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In this work, an immersed boundary-discrete unified gas kinetic scheme (IB-DUGKS) is proposed and pre-
sented for the simulation of natural convection with a curved body surface. In this method, two distribu-
tion functions are employed for velocity and temperature field, respectively, and they are coupled under
the Boussinesq approximation. The IB-DUGKS provides an effective way for the DUGKS to treat a curved
boundary. The Strang-splitting method is used to handle the IB force, and its accuracy is first validated by
comparing with another implementation method for the base case of natural convection in a square cav-
ity. The widely used direct-forcing immersed boundary method is adopted due to its simplicity, with an
iteration procedure to ensure the accuracy of no-slip condition on the immersed boundary. Natural con-
vection between an outer square and an inner circular cylinder is then simulated under different geomet-
ric configurations, including different aspect ratios and locations of the cylinder relative to the cavity. The
numerical results are in excellent agreement with the results from the literature, confirming the accuracy
and robustness of the proposed method.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection between a body and an enclosure has
received a great deal of attention in the past decades, as it is rele-
vant to many industrial applications such as heat exchangers, cool-
ing of electronic equipment, and thermal storage systems [1]. In
this paper, the specific geometric configuration of interest is a cold
outer square enclosure and a hot inner circular cylinder. The natu-
ral convection problem of this geometric configuration has also
been investigated by other people in recent years, such as Mou-
kalled and Acharya [2] and Shu and Zhu [3], and has often served
as a benchmark case to verify new numerical methods [4–6]. In
the present study, an immersed boundary-discrete unified gas
kinetic scheme (IB-DUGKS) is developed to investigate such a nat-
ural convection problem involving a curved surface.

IB-DUGKS is a kinetic method solving a model Boltzmann equa-
tion. Unlike the traditional CFD methods which are based on solv-
ing the Navier–Stokes equations, the kinetic methods are based on
the kinetic theory. The kinetic methods provide a connection
between the macroscopic hydrodynamics and the microscopic
physics, and are sometime referred to as mesoscopic methods.
Among the different kinds of kinetic methods, the gas kinetic
scheme (GKS) [7] and lattice Boltzmann method (LBM) [8] are
widely used and have been developed rapidly in recent years.
Based on GKS, a unified GKS (UGKS) for all Knudsen number flows
was developed by Xu and Huang [9]. And recently, the DUGKS was
developed by Guo et al. which combines the advantages of UGKS
and LBM [10,11]. It is a finite volume method and derived directly
from the Boltzmann equation. Compared with LBM, the DUGKS is
more flexible in application, such as fully decoupled time and
space steps, and also a non-uniform mesh can be easily employed.

Since DUGKS is relatively new, only a few studies have emerged
to explore the potential applications of DUGKS. Wang et al. [12]
proposed a coupled DUGKS for Boussinesq flows and the
Rayleigh-Bénard convection and natural convection in a square
cavity were investigated. Wu et al. [13] proposed a general method
to allow the DUGKS to handle an external force term by adding the
force term into the Boltzmann equation and DUGKS procedure. Zhu
et al. [14] successfully extended the DUGKS to unstructured
meshes. Guo and Xu [15] extended the DUGKS to simulate the
whole multiscale heat transfer process based on the phonon Boltz-
mann transport equation. Bo et al. [16] investigated 3D Taylor–
Green vortex flow and turbulent channel flow using DUGKS. Zhu
et al. [17] developed an open source OpenFOAM solver for the
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Boltzmann model equation with DUGKS. Wang et al. [18] con-
ducted a systematic numerical study of three-dimensional natural
convection in a differentially heated cubical cavity with Rayleigh
number up to 1010. Recently, the IB-DUGKS has been developed
for isothermal flows with curved boundary by Tao et al. [19]. So
far, DUGKS has not been applied to heat transfer problems with a
curved boundary.

To incorporate curved boundaries, we shall consider the
immersed boundary method (IBM) which was first proposed by
Peskin in the early 1970s [20]. Due to its simplicity in implemen-
tation and flexibility in application, it has drawn particular atten-
tion in the recent decades [21–23]. The main idea of IBM is to
use two set of grids for the simulation, with a fixed Eulerian grid
covering the whole domain for the fluid, the Lagrangian points rep-
resenting the immersed boundary. The interaction between the
fluid and the immersed boundary is handled through the IB force.
IBM was first used to simulate elastic material boundary, and the
IB force on the boundary points can be determined by the deforma-
tion under Hooke’s law [20,21]. When the force is distributed to
the fluid through a smooth delta function, the effect of the real
boundary can be approximated by the IB force of the immersed
boundary. The original method to calculate the IB force can be
called the penalty or feedback forcing method. Another popular
way to decide the IB force is the direct forcing method proposed
by Mohd-Yusof [22]. It is simpler to implement. But the original
direct forcing method cannot ensure the no-slip condition on the
boundary due to the delta function interpolation errors causing
the streamlines to penetrate through the immersed boundary. To
avoid this problem, the multi-direct forcing method and the impli-
cit direct forcing method were developed. The multi-direct forcing
method was first used by Luo et al. [24], and the details will be
described in Section 2.2. The implicit direct forcing method was
first proposed by Wu et al. [25]. In this implicit method, one does
not calculate the IB force. Instead, the velocity corrections at all
boundary points are considered as unknowns which are computed
in such a way that the non-slip boundary condition at the bound-
ary points is enforced. The drawback of the implicit direct forcing
method is that one need to solve a matrix system, but the no-slip
boundary condition can be satisfied precisely. Besides these two
main methods (feedback forcing and direct forcing methods), there
are many other ways to implement the IBM. One of them is the
interpolation-based scheme proposed by Kim et al. [26,27], which
is based on a finite volume approach on a staggered mesh together
with a fractional-step method. The momentum forcing and the
mass source/sink are applied on the body surface or inside the
body to satisfy the no-slip boundary condition on the immersed
boundary and the continuity for the cell containing the immersed
boundary, respectively. The heat source/sink is introduced on the
body surface or inside the body to satisfy the isothermal or iso-
heat-flux condition on the immersed boundary. A second-order
linear or bilinear interpolation scheme is used to satisfy the no-
slip velocity on the immersed boundary, which is numerically
stable regardless of the relative position between the grid and
the immersed boundary. Kim et al. had validated their method
with isothermal flow and heat transfer problems [26,27], which
also showed the capability of their method. One can find other ver-
sions of the IBM from the literature or from Refs. [28–30].

