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ABSTRACT
In the present study, a fractional-step-based multiphase lattice Boltzmann (LB) method coupled with a solution of a magnetic field evolution
is developed to predict the interface behavior in magnetic multiphase flows. The incompressible Navier–Stokes equations are utilized for the
flow field, while the Cahn–Hilliard equation is adopted to track the interface, and these governing equations are solved by reconstructing
solutions within the LB framework with the prediction–correction step based on a fractional-step method. The proposed numerical model
inherits the excellent performance of kinetic theory from the LB method and integrates the good numerical stability from the fractional-step
method. Meanwhile, the macroscopic variables can be simply and directly calculated by the equilibrium distribution functions, which saves
the virtual memories and simplifies the computational process. The proposed numerical model is validated by simulating two problems, i.e.,
a bubble rising with a density ratio of 1000 and a viscosity ratio of 100 and a stationary circular cylinder under an external uniform magnetic
field. The interfacial deformations of a ferrofluid droplet in organic oil and an aqueous droplet in ferrofluid under the external magnetic
field are, then, simulated, and the underlying mechanisms are discussed. Moreover, the rising process of a gas bubble in the ferrofluid is
investigated, which shows that the rising velocity is accelerated under the effect of the external magnetic field. All the numerical examples
demonstrate the capability of the present numerical method to handle the problem with the interfacial deformation in magnetic multiphase
flows.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0020903., s

I. INTRODUCTION

Magnetic fluids (ferrofluids) remain the flowability of flu-
ids and the magnetizability of ferromagnets, in which a mass of
magnetic nanoparticles are homogeneously dispersed into carrier

liquid (base fluid) by surface coating with a special surfactant. Fer-
rofluids were first invented by Bitter1 in 1931 and then developed
as a stable colloid by Elmore2,3 in 1938. The motions and interfa-
cial behaviors of ferrofluid, such as Rosensweig instability,4,5 can be
robustly controlled by applying an external magnetic field. These
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good properties make the ferrofluids widely used in advanced med-
ical science and industrial applications, such as magnetic hyperther-
mia,6 microfluidic manipulation,7–9 and heat transfer.10,11 To extend
and improve those kinds of industrial application, the underlying
mechanisms of magnetic multiphase flows need to be understood.
After the pioneering works of Lord Rayleigh,12 van der Waals,13

and Taylor,14 which built the fundament theory of complex inter-
facial behaviors, various numerical descriptions have been proposed
and developed in past decades, such as the volume of fluid (VOF)
method, front tracking method, level set method, and diffuse inter-
face method.15 The numerical model of multiphase flows based on
the diffuse interface method can be divided into two categories: one
is the direct numerical model based on the macroscopic Navier–
Stokes equation, and the other is the lattice Boltzmann (LB) method
based on the mesoscopic kinetic theory.16–18

The LB method has attracted a great deal of interest from the
academic community due to its unique properties, such as instinct
kinetic nature, relatively low numerical dissipation, and simple alge-
braic calculation of the streaming-collision process. To adopt these
features, various multiphase LB models have been developed to sim-
ulate multiphase flows, which can be categorized as the multiphase
LB model, multiphase LB flux solver, and fractional-step-based mul-
tiphase LB model (the simplified multiphase LB method). The pio-
neering multiphase LB model, i.e., the Shan–Chen pseudopoten-
tial model, was proposed by Shan and Chen19 in 1992. Then, a
free-energy LB model with double distribution functions (DDFs)
was proposed to simulate the Rayleigh–Taylor instability.20 Zheng
et al.21 developed a multiphase LB model based on the DDF in
which the Cahn–Hilliard (C–H) equation can be recovered by the
LB equation, which can maintain the Galilean invariance property.
The DDF strategy was developed and modified by various talented
scientists and widely used to predict multi-physical field coupled
flow and multi-component flow. Even significant development in
the multiphase LB models has been achieved in past three decades,
the inherent drawbacks, including the mass diffusion problem, the
poor numerical stability at the large density ratio, the high com-
putational redundancy, and the complicated implementation in the
boundary condition of physical variables, become a limitation of this
kind of numerical approach. To prevent the mass dissipation, Huang
et al.22 developed a mass-conserving axisymmetric LB model. This
kind of mass-correcting term is further performed in the LB flux
solver23 and the improved multiphase LB model.24 The multiphase
LB flux solver, incorporating the stability of the finite volume (FV)
method and the kinetic nature of the LB method, was first proposed
by Wang et al.23 However, the fundamental drawbacks, i.e., the large
memory consumption and the complex computational process, are
introduced in the LB flux solver, even though a great improvement
of numerical stability is achieved. To save the virtual memories and
computational time during the numerical simulation, Yuan et al.25

developed an LB flux solver by introducing an adaptive mesh refine-
ment (AMR) algorithm. Another numerical approach proposed by
Chen et al.26 is called the simplified LB model. In that numerical
model, the evolution of the density distribution function does not
need to be solved, which can save the virtual memories efficiently.26

Most recently, the simplified LB model was developed as an uncon-
ditionally stable LB model with truly second-order accuracy and
extended to simulate the multiphase flows with the large density
ratio.27–30

Despite the fact that various successful multiphase LB models
exist, there is still a challenging issue on simulating the magnetic
multiphase flows with a large density ratio under an external mag-
netic field due to the complex interfacial behaviors and the mag-
netic interaction between the magnetic and non-magnetic materials.
The LB model as a mesoscopic method has many unique proper-
ties mentioned above, but it is less used for the simulation of mag-
netic multiphase flows. To incorporate the external magnetic effect
into the LB method, Niu et al.31 proposed an LB model with triple
distribution functions for a single-phase heat transfer in the fer-
rofluid. In that model,31 the interaction between the magnetic and
non-magnetic materials is ignored, and the magnetic effect relied on
the temperature distribution function. Zhang and Che32 investigated
the natural convection of magnetic fluid in an inclined cavity by
using a multiple-relaxation-time thermal LB model with a constant
magnetic force. The similar multiple-relaxation-time LB model with
D3Q19 and D3Q17 models was developed by Sajjadi et al.,33 and the
magnetohydrodynamic natural convection in a three-dimensional
cubic cavity is investigated. The representative limitation in the
above-mentioned LB model is that the external magnetic force is
set as a fixed value or related with the temperature distribution
function, and thus, the evolution of the magnetic field and the cal-
culation for the magnetic interaction are not involved. Moreover,
the precise implementation of the magnetic effect plagued the aca-
demic community in the numerical simulation of magnetic fluid for
many years. To approach this problem, Shi et al.34 transferred the
magnetic body force into a magneto-strictive force term by using
the linearly elastic mechanics. After that, Ghaderi et al.35 numeri-
cally investigated a falling ferrofluid droplet by using the Shan–Chen
LB model with the magneto-strictive force term. Compared with
the fixed magnetic force model, the computational process of the
magneto-strictive force is related with the evolution of the external
magnetic field, and the local change in the magnetic force is con-
sidered. However, the apparent drawback of the magneto-strictive
force model is that the linearly elastic mechanics is used to approx-
imate the magnetic force, which is hard to physically describe the
effect of the external magnetic field. Hu et al.36 developed a multiple-
relaxation-time (MRT) LB model with triple distribution functions
to simulate the ferrofluid droplet behaviors. The evolution of the
external magnetic field is calculated by the MRT-LB model, but the
computational process is rather complicated. Although the bubble
merging process in the ferrofluid with a large density ratio was sim-
ulated by Hu et al.,36 the equilibrium shape of the merged bubble was
not consistent with the experimental results. Moreover, the magnetic
flux interaction between the magnetic and non-magnetic materials is
not involved in those numerical models.

To predict the interfacial behaviors of magnetic multiphase
flows with high fidelity, it is necessary to develop an LB model,
which has a clear numerical framework and a better numeri-
cal stability. Therefore, the purpose of this work is to develop a
magnetic field coupling fractional-step-based LB method, which
inherits the excellent performance of kinetic theory and the good
numerical stability of the fractional-step method,37 to simulate the
dynamics and the interfacial behaviors of magnetic multiphase
flow under an external uniform magnetic field. This numerical
model is developed within the LB framework. The relation between
macroscopic governing equations and the DDF in the LB model is
established by the Chapman–Enskog expansion analysis, and then,
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a prediction–correction strategy for the macroscopic physical vari-
ables by the fractional-step method37 is reconstructed. To evaluate
the external magnetic field with the interaction of magnetic flux den-
sity between the magnetic and non-magnetic regions, the Poisson
equation solver with a self-correcting procedure38 is employed. The
Gaussian transformation is preformed to transfer the magnetic body
force to the magnetic surface force mathematically so that the effect
of the external magnetic force can be directly incorporated into the
external force term of the fractional-step-based LB equation.

