numer-
ical simulations of the particle-laden turbulent flows in a
square duct with a direct-forcing fictitious domain method.
The effects of the finite-size neutrally buoyant particles (a/H
= 0.05 and 0.1) on the mean and root-mean-square (RMS)
velocities and the distribution of the particle volume fraction
have been investigated at Reτ = 150 and φ = 0.78%–7.07%.
There are two main findings from our studies that are specific
to the square duct geometry. The primary one is that the par-
ticle addition enhances the mean secondary flow and makes
its circulation center shift closer to the center of the duct cross
section. The main mechanism for the enhancement in the mean
secondary flow is that the particles enhance the gradients of the
secondary Reynolds normal stress difference and the Reynolds
shear stress, by inducing the vortex structures near the wall.
The other new finding is that the particles accumulate prefer-
entially in the near-corner region, which is presumably caused
by the mean secondary flow effect. The particle distribution
is affected by the particle-particle and particle-wall collision
model used, and the blocking effects of the particles nearly
touching the wall are responsible for the band of low solid
volume fraction located around one particle diameter away
from the wall.

Furthermore, results similar to the particle-laden planar
channel flow are found, concerning the effects of solid particles
on the mean streamwise flow velocity and turbulence intensity
away from the duct corner regions: under a prescribed mean
driving pressure gradient, the mean streamwise flow speed is
reduced, the wall friction is increased, turbulent kinetic energy
is attenuated, streamwise rms velocity is attenuated but the
spanwise rms velocity is augmented near a wall. These effects
increase with increasing particle volume fraction or decreasing
particle size.
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