Within the conventional CFD which solves the Navier-Stokes
equations directly, IBM is well established for isothermal prob-
lems. A few non-isothermal studies using the IBM are noted here.
Kim et al. [4] investigated natural convection between a cold outer
square and a hot inner circular cylinder with the interpolation-
based IBM. Jiong et al. [6] investigated natural convection in a
square enclosure with feedback forcing IBM. Wang et al. [31]
investigated natural and forced convection problems with the
direct forcing IBM. These and other studies [32–35] reveal that
IBM is a competent method for solving a thermal flow within con-
ventional CFD.

The aim of present work is to combine DUGKS (a mesoscopic
flow solver) and IBM (a curved boundary treatment) in order to
formulate a mesoscopic simulation tool for natural convection
problems with complex geometries. The rest of this paper is orga-
nized as follows. In Section 2, a brief introduction of DUGKS and
IBM, as well as how to couple the two methods are described. In
Section 3, the accuracy of the present method is validated by com-
paring the simulation results for several benchmark problems with
the data from the literature. Finally, a brief summary and conclu-
sions are presented in Section 4.

2. Simulation method

In this section, the DUGKS algorithm is described first. Then the
direct-forcing immersed boundary method is introduced. At last
two different ways for the DUGKS to incorporate an external force
term are given.

2.1. Discrete unified gas kinetic scheme

DUGKS was first proposed by Guo et al. [10], one can also find
the details about this method from the previous studies [12,13].
Here a brief introduction of the method is given.

2.1.1. DUGKS for velocity field
DUGKS begins with the Boltzmann equation with the BGK col-

lision model [10]

@f
@t

þ n � rf ¼ X � f eq � f
sv

; ð1Þ

where f is the distribution function for the velocity field, f = f(x, n, t)
with space x, time t and velocity n. X is the collision term, sv is the
relaxation time and related to the viscosity coefficient. feq is the
Maxwellian equilibrium state and has the following form:

f eq ¼ q
ð2pRT1ÞD=2

exp �ðn� uÞ2
2RT1

 !
; ð2Þ

where q is density of the fluid, R is the gas constant, T1 is a constant
temperature, u is the macroscopic velocity of the fluid, D is the spa-
tial dimension. Here RT1 = cs

2, cs is the artificial sound speed. The
hydrodynamic variables can be obtained as:

q ¼
Z

fdn; qu ¼
Z

nfdn: ð3Þ

The DUGKS is a finite volume method, and the flow domain can
be divided into a set of control volumes Vj which are centered at xj.
Integrating Eq. (1) on Vj from time tn to tn+1, and using the midpoint
rule for the integration of the convection term and trapezoidal rule
for the collision term, one can obtain

f nþ1
j � f nj þ

Dt
jVjj F

nþ1=2 ¼ Dt
2
ðXnþ1

j þXn
j Þ; ð4Þ

where Dt is the time step, and

Fnþ1=2 ¼
Z
@Vj

ðn � nÞf ðx; tnþ1=2ÞdS ð5Þ

is the microflux across the interface, n is the unit vector
normal to the cell interface. But Eq. (4) used to update the distribu-
tion function f is implicit, so two new distribution functions are
defined

ef j ¼ f j �
Dt
2
Xj;

ef þj ¼ f j þ
Dt
2
Xj: ð6Þ
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So one can rewritten Eq. (4) using an explicit form as

ef nþ1
j ¼ ef þ;n

j � Dt
jVjj F

nþ1=2: ð7Þ

In order to update ef , we need to evaluate the flux Fn+1/2. Inte-
grating Eq. (1) along the characteristic line within a half time step
h (=Dt/2) yields

f ðxb; n; tn þ hÞ � f ðxb � nh; n; tnÞ

¼ h
2
½Xðxb; n; tn þ hÞ þXðxb � nh; n; tnÞ�; ð8Þ

where xb is the end point located at the cell interface, and the trape-
zoidal rule is used to treat the collision term. Similarly, two new dis-
tribution functions are defined