The remainder of this article is organized as follows. In Sec. II,
the macroscopic governing equations and the multiphase LB model
with the DDF for magnetic multiphase flow are first introduced; the
relation between mesoscopic variables and macroscopic variables
is, then, established through the Chapman–Enskog expansion anal-
ysis; a multiphase LB model based on the fractional-step method
is further presented; and the Poisson equation solver with a self-
correcting procedure for solving the magnetic field is finally rep-
resented. In Sec. III, several typical physical problems, such as a
bubble rising with a large density ratio, a stationary cylinder under
an external uniform magnetic field, the magnetic induced interfacial
deformation of a single ferrofluid droplet, the interfacial deforma-
tion of an aqueous droplet in the ferrofluid, and a bubble rising
in the ferrofluid under an external magnetic field, are simulated to
demonstrate the accuracy and capability of the present magnetic
field coupling fractional-step-based multiphase lattice Boltzmann
model. Finally, the conclusions are drawn in Sec. IV.

II. METHODOLOGY
A. Macroscopic governing equations

In this work, a fractional-step-based LB method is extended to
simulate magnetic multiphase flows comprising of magnetic fluid
and non-magnetic fluid. The governing equations for the incom-
pressible, isothermal, and immiscible two-component flow with the
magnetic effect include the continuity, momentum, and interface
capturing equations, which read

∂ρ
∂t

+ ρ∇ ⋅ u = 0, (1)

∂ρu
∂t

+∇ ⋅ (ρuu) = −∇p +∇[μ ⋅ (∇u + (∇u)T)] + Fg + Fs + Fm,

(2)

∂C
∂t

+ (u ⋅ ∇)C =M∇2μC, (3)

where ρ, u, p, and μ are the fluid density, velocity, pressure, and
dynamic viscosity, respectively. M denotes the mobility of the C–H
equation. The external forces include the gravitational force Fg , the
surface tension force Fs, and the magnetic surface force Fm, which
can be expressed as

Fg = ρg, (4)

Fs = −C∇μC, (5)

Fm = ∇ ⋅ τm, (6)

where g is the gravity, μC is the chemical potential, C is the order
parameter varying in the range of [0, 1], and τm represents the
magnetic stress tensor. The chemical potential can be written as39

μC = 2AC(C − 1)(2C − 1) − κ∇2C, (7)

where A and κ are two constant parameters related with the inter-
facial thickness40 W and the surface tension coefficient σ, which are
given by

A = 12σ
W

, (8)

κ = 3Wσ
2

. (9)

B. Multiphase lattice Boltzmann model
Under the multiphase lattice Boltzmann framework, the evo-

lutions of the flow field and the interface are achieved by updating
the distribution functions of the hydrodynamic field and the order
parameter field, respectively. The lattice Boltzmann equations with
DDFs for the N–S equations and the C–H equation are developed as

fα(r + eαδt, t + δt) − fα(r, t) = −
1
τf
(fα(r, t) − f eqα (r, t)) + Sαδt,

(10)

gα(r + eαδt, t + δt) − gα(r, t) = −
1
τg
(gα(r, t) − geqα (r, t)), (11)

with

Sα = (1 − 1
2τf
)(eα − u) ⋅ {Γα(u)(Fg + Fs + Fm)

− [Γα(u) − Γα(0)]∇ζ(ρ)}, (12)

Γα(u) = ωα[1 +
eα ⋅ u
c2
s

+
(eα ⋅ u)2

2c4
s
− ∣u∣

2

2c2
s
], (13)

ζ(ρ) = p − ρRT = p − ρc2
s , (14)

f eqα (r, t) = ρc2
s Γα(u) + ζ(ρ)Γα(0)

= ωα[p + ρc2
s(

eα ⋅ u
c2
s

+
(eα ⋅ u)2

2c4
s
− ∣u∣

2

2c2
s
)], (15)

geqα =
⎧⎪⎪⎨⎪⎪⎩

C − μCQ(1 − ω0)/c2
s , α = 0,

ωα(μCQ + Ceα ⋅ u)/c2
s , α = 1 − 8,

(16)

where f α(r, t) and gα(r, t) are the distribution functions of the hydro-
dynamic field and the order parameter field with the lattice veloc-
ity eα and the weighting coefficient ωα, respectively; f eqα (r, t) and
geqα (r, t) are the corresponding equilibrium distribution functions of
the hydrodynamic field and the order parameter field, respectively;
δt represents the time interval; Sα denotes the external force term,
in which Fg , Fs, and Fm are the gravitational force, surface tension
force, and magnetic surface force in Eq. (2); ζ(ρ) is the incompress-
ible transformation term, which is related with the pressure;20 τf and
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τg are the single relaxation parameters in the LB equation for the N–
S equations and the C–H equation, respectively, which are related to
the dynamic viscosity μ and the diffusion parameter Q through

τf =
μ

ρc2
s δt

+
1
2

, (17)

τg =
M
Qδt

+
1
2

, (18)

where cs is the speed of sound and Q is the diffusion parameter.
The D2Q9 lattice model41 is adopted in the present work, and the
corresponding lattice velocity and weighting coefficients are given
as

eα =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0, 0), α = 0,

c[cos( (α−1)π
2 ), sin( (α−1)π

2 )], α = 1, 2, 3, 4,
√

2c[cos( (α−1)π
2 ), sin( (α−1)π

2 )], α = 5, 6, 7, 8,

(19)

ωα = [ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8]T

= [ 4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36 ]

T, (20)

where c = δr/δt is set as 1 and δr represents the lattice spacing.

C. Chapman–Enskog expansion analysis
The LB framework is established in the mesoscopic scale based

on the kinetic theory. To derive the fractional-step-based multiphase
LB model, the macroscopic variables recovered from the original LB
model need to be obtained first. The Chapman–Enskog expansion
analysis,42 as one of the multiscale analysis, is always performed to
construct the relation between the mesoscopic scale and the macro-
scopic scale. In this part, the macroscopic governing equations,
i.e., the N–S equations and the C–H equation, are recovered from
the multiphase LB model through the Chapman–Enskog expansion
analysis. The distribution functions, the space and time derivatives,
and the force term can be defined in multiscale as follows:

fα = f (0)α + εf (1)α + ε2f (2)α , gα = g(0)α + εg(1)α + ε2g(2)α , (21)

∂

∂t
= ε ∂

∂t0
+ ε2 ∂

∂t1
,∇ = ε∇1, (22)

Sα = εS(1)α , (23)

where ε is a small expansion parameter. Substituting Eqs. (21)–(23)
into Eqs. (10) and (11) yields

(ε ∂

∂t0
+ ε2 ∂

∂t1
+ εeα ⋅ ∇1)[f (0)α + εf (1)α + ε2f (2)α ]

+
δt
2
(ε ∂

∂t0
+ ε2 ∂

∂t1
+ εeα ⋅ ∇1)

2
[f (0)α + εf (1)α + ε2f (2)α ] + O(δt2)

= − 1
τf δt
[f (0)α + εf (1)α + ε2f (2)α − f eqα ] + εS(1)α , (24)

(ε ∂

∂t0
+ ε2 ∂

∂t1
+ εeα ⋅ ∇1)[g(0)α + εg(1)α + ε2g(2)α ]

+
δt
2
(ε ∂

∂t0
+ ε2 ∂

∂t1
+ εeα ⋅ ∇1)

2
[g(0)α + εg(1)α + ε2g(2)α ]

= − 1
τgδt
[g(0)α + εg(1)α + ε2g(2)α − geqα ]. (25)

From Eqs. (24) and (25), the following relations in different
scales can be given as

ε0 : f (0)α = f eqα , (26a)

ε0 : g(0)α = geqα , (26b)

ε1 : ( ∂

∂t0
+ eα ⋅ ∇1)f (0)α = − 1

τf δt
f (1)α + S(1)α , (27a)

ε1 : ( ∂

∂t0
+ eα ⋅ ∇1)g(0)α = − 1

τgδt
g(1)α , (27b)

ε2 :
∂

∂t1
f (0)α + (1 − 1

2τf
)( ∂

∂t0
+ eα ⋅ ∇1)f (1)α

= − 1
τf δt

f (2)α − δt
2
( ∂

∂t0
+ eα ⋅ ∇1)S(1)α , (28a)

ε2 :
∂

∂t1
g(0)α + (1 − 1

2τg
)( ∂

∂t0
+ eα ⋅ ∇1)g(1)α = − 1

τgδt
g(2)α .