f ¼ f � h
2
X; fþ ¼ f þ h

2
X: ð9Þ

So Eq. (8) can be rewritten as

f ðxb; n; tn þ hÞ ¼ fþðxb � nh; n; tnÞ: ð10Þ
If we apply Taylor expansion to the right hand side of Eq. (10),

and then Eq. (10) becomes

f ðxb; n; tn þ hÞ ¼ fþðxb; n; tnÞ � hn � rb; ð11Þ
where rb ¼ rfþðxb; n; tnÞ. The density and velocity at the cell inter-
face can be obtained as

q ¼
Z

f dn; qu ¼
Z

nf dn; ð12Þ

from which the equilibrium state function feq at the cell interface
can be calculated. And then the original distribution function at
the cell interface, which are used to calculate the microflux in Eq.
(5), can be calculated by

f ðxb; n; tn þ hÞ ¼ 2sv
2sv þ h

f ðxb; n; tn þ hÞ þ h
2sv þ h

f eqðxb; n; tn þ hÞ:
ð13Þ

In the implementation of DUGKS, another two relations are
used

fþ ¼ 2sv � h
2sv þ Dt

ef þ 3h
2sv þ Dt

f eq; ð14Þ

ef þ ¼ 4
3
fþ � 1

3
ef : ð15Þ

Now all the equations to update the distribution function ef have
been obtained. And the macroscopic density and velocity of the
fluid can be obtained as

q ¼
Z ef dn; qu ¼

Z
nef dn: ð16Þ

For a low March number flow, the Maxwellian equilibrium dis-
tribution function can be approximated by its Taylor expansion

f eq ¼ Wiq 1þ n � u
RT1

þ ðn � uÞ2
2ðRT1Þ2

� juj2
2RT1

" #
; ð17Þ

where Wi is the weight coefficients, W0 = 4/9, W1,2,3,4 = 1/9, W5,6,7,8

= 1/36. For 2D flow problems, the nine velocity model are used

ni ¼
ð0;0Þ; i ¼ 0

ðcos½ði� 1Þp=2�; sin½ði� 1Þp=2�Þc; i ¼ 1� 4

ðcos½ð2i� 9Þp=4�; sin½ð2i� 9Þp=4�Þ
ffiffiffi
2

p
c; i ¼ 5� 8

8><>: ; ð18Þ
where c ¼ ffiffiffiffiffiffiffiffiffiffiffi
3RT1

p
. The fluid pressure and kinetic viscosity also can

be obtained

p ¼ qRT1; m ¼ svRT1: ð19Þ
2.1.2. DUGKS for temperature field
The procedure for constructing the DUGKS model in tempera-

ture field is similar with the velocity [12]. First we have the Boltz-
mann equation with the BGK collision model

@g
@t

þ n � rg ¼ W � geq � g
sc

; ð20Þ

where g is the distribution function for the temperature field, g = g
(x, n, t) with space x, time t and velocity n.W is the collision term, sc
is the relaxation time and related to the thermal diffusivity coeffi-
cient. geq is the Maxwellian equilibrium state and has the following
form:

geq ¼ T

ð2pRT2ÞD=2
exp �ðn� uÞ2

2RT2

 !
; ð21Þ

where T is temperature of the fluid, T2 is a constant temperature
related to the artificial sound speed, just like T1 in velocity field.
The temperature can be obtained as:

T ¼
Z

gdn: ð22Þ

Similarly with Eq. (4), from Eq. (20) one can obtain the follow-
ing equation

gnþ1
j � gn

j þ
Dt
jVjj F

nþ1=2
T ¼ Dt

2
ðWnþ1

j þWn
j Þ; ð23Þ

By introducing two new distribution functions

egj ¼ gj �
Dt
2
Wj; egþ

j ¼ gj þ
Dt
2
Wj; ð24Þ

Eq. (23) can be rewritten as

egnþ1
j ¼ egþ;n

j � Dt
jVjj F

nþ1=2
T : ð25Þ

In order to update eg , one need to evaluate the flux FT
n+1/2. Inte-

grating Eq. (20) along the characteristic line within a half time step
h yields

gðxb; n; tn þ hÞ � gðxb � nh; n; tnÞ

¼ h
2
½Wðxb; n; tn þ hÞ þWðxb � nh; n; tnÞ�: ð26Þ

Two new distribution functions are defined

g ¼ g � h
2
W; gþ ¼ g þ h

2
W; ð27Þ

so Eq. (26) can be rewritten as

gðxb; n; tn þ hÞ ¼ gþðxb � nh; n; tnÞ ¼ gþðxb; n; tnÞ � hn � rb; ð28Þ
where rb ¼ rgþðxb; n; tnÞ and the Taylor expansion has been
applied. The temperature at the cell interface can be obtained as

T ¼
Z

gdn; ð29Þ

from which the equilibrium state function geq at the cell interface
can be calculated. And then the original distribution function at
the cell interface can be calculated by

gðxb; n; tn þ hÞ ¼ 2sc
2sc þ h

gðxb; n; tn þ hÞ þ h
2sc þ h

geqðxb; n; tn þ hÞ:
ð30Þ
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In the implementation of DUGKS, another two relations are
used

gþ ¼ 2sc � h
2sc þ Dt

eg þ 3h
2sc þ Dt

geq; ð31Þ

egþ ¼ 4
3
gþ � 1

3
eg : ð32Þ

Now all the equations to update the distribution function eg
have been obtained. And the temperature of the fluid can be
obtained as

T ¼
Z egdn: ð33Þ

The nine velocity model is also used in temperature field, and
the equilibrium distribution function can be written as

geq ¼ WiT 1þ n � u
RT2

þ ðn � uÞ2
2ðRT2Þ2

� juj2
2RT2

" #
: ð34Þ

The thermal diffusivity and Prandtl number can be obtained as

j ¼ scRT2; Pr ¼ m
j
¼ svRT1

scRT2
: ð35Þ
2.1.3. The Boussinesq approximation for natural convection
THE Boussinesq approximation is often used when studying the

natural convection problems. Under this assumption, the fluid den-
sity q is considered as a linear function of the temperature T [36]:

q ¼ qo � qobðT � ToÞ; ð36Þ
where qo and To are the average density and temperature of the
fluid, b is the coefficient of thermal expansion. The gravity can be
written as:

G ¼ qgo ¼ qogo � qogobðT � ToÞ; ð37Þ
where go is the acceleration of gravity. And the Boussinesq equa-
tions can be obtained [36,12]:

r � u ¼ 0; ð38Þ

@u
@t

þ u � ru ¼ �rp
q

þ mr2u� a; ð39Þ

@T
@t

þ u � rT ¼ kr2T; ð40Þ

where a is the acceleration of external force (buoyancy), and here

a ¼ gobðT � ToÞj; ð41Þ
j is the unit vector in vertical direction. The coupling of velocity and
temperature in DUGKS is established by adding the force term in Eq.
(1), which can be rewritten as [12]:

@f
@t

þ n � rxf þ a � rnf ¼ X � f eq � f
sv

: ð42Þ

More details about the DUGKS with an external force will be
given in Section 2.3.

2.1.4. Boundary condition treatment
In the previous studies [10–13], the well-known bounce back

rule has been used to treat the boundary in DUGKS. The boundary
wall is located at the cell interface, so instead of treating the orig-
inal distribution function f and g, one should implement the

boundary treatment with f and g. For the fixed wall in the present

study, the distribution function f pointing towards the flow field
can be obtained as
f ðxw; ni; t þ hÞ ¼ f ðxw;�ni; t þ hÞ: ð43Þ
And for the temperature field, two types of boundary should be

considered [12]. For the constant temperature boundary, the distri-
bution function g pointing towards the flow field can be obtained
as

gðxw; ni; t þ hÞ ¼ �gðxw;�ni; t þ hÞ þ 2 �Wi � Tw; ð44Þ
where Tw is the wall temperature and Wi is the weight coefficients
(same with Eq. (17)). And for the adiabatic boundary, it can also be
realized by the bounce back rule, which is

gðxw; ni; t þ hÞ ¼ gðxw;�ni; t þ hÞ; ð45Þ
and ni always pointing towards the flow field.

2.2. Multi-direct forcing immersed boundary method

The key point in IBM is how to calculate the boundary force on
the Lagrangian points. According to this question, there are two
different ways widely used to implement IBM, which are the pen-
alty method and the direct forcing method. To avoid using the user
defined spring constant in the calculation, the direct forcing IBM is
chosen in the present study.

To implement the direct-forcing IBM, we first need to calculate
the immediate velocity u⁄ and temperature T⁄ without the IB force
and heat source from Eq. (16) and Eq. (33). And the boundary
velocity and temperature on the Lagrangian points can be interpo-
lated with the delta function

U�
b ¼

X
i;j

u� � DðXb � Xi;jÞ � Dx2; ð46Þ

T�
b ¼

X
i;j

T� � DðXb � Xi;jÞ � Dx2; ð47Þ

where the Ub
⁄ and Tb⁄ are the immediate velocity and temperature on

the immersed boundary without IB forces, Dx is the grid size. Xi,j

and Xb are the Eulerian and Lagrangian points, respectively. The
delta function used here is

DðXb � XijÞ ¼ 1
Dx2

dðxb � xijÞdðyb � yijÞ;

dðrÞ ¼
1
4 � 1þ cos pjrj

2Dx

� �� �
0

(
jrj 6 2
jrj > 2

: ð48Þ

As the desired velocity Ub and temperature Tb on the boundary
are designed, the IBM momentum force Fb and temperature force
Qb are designed as [37,38]

Fb ¼ 2qb
Ub � U�

b

Dt
; ð49Þ

Qb ¼ 2qb
Tb � T�

b

Dt
; ð50Þ

where qb is the density of Lagrangian points and it is also interpo-
lated from the Eulerian points using delta function. Now one needs
to distribute the forces on the Lagrangian points back to the Eule-
rian points using the same delta function

f ij ¼
X
b

Fb � DðXb � Xi;jÞ � Ds; ð51Þ

qij ¼
X
b

Qb � DðXb � Xi;jÞ � Ds; ð52Þ

where fij and qij are the force terms on the Eulerian points. Ds is the
arc length between two Lagrangian points. Finally one can update
the velocity and temperature on the Eulerian points [37,38]
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u ¼ u þ Dt
2q

� f ij; ð53Þ

T ¼ T þ Dt
2q

� qij: ð54Þ

Eqs. (46)–(54) are the procedure of the conventional direct-
forcing IBM. But the conventional method cannot ensure the no-
slip condition on the boundary due to delta function interpolation
errors causing the streamlines to penetrate through the immersed
boundary. To avoid this problem, the multi-direct forcing method
was first used by Luo et al. [24]. It is easy to implement and one only
needs to iterate the forcing procedure, i.e. Eqs. (46)–(54), several
times until the error is small enough. In general, 10 times of itera-
tion is enough to ensure the no-lisp boundary condition [24,37].