(28b)

Then, the relations between the mesoscopic component and the
macroscopic component are established, which read

∑
α
f eqα = p,∑

α
eαf eqα = ρuc2

s ,∑
α
eαeβf

eq
α = ρuuc2

s + pc2
s , (29a)

∑
α
geqα = C,∑

α
eαgeqα = Cu,∑

α
eαeαgeqα = Cuu + QμCc2

s , (29b)

∑
α
f (1)α = −δt

2
u ⋅ ∇1ρc2

s ,∑
α
eαf (1)α

= −δt
2
c2
s (Fg + Fs + Fm),∑

α
f (2)α = 0, (30a)

∑
α
g(1)α = 0,∑

α
eαg(1)α = −τgδt[

∂

∂t0
(Cu) +∇

⋅ (Cuu + c2
sQμC)],∑

α
g(2)α = 0, (30b)

∑
α
S(1)α = (1 − 1

2τf
)u ⋅ ∇1ρc2

s ,∑
α
eαS(1)α

= (1 − 1
2τf
)c2

s (Fg + Fs + Fm). (30c)
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The nonequilibrium parts in Eqs. (27a) and (27b) are repre-
sented as

f neqα = fα − f eqα ∼ εf (1)α = −τf δt[(
∂

∂t
+ eα ⋅ ∇)f eqα − Sα], (31a)

gneqα = gα − geqα ∼ εg(1)α = −τf δt(
∂

∂t
+ eα ⋅ ∇)geqα , (31b)

∑
α
f neqα = −δt

2
c2
su ⋅ ∇ρ,∑

α
eαf neqα = −δt

2
c2
s (Fg + Fs + Fm),

∑
α
gneqα = 0.

(32)

The equivalent macroscopic governing equations can be recov-
ered by assembling the zeroth and first order moments of Eqs. (27)
and (28), which can be written as

∂p
∂t

+∇ ⋅∑
α
eαf eqα = u ⋅ ∇ρc2

s , (33)

∂ρuc2
s

∂t
+∇ ⋅∑

α
eαieαj[f eqα + (1 − 1

2τf
)f neqα ] +

δt
2
∇ ⋅∑

α
eαieαjSα

= c2
s (Fg + Fs + Fm), (34)

∂C
∂t

+∇ ⋅∑
α
eαgeqα + (1 − 1

2τg
)∇ ⋅∑

α
egneqα = 0. (35)

D. Fractional-step-based multiphase lattice
Boltzmann model

The substance of the fractional-step-based LB model is to
reconstruct the relations between the mesoscopic variables and
the macroscopic variables through the Chapman–Enskog expan-
sion analysis. The macroscopic variables are solved by using a
prediction–correction strategy, which is based on the fractional-
step method.26,30,35 Following the similar mathematical procedure of
the simplified multiphase LB method by Chen et al.,26,30 Eqs. (33)–
(35) are separated into two parts, i.e., the prediction part and the
correction part.

In the prediction step, the reconstructing macroscopic gov-
erning equations separated from Eqs. (33)–(35) can be written as
follows:

∂p
∂t

+∇ ⋅∑
α
eαf eqα − u ⋅ ∇ρc2

s = 0, (36a)

∂ρuc2
s

∂t
+∇ ⋅∑

α
eαieαj[f eqα −

δt
2
( ∂
∂t

+ eα ⋅ ∇)f eqα ] = 0, (36b)

∂C
∂t

+∇ ⋅ [∑
α
eαgeqα −

δt
2 ∑α

eα(
∂

∂t
+ eα ⋅ ∇)geqα ] = 0. (36c)

The intermediate hydrodynamic variables and the intermediate
order parameter are given as

p̃ =∑
α
f eq_c
α (r − eαδt, t − δt), (37a)

ρ̃ũc2
s =∑

α
eαf eqα (r − eαδt, t − δt), (37b)

C̃ =∑
α
geqα (r − eαδt, t − δt), (37c)

where the superscript “eq_c” denotes the equilibrium distribution
function calculated by the density on the central mesh node and the
hydrodynamic variables on the streaming nodes. By adopting the
Taylor series expansion analysis, the above equilibrium distribution
function can be written as

f eq_c
α (r − eαδt, t − δt) = f eqα (r − eαδt, t − δt) + [Γα(u) − Γα(0)]eαδt

⋅ ∇ρc2
s + O(δt2), (38a)

f eqα (r − eαδt, t − δt) = f eqα (r, t) − δt(
∂

∂t
+ eα ⋅ ∇)f eqα (r, t)

+
δt2

2
( ∂
∂t

+ eα ⋅ ∇)
2
f eqα (r, t) + O(δt3),

(38b)

geqα (r − eαδt, t − δt) = geqα (r, t) − δt(
∂

∂t
+ eα ⋅ ∇)geqα (r, t)

+
δt2

2
( ∂
∂t

+ eα ⋅ ∇)
2
geqα (r, t) + O(δt3).

(38c)

Substituting Eqs. (38a)–(38c) into Eqs. (37a)–(37c) and apply-
ing the similar mathematical procedure of Chen et al.,30 the recon-
structing macroscopic governing equations can be recovered as

p̃ =∑
α
f eq_c
α (r − eαδt, t − δt)

= p − δt[∂p
∂t

+∇ ⋅∑
α
eαf eqα − u ⋅ ∇ρc2

s + O(δt)], (39a)

ρ̃ũc2
s =∑

α
eαf eqα (r − eαδt, t − δt)

= ρuc2
s − δt{

∂ρuc2
s

∂t
+∇ ⋅∑

α
eαieαj[f eqα −

δt
2
( ∂
∂t

+ eα ⋅ ∇)f eqα ]

+O(δt2)}, (39b)

C̃ =∑
α
geqα (r − eαδt, t − δt)

= C − δt{∂C
∂t

+∇ ⋅ [∑
α
eαgeqα −

δt
2 ∑α

eα(
∂

∂t
+ eα ⋅ ∇)geqα ]

+O(δt2)}. (39c)

In the correction step, the reconstructing macroscopic govern-
ing equations can be written as follows:

∂p
∂t
= 0, (40a)

∂ρuc2
s

∂t
−∇ ⋅ (τf − 1)∑

α
eαieαjδt(

∂

∂t
+ eα ⋅ ∇)f eqα +∇

⋅ τf δt∑
α
eαleαmSα = c2

s (Fg + Fs + Fm), (40b)

∂C
∂t
−∇ ⋅ (τg − 1)δt∑

α
eα(

∂

∂t
+ eα ⋅ ∇)geqα = 0. (40c)
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The hydrodynamics variables and the order parameter are
given as

p = p̃, (41a)

ρuc2
s = ρ̃ũc2

s +∑
α
eα[f̃ eqα (r +

δt
2
eα, t − δt

2
) − f̃ eqα (r −

δt
2
eα, t − δt

2
)]

− δt
2 ∑α

eα[S̃α(r +
δt
2
eα, t − δt

2
) − S̃α(r −

δt
2
eα, t − δt

2
)]

+ c2
s (Fg + Fs + Fm)δt, (41b)

C = C̃ +∑
α
eα[g̃eqα (r +

δt
2
eα, t − δt

2
) − g̃eqα (r −

δt
2
eα, t − δt

2
)],

(41c)

with

f̃ eqα (r +
δt
2
eα, t − δt

2
) = [τf (r +

δt
2
eα, t − δt

2
) − 1][f eqα (r + eαδt, t)