2.3. DUGKS with external force

The external force has not been considered in the original
DUGKS algorithm described in Section 2.1.1. But in the present
study, one has to consider the buoyancy force and IB force in the
computation. Two different methods can be used to deal with
the external force in DUGKS.

2.3.1. External force involved in the DUGKS
In the previous study, Peng et al. [12] and Wu et al. [13] deal

with the external force by adding the force term in Eq. (1), just like
Eq. (42), which can also be rewritten as

@f
@t

þ n � rxf ¼ X � f eq � f
sv

þ F; ð55Þ

and X is the new collision term, the force term F is

F ¼ �a � rnf � a � ðn� uÞ
RT1

f eq; ð56Þ

where a is the acceleration of external force. And Eq. (3) should also
be rewritten as

qu ¼
Z

nfdnþ Dt
2
qa; ð57Þ

and the same modifications should also be done with Eq. (12) and
(16). Importantly, Eq. (13) and (14) should be rewritten as [12,13]

f ðxb; n; tn þ hÞ ¼ 2sv
2sv þ h

f ðxb; n; tn þ hÞ þ h
2sv þ h

ðf eqðxb; n; tn þ hÞ
þ sv � FÞ; ð58Þ

fþ ¼ 2sv � h
2sv þ Dt

ef þ 3h
2sv þ Dt

ðf eq þ sv � FÞ: ð59Þ

One problem should be noted here is that the interface distribu-
tion function f (xb, n, tn + h) in Eq. (58) also has the force term F. But
within the finite-volume framework, the IB forces which are
obtained from Eqs. (51) and (52), are only distributed on the cell
center, and one cannot obtain the IB force at the interface directly
[39]. So the above method is not suitable if there is an immersed
boundary.

2.3.2. Strang-splitting method
Strang-splitting method is another way to deal with the exter-

nal force [40]. When using this method, one does not need to mod-
ify the original DUGKS procedure, and a half of the force is added
before and after the DUGKS procedure. The Strang-splitting
method can be described as [41]

pre-forcing :
@f
@t

¼ 1
2
F; ð60Þ
DUGKS :
@f
@t

þ n � rf ¼ X � f eq � f
sv

; ð61Þ

post-forcing :
@f
@t

¼ 1
2
F: ð62Þ

In the present study, as we tracked ef and eg in DUGKS, the pre-
forcing step can be implemented as

ef �i ¼ ef i þ Dt
2

� Fi; ð63aÞ

eg�
i ¼ egi þ Dt

2
� Qi; ð64aÞ

where [12,13,5,38]

Fi ¼ aþ f ij
q

� �
� ðn� uÞ

RT1
f eq; ð63bÞ

Qi ¼ Wi � qij: ð64bÞ
The velocity and temperature also need to be updated as

u� ¼ uþ Dt
2

� aþ f ij
q

� �
; T� ¼ T þ Dt

2
� qij

q
; ð65Þ

where a is the acceleration associated with the buoyancy force, fij
and qij are the IBM momentum and energy forces. The post-
forcing step is similar. But one should note that, in IB-DUGKS, the
update of velocity and temperature in post-forcing step has been
done in the IBM procedure. In order to prove the accuracy of the
Strang-splitting method, a comparison between the two different
methods discussed in Sections 2.3.1 and 2.3.2 will be made in next
section.
3. Results and discussion

In order to validate the new method, a few natural convection
problems are simulated in this section. Some parameters used in
all the following simulations will be defined first. The Rayleigh
number, which is viewed as a key parameter in natural convection
problems, is defined as

Ra ¼ gobDTL
3

mj
; ð66Þ

where go is the acceleration of gravity, b is the coefficient of thermal
expansion, DT is the temperature difference between the hot and
cold boundary, L is the characteristic length, m is the kinematic vis-
cosity, j is the thermal diffusivity coefficient. The Prandtl number
Pr has been defined in Eq. (35), and Pr = 0.71 in the present study
(for the air) if not stated. For simplicity, we define RT1 = RT2 = 1/3,
just like in the D2Q9 LBM (other values can also be chosen in
DUGKS). So the sound speed cs can be determined (RT = cs

2). The
characteristic velocity U0 can be defined as

U0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gobDTL

p
; ð67Þ

and the Mach number is defined as Ma = U/cs. In order to satisfy the
nearly incompressible flow, Ma = 0.1 is used in the present study
and the characteristic velocity U0 can then be obtained. The time
step Dt (=gDxmin/Cmax) is determined by the CFL number g, mini-
mum grid spacing Dxmin, and maximal discrete velocity Cmax. We
set CFL = 0.9 in the present study, which can give a larger time step.
In the practical simulation, as we have defined the Mach number,
sound speed and Prandtl number, then one can calculate the viscosity
and diffusivity first according to the Ra number, and the relaxation
times are calculated at last according to Eqs. (19) and (35).
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3.1. Natural convection in a square cavity

The first case we simulate is the natural convection in a square
cavity. We use the two different ways to deal with the external
force, as discussed in Sections 2.3.1 and 2.3.2. Here for this base
flow problem, IBM is not needed so both DUGKS forcing methods
can be used. The purpose is to make a comparison between the
two methods and validate the accuracy of the Strang-splitting
method which will be used in the IB-DUGKS simulations. The geo-
metric configuration is illustrated in Fig. 1. The length of the square
cavity is L, which is also the characteristic length of the cavity nat-
ural convection problems. The left vertical wall is maintained a
constant high temperature Th = 1, and the right vertical wall is
maintained a constant low temperature Tc = 0. The horizontal top
and bottom walls are adiabatic. The direction of the gravity is ver-
tical and downward. The boundary conditions for velocity and
temperature in Section 2.1.4 are implemented. We set a quiescent
and isothermal field as the initial state (the initial temperature T0
= (Th + Tc)/2). In the simulation, a uniform mesh of 100 	 100 is
used. As we will use two different methods to deal with the
go

adiabatic wall 

adiabatic wall 

x 

L 

y

T 
= 

T h
 =

 1
 

T 
= 

T c
= 

0 

Fig. 1. Illustration of the flow domain for the natural convection in a square cavity.

     (a1) Ra=103           (a2) Ra=104        

     (b1) Ra=103           (b2) Ra=104        

Fig. 2. Comparison of the isothermals of natur
external force, we name the method in Section 2.3.1 as Case 1,
and the Strang-splitting method as Case 2.

The isothermals of Case 1 and Case 2 for Ra = 103, 104, 105 and
106 are shown in Fig. 2. From the figures we can find that there is
no difference between the two cases, and they all agree well with
the results reported in the literature [12,36]. Our main purpose is
to compare the two methods quantitatively with the literature.
The data of interest here include the maximum horizontal velocity
at the mid-width, umax, and its location, the vertical velocity at the
mid-height, vmax, and its location, the maximum Nusselt number
on the cold wall, Numax, and its location, and the average Nusselt
number in the whole domain. The velocities in our results are all
normalized with the reference velocity uo = j/L. The Nusselt num-
ber on the cold wall can be obtained directly from the temperature
gradient on the cold wall, and the average Nusselt number can be
calculated by [42]

Nu ¼ 1
NxNyDT

XNx ;Ny

i;j¼1

uxT � @T
@x

� �
; ð68Þ

where Nx, and Ny are the grids number in x and y direction, ux is the
horizontal velocity and also normalized with the reference velocity
uo = j/L. The results from Case 1 and Case 2, as well as the results
from the literature are shown in Table 1. We conclude that the
results from the two cases and from the literature agree well. This
also confirms the accuracy of the Strang-splitting method. Then
we will conduct IB-DUGKS with the Strang-splitting in the follow-
ing simulations involving IBM.

3.2. Natural convection in a square cavity with a concentric circular
cylinder

To validate the accuracy of the IB-DUGKS, the natural convec-
tion between a cold square and a concentric hot circular cylinder
is conducted. The hot circular cylinder is the immersed body in
the simulation. The geometric configuration is illustrated in
Fig. 3. The length of the outer square is L, and the radius of the
   (a3) Ra=105          (a4) Ra=106

   (b3) Ra=105          (b4) Ra=106

al convection (a for Case 1; b for Case 2).



Table 1
Numerical results of the natural convection in a square cavity.

Ra umax y vmax x Numax y Nuave

103 Case 1 3.643 0.82 3.699 0.18 1.508 0.91 1.1181
Case 2 3.643 0.82 3.698 0.18 1.508 0.91 1.1181
Davis [43] 3.649 0.813 3.697 0.178 1.505 0.908 1.118

104 Case 1 16.169 0.83 19.609 0.12 3.529 0.86 2.2424
Case 2 16.168 0.83 19.608 0.12 3.530 0.86 2.2425
Davis [43] 16.178 0.823 19.617 0.119 3.328 0.857 2.243

105 Case 1 34.788 0.86 68.162 0.07 7.633 0.92 4.4968
Case 2 34.761 0.86 68.149 0.07 7.640 0.92 4.4977
Davis [43] 34.73 0.855 68.59 0.066 7.717 0.919 4.519

106 Case 1 63.279 0.86 213.621 0.04 16.527 0.96 8.6638
Case 2 63.121 0.86 213.482 0.04 16.561 0.96 8.6678
Davis [43] 64.63 0.850 219.36 0.0379 17.925 0.962 8.8

L Th

R 

Tc

Tc

g 

Tc

Tc

Fig. 3. Illustration of natural convection in a square cavity with a concentric
circular cylinder.