− f eqα (r, t − δt)], (42a)

f̃ eqα (r −
δt
2
eα, t − δt

2
) = [τf (r −

δt
2
eα, t − δt

2
) − 1][f eqα (r, t)

− f eqα (r − eαδt, t − δt)], (42b)

S̃α = τf Sα, (42c)

g̃eqα (r +
δt
2
eα, t − δt

2
) = geqα (r + eαδt, t) − geqα (r, t − δt), (42d)

g̃eqα (r −
δt
2
eα, t − δt

2
) = geqα (r, t) − geqα (r − eαδt, t − δt). (42e)

Similar to the recovering process in the prediction step, the
reconstructing macroscopic governing equation in the correction
step can be recovered from Eq. (41) by using the Taylor series expan-
sion analysis. The above equilibrium distribution function can be
written as

f̃ eqα (r ±
δt
2
eα, t − δt

2
) = δt[τf (r, t −

δt
2
) − 1]( ∂

∂t
+ eα ⋅ ∇)f eqα

⋅(r, t − δt
2
) ± δt

2

2
eα ⋅ ∇[τf (r, t −

δt
2
) − 1]

⋅( ∂
∂t

+ eα ⋅ ∇)f eqα (r, t −
δt
2
) + O(δt3),

(43a)

S̃α(r ± eαδt, t −
δt
2
) = δtτf (r, t −

δt
2
)Sα(r, t −

δt
2
)

± δt2eα ⋅ ∇[τf (r, t −
δt
2
) − 1]Sα(r, t −

δt
2
)

+O(δt3), (43b)

g̃eqα (r ±
δt
2
eα, t − δt

2
) = δt( ∂

∂t
+ eα ⋅ ∇)geqα (r, t −

δt
2
)

± δt
2

2
eα ⋅ ∇(

∂

∂t
+ eα ⋅ ∇)geqα (r, t −

δt
2
)

+O(δt3). (43c)

Substituting Eqs. (43a)–(43c) into Eqs. (41a)–(41c) gives

p − p̃
δt
= 0, (44a)

ρuc2
s − ρ̃ũc2

s

δt
= [∇ ⋅ (τf − 1)∑

α
eαieαjδt(

∂

∂t
+ eα ⋅ ∇)f eqα

−∇ ⋅ τf δt∑
α
eαleαmSα + c2

s (Fg + Fs + Fm)]
r,t−0.5δt

+O(δt2), (44b)

C − C̃
δt
= [∇ ⋅ (τg − 1)δt∑

α
eα(

∂

∂t
+ eα ⋅ ∇)geqα ]

r,t−0.5δt

+O(δt2). (44c)

From the Taylor series expansion analysis, except that the
reconstructing continuity equation in the prediction step is in
the first order accuracy, which is shown in Eq. (39a), the rest of the
reconstructing macroscopic governing equations are in the second-
order accuracy. However, the approximation of the reconstructing
continuity equation is acceptable in the numerical simulations of
incompressible, isothermal, and immiscible two-component flow
due to the incompressible limit and its capability to predict a rela-
tively smooth pressure field. Therefore, the proposed model inherits
the excellent performances of the kinetic theory from the LB method
and integrates the good numerical stability from the fractional-
step method. Meanwhile, the macroscopic variables can be simply
and directly calculated by the equilibrium distribution functions
instead of solving the evolution of the density distribution function,
which saves the virtual memories and simplifies the computational
process.

E. Magnetic field and magnetic surface force
To precisely calculate the distribution of the magnetic field

with the consideration of the magnetic flux density on the interface
between the magnetic and non-magnetic regions, a Poisson equa-
tion solver with a self-correcting procedure for the evolution of the
external magnetic field is first introduced. The magnetic body force
can, then, be derived from the Lorentz force and the static Maxwell
equations. To physically describe the magnetic effect, the magnetic
dipole force (Kelvin magnetic force) for the non-conducting fer-
rofluid obtained from the magnetic body force is transformed into
the magnetic surface force by a rigorous mathematical procedure
developed by Rosensweig.43

The static uniform magnetic field can be described by the
following Maxwell equations:43

∇ ⋅ B = 0, (45a)

∇×H = J, (45b)

where B is the magnetic flux density, H is the magnetic intensity, and
J is the electric current density. For the non-conducting ferrofluid,
the electric current density approximates to zero, and the relation
between B and H can be represented as

B = η0(H + M) = η0(1 + χ)H = ηH, (46)

Phys. Fluids 32, 083309 (2020); doi: 10.1063/5.0020903 32, 083309-6

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

where M is the magnetization, η is the magnetic permeability, and
χ is the relative magnetic susceptibility. The vacuum magnetic per-
meability η0 is 4π × 10−7 N/A−2. The magnetic intensity can be
determined by the magnetic scalar potential ψ through

H = −∇ψ. (47)

Substituting Eqs. (46) and (47) into Gauss’s law for mag-
netism [Eq. (45a)], the following magnetic potential equation can
be obtained:

∇ ⋅ (η∇ψ) = 0. (48)
To ensure the conservation law for the electric current density,

a Poisson equation solver with a self-correcting procedure based on
Ohm’s law and the Maxwell equation is used to predict the distri-
bution and evolution of the magnetic field, which can be written
as38,44,45

∇2ψi+1 = 1
η
(1 − 1

εB
)∇ ⋅ Bi, (49a)

B∗ = −η∇ψi+1, (49b)

Bi+1 = Bi + εB(B∗ − Bi), (49c)

where εB is the relation coefficient (0 < εB < 1) and Bi, B∗, and Bi+1

are the magnetic flux densities at the i iteration step, the interme-
diate step, and the i + 1 iteration step, respectively. In the present
work, to satisfy the conservation law, the numerical calculation pro-
cess continues until the self-correcting procedure term of Eq. (49b)
becomes sufficiently small (lower than 10−5). To solve the interac-
tion between the magnetic and non-magnetic regions, the conjugate
boundary condition is implemented. Based on the Lorentz force law,
the resultant force f of the magnet field B and the electric field E can
be written as

df = q(E + v × B), (50)
where q is the electric charge with the instantaneous velocity v. Thus,
the Lorentz body force per unit volume can be described as

f = ρe(E + v × B) = ρeE + ρev × B = ρeE + J × B, (51)

where ρe is the change density. Maxwell’s first equation (the Gauss
law for the electric field) reads

∇ ⋅ E = ρ
ε0

, (52)

where ε0 is the vacuum electric permittivity. Maxwell’s fourth equa-
tion (Ampere’s circuital law with Maxwell’s correction) reads

∇× B = η0J + η0ε0
∂E
∂t

. (53)

By substituting Eqs. (52) and (53) into Eq. (51), the Lorentz body
force can be written as

f = ε0(∇ ⋅ E)E +
1
η0
(∇× B) × B − ε0

∂E
∂t
× B. (54)

To solve the time derivative term of Eq. (54), Maxwell’s third
equation (Faraday’s law of induction) and Maxwell’s second equa-
tion (the Gauss law for magnetism) are introduced as

∇× E = −∂B
∂t

, (55a)

∇ ⋅ B = 0. (55b)

By applying the above equations and the product rule, the
following time derivative can be obtained:

∂

∂t
(E × B) = ∂E

∂t
× B + E × ∂B

∂t
= ∂E

∂t
× B − E × (∇× E). (56)

Then, the Lorentz body force can be further derived as

f = ε0[(∇ ⋅ E)E − E × (∇× E)] +
1
η0
[B(∇ ⋅ B) − B × (∇× B)]

− ε0
∂

∂t
(E × B). (57)

The magnetic dipole force for the non-conductive ferrofluid,
i.e., the Kelvin magnetic force, which is derived from the Lorentz
body force and the static Maxwell equation, can be presented as

Fmb =
1
η0
[B(∇ ⋅ B) − B × (∇× B)] =M∇B −M × J =M∇B. (58)

For the general Maxwell stress tensor, the following rule for
eliminating the curls is introduced:

1
2
∇(B ⋅ B) = B × (∇× B) + (B ⋅ ∇)B. (59)

Substituting the above equation into Eq. (57), the Lorentz body
force can be further simplified as

f = ε0[(∇ ⋅ E)E −
1
2
∇(E ⋅ E) + (E ⋅ ∇)E] +

1
η0
[B(∇ ⋅ B)