(a1) R/L=0.1 (a2) R/L=

(b1) R/L=0.1 (b2) R/L=

Fig. 4. Isothermals (a) and streamlines (b) for natural convection
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inner cylinder is R. The inner cylinder is maintained a constant high
temperature Th = 1, and the outer square is maintained a constant
low temperature Tc = 0. The ratio between R and L is varied, and
three different configurations, R/L = 0.1, 0.2 and 0.3, are considered.
In the simulations, a uniformmesh of 200 	 200 is adopted [6]. The
Lagrangian points are uniformly distributed on the immersed
boundary. In order to ensure a higher accuracy on the immersed
boundary, the arc length Ds between two Lagrangian points should
be small enough, which usually is smaller than the grid spacing Dx
[23,24,37,38]. In the present study, 180, 360 and 540 Lagrangian
points are used separately for the three different aspect ratios
(Ds = 0.7Dx). The multi-direct forcing IBM is adopted. We set a qui-
escent and isothermal field as the initial state. The bounce back
boundary condition for velocity and constant temperature bound-
ary condition for temperature are implemented at the outer
square.

The streamlines and isothermals of different configurations for
Ra = 104, 105 and 106 are presented in Figs. 4–6, and they show
0.2 (a3) R/L=0.3

0.2 (b3) R/L=0.3

between a cavity and a concentric cylinder, with Ra = 104.



(a1) R/L=0.1 (a2) R/L=0.2 (a3) R/L=0.3

(b1) R/L=0.1 (b2) R/L=0.2 (b3) R/L=0.3

Fig. 5. Isothermals (a) and streamlines (b) for natural convection between a cavity and a concentric cylinder, with Ra = 105.

(a1) R/L=0.1 (a2) R/L=0.2 (a3) R/L=0.3

(b1) R/L=0.1 (b2) R/L=0.2 (b3) R/L=0.3

Fig. 6. Isothermals (a) and streamlines (b) for natural convection between a cavity and a concentric cylinder, with Ra = 106.
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good agreement with the results in the literature [3,38,44]. From
the figures one can observe that they are all symmetrical about
the mid-width vertical line. Due to the buoyancy, the air moves
upward around the hot cylinder, and moves downward along the
vertical cold wall. The Rayleigh number has significant influence
on the heat transfer rate. When the Rayleigh number is small, heat
transfer between the inner cylinder and the outer square is mainly
by conduction. When the Rayleigh number increases, convection
gradually dominates.

In order to quantitatively validate the results, the average Nus-
selt numbers are calculated. When using IBM, the average Nusselt
number can be obtained with the following equation [44]

Nu ¼ S
jLbDT

X
i

Q i
bDsi ði ¼ 1 
 mÞ; ð69Þ

where S is taken as half of the circumferential length of the inner
circular cylinder, j is the thermal diffusivity coefficient, Lb is the
Table 2
Comparison of the average Nusselt Numbers.

Ra R/L Present Shu and Zhu [3] Moukalled and Acharya [2]

104 0.1 2.09 2.08 2.071
0.2 3.27 3.24 3.331
0.3 5.46 5.40 5.826

105 0.1 3.81 3.79 3.825
0.2 4.93 4.86 5.08
0.3 6.28 6.21 6.212

106 0.1 6.15 6.11 6.107
0.2 8.96 8.90 9.374
0.3 12.08 12.00 11.62

107 0.1 10.33 – –
0.2 16.06 – –
0.3 22.19 – –

(a1) R/L=0.1 (a2) R/L=

(b1) R/L=0.1 (b2) R/L=

Fig. 7. Isothermals (a) and streamlines (b) for natural convection
circumferential length of the inner circular cylinder, DT is the tem-
perature difference between the hot and cold boundaries, Qb is the
heat flux on the Lagrangian points, Ds is the immersed boundary
segment length, m is the number of the Lagrangian points on the
immersed boundary.

The computed average Nusselt numbers and the results from
the literatures are presented in Table 2. The results showed that
the present results agree well with the literature data, which vali-
dated the accuracy of the present method for simulation of natural
convection with a curved surface.

According to Wang et al. [18], the original DUGKS works well
for large Ra numbers. So the large Ra numbers were also tested
in this study. It was found that the proposed method still works
well when the Ra number is larger than 1010 in the same domain
(200 	 200), which proved the numerical stability of the new
method. In consideration of the accuracy of the simulation, only
the results of Ra = 107 are presented in Fig. 7 and Table 2. One
could investigate larger Ra numbers using higher grid resolutions
to ensure the accuracy. From the results one can observe that the
convection is more drastic with a larger Ra number and when R/
L = 0.3 it is not symmetric anymore due to additional physical flow
instability in the narrow space between the cold and hot surfaces.

In order to evaluate the accuracy of the proposed method, a set
of simulations with different mesh resolutions are conducted. We
use R/L = 0.2, Ra = 104, and the meshes are 100 	 100, 200 	 200,
400 	 400 and 800 	 800. The CFL numbers were adjusted to keep
the time step constant, which are 0.1, 0.2, 0.4 and 0.8, respectively.
The L2 errors in velocity and temperature fields are measured in
Table 3, where the L2 error is defined by [10]

Eð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y

j/ðx; y; tÞ � /eðx; y; tÞj2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;y

j/eðx; y; tÞj2
r ; ð70Þ
0.2 (a3) R/L=0.3

0.2 (b3) R/L=0.3

between a cavity and a concentric cylinder, with Ra = 107.