− 1
2
∇(B ⋅ B) + (B ⋅ ∇)B] − ε0

∂

∂t
(E × B). (60)

Reorganizing the above equation, we can obtain the following
equation:

f = ε0[(∇ ⋅ E)E + (E ⋅ ∇)E] +
1
η0
[B(∇ ⋅ B) + (B ⋅ ∇)B]

− 1
2
∇(ε0E2 +

1
η0

B2) − ε0
∂

∂t
(E × B). (61)

Thus, the total body force is given as

F =∭
V

fdV = − d
dt∭

V

ε0(E × B)dV +∭
V

ΠdV , (62a)

with

Π = ε0[(∇ ⋅ E)E + (E ⋅ ∇)E] +
1
η0
[B(∇ ⋅ B) + (B ⋅ ∇)B]

− 1
2
∇(ε0E2 +

1
η0

B2). (62b)

By applying the divergence theorem, Eq. (62) can be trans-
formed as43

F = − d
dt∭

V

ε0(E × B)dV +∬
S

τ ⋅ ndS, (63a)

with

τij = ε0(EiEj −
1
2
δijE2) +

1
μ0
(BiBj −

1
2
δijB2)

= ε0(EiEj −
1
2
δijE2) + (HiBj −

μ0

2
δijH2). (63b)
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Therefore, the magnetic stress tensor is given as

τm = −
η0

2
∣H∣2I + HB, (64)

where I denotes the identity operator. Then, the magnetic surface
force can be derived as

Fms = ∇ ⋅ τm = −∇ ⋅ (
μ0

2
∣H∣2 −HB). (65)

To simplify the numerical model, the mathematical strategy of
Rosensweig43 is adopted. The magnetic body force is mathematically
equivalent to the magnetic surface force, which becomes easy-to-
implement and can be directly incorporated into the external force
term of the LB model. Thus, the magnetic surface force term in
Eq. (2) can be evaluated by

Fm = ∇ ⋅ τm = −
μ0

2
∇(∣H∣2) + (B ⋅ ∇)H = −μ0χ

2
∇∣H∣2. (66)

F. Computational sequence
The computational sequence of the magnetic field coupling

fractional-step-based LB model can be summarized as follows:

(1) Initialize the fluid field and the magnetic field.
(2) Specify the streaming distance δx. Determine the relaxation

parameters τf and τg .
(3) Evaluate the magnetic field through Eqs. (39a)–(39c).
(4) Prediction step: use Eqs. (37a)–(37c) to evaluate the interme-

diate physical properties p̃, ρ̃, ũ, and C̃.
(5) Implement the appropriate boundary conditions for the

intermediate physical properties.
(6) Correction step: use Eqs. (41a)–(41c) to update the macro-

scope variables.
(7) Implement the appropriate boundary conditions for the

macroscopic variables, which are essentially the same as those
imposed in step (5).

(8) Repeat steps (3)–(7) until the computational convergence cri-
terion is satisfied or the prescribed maximum iteration step is
reached.

III. RESULTS AND DISCUSSION
In this section, several typical numerical tests are performed to

validate the accuracy and capability of the proposed model. First, the
grid independence study and the validation of the present method
are examined by simulating a gas bubble rising in a stationary liquid
and a stationary cylinder under a uniform magnetic field, respec-
tively. Second, the magnetic field induced interfacial deformation
of a ferrofluid droplet is simulated by the present numerical model
and compared with the pioneering experimental result.47 Third, to
investigate the interfacial deformation of non-magnetic materials in
magnetic multiphase flows, an aqueous droplet and a gas bubble
in the ferrofluid under an external uniform magnetic field are sim-
ulated. Finally, a bubble rising in the ferrofluid under an external
uniform magnetic field is investigated.

A. Grid independence study and validation
To ensure a grid independence solution and evaluate the accu-

racy of the present LB model, a grid sensitivity investigation is per-
formed by simulating a gas bubble rising in a stationary liquid on
different grid sizes with the same physical settings. In this case, the
mass transfer and the complex interfacial behavior of the gas bubble
are the consequences under the complicated interactions of surface
tension force, gravitational effect (buoyancy force), inertial force,
and viscous force. The characteristic length is set as the diameter of
the bubble D. The key dimensionless parameters used in this simu-
lation include the Reynolds number Re, the Eotvos number Eo, and
the Froude number Fr, which are defined as Re = ρUD

μ , Eo = ρgD2

σ ,

and Fr = U2

gD , respectively. The normalized time is given as T = t
√

g
L

with the iteration time t. For this grid independence test, a station-
ary gas bubble with the diameter D = 0.5 mm is located at a 2D × 4D
physical domain. Five different grid sizes of G1 (51 × 101), G2 (101
× 201), G3 (151 × 301), G4 (201 × 401), and G5 (251 × 501) are
considered. The single bubble rises under the conditions of Re = 40,
Fr = 1, the density ratio ρL/ρG = 1000, and the viscosity ratio
μL/μG = 100. The interfacial thickness and the mobility are set to be
4 and 0.1, respectively. The no-slip boundary condition is employed
on the top and bottom walls, and the periodic boundary condition is
applied on the left and right walls.

Figures 1 and 2 show the time evolutions of the interfacial shape
for the bubble rising at Eo = 10 and 50 under five different grid
resolutions, respectively. The interfacial shapes at the same instan-
taneous time for different Eo are quite variform since Eo represents
the ratio of the surface tension effect and gravitational effect. When
a single gas bubble rises at a lower Eo of 10, a semicircular shape is
formed although the surface tension force tends to restrain the gas
bubble into a circular shape. When Eo increases to 50, a pair of tails
appears at the edge of the gas bubble and develops during the ris-
ing process because the surface tension effect is reduced and cannot
pull the stretched tails back to the main body. The differences in the
interfacial shape can be hardly observed when the grid size is finer
than G3, i.e., 151 × 301.

Figure 3 compares the variation of the mass center with time for
the bubble rising at Eo = 10 and 50, respectively. The mass center Yp

is defined as Yp = ∫C<0.5 ydx
∫C<0.5 1dx . Also included in Fig. 3 are the benchmark

solutions of Wang et al.,46 which are calculated by a mass-conserving
multiphase LB flux solver based on a diffuse interface method. The
mass center quantitatively represents the continuously rising motion
of the bubble, and the differences in the trajectory of Yp are negligi-
ble when the grid size is finer than G3. Figures 2 and 3 indicate that
the present LB model can provide the grid independence solution
if the grid size is fine enough. Moreover, the good agreement
between the present results and those of Wang et al.46 verifies the
accuracy and the reliability of the present magnetic field coupling
fractional-step-based LB model for the simulation of multiphase
flows with a large density ratio and complex interfacial deformation.

To validate the accuracy and capability of the Poisson equa-
tion solver with a self-correcting procedure for the calculation of
the external magnetic field, a stationary circular cylinder under an
external uniform magnetic field is investigated. In this simulation, a
two-dimensional circular cylinder with radius R = 0.1 mm is located
at the center of a 1 × 1 mm2 computational domain, which is
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FIG. 1. Comparison of the interfacial
shape for the bubble rising with Eo
= 10 at the same instantaneous time
under the grid sizes of G1 (red), G2
(green), G3 (purple), G4 (yellow), and G5
(black).

FIG. 2. Comparison of the interfacial
shape for the bubble rising with Eo
= 50 at the same instantaneous time
under the grid sizes of G1 (red), G2
(green), G3 (purple), G4 (yellow), and G5
(black).

discretized by 201× 201 lattice units. The initial magnetic field inten-
sity H0 is equal to 1.0 kA/m. The magnetic boundary condition on
the top and bottom boundaries is

∂ψ
∂y
= −H0. (67)

The magnetic insulation condition is imposed at the left and
right boundaries as

∂ψ
∂x
= 0. (68)

The magnetic permeability of the circular cylinder is set as a
fixed value, and thus, the magnetic field intensity around the circu-
lar cylinder solely depends on the magnetic permeability of the base
fluid. Figure 4 compares the distribution of the magnetic flux density
when η1/η2 is equal to 3 (magnetic cylinder) and 1/3 (non-magnetic
cylinder). When the magnetic permeability of the stationary circular
cylinder is larger than that of the base fluid, the magnetic circular is

easier to be magnetized than the surrounding based fluid, and thus,
the streamlines around the magnetic cylinder tend to cross the inter-
face, as shown in Fig. 4(a). On the contrary, the surrounding fluid is
easier to be magnetized than the non-magnetic stationary circular
cylinder when the magnetic permeability of the stationary circular
cylinder is smaller than that of the base fluid, and thus, the stream-
lines around the magnetic cylinder avoid the interface, as shown in
Fig. 4(b).