Table 3
Error and convergence order in velocity and temperature.

N 100 200 400

E(u)
Order

5.98 	 10�2 2.63 	 10�2 8.89 	 10�3

– 1.18 1.57
E(T)

Order
1.78 	 10�2 8.80 	 10�3 3.58 	 10�3

– 1.02 1.30
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where u = u or T, and ue is the benchmark value. As there is no ana-
lytical value in this natural convection problem, the results with the
mesh of 800 	 800 are chosen to be the benchmark solution. An
overall first-order accuracy is confirmed. Since the DUGKS scheme
is of second order accuracy in space [10,12], and the order of accu-
racy of the proposed method is reduced because of the IBM. It is
consistent with the results from other references which used the
IB-LBM [45–47].
3.3. Natural convection in a square cavity with an eccentric circular
cylinder

To further examine the applicability of the present method, the
natural convection in a square cavity with an eccentric circular
0.1L Th
L 

R 

TcTc

adiabatic wall 

g 

adiabatic wall 

Fig. 8. Illustration of natural convection in a square cavity with an eccentric circular
cylinder.

Fig. 9. Isothermals (left) and streamlines (right) for natural convectio
cylinder is conducted. The geometric configuration is illustrated
in Fig. 8. The length of the outer square is L, and the radius of the
inner cylinder R is 0.2L. The cylinder is off-center in vertical direc-
tion and the distance is 0.1L. The inner cylinder is maintained a
constant high temperature Th = 1, and the two vertical walls are
maintained a constant low temperature Tc = 0. The horizontal top
and bottom walls are adiabatic. The boundary conditions are same
with the former cases. We also set a quiescent and isothermal field
as the initial state. In the simulations, a uniformmesh of 200 	 200
is adopted [32,48]. The multi-direct forcing IBM is used and 360
Lagrangian points uniformly distributed on the immersed bound-
ary. The Rayleigh number and Prandtl are 106 and 10, respectively.

The isothermal and streamline are presented in Fig. 9 and they
agree well with the plots in literature [42]. Due to the large Ray-
leigh number, the convection effect dominates in this case. The
air moves upward around the hot cylinder, and moves downward
along the vertical cold wall, just like the results in the former sec-
tion. But the temperature profile is different because of the adia-
batic horizontal walls.

In order to quantitatively compare the results with the litera-
ture, the local Nusselt numbers on the cold vertical walls are
obtained. A comparison with the results from the literatures has
been made in Fig. 10 and it also shows a good agreement [32,48].
n in a square cavity with an eccentric circular cylinder Ra = 106.

Fig. 10. Comparison of the local Nusselt number along the cold vertical wall of the
cavity.
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4. Summary and conclusion

In this study, an immersed boundary-discrete unified gas
kinetic scheme (IB-DUGKS) for simulating natural convection flows
with a curved boundary is proposed, developed, and validated. The
main motivation was to extend the applicability of DUGKS to ther-
mal flow problems with curved boundaries. In order to treat a
curved boundary, the immersed boundary method (IBM) is
employed. Specifically, the direct-forcing IBM is used in this study
due to its simplicity, with an iteration procedure to ensure the
accuracy of the no-slip boundary condition. The Strang-splitting
method is used to incorporate the IB force within DUGKS.

As a first step, we simulated the base case of the natural convec-
tion in a square cavity to confirm the accuracy of the Strang-
splitting method. In this simple case without a curved immersed
boundary, two alternative implementation methods to include
the external (buoyancy) force, described in Sections 2.3.1 and
2.3.2, were compared. The isothermals are consistent between
the two methods. The results were also compared with the data
from the literature, and an excellent agreement was found. These
comparisons verify the accuracy of the Strang-splitting method.

Next, several benchmark cases were simulated to validate the
accuracy of the IB-DUGKS. The first is the natural convection heat
transfer between a cold square and a concentric hot circular
cylinder. Three different configurations, R/L = 0.1, 0.2 and 0.3, were
considered. The streamlines and isothermals of different configura-
tions at Ra = 104, 105 and 106 are consistent with the literature
results. The calculated average Nusselt numbers are in good agree-
ment with the data from the literature. The results validate the
accuracy of the IB-DUGKS as a direct numerical simulation tool
for natural convection with curved boundaries. The numerical sta-
bility and order of accuracy of the proposed method were also
studied.

We also simulated the natural convection heat transfer in a
square cavity with an eccentric circular cylinder. The isothermals,
streamlines and local Nusselt numbers were compared with the
results from the literature. Not only the isothermals and streamli-
nes, but also the Nusselt numbers agree well with the literature.
This case further supports the accuracy of the IB-DUGKS and also
extends its applicability.

From the above results, it is clear that the proposed IB-DUGKS is
capable of simulating natural convection problems with curved
boundaries. The combination of IBM and DUGKS provides an effec-
tive way for the DUGKS to deal with curved boundary and signifi-
cantly extends the applicability of the DUGKS to heat transfer
problems of complex geometry. Other natural convection geome-
tries and forced convection problems can also be tested. As a
new and powerful numerical method, the application domains of
DUGKS will continue to expand in the future.
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