The magnetic field intensity inside the stationary circular cylin-
der under the external uniform magnetic field can be solved analyt-
ically, which is used as a benchmark solution to verify the present
numerical result. The magnetic potential equation in Eq. (48) can be
written in the polar coordinates as43

∂

∂r
(r∂ψ

∂r
) +

1
r
∂2ψ
∂θ2 = 0, (69)

where r and θ are the radial and angular coordinates, respectively.
By applying the method of separation of variable, the analytical
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FIG. 3. Comparison of the mass center with the benchmark solutions for the bubble
rising at (a) Eo = 10 and (b) Eo = 50.

solution of the magnetic field intensity inside the circular cylinder
can be given as

H = −∇ψ = 2μ2

μ1 + μ2
H0 sin θer +

2μ2

μ1 + μ2
H0 cos θeθ. (70)

Figure 5 shows the variation of the magnetic intensity inside
the stationary circular cylinder with the magnetic permeability ratio
between the circular cylinder and the base fluid (η1/η2). A good
agreement between the analytical and numerical results is observed,

FIG. 4. The streamlines (left) and the contour (right) of magnetic flux density at
different magnetic permeability ratios: (a) μ1/μ2 = 3 and (b) μ1/μ2 = 1/3.

which verifies the accuracy and capability of the Poisson equation
solver with a self-correcting procedure for the calculation of the
external magnetic field.

B. Magnetic field induced interfacial deformation of
ferrofluid droplet

In this subsection, the interfacial deformation of a single water-
based ferrofluid droplet immersed in organic oil under an external
uniform magnetic field is simulated by using the present numerical
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FIG. 5. The magnetic field intensity inside the stationary circular cylinder with a
different magnetic permeability ratio between the circular cylinder and the base
fluid.

method. Figure 6 shows the sketch of the geometric configuration
and boundary conditions. Flament et al.47 measured the deforma-
tion of a single ferrofluid droplet confined in a narrow gap between
two parallel flat layers. Based on their experimental setup, this prob-
lem can be regarded as a two-dimensional multiphase flow under an
external magnetic field. The interfacial deformation of the ferrofluid
droplet showed a wide variety of equilibrium shapes under the uni-
form magnetic field, which is a consequence of the combinational
effect of surface tension force, magnetic force, inertial force, and vis-
cous force. Thus, the key dimensionless parameters involved in this
simulation include the Reynolds number Re, the Weber number We,
and the magnetic Bond number Bom, which are defined as Re = ρUD

μ ,

We = ρU2D
σ , and Bom = ηH2D

σ , respectively.
The physical parameters used in the numerical simulation are

same as those in the experiment by Li et al.45 The densities of fer-
rofluid and organic oil are 1580 kg/m3 and 800 kg/m3, respectively.
The density ratio and the viscosity ratio are set as 1.975 and 20,
respectively. The surface tension coefficient and the relative mag-
netic susceptibility are 3.07 mN/m and 2.2, respectively. The com-
putational domain is discretized by 201 × 201 lattice units, which
has been found fine enough to generate the grid independent solu-
tion by our preliminary test. This interfacial deformation of a single
ferrofluid droplet is simulated under the condition of Re = 25.28 and
We = 2.06. The mobility and the interfacial thickness are set as 0.1
and 4, respectively. The no-slip boundary conditions are imposed at
all the boundaries of the computational domain.

Figure 7 shows the interfacial deformations of a single fer-
rofluid droplet at the equilibrium stage for different Bom = 0, 0.59,
2.36, 3.44, 5.60, and 12.38. The red elliptical curves in Fig. 7 rep-
resent the interfacial position at the equilibrium stage obtained by

FIG. 6. The sketch of the geometric profiles and boundary conditions for the
interfacial deformation of a single ferrofluid droplet under a uniform magnetic field.

the present numerical model. Both the experimental and numer-
ical results show that the interfacial deformations of a single fer-
rofluid droplet rely on the strength of the external magnetic field,
and its elongations increase with Bom. To quantitatively investigate
the elongation, the corresponding elongation ratio defined as the
ratio between the semi-major axis a and the semi-minor axis b of
the ferrofluid droplet in Fig. 7 is evaluated. The numerical result of
the elongation ratio at the equilibrium stage obtained by the present
model is plotted in Fig. 8, with the comparison of the experimental
measurements by Flament et al.47 and the computational results by
Hu et al.36 It can be seen that the present results agree well with the
published data, which verifies the capability of the present numeri-
cal model to predict this magnetic multiphase flow. Compared with
the experimental results, the difference at high Bom may be caused
by the non-Newtonian effect of ferrofluid, which is non-negligible
at a strong external magnetic field. However, the non-Newtonian
effect of ferrofluid is the complicated combination of materials, the
micro-structures of magnetic nanoparticles,9 the magnetization pro-
cess,45 etc., and the physical model is still lacking, which is, thus, not
considered in this work.

To further investigate the dynamic deformation process of the
single ferrofluid droplet, the time evolutions of the semi-major axis
a and the semi-minor axis b of the ferrofluid droplet at different
Bom are illustrated in Fig. 9. The interfacial shape of the ferrofluid
droplet elongates immediately after the external magnetic field is
applied and, then, experiences a damped oscillation period before
reaching the equilibrium stage. In fact, this interfacial deformation
process results from the competition between the magnetic force
and the surface tension force. Generally, each magnetic nanoparticle
dispersed in the base fluid becomes a tiny magnet under the magne-
tization of the external magnetic field, and thus, the entire ferrofluid
droplet can be regarded as a magnetized magnet. The magnetic force
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FIG. 7. The interfacial deformations of a single ferrofluid droplet at the equilibrium stage under different external uniform magnetic fields: (a) Bom = 0 (H0 = 0 kA/m), (b) Bom

= 0.59 (H0 = 1.2 kA/m), (c) Bom = 2.36 (H0 = 2.4 kA/m), (d) Bom = 3.44 (H0 = 2.9 kA/m), (e) Bom = 5.60 (H0 = 3.7 kA/m), and (f) Bom = 12.38 (H0 = 5.5 kA/m) (top row:
experiment results;47 bottom row: numerical results). [Reproduced with permission from Flament et al., “Measurements of ferrofluid surface tension in confined geometry,”
Phys. Rev. E 53(5), 4801–4806 (1996). Copyright 1996 American Physical Society].

tends to stretch the ferrofluid droplet into an elliptical shape along
the external magnetic field direction; meanwhile, the surface tension
force increases with curvature, which tends to restore its spherical
shape.

FIG. 8. The elongation ratio of a single ferrofluid droplet at the equilibrium stage
with different external uniform magnetic fields.

The time evolutions of the elongation ratio of a single ferrofluid
droplet at different Bom are presented in Fig. 10. It is found that both
the amplitude and the oscillation period increase with Bom. More-
over, the elongation ratio of the ferrofluid droplet at the equilibrium
stage is close to 1.0 when Bom ≤ 0.59, which means that the interfa-
cial shape is barely changed. In other words, the elongation caused
by the magnetic force can be easily canceled by the surface tension
force at a smaller Bom.

C. Interfacial deformation of non-magnetic material
in ferrofluid

Controlling the interfacial shape of the non-magnetic droplet
or bubble by the external magnetic field is nowadays one of the most
popular areas of microfluidics. Recently, Rigoni et al.48 experimen-
tally investigated the interfacial behaviors of aqueous droplets in an
oil-based ferrofluid under an external uniform magnetic field. Here,
the present magnetic field coupling fractional-step-based LB model
is used to simulate the same problem. The physical parameters used
in the current numerical simulation are the same as those in the
experiment.48 The density ratio and the viscosity ratio are set as 2.0
and 20, respectively. The relative magnetic susceptibility is 1.4. The
external magnetic field strengths are set to 0.608 kA/m, 1.2 kA/m,
1.8 kA/m, and 2.376 kA/m, which correspond to Bom of 0.43, 1.03,
1.63, and 2.47, respectively. The computational domain is discretized
by 201 × 201 lattice units. This grid size is sufficiently small to pro-
duce the grid independent solution (data not shown). The mobility
and the interfacial thickness are set as 0.6 and 4, respectively. The
no-slip boundary condition is imposed at all the boundaries of the
computational domain.
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FIG. 9. The time evolutions of the semi-major axis a and the
semi-minor axis b of the ferrofluid droplet at different Bom.

FIG. 10. The time evolutions of the elon-
gation ratio for a single ferrofluid droplet
at different Bom.

FIG. 11. The interfacial deformations of a single aqueous droplet in the ferrofluid at the equilibrium stage under different external uniform magnetic fields: (a) Bom = 0.43 (H0

= 0.608 kA/m), (b) Bom = 1.03 (H0 = 1.2 kA/m), (c) Bom = 1.63 (H0 = 1.8 kA/m), and (d) Bom = 2.47 (H0 = 2.376 kA/m) (top row: experiment results;48 bottom row: numerical
results). [Reproduced (adapted) with permission from Rigoni et al., “Magnetic field-driven deformation, attraction, and coalescence of nonmagnetic aqueous droplets in an
oil-based ferrofluid,” Langmuir 36, 5048–5057 (2020). Copyright 2020 American Chemical Society].
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FIG. 12. Variation of the elongation ratio of a single aqueous droplet in the ferrofluid
at the equilibrium stage with Bom.

The interfacial deformation of a single aqueous droplet in the
ferrofluid at the equilibrium stage under different external uniform
magnetic fields is shown in Fig. 11. The black elliptical curves repre-
sent the interfacial position at the equilibrium stage obtained by the
present numerical model. To quantitatively investigate the elonga-
tion, the elongation ratio obtained by the present numerical model is
plotted in Fig. 12 with the comparison of the experimental results.48

The interfacial deformation of a single aqueous droplet shows the
elliptical shape under an external uniform magnetic field, and its
elongation ratio increases with Bom. The present numerical results
show a good agreement with the experimental results.

Figure 13 shows the time evolutions of the elongation ratio for
an aqueous droplet at Bom = 0.43, 1.03, 1.63, and 2.47. The elon-
gation ratio of an aqueous droplet increases with Bom. Compared
with Fig. 10, the time to reach the equilibrium stage for an aque-
ous droplet is longer than that of a ferrofluid droplet. Besides, the
deformation process is relatively smooth, and the damped oscilla-
tion behavior does not appear because of the different deforma-
tion mechanisms caused by the different magnetization processes of
the magnetic material and non-magnetic material shown in Fig. 4.
The ferrofluid droplet can be magnetized, and thus, the interfacial
deformation can be directly driven by the magnetic force inside
the droplet. However, the magnetization of the non-magnetic aque-
ous droplet is very weak, and the magnetic force inside the droplet
has a negligible effect on the interface. The streamlines of the mag-
netic flux density avoid passing through the interface of the aqueous
droplet. Therefore, the magnetic flux density is stronger at the semi-
minor axis of the aqueous droplet. After the magnetization process,
the distribution of the magnetic flux density in the semi-minor axis
of the non-magnetic aqueous droplet is similar to that in Fig. 4(b),
and thus, the surrounding ferrofluid in the high magnetic flux den-
sity region is relatively strongly magnetized. The magnetic force

FIG. 13. The time evolutions of the elongation ratio for an aqueous droplet at
different Bom.

acted on the surrounding ferrofluid squeezes the aqueous droplet
to deform into an elliptical shape. Therefore, the elongation ratio
shown in Fig. 13 continuously increases with Bom.

To further investigate the effect of the external magnetic field
on the non-magnetic fluids in magnetic multiphase flows with a
large density ratio, the interfacial deformation of a gas bubble in the
ferrofluid under an external uniform magnetic field is investigated

FIG. 14. The elongation ratio of a gas bubble in the ferrofluid at the equilibrium
stage for different Bom and We.
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FIG. 15. The time evolutions of the inter-
facial shape for the bubble rising at Eo
= 10 under different external uniform
magnetic fields: (a) Bom = 1.0, (b) Bom

= 2.0, (c) Bom = 3.0, (d) Bom = 4.0, and
(e) Bom = 5.0.
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FIG. 16. The interfacial shape for the
bubble rising at T = 1.0 under the exter-
nal uniform magnetic field of Bom over
the range of 1.0–5.0: (a) Eo = 10, (b) Eo
= 25, (c) Eo = 50, (d) Eo = 75, and (e) Eo
= 100.
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FIG. 17. The distribution of magnetic flux
density for the bubble rising at T = 1.0
under the external uniform magnetic field
of Bom over the range of 1.0–5.0: (a) Eo
= 10, (b) Eo = 25, (c) Eo = 50, (d) Eo
= 75, and (e) Eo = 100.
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by the present numerical method. In the initial state, a gas bub-
ble with the diameter D = 0.5 mm is located at the center of a 2D
× 3D computational domain, which is discretized by 201 × 301 lat-
tice units. The density ratio and the viscosity ratio are set as 1000
and 100, respectively. The relative magnetic susceptibility is 2.2. This
simulation is performed under the condition of Re = 40. The no-slip
boundary condition is imposed at all the boundaries of the computa-
tional domain. Figure 14 shows the variation in the elongation ratio
of a gas bubble in the ferrofluid at the equilibrium stage with Bom.
The elongation ratio increases with an increase in Bom but decreases
with an increase in We. As mentioned above, the elongation ratio
depends on the strength of the external magnetic field. For a fixed
Bom, a larger We represents a smaller surface tension coefficient of
the gas bubble, which corresponds to a weaker magnetic field applied
on the magnetic multiphase flow. For a fixed We, a larger Bom rep-
resents a stronger magnetic field, which is conductive to a larger
elongation ratio.

D. Bubble rising in ferrofluid under an external
magnetic field

The numerical simulations in Sec. III C neglect the effect of
gravity and only focus on the interfacial deformation. However,
in the real industrial applications, the mass transfer phenomenon
of magnetic multiphase flows caused by the gravitational effect is
quite important. In the following part, the mass transfer and the
complex interfacial behavior of a gas bubble in the ferrofluid are
simulated. The key dimensionless parameters involved in this sim-
ulation include the Reynolds number Re, the Eotvos number Eo,
the magnetic Bond number Bom, and the Froude number Fr, which
are defined as Re = ρUD

μ , Eo = ρgD2

σ , Bom = ηH2D
σ , and Fr = U2

gD ,

respectively. The normalized time is given as T = t
√

g
L with the

iteration time t. For this simulation, a gas bubble with the diameter
D = 0.5 mm is located at a 2D × 4D computational domain, which
is discretized by 201 × 401 lattice units. Our preliminary study has
demonstrated that this grid resolution is sufficiently fine to provide
grid independent solution. The density ratio is 1000, and the viscos-
ity ratio is 100. The bubble rising in the ferrofluid is simulated under
the conditions of Re = 40 and Fr = 1. The magnetic field is in the
opposite direction of gravity, and the relative magnetic susceptibil-
ity is 2.2. The interfacial thickness and the mobility are set to be 4
and 0.1, respectively. The no-slip boundary condition is employed
on the top and bottom walls, and the periodic boundary condition is
applied on the left and right walls.

Figure 15 shows the time evolutions of the interfacial shape for
the bubble rising at Eo = 10 under different Bom. For a relatively
weak magnetic field (Bom = 1.0), Fig. 15(a) shows that an elliptical
shape appears at T = 1.0. The interfacial deformation and the rising
process are similar to that in Fig. 1, but the rising velocity is accel-
erated by the external uniform magnetic field. When Bom is greater
than 2.0, an inverted teardrop shape with a tail occurs at T = 1.0.
The tail retracts back into the main body with the elapse of time due
to the surface tension effect. With a further increase in Bom (Bom
> 3), the length of the tail initially increases (T = 1.0), as shown in
Figs. 15(b)–15(e). However, the tail does not retract but is trailed by
the gas bubble (T = 2.0 and T = 3.0).

To investigate the inverted teardrop shape, Fig. 16 demon-
strates the interfacial shape for the bubble rising at T = 1.0 under
different Bom and Eo. It is clearly seen that the elongation ratio of
the droplet and the length of tail initially increase (T = 1.0) with an
increase in Bom but decrease with an increase in Eo. The main reason
is that the surface tension force decreases with an increase in Eo, and
the strength of the external magnetic field decreases with the sur-
face tension force for a fixed Bom. The tail of the inverted teardrop
shape shows a growing tendency with increasing Bom. When Eo is

FIG. 18. The mass center for a single gas bubble rising in the ferrofluid under the
different external uniform magnetic fields of Bom ranging from 0 to 5.0: (a) Eo = 10
and (b) Eo = 50.
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FIG. 19. The rising velocity for a single
gas bubble rising in the ferrofluid under
different Bom: (a) Eo = 10 and (b) Eo
= 50.

less than 50, a clear inverted teardrop shape can be observed under a
stronger external magnetic field (Bom ≥ 2.0). The external magnetic
field has a very small effect on the interfacial deformation of the gas
bubble at Eo = 50 and with only a short tail trailing at the bottom
of the gas bubble. When Eo further increases to 100, the strength of
the external uniform magnetic field at a fixed Bom (within the range
investigated in the present study) is too weak to drive the ferrofluid,
and the interface of the gas bubble is barely affected by the external
magnetic field.

The distribution of the magnetic flux density for the bubble ris-
ing at T = 1.0 under the external uniform magnetic field is presented
in Fig. 17. A pair of higher magnetic flux density regions appears at
the semi-minor axis of the gas bubble, which is the same as the dis-
tribution in Fig. 4(b) for the non-magnetic material. Therefore, the
ferrofluid at these regions is magnetized with a relatively stronger
magnetic force, which drives the gas bubble to deform into the ellip-
tical shape. When Eo ≤ 50, a lower magnetic flux density region can
be clearly observed at the bottom of the gas bubble, where the sur-
rounding ferrofluid cannot be well magnetized. Thus, the gas bubble
close to this region is barely affected by the external uniform mag-
netic field. However, the gas bubble out of this region is accelerated
by the magnetic force of the surrounding ferrofluid. Therefore, a tail
is formed because the bottom of the gas bubble rises with a relatively

FIG. 20. The time when the head of the gas bubble reaches the center of the
physical domain during the rising process under different Bom and Eo.
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lower velocity. When Eo > 50, the lower magnetic flux density region
almost spreads over the whole bubble, and thus, no tail is formed.

To quantitatively compare the effect of the external uniform
magnetic field on the bubble rising process in the magnetic multi-
phase flow, the mass center (Yp) for a single gas bubble rising in the
ferrofluid with Eo = 10 and 50 under different Bom is recorded in
Figs. 18(a) and 18(b), respectively. At the same instantaneous time,
Yp is higher at a larger Bom, which indicates that the bubble ris-
ing velocity increases with Bom. When Eo = 10 and Bom ≥ 4.0, Yp
shows a decreasing tendency because the gas bubble reaches the top
boundary of the computational domain. The comparison between
Figs. 18(a) and 18(b) shows that Yp is higher at a lower Eo, and the
effect of Bom on Yp is more pronounced at a lower Eo.

The time history of the velocity of the mass center Vp for
Eo = 10 and 50 under different Bom is presented in Figs. 19(a) and
19(b), respectively. The velocity of the mass center is calculated by
Vp = ∫C<0.5 vdx

∫C<0.5 1dx . Figure 19(a) shows that at a lower Eo (Eo = 10),
Vp shows an increasing tendency at the beginning and, then, tends
to decrease until it reaches the plateau when Bom ≤ 2.5. A decreas-
ing tendency of the rising velocity in the end of the rising process

is observed when Bom ≥ 2.5 because of the effect of top boundary
of the computational domain. At a relatively higher Eo (Eo = 50),
Vp first increases before it reaches the maximum velocity, and, then,
shows a decreasing tendency. However, both the numerical results at
Eo = 10 and 50 demonstrate that Vp can be accelerated by apply-
ing an external uniform magnetic field. The oscillation of the rising
velocity can be observed in Fig. 19, and the oscillation amplitude
increases with Bom. In fact, the mechanisms behind this kind of
oscillation may be very complex, which include the inertial force
effect, the resistance force effect, the magnetic force effect, the sur-
face tension effect, etc. Figure 20 summarizes the time when the head
of the gas bubble reaches the center of the physical domain dur-
ing the rising process under different Bom, which decreases with an
increase in Bom.

The magnetic energy of the external magnetic field is defined
as Emag = 1

2μ∣H∣
2. The time evolutions of the magnetic energy at

the center point of the computational domain ([X, Y] = [0.5, 1.0])
during the rising process at Eo = 10 and 50 are calculated and plot-
ted in Figs. 21(a) and 21(b), respectively. There are three valleys
of magnetic energy in Fig. 21(a): (1) the first valley appears at the

FIG. 21. The time evolutions of mag-
netic energy at the center of the physical
domain during the rising process under
different Bom: (a) Eo = 10 and (b) Eo
= 50.
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initial time, which represents the magnetization process; (2) the sec-
ond valley shows that the head of the gas bubble approaches the
monitoring point, which corresponds to the relatively lower mag-
netic flux density region on the head of the gas bubble; and (3) the
third valley shows that the gas bubble leaves the monitoring point,
which corresponds the lower magnetic flux density region on the
bottom of the gas bubble. When Bom ≥ 4.0, a small valley appears
before the third valley in Fig. 21(a), which represents the low mag-
netic flux density region inside the tail of the gas bubble because the
inverted teardrop shape is fully developed under the effect of the
stronge external magnetic field. Compared with Fig. 21(a), Fig. 21(b)
shows that each magnetic energy curve at Eo = 50 also has three simi-
lar valleys, but the magnetic energy rapidly increases before reaching
the third valley.

IV. CONCLUSION
Magnetic multiphase flows widely occur in microfluidics, drug

delivery, and heat transfer. The present work introduces a magnetic
field coupling fractional-step-based multiphase LB model to sim-
ulate incompressible magnetic multiphase flows, which offers the
following advantages: (1) the proposed numerical model inherits
the excellent performance of kinetic theory from the LB method
and integrates the good numerical stability from the fractional-step
method; (2) the evolution of the distribution function does not need
to be solved, which efficiently saves the virtual memories efficiently;
(3) the magnetic field with the magnetic flux density interaction
between the magnetic and non-magnetic regions is evaluated by
the Poisson equation solver with a self-correcting procedure; (4)
through the rigorous mathematical procedure, the magnetic force
becomes easy-to-implement and can be directly incorporated into
the external force term.

The grid independence study is first investigated by simulat-
ing a gas bubble rising in a stationary liquid. The mass center of the
gas bubble during the rising process under the fine grid size (151
× 301) shows a good agreement with the benchmark results.44 The
validation for the magnetic field solver is, then, examined by com-
puting a stationary cylinder under a uniform magnetic field, and the
result agrees well with the analytical solution of the static magnetic
Maxwell equation obtained by the separation of variables method.
After that, the interfacial deformations of a ferrofluid droplet in
organic oil and an aqueous droplet in the ferrofluid are simulated.
Although the interfacial deformations are similar for the two cases,
the underlying mechanisms are different. For the ferrofluid droplet,
the magnetic nanoparticles dispersed in it are magnetized, and it is,
then, stretched by the magnetic force inside the droplet. However,
for the aqueous droplet, the magnetic flux density on the semi-
minor axis of the droplet is larger, and the surrounding ferrofluid
is strongly magnetized, which squeezes the aqueous droplet into an
elliptical shape. Furthermore, the elongation ratios of the ferrofluid
droplet, the aqueous droplet, and the gas bubble are investigated,
which increase with Bom. Finally, a single gas bubble rising in the
ferrofluid under the external uniform magnetic field is investigated,
which shows that the effect of the external magnetic field in the
opposite direction of gravity can accelerate the rising process. All
the simulation cases demonstrate the capability and potential of the
present method for simulating complex fluid dynamics problems

associated with the interfacial deformation in magnetic multiphase
flows.